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Abstract

Several proposals for computing freeness information for logic programs have been
put forward in recent literature. The availability of such information has proven useful
in a variety of applications, including parallelization of Prolog programs, optimizations in
Prolog compilers, as well as for improving the precision of other analyses. While these
proposals have illustrated the importance of such analyses, they lack formal justification.
Moreover, several have been found incorrect. This paper introduces a novel domain of
abstract equation systems describing possible sharing and definite freeness of terms in a
system of equations. A simple and intuitive abstract unification algorithm is presented,
providing the core of a correct and precise sharing and freeness analysis for logic programs.
Our contribution is not only a correct algorithm, but perhaps primarily, the application
of a systematic approach in which it is derived by mimicking each step in a suitable
concrete unification algorithm. Consequently, the abstract algorithm is intuitive — as it
resembles the concrete algorithm. It is amenable to formal justification — as the proof of
correctness boils down to showing that each step in the concrete algorithm is mimicked
by a corresponding step in the abstract algorithm. Finally, it is precise — as each step
mimics only those situations which can arise in the concrete algorithm.
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1 Introduction

We say that terms t; and t; share if they contain a common variable; they share under an
equation system F if the terms ¢10 and 156 share where 8 is a most general unifier of £. We
say that variable X is free under F if X@ is a variable. Sharing and freeness information
are useful for several purposes, for example, in the context of parallel execution of Prolog
programs [13]. Consider a clause

p(X,Y) = q(X),r(Y).

A sharing analysis may enable parallel execution of ¢(X ) and 7(Y") if it determines that X and
Y do not share under any calling pattern. However, even if X and Y do share, then parallel
execution is still possible if a freeness analysis determines that execution of ¢(X) leaves X
free.

Freeness information may also be used to optimize programs containing built-ins such
as var(X), nonvar(X) or X is Y + Z. Moreover it can be used to improve the results of
groundness and sharing analyses, as described in [19].

We consider analyses which are given within the semantic based framework of abstract
interpretation [9]. A program analysis is viewed as a non-standard semantics defined over a
domain of data-descriptions. Analyses are constructed by replacing the basic operations on
data in a suitable concrete semantics with corresponding abstract operations defined on data-
descriptions. Formal justification is reduced to proving conditions on the relation between
data and data-descriptions and on the elementary operations defined on the data-descriptions.
This approach eases both the development and the justification of program analyses. In
the case of logic programming languages, proving the correctness of an abstract unification
function is the major step in justifying an analysis.

In this paper we view substitutions as sets of equations in solved form, and unification
as the process of reducing a set of equations to solved form. A goal is a pair (g; F) where ¢
is a set of atoms and F is a satisfiable set of equations which specifies an instance of g. A
resolution step reduces a goal (..., a,...; £) with a (renamed) clause ¢ = h <« by,...,b,
by replacing the atom a by by,...,b, and adding the equation ¢ = h to E if {a = h} U E is
satisfiable. The activated instance of ¢ is specified by mgu({a = h} U E). See Figure 1(a).

The core component in developing an abstract interpretation is to design an operation
mgu” which abstracts the unification process, as described in Figure 1(b) where & is an ab-
stract equation system. The basic correctness condition is that for every £ which is described
by &, we have that mgu({a = h} U E) is described by mgu“({a = h} U &). In the following
we focus on specifying an abstract unification algorithm which captures freeness of variables.

Consider a single equation X = f(A) where A is bound to a variable and X is bound to
a compound term. Solving this equation obviously may bind A to a compound term. On the
other hand, if X is bound to a variable then A will remain free. However, if there is another
equation involving X then freeness of A may be affected, through sharing as in the following
set of equations:

E={X=[(A),Y =[f(4(B),Y =X}

where mgu(F) binds A to the compound term g(B). This example demonstrates the way
freeness is influenced by variable sharing. Sharing between X and Y may be less direct and
still affect freeness of A, as in

{X = F(A),Y = f(g(B),U = V,h(X,Y) = h(U, V) } .
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Figure 1.1: (a) Concrete unification: (b) Abstract unification:
mgu({a = h} U E) mgu?({a = h} U E)
specifies the activated describes the activated
instance of the clause. instance of the clause.

Thus, precise inference of freeness will depend on an analysis of variable sharing. In the
algorithm we present, the propagation of sharing will in fact constitute a main concern.
However, even in the presence of other equations involving X it is sometimes possible to infer
freeness of A, like in:

E = {X =f(A), Y =f(B),Y = any_term(...X...)}

where the third equation contains an arbitrary compound term containing X. Any solved
form of E’ (if it exists) is of the form:

mgu(E') = {X = f(A), B = some_term(...A...), Y = any_term(...A...)}

in which A remains a free variable. Our abstract unification algorithm formalizes this rea-
soning.

Early proposals for freeness analysis in logic programs include [10, 16]. More recent
proposals such as [19, 7, 21] aim at improving the precision of the analysis by considering
more carefully the effect of sharing information on freeness. Unfortunately, attempts to justify
these improved algorithms have so far fallen short (a corrected version of [19] can be found in
[12] and a revised version of [21] can be obtained). It is our belief that the general intuition
behind these algorithms is correct (as well as the algorithms themselves once “fine tuned”).
In fact we adopt the same basic intuition. However, we propose that a more systematic
approach in the specification of such algorithms should be taken. More specifically, when
attempting to mimic the process of concrete unification for data-descriptions, it is productive
to systematically mimic each step in a suitable concrete algorithm. This approach has been
illustrated in [4] which provides the first proof of correctness for abstract unification over
Sendergaard’s domain for sharing analysis described in [20]. This paper applies a similar
approach and describes the first systematic derivation of an abstract unification algorithm for
freeness analysis.

