
Discrete Time Promela and Spin

Dragan Bošnački
�

and Dennis Dams
���

Dept. of Computing Science, Eindhoven University of Technology
PO Box 513, 5600 MB Eindhoven, The Netherlands

fax: +31 40 246 3992, e-mails:
�
dragan,wsindd � @win.tue.nl

Abstract. Spin is software package for verification of concurrent systems. The
formal models of the systems that are verified, are built in Promela - Spin’s input
language. We present an extension of Promela and Spin with discrete time that
provides an opportunity to model systems which correct functioning crucially de-
pends on timing parameters. The new version of the tool is completely compatible
with all the features the standard package, including partial order reduction. We
have tested the prototype tool on several applications known in the verification
literature and the first results are very promising.

The Spin Model Checker. Originally,Promela and Spin have been developed for analy-
sis and validationof communication protocols [10]. The language syntax is derived form
C, but also uses the denotations for communications from Hoare’s CSP and control flow
statements based on Dijkstra’s guarded commands. The full presentation of Promela and
Spin is beyond the scope of this paper and we suggest [10] as a reference to the inter-
ested reader. Following[11] we only give a short overview of the language and validation
tools. In Promela, the system components are modeled as processes that can communi-
cate via channels either by buffered message exchanges or rendez-vous operations, and
also trough shared memory represented as global variables. The execution of actions is
considered asynchronous and interleaved, which means that in every step only one en-
abled action is performed and without any additional assumptions of the relative speed
of the process execution.

Given as an input a Promela model Spin can do random or interactive simulations or
to generate a C program that performs a validation of the system by scanning the state
space. The validation with the compiled C program is done in separate phases. The one
phase is validation of the safety properties (absence of deadlock, unspecified message
receptions, invalid end states and assertions) trough a search of the state space. Verifi-
cation of most of the liveness properties can be handled by detection of progress and
acceptance cycles. The never-claims constructs are the most general way to verify the
system by providing the possibility to express properties as linear-time temporal logic
(LTL) formulae. All kinds of errors are reported by saving the trace of the actions leading
to an invalid state or cycle. The erroneous sequence can be repeated as a guided simula-
tion. The simplest way to do scanning of the state space is trough an exhaustive search.
�

On leave from the Insitiute of Informatics, Faculty of Natural Sciences and Mathematics, Uni-
versity “Sts. Cyril and Methodius”, Skopje, Macedonia. Supported by EC ESPRIT LTR Project
No. 23498 (VIRES).���
Supported by the Netherlands Computer Science Research Foundation (SION).



For large state spaces some more sophisticated methods are used as state-vector com-
pressing, partial-order reduction and bit-state hashing. The last technique only gives ap-
proximate results in a sense that there is only a guarantee that some part of the state space
is covered.

Xspin is a graphical interface for Spin.It provides an integrating windowing environ-
ment for writing Promela models and carrying out virtually all Spin functions in a user
friendly manner. The outputs are displayed in various ways, among which are Message
Sequence Charts.

Discrete Time Extensions of Promela and Spin. In the time model that is used in dis-
crete time Promela and Spin the time is divided into slices indexed by natural numbers.
The actions are then framed into those slices, obtaining in that way a good quantitative
estimation for the intervals between the events belonging to different slices. Within a
slice however, we can only have the qualitative relation between the events, as in the time
free case. The elapsed time between the events is measured in ticks of a global digital
clock which is increased (decreased) by one with every such a tick. The actions between
two consecutive ticks have the same integer time stamp and only a qualitative time order-
ing between them can be established. (Such a time model corresponds to fictitious-clock
model from [1] or digital-clock model from [9].)

For modelingof timingfeatures the standard Promela is extended with a new variable
typetimer corresponding to discrete time countdowntimers. Two new additional state-
ments, set andexpire, that operate ontimers are added. Their syntax isset(tmr,
val) and expire(tmr), where tmr is a timer variable and val is of type short
integer. The two basic statements are sufficient for modeling all timing features of the
system. For instance, a time interval of val clock ticks is denoted in a straightforward
way by assigning the value val to a timer with set and waiting with expire until
its value becomes 0. Having set and expire it is easy to derive new compound state-
ments as Promela macro definitions. For example, using iteration with guarded com-
mands an unbounded nondeterministic delay can be modeled. This is necessary for mod-
eling of actions that can happen in any time slice. In a similar way a bounded delay up to
val clock ticks can be realized, as well as delay within an time interval. The two basic
statements and the macros that implement the timing features are defined in dtime.h
header file which is included at the begining of each discrete time Promela model. The
extended tool is fully compatible with the standard package and all properties that are
on Spin’s repertoir can be also validated for discrete-time models. Besides qualitative
properties, by using in the assertions and LTL formulae boolean expressions on timer
values a broad range of quantitative timing properties can be verified.

Discrete-time Promela models can be regarded as parallel compositions (networks)
of automata with timers from [6] assuming discrete-time instead of dense-time model,
or their equivalent timed automata from [1].

Experimental Results. We have tested the implementation on various models known
in the literature like Train Gate Controller, Seitz Circuit [15], Parallel Acknowledgment
with Retransmission Protocol [14, 12] , Bounded Retransmission Protocol [7, 5, 4]. We
give the results of Fischer’s mutual exclusion protocol, which has become a standard



benchmark for tools that implement timing. The version of the protocol that was veri-
fied is a translation of the same model written in Promela with real (dense) time of [15],
with the same timing parameters. The obtained results for the verification of the mutual
exclusion property are shown in the table below (N is the number of processes). All tests
were performed on a Sun SPARC Station 5 with 64 MBytes of memory.Besides partial
order reduction (POR) we used as an additional option minimized automata, a technique
for reduction of the state space recently included in the standard Spin distribution. In the
options column of the table, “n”, “r” and “ma” denote verifications without POR, with
POR, and with POR together with minimized automata, respectively.