On the bottom line, this paper contributes a clear and intuitive abstract unification algo-
rithm which is the core component needed to provide a freeness analysis by abstract inter-
pretation. The algorithm is derived and proven safe by mimicking each step in a standard
unification algorithm, given a suitable notion of data-descriptions. A main contribution of
the paper is in the novel choice of data-descriptions called abstract equation systems which
fuse concrete and abstract equations. It is this choice which facilitates the application of the
methodology adopted from [4]. While this paper focuses primarily on correctness of abstract



unification, the results provide a good foundation for the continuing development of precise
and efficient freeness analyses for logic programs [2, 3, 18].

The rest of this paper is organized as follows: Section 2 provides some preliminary defini-
tions and notations. Section 3 introduces our notion of data-descriptions which are systems of
abstract equations. Section 4 presents the abstract unification algorithm and provides several
examples of its use. Section 5 states the correctness of the abstract unification algorithm.
Section 6 relates our abstract domain to the Share x Free domain of [19], discusses ongoing
work which aims to improve both precision and efficiency of analyses, and concludes.

A preliminary version of this paper appeared as [5].

2 Preliminaries

Let 3 be a fixed alphabet of function symbols and Var a denumerable set of variables. We
assume a partitioning PVar U MVar of Var (into infinite sets) so as to distinguish between
program variables and meta-variables which are later introduced to capture possible sharing
between terms. The sets of terms constructed from elements of 3 and Var and from X and
PVar are denoted respectively Term and PTerm.

An equation over a set T of terms is an object of the form t; = t5 where ¢1,13 € T. An
equation system over T is a finite set F of equations over T'. The ferms in an equation system
are the terms from the left- and right-hand sides of its equations (i.e., not their subterms),
unless stated otherwise. Given an equation system F and an equation e, we let e :: I/ denote
the set {e} U £/ with the implicit intention that e ¢ E. An equation system can be reduced
by the classic unification algorithm [17] either to a solved form (also called a most general
unifier) if F is satisfiable, or else to fail. The unification algorithm consists of four rewrite
rules which are applied to the equations in a system until a solved form is reached (or failure
is identified). The algorithm is deterministic in the sense that exactly one rule applies to a
given equation; it is confluent in the sense that the solved form is unique (up to renaming).
This means that the solved form does not depend on the order in which the equations are
considered. The rules, shown in Figure 2.1 provide a terminating algorithm for deriving the
solved form under the convention that a rule should only be applied when its application
modifies the system of equations. The same convention will be assumed for the rules of the
abstract unification algorithm introduced in this paper. Note that this unification algorithm
applies the occur check (“X ¢ vars(t)” in rule 4).

We define a partial function mgu which maps an equation system F to a solved form
mgu(F). A reference to mgu(E) implicitly implies that E is satisfiable. The correspondence
between equations in solved form and idempotent substitutions is well known (see for example
[15]). We say that a variable X is free with respect to a (concrete) equation system F if it is
free under the substitution corresponding to mgu(E).

We adopt the following conventions: meta-variables and elements of PTerm are respec-
tively denoted by Q, Z, Zq, etc. and by s, ¢, s1, 11, etc. Sets of variables are typically denoted
V., Vi, etc. For any syntactic object s, vars(s) C Var is the set of all variables occurring in
s. The restriction of a substitution # to a set of variables V' C Var is denoted V.



1. X=X = E "X p
2. f(t1,...,ty)=X = FE switch X = f(t1,...,tn) = FE
peel

3. f(t1,.stn)=f(s1,...,8,) = E = Ati=sli=1.n}UFE

4. X =t = E " x—¢ E[X/t] if X € vars(t).

Figure 2.1: Concrete Unification.

3 Abstract Equations

The set of equation systems over PTerm, denoted Fgqs, is referred to as the set of concrete
equation systems. Concrete equation systems are described by abstract equation systems.
These are systems in which certain terms may have been replaced by placeholders called meta-
terms, thereby loosing information about the exact form of the concrete term being described.
However, information about sharing and freeness of terms is maintained as formalised below.

Definition 3.1. meta- and abstract- terms, abstract equations
The set of meta-terms is MTerm = { L[V]|V C Var}. The set of abstract terms is ATerm =
Term U MTerm. An abstract equation system is an equation system over ATerm. The set
of abstract equation systems is denoted AFgs.

Intuitively, each abstract term in an abstract equation system describes a concrete term, as fol-
lows. Abstract terms which are not meta-terms describe concrete terms that are obtained by
applying a substitution which replaces all meta-variables by different fresh program variables.
Also meta-terms describe concrete terms, but, in this case, each occurrence can represent a
different term'. In a concrete equation system thus obtained, two concrete terms may only
(but do not have to) share if the abstract terms describing them share. This restriction is
called coherence below.

Notice that the set V in a meta-term may contain meta-variables as well as program
variables. The symbols 7, £, 71, &1, etc. are used for occurrences of elements of ATerm. We
often omit set-brackets in meta-terms and write L[X,Y] instead of L[{X,Y}].

The description relation « on AFgs x Fgs is formalized in terms of an abstract term
replacement.

Definition 3.2. abstract term replacement
An abstract term replacement i is a mapping from (occurrences of ) abstract terms to terms
such that:

!We have chosen not to introduce extra notation to denote occurrences of meta-terms because the gain in
formality would be outweighted by a strongly decreased readability. Instead, we always clearly indicate when
we are dealing with such occurrences.



1. u(X)= X for X € PVar,

2. u(2) € PVar for Z € MVar,

3. p(f(71s-- ) = f(u(m), ..o (7)) for f(r1,...,7) € Term;
4. u(L[V]) € PTerm for an occurrence of L[V] € MTerm.

We extend p to a mapping from AFgs to Fq¢s as follows:

5. (i =1) = p(m) = p(r);

6. ple = &) = ple) = p(€) if € is not of the form L[V] = L[V'];

Tope &) = pler) = -0 mpley) i p(€) if e is of the form L[V] = L[V'], where
€1,...,Epn are occurrences of ¢ (for some n > 0).

An abstract term replacement p is said to be coherent w.r.t. an equation system & if for
any two (occurrences of) abstract terms or subterms in &, vars(p(m)) N vars(pu(rz)) #
0 = wvars(r) Nvars(ry) # 0.

From point 7 we see that an abstract equation of the form L[V] = L[V’] may describe
any number of concrete equations. This is needed because abstract equation systems do not
maintain precise information about the number of concrete equations being described. This
stems from the fact that the meta-terms L[V] and L[V'] may describe concrete terms contain-
ing arbitrarily many subterms. As a consequence, an operation which mimics the “peeling”
of an abstract equation L[V] = L[V'] should give an object which describes arbitrarily many
concrete equations. In our abstract unification algorithm, the result of “peeling” the abstract
equation L[V] = L[V']is L[V UV'] = L[V UV’]. This intuition is illustrated by Example 4.2.

Intuitively, the coherence of p means that it does not introduce sharing in the concrete
terms which is not present in the abstract terms. For example, in an abstract equation system
& in which some X € PVar occurs, an occurrence L[V] of a meta-term may only be mapped
to a term which contains X if X is in V (see & in Example 3.1).

Definition 3.3. equation description

An abstract equation system & describes a concrete equation system F, denoted £ x F, if
there exists an abstract term replacement p, coherent with &, such that u(€) = F.

Fzample 3.1. Consider the following abstract equation systems (letting A, B,U,W, X,Y €

PVar).
X = f(g(A) v f<(§)) o {Y - ”Z]}
& ={Y = f(B) 271 x = 1(z2]
Y = L[X] Y = 1[Z] 54={l[2]:l[2]}

1. & < {X = f(g(A)),Y = f(B),Y = f(f(X))} taking a term replacement p which maps
L[X] to f(f(X)), because the sharing between X and f(f(X)) is present between the
corresponding abstract terms (X and L[X] resp.) in & . Likewise, & describes also



{X = f(9(A)),Y = f(B),Y = W} letting ¢ map L[X] to W, because there is only
sharing between the two occurrences of Y in F, hence this y is obviously coherent w.r.t.

&1

2. & {X = f(A),Y =¢g(B), X = f(W),Y = g(W)} taking a term replacement p which
maps the two occurrences of L[Z] respectively to f(IW)and g(W). The sharing between
these terms is allowed because the two meta-term occurrences share Z. However, there
does not have to be sharing, as exemplified by the fact that also & x {X = f(A),Y =

g(B),X = f(W),Y = g(U)}.
3. &0 {X =AY = f(A)}.

4. &4 describes any concrete system of equations, e.g., &4 x {X = f(A),Y = g(B), X =
fW),Y = g(W)}. The motivation for this choice is further clarified in Section 4.

It is sometimes useful to annotate a meta-term L[V] denoting that it may be mapped
only to a non-variable term, or alternatively, only to a variable. We write 1F[V] and 1*[V]
respectively to denote these cases. The notation a = b will be used to denote that a is of
the form b. E.g., we write L[V] = 1F[V] to specify that L[V] is of the form 1F[V], and
L[V] # L[V] to denote that L[V] is not of the form 1*[V].

The following definition extends the standard notion of syntactic substitution for abstract
terms. It specifies how to replace all occurrences of a variable in a syntactic (possibly abstract)
object by an abstract term 7’.

Definition 3.4. syntactic substitution
Let 7,7 € ATerm and X € Var. The syntactic substitution of 7/ for X in 7 is denoted
7[X/7'] and is defined as usual for 7,7’ € Term. In addition, if 7 or 7’ is a meta-term then:

X/ = r if X € vars(r)
[X/7] { Llvars({r,7"}) \ {X}] otherwise.

Syntactic substitution extends naturally for arbitrary syntactic objects containing abstract
terms.

Frample 3.2.
LAY = 1[X, 40,2 = L[X, B} [X/f(0)] = {¥=1[4],z=1[B]}.

2. {X =f(a),y = 1[A]}[A/1[2]] = {X=1[z]Y=1[2]}.

We note that in general, syntactic substitution does not preserve sharing. The meta-
terms L[X, A] and L[X, B] in Example 3.2(1) describe respectively the terms g( X, A, Q) and
g9(X, B,Q), because the term replacement p which maps L[X, A] to ¢(X,A,Q) and L[X, B]
to g(X, B, Q) is coherent. However, consider the syntactic substitution [X/f(a)]:

o 9(X,A,Q)[X/f(a)] = g(f(a),A,Q) and g(X, B,Q)[X/[f(a)] = g(f(a), B,Q) (observe
that g(f(a), A, Q) and g(f(a), B,Q) share the variable Q);



o L[X,A|[X/f(a)]= L[A] and L[X, B][X/f(a)]= L[B] (observe that L[A] and L[B] do

not share).