N option states transitions memory [MB] time [s]

n 528 876 1.453 0.1
2 r 378 490 1.453 0.1

ma 378 490 0.342 0.2

n 8425 10536 1.761 0.8
3 r 3813 4951 1.596 0.4

nr 3813 4951 0.445 0.3

n 128286 373968 7.085 15.5
4 r 34157 44406 3.132 2.8

ma 34157 44406 0.650 33.7

5 r 288313 377032 17.570 36.2
ma 288313 377032 1.059 332.5

6 ma ���������
	���
 ����������	���
 2.118 6246.1

As expected, the state space growth is exponential and we were able to validate the
model without using POR up to 4 processes. For 6 processes even POR was not enough
and it had to be strengthen with minimized automata. The profit from POR is obvious
and even becomes more evident as the number of processes grows. While for �����
the number of states is reduced to 72% compared to the one in the full state space and
the transitions are reduced to 56% of the original number, for ����� the reduction in-
creases to 27% and 12% for states and transitions, respectively. It is difficult to compare
our implementation with the related tools (e.g. [2], [13]), mainly because they are based
on different time model. Although often said to be of the same thoretical complexity as
dense time (e.g. [1]), it seems that in practice discrete time often shows an advantage [2].
For instance, having in mind that the property that was checked was a qualitative one,
for which discrete time (digital clocks) suffices [9], one can safely say that after �����
our implementation has better performance in the case of Fischer’s protocol compared to
[15]. In fact, for ����� the validator from [15] runs out of memory. Obviously, POR is
the decisive factor, because without POR our implementation is also incapable to handle
cases for ����� .

An encouraging result is the successful validation of Bounded Retransmission Pro-
tocol, which is only a slightly simplified version of an industry protocol used by Philips.
The version of the protocol from [5] was verified with less than 5 MB of memory, and
our verification has the advantage that it can be completely done in Spin, unlike the one
in [5] that uses combination of Uppaal (for the timing properties) and Spin (for consis-
tency of the specification).



Currently, we are working on an extension of Promela and Spin with dense time
based on region automata [1], using essentially the same approach as for discrete time.
Another possible direction for further development of the tool is modeling of an interest-
ing class of linear hybrid systems representable by discrete-time rectangular hybrid au-
tomata [8]. The first results obtained by the prototype (implemented entirely as Promela
macro definitions, without any change of the Spin’s source code) are promising [3].

Availability. The tool, together with some additional information and several examples,
is available on request from the autohors, from http://www.tue.nl/˜dragan, or
via anonymous ftp fromftp.win.tue.nl/pub/techreports/dragan/dtspin.
The discrete time extension is portable to all the platforms as the standard Spin distribu-
tion - i.e. Unix systems and Windows 95/Windows NT PC’s.

References

1. Alur, R., Dill, D.L., A Theory of Timed Automata, Theoretical Computer Science, 126, pp.183-
235, 1994.

2. Alur, R., Kurshan, R.P., Timing Analysis in Cospan, Hybrid Systems III, LNCS 1066, pp.220-
231, Springer, 1996.

3. Bošnački, D., Towards Modelling of Hybrid Systems in Promela and Spin, to appear in Proc.
of ERCIM Formal Methods in Industrial Critical Systems (FMICS) workshop, 1998

4. Dams, D., Gerth, R., Bounded Retransmission Protocol Revisited, Second International Work-
shop on Verification of Infinite Systems, Infinity, 1997

5. D’Argenio, P. R., Katoen, J.-P., Ruys, T., Tretmans, J., The Bounded Retransmission Protocol
Must Be on Time!, TACAS’97, 1997

6. Dill, D., Timing Assumptions and Verification of Finite-State Concurrent Systems, CAV’89,
LNCS 407, Springer, 1989

7. Groote, J. F., van de Pol, J., A Bounded Retransmission Protocol for Large Data Packets, in
Wirsing, M., Nivat, M., ed., Algebraic Methodology and Software Technology, LCNS 1101,
pp. 536-550, Springer-Verlag, 1996

8. Henzinger, T. A., Kopke, P. W., Discrete-Time Control for Rectangular Automata, Proceedings
of the 24th International Coloquim on Automata, Languagesand Programming (ICALP 1997),
LNCS 1256, pp. 582-593, Springer-Verlag, 1997

9. Henzinger, T. A., Manna, Z., Pnueli, A., What good are digital clocks?, Proceedings of the
ICALP’92, LNCS 623, pp.545-558, Spriger-Verlag,1992.

10. Holzmann, G. J., Design and Validation of Communication Protocols, Prentice Hall, 1991.
Also: http://netlib.bell-labs.com/netlib/spin/whatispin.html

11. Kars, P., Formal Methods in the Design of Storm Surge Barrier Control System, Hand-outs of
School on Embedded Systems, Veldhoven, The Netherlands, 1996

12. Klusener, A. S., Models and Axioms for a Fragment of Real Time Process Algebra, Ph. D.
Thesis, Eindhoven University of Technology, 1993

13. Larsen, K. G., Pettersson, P., Yi, W., UPPAAL: Status & Developments, Computer Aided Ver-
ification CAV 97, LNCS 1254, pp.456-459, Springer-Verlag, 1992.

14. Tanenbaum, A., Computer Networks, Prentice Hall, 1989
15. Tripakis, S., Courcoubetis, C., Extending Promela and Spin for Real Time, TACAS’96, LCNS

1055, Springer Verlaag, 1996

This article was processed using the LATEX macro package with LLNCS style