Consequently, there is no coherent g under which L[X, A][X/f(a)] and L[X, B] [X/f(a)] are
mapped to g(X,A,Q)[X/f(a)] and ¢(X, B,Q)[X/f(a)]. We would like to have an abstract
operation that correctly mimics syntactic substitution, also with respect to sharing. To this
end we observe that whenever two meta-terms L[V] and L[V'] in an abstract equation system
& share a variable, it is possible to add a “fresh” meta-variable Q (i.e., obtaining L[V U {Q}]
and L[V'U{Q}]) without changing the interpretation of £ (i.e., the set of concrete equation
systems described by £). Likewise, a meta-variable can always be removed from meta-terms
if this does not affect the sharing in £. For a (possibly abstract) syntactic object s, we denote
by s[X 4+ Q] the object obtained by adding the meta-variable Q in each meta-term containing
X in s.

Proposition 3.1 Let I € FEqs, £ € Algs and Q € MVar. If Q & vars(E) then for every
variable X in &, Ex FE < E[X+ Q]x E.

Frample 3.3.
1.{X=0a,Y=L[X],Z=L[X]}[X+9] = {X=aY=1[X,9],Z=1[X, 9]}

2. Q can be removed from {X =1[Q,AL,Y = 1[Q, A, B]} but not from
{X =1[Q, ALY = J_[Q,B]} and not from {X =Q,Y = L[Q,B]}.

Adding and removing variables from meta-terms is used in our abstract unification al-
gorithm. In particular, when performing syntactic substitution we add meta-variables to
preserve sharing information and correctly mimic concrete unification. On the other hand, an
implementation of the algorithm benefits from the removal of superfluous variables from meta-
terms. We assume throughout that meta-terms L[V] with V = () are not allowed. A fresh
meta-variable can always be added to such a meta-term and this simplifies our construction.

4 The Abstract Unification Algorithm

The abstract unification algorithm consists of a set of abstract rewrite rules which mimic
the corresponding rules for concrete unification and are illustrated in Figure 4.1 (where we
assume that @ € MVar is a “fresh” meta-variable and 7 € Term). Whenever an abstract
equation ¢ (in an abstract equation system) describes a concrete equation e then there is an
abstract rule applicable to ¢ which corresponds to the concrete rule applicable to e (indicated
by a label on the arrow, see Figure 2.1). The algorithm reduces an abstract equation system
by repeated application of these rules. Once again, we assume the convention that a rule is
applied only if it changes the (abstract) equation system. In this way the rules provide a
terminating algorithm. Intuitively, a variable is free if it remains free in every sequence of
(abstract) rewrites. This notion is formalized in Definition 1.

In contrast to concrete unification, several rules may apply to a given abstract equation, as
it may describe different concrete equations. Hence, the abstract unification algorithm is non-
deterministic and may result in different solved forms, all of which must be considered. The



algorithm is also not confluent. Namely, choosing abstract equations in different orders may
result in different (sets of) solved forms. However, correctness is maintained regardless of the
order in which equations are considered, as is proven in the next section. The loss of confluence
in algorithms of this type is not uncommon (see also [4]). It stems from the fact that different
orders of performing a set of (abstract) actions may involve different approximations of data.
In particular, we may apply heuristics to choose orders which are more likely to involve less
approximation and hence provide more precise results. In examples we adopt the convention
that the equation chosen for (abstract or concrete) reduction is indicated by underlining it.
The rule that is applied in an abstract reduction is indicated by labelling the arrow by the
number of the rule. When we say, in the examples which follow, that an abstract reduction
& — &' correctly mimics a concrete reduction ¥ — FE’, we mean that £ «x F and &£ x FE'.
The formal proof of correctness given in Section 5 basically shows that every reduction in
a concrete unification is mimicked by some abstract reduction in a corresponding abstract
unification.

The rules in Figure 4.1 are classified according to the form of e, the abstract equation
chosen for reduction. In each case we mimic any concrete rule which might apply for some
concrete equation system described by the abstract system. Rules 1-3 are identical to their
concrete counterparts; also 5/6(a&b) are easily motivated (note that the condition 7 € V in
these rules implies that 7 is a variable). Rules 5(c) and 6(c) are motivated by the possibility
that the chosen abstract equation describes an equation of the form f(...) = f(...). The
rules 4, 5(d) and 6(d) which mimic syntactic substitution are motivated by the following.
In rule 4 a fresh meta-variable is added to preserve possible sharing (see Example 4.1(1)).
In rule 5(d), observe that while X may occur in V', it may not occur in the concrete term
described by L[V]. Hence, V is replaced by V' = V[X/Q] on the right of the arrow (see
Example 4.1(2)). In rule 6(d) consider that L[V] may describe either a (program) variable
occurring in V' \ vars(7) or a “hidden” variable, described by Q, which may occur also in a
term described by another meta-term L[V'], but only if V'’ contains a variable Y € V (see
Example 4.1(3)). Rule 7 is a special case in which no freeness information can be maintained:
any variable in V3 U V3 is potentially non-free (see Example 4.2).

Fxample 4.1. rules 4, 5(d) and 6(d)

1. [X=aA=1[X],B=1[X]} % {X=aA=1[Q,B=1[0]}

correctly mimics the following concrete transitions:
{X:mA:ﬂXLB:%D}S%t{X:mA:ﬂ@B:ﬂ@}

subst
—

{X=a,4=f(X,0),B=g(X,0)}

{X:mA:f@ULB:ﬂmm}.

Y =X Y =X Y = 1[Q]
2. vy=1x]% 2 {x=ux)} 9 lx=1g
7Z = 1[X] 7 = 1[X] Z = 1[9]



Recall that:

X eVar

Q € MVaris a “fresh” meta-variable
7€ Term

1. X=X = & ™2 ¢
2. f(r,...,m)=X = & switch X =f(r,....,mn) = E.

3. f(r1yeeta) = fl€rae oy 60) € P {m=&li=1.n} UE.

4. X =7 = & ' x=71 = E[X + 9|[X/7] if X & vars(r).
5. T=L[V] = €&

(a) " ¢ if r € Vand L[V] # IF[V].

(b) "M =7 & if r = f(r1,...,m) and L[V] % IF[V].
(¢) pegt {ri=1[V]li=1..n} U & if 7= f(r,...,7,) and L[V] # L[V].
(d) "' X = 1L[V'] = E[X + Q[X/L[V'] , where V! = V[X/Q]

ifr=X.
6. L[V]l=r = €&
(a) Y ¢ if r €V and L[V]# [F[V].
(b) switeh vy o= £ if 7 € Var and L[V] # L[V].
(¢) pegt {L[V]=mrli=1.n} U & if 7= f(r,...,7,) and L[V] # L[V].
(d) subst {(z) X=71 = EX+9|[X/r] foreach X € V \ vars(r)

(i) Q=71 = EY+Q|Q/r] foreachY €V

if L[V]# IF[V].

7. L[Vi] = L[Vs] = & 2 LVI=1[V] = €A\ X/L[V]]
XeV
where V = V3 UV, and £] /\ X/ L[V]] denotes the simultaneous syntactic

XeV
substitution of all X € V' by L[V].

Figure 4.1: Abstract Unification.

10



correctly mimics

Y=X Y =X Y = f(U)
Y — f((]) sﬁst X;f(vv) sﬁst X = f((])
7 =g(U,X) 7 =g(U,X) Z =g(U, f(U))

y {f(Y) (X A= f(Y)}
{42/ ) L Q)= e 7)

N\ {A ~ f(X),0= f(Y)}
s@n | LA Y]I=g(W,7)

mimic respectively the following concrete steps:

{A: F(X), A f(Y)} st {f(Y)zf(X),Azf(Y)}
9(U, A) = g(W, Z) 2) )

Frample }.2. rule 7
Consider an abstract equation L[A] = L[B] which describes any number of concrete equations
of the form s = t in which s possibly shares with A and ¢ with B. For instance, s =

f(W,g(W),A)and t = f(U, B,g(U)). Observe that

1[A] = 1[B]\ 7 [L[A,B]= L[A,B]\ = [ L[A, B] = L[A,B]
A=C "1, B =C T\ 1A, Bl =C

correctly mimics the following concrete reductions:

W=U W=U
{ﬂWﬂW%MIﬂﬂBwWD}glgmUIB subst | (W) = B
A=C A=g(U) A= g(U)

A=C g(U)=C

To see that {L[A, B] = L[A, B]} describes {W = U,g(W) = B,A = ¢(U)}, consider an
abstract term replacement p which maps six occurrences of the meta-term L[A, B] respectively
to the six terms W, U, g(W), B, A and ¢g(U). This mapping is coherent hence providing the
required result. As the example illustrates, L[Vi] = L[V;] needs to be able to represent any
number of concrete equations because “peeling” may replace the represented equation by an
unknown number of new ones.

The abstract unification algorithm illustrated in Figure 4.1 is derived by considering for
each possible form that an abstract equation may take, the set of concrete equations it de-
scribes and the set of concrete transitions which should be mimicked. However, some of the

11



. X=X = &

(a) " ¢ if X occurs in £.

(b) "M free X = Lol = £ if X does not occur in £.
5. r=1[V] = &

(a) " ¢ if € Vand L[V]# IF[V].

switch & subst { (i) X =71 = E[X+Q][X/r] foreach X € V \ vars(r)
- (1)) Q=71 = &Y +Q][Q/r] foreachY € V.
if 7= f(m,...,7) and L[V] # F[V]

(b)

() ™ {r=L[V]li=1l.n} U € ifr=f(r,...,m)and L[V] £ L[V].

(d) ™2 X = L[V'] = £[X + QIX/L[V']], where V' = V[X/Q)]
if r= X.

6. LVl=71 = & stch LV] = & if 7 ¢ MTerm.

Figure 4.2: Improved rules 1, 5 and 6.

cases are superfluous. Rules 5 and 6 consider symmetric cases and rule 6(d) can always be
applied after rule 5(b). Figure 4.2 shows a more concise version of rules 5 and 6. Rule 6
always switches the sides of an equation and rule 5(b) combines the switch & substitute.
Rule 1’ is a more precise version of the remove rule (1). It captures the case in which the
last occurrence of a variable X is being removed and remembers that this variable is free by
adding an equation of the form X = 1*[Q], with Q a fresh meta-variable.

We now present several examples of abstract unification. Superfluous variables in meta-
terms are not indicated.

Fzrample 4.3. The following analysis determines that A and B remain free for all equation
systems described by the initial abstract equation system.

':f(A,B) X:f(AaB) 5 X = f( 7B) , X:f(A7B)
Y =C Aly=c Wliap=cV&lc=1a, 8
Y = L[X] Y = L[A, B] Y = 1[4, B] Y = L[A, B]

Frample 4.4. The following is a segment of an analysis which determines that there may be
an equation system described by the initial abstract equation system for which no variables
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remain free.

X = f(AaB)
A= 1[Y]
) VB = 1]Y] o
Y =C
X = f(A,B) X = f(A7B) "(b)(3) =
X = J_[Y] i f(A7B): J‘[Y] 5% })f:;((ﬁ:g)) -
Y =C y=C f(A,B)=C
s'(b)(ii) (X = f(A, B)
Q = f(AaB) -
Y =C

Fzample 4.5. The following is a segment of an analysis which determines that the variable A
remains free for all equation systems described by the initial abstract equation system.

X=/(N)) , [X=r4)
5'(c) Y=f(B) =Y =f(B)p =
B=1[X] B=1[4]
X = f(A) ) X = f(A4) 5'(b)(i) f(B) = f(A)
Y=fB)S2Yy =B — Y = f(B) -
Y = 1[X] f(B) = L[X] X = f(B)
o X = f(A)
QRICI E
Q = f(B)

5 Correctness of Abstract Unification

Proving correctness of abstract unification boils down to showing that whenever an abstract
equation system & describes a concrete system F, then for every step that F/ can make in the
concrete unification algorithm, there is a corresponding abstract step that £ can make such
that the resulting abstract equation system will describe the corresponding resulting concrete
equation system.

Proofs can be found in the appendix.

Lemma 5.1 If E — F' # fail and £ x F, then there exists £ such that &€ — &' and &' x E'.

Moreover, we prove that freeness can be determined by considering all solved forms of
the abstract unification algorithm. Intuitively, a solved form is an abstract equation system
which is invariant under all applicable rules.

13



Definition 5.1. abstract solved form and abstract freeness
An abstract term is compound if it is not a variable and not of the form 1*[V]. We say
that £ € AFgs is in solved form if the following conditions hold:

1. &£ does not contain (inconsistent) equations of the form f(r,...,7.) = ¢(&1, ..., &m)
(f/n # g/m) nor of the form X = 7 such that X € vars(r) and 7 = f(m,...,7,), and

2. reduction with any applicable rule in the abstract unification algorithm does not change

£.

Let £ € AFEgs be in solved form. We say that X is free in £ if X € vars(€) and no equation
in & is of the form X = 7 where 7 € ATerm is compound or of the form L[V] = L[V]
where X € V.

First, we establish termination of the abstract unification algorithm. In this theorem,
the non-deterministic abstract unification algorithm is alternatively viewed as operating on
a set of abstract equation systems, every time applying all possible steps (but only those
that change the system they are applied to) to the selected equation, until the result contains
solved forms only.

Theorem 5.1 termination of abstract unification
For every &£, applying only steps which do not leave the system invariant, the abstract unifi-
cation algorithm reaches all solved forms in a finite number of steps.

Theorem 5.2 correctness of abstract unification
If &€ x E, mgu(E) # fail and £ has solved forms &,...,E,, then, for some 0 < i < n,
& x mgu(F).

The following theorem states the main correctness result of our freeness analysis.

Theorem 5.3 correciness of freeness analysis
If £ x F and & has solved forms &y, ...,E, and X is free in each of £1,...,&,, then X is free
in F.

We have proven the abstract algorithm correct for any order in which the abstract equa-
tions are selected. However, some orders may yield more precise results, as illustrated by the
following example.

Frample 5.1. precision 1
The following two abstract unifications differ in the order in which the equations are chosen
for reduction.

VAR E iy

RS (I8 {0 M = {205

bR Pt

14



Ve R
2 {5 D) = {5210))
(=)= {5 281)

Initially selecting the first equation in (1) results in a solved form (the upper one) which
indicates possible non-freeness of Y. However, all solved forms obtained when selecting first
the second equation, as in (2), indicate that Y is free. Hence, we can be sure that Y is free
in the solution of any equation system described by the initial abstract equation system.

Example 5.1 illustrates that substituting a variable in a meta-term by a compound term
introduces imprecision as the structure of the compound is lost. In (2), first a case analysis
on the meta-term is performed, and the loss of precision due to the substitution of X by
the compound term is avoided. This suggests a strategy where substitutions of variables by
compound terms in meta-terms is delayed as much as possible. Note that rule 5'(b)(¢) in (2)
applies a substitution [X/f(Z)]. However, X does not occur in any meta-term to which this
substitution is applied.

A related issue which affects precision is illustrated by the following example.

Frample 5.2. precision 11
Consider the abstract equation system

¢ ={fw) = r[2), f(f(U)) = £[2]}

in which the occurrences of the meta-term 1°[Z] correspond to variables which possibly share.
This means that either they do share and £ describes a concrete system of the form

{7W) = A, 5(p(U)) = 4 };

or they do not share and the system described is of the form

{rm) )= B},

In both cases U remains free. Qur algorithm will not detect this because choosing either
equation involves the substitution of a compound term into a meta-term. For instance,

{f(W) = (2] } (b)(0) {f(W) - L[U]} 5 (b)(0) {U = J(W) }
fU(U)) = 2[2] Z = J(J(0)) Z=JFU))

Observe that we cannot annotate the meta-term L[U] as compound (because the 1*[Z] in the
first equation may correspond to a variable which does not share with the other occurrence of
1*[Z]) and hence we must consider the application of rule 5'(b) which, as illustrated, indicates
that U is possibly non-free. However, note that the abstract equation system

— {5w) = 2,505 (0)) = 2[2]}
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is equivalent to £ in the sense that both systems describe the same set of concrete systems.
Applying our algorithm to £’ preserves the freeness of U as illustrated by:

/(b))

(W) = FGUN 5 [W = f(0)

fron=z 1 VRS il B
ff(0)) = 2[2] \, {f(VV):Z }i{z:f(W) }
smyany | 2= FUF(W0)) Q= f(f(U))

This example indicates a preferable way to describe possible sharing between free variables.
Thus, if an occurrence of a meta-term of the form *[Z] in an abstract equation system &
only shares with other meta-terms in £ then we should replace that occurrence by Z (note
however that several such replacements may not be performed simultaneously).

6 Discussion

This section introduces an extended notion of equation description which enables a richer
domain of application and enables us to relate the expressive power of our domain with that
of the domain Sharex F'ree described in [19]. This indicates that in addition to facilitating the
systematic approach of [4], abstract equation systems provide also the basis for a reasonable
domain with which to infer freeness information [18]. Finally we describe ongoing work and
conclude.

An Extended Notion of Description

The notion of equation description is extended so that “equivalent” equation systems have
the same description. With the current definition, the abstract equation system & = {X =
1[Z],Y = L*[Z]} describes the concrete equation system 6; = {X = f(A),Y = A} but not
the equation system #; = {X = f(Y)} which is equivalent with respect to the variables X
and Y. Consequently, if £ is intended to describe the initial state of a predicate p(X,Y’) then
the corresponding freeness analysis is correct for p(X, Y )#; but not necessarily for p(X,Y )8
in spite of the fact that the two atoms are equal up to renaming.

Definition 6.1. equivalence of equation systems
Two concrete systems of equations £y and F, are said to be equivalent with respect to a
set of variables V, denoted Fy =y Fj, if there exist most general unifiers #; and 63 of Fy
and Fy such that 0;[V = 6,[V. The relation ~py,,. is abbreviated by ~.

Clearly, if F1 ~v F5 then Fq and F exhibit the same freeness for variables in V. Hence, if
& describes Fy then the abstract unification of £ provides a safe approximation of the freeness
of variables from V' in mgu(FE;). Hence:

Definition 6.2. extended equation description
Let V C PVarand FE € Fqs. We say that £ € AFgs describes E with respect to V, denoted
& «§Ft E iff there exists B’ such that £ ~y FE’ and & x FE’. The relation “%%/ar i

ext

abbreviated by

16



Frample 6.1. We have {X =1[2],Y = Z} ocgg’y} {X = f(Y)} because {X = f(Y)}
Rxy) {); = f(A),Y = A} and {); = 1[2],Y = z} x {X = f(A),Y = A}.

This extension does not change the abstract unification algorithm in any way. It only
extends the class of concrete unifications which are mimicked by a given abstract unification.
In particular, it enables us to relate the domain of abstract equation systems with the popular
domain Share x Free.

The Abstract Domain Share x Free

One of the widely used domains for freeness analysis of logic programs is the domain Share x
Free introduced in [19] and used in the analyses described in [7],[12] and [21]. We illustrate
how an element of the domain Share x Free can be expressed by an element of our domain.
An abstract substitution A € Share x Free over a set of variables V' C PVar is a subset of
p(V) in which each variable is annotated by fr or nf indicating that it is definitely free or
possibly non-free. Intuitively, each set S € A represents the fact that the terms to which the
variables in $" are bound may share one or more variables. If a variable X appears only in a
singleton set, then the terms to which it is bound may contain only variables which do not
appear in any other term. If a variable X does not occur in any set, then there is no variable
that may occur in the terms to which it is bound and thus those terms are definitely ground.
For a formal definition of the domains Share and Share X Free see [14] and [19] respectively.

Let A = {Sl, .. .,Sm} be an abstract substitution over V in the domain Share x Free.
The translation of A to our domain is as follows:

1. associate a distinct meta-variable Z; with each set S; (j = 1..m);
2. for every X in V define the set of meta-variables Vx = {Z;|X € 5,};
3. define
Ea = {X:r[vx]( Xireua tu
{X:J_[VX]‘ X" e UA U
{x=r0]| x¢gua },

where all Q;’s are fresh variables?.

Observe that £o can often be refined as suggested in Example 5.2 above.

Ezample 6.2. Tet A = {{XT7, Y/}, Y77 207 (XT} {277} } and B = {X = a,V =
B,7Z = C}. So, A describes substitutions which map either X and Y or Y and Z to the same

2For each program variable X which is definitely ground, a fresh variable Q; is introduced and an equation
X = 1*[Qi]. This could be avoided by introducing a special meta-term 19 which can describe any ground
term.
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variable, but not X and Z. Consequently, both Z and C' remain free under a solution of any
E U E' where E' is described by A. The translation of A to abstract equations is

Ea={X =121, 2,Y = I'[21, 2], Z = [ 25, Z4] } .

After removing the superfluous meta-variables (23, Z4) and following the refinement suggested
in Example 5.2 we obtain:

EA={X =2,V =22,2]7=2}.

The analysis proceeds applying abstract unification to U £}:

X=a ) X=a X=a ) X=a )
Y =8B Y =B Y = 1*[24, 24 Y = L[Z,]
Z=C 4 | Z2=C sid) | Z=C Z = Z

3x — — — s —>
X:Zl CLIZl a:Zl lea
YIJ_.[Zl,ZQ] B:J_.[Zl,ZQ] BIJ_.[Zl,ZQ] BIJ_[ZQ]
7 = 2, ) C =2 ) C =2 ) C=2, )

indicating as desired that Z and C' are definitely free.

The following example highlights a point at which our abstract unification algorithm is
bound to be more precise than previous proposals. The example illustrates a situation which
may arise in the course of an analysis.

Frample 6.3. precision II1
Assume two variables X and Y which are definitely free and possibly share, and consider a
unification which binds both X and Y to compound terms, for instance:

B X = f(W)
Y = f(f(U))
The abstract substitution A = {{XfT,YfT},{XfT},{YfT}} in Share X Free captures the
sharing and freeness information specified above. Translation into abstract equations and

application of the refinement as suggested in Example 5.2 gives (after removing superfluous
meta-variables):

, X=2z
Q:{Y:rwﬁ'

Solving E U &y proceeds as follows:

X = f(W)
Y=FUW) |4 x2
X=2

Y = 1[2]
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X = () X = f(5(1)
0 L oy [ w g
X = f(W) — A
D) /' z= 0 z = f((1))
=z X = f(w) X = f(W)
S = £12] 5,(b\)w) v = S | 2 |V = F0)
Jw) =2 z = f(W)
o=igwy)  le=ruwy

indicating that U is definitely free. In contrast, the algorithms described in [19, 7, 21] as well
as those described in [2, 3, 18] do not capture freeness information for this type of example.
It is the nondeterministic approach which enables our algorithm to distinguish between two
cases and to maintain freeness information in each: one case where Z and 1°[Z] describe the
same variable, and the other case where they do not.

Towards a Full Analysis

The main task when extending a sharing analysis based on a domain such as Share to a free-
ness analysis using Share X Free is to provide a suitable abstract unification algorithm. The
introduction of a correct abstract unification algorithm for freeness analysis is an important
motivation for our work. Qur unification algorithm can be used together with techniques for
combining abstract domains [6] to provide a full freeness analysis. In such an approach an
analysis based on the domain Share is augmented with freeness information by converting
the resulting pair to a set of abstract equation systems as described above. Our abstract uni-
fication algorithm is then applied to derive freeness information which is used to augment the
result of the abstract unification using Share. Hence we obtain an element of Share x Free.
Other operations can be based on the more simple specification directly in Share x Free. A
similar approach can be taken to augment other domains with a freeness component.
Developing abstract equation systems into a full-fledged domain for a framework as de-
scribed in [1] is a more involving task. The nontrivial burden is to define an order relation
on sets of abstract equations systems satisfying the requirement of the framework: Let S&;
and S&; be sets of abstract equation systems. Then §& < S&; implies that the set of equa-
tion systems described by S& is included in the set of equation systems described by 5&s.
This paper has provided a starting point for the development of a complete freeness analysis,
where the abstraction consists of a single abstract equation system. The least upper bound
operation is a generalisation of anti-unification, and not simply set union as is the case for

the domain of this paper. Details on the operations as well as an experimental evaluation can
be found in [3, 18].

Conclusions

The paper presents a concise and correct abstract unification algorithm, providing the basis
for a freeness analysis for logic programs. Our approach consists in carefully mimicking each
step in a standard concrete unification algorithm. This allows us to obtain in a straightforward
fashion a clear and intuitive algorithm together with a proof of its correctness. To the best of

19



our knowledge, this paper presents the first proof of correctness of a freeness analysis (which
considers sharing information) for logic programs. Our approach is facilitated by a novel form
of abstract domain termed abstract equation systems which consists of equations involving
both concrete and abstract terms. This representation enables us to apply a methodology
similar to that described in [4].

There are cases were the proposed abstract unification algorithm derives freeness infor-
mation with a higher degree of precision than previous proposals. However, our abstract
domain does lack several types of information such as groundness and linearity® which have
a strong influence also on freeness information. Introducing an additional annotation ¢ on
meta-terms to indicate a ground term is straightforward. Linearity information is harder to
handle. Tt is the nondeterministic nature of our algorithm which is perhaps the main obstacle
to a practical freeness analysis for logic programs. However, it is exactly this approach which
enables us to derive a relatively simple, yet sufficiently precise abstract unification algorithm
together with its proof of correctness. This is the contribution of the paper.

Ongoing work addresses the deficiencies mentioned above. A preliminary description of
this work can be found in [2, 3] where abstract equation systems are enhanced to capture
both groundness and linearity information. A full analysis and its experimental evaluation
is reported in [18]. A deterministic abstract unification algorithm is obtained by choosing
a specific concrete derivation to mimic depending on the structure of the abstract system.
Confluence in the concrete algorithm justifies this approach. However, it is worth noting that
both the algorithms as well as the proof sketches given in [2, 3, 18] are far more complicated
than those presented here.

The abstract unification algorithm described in this paper is designed by mimicking the
concrete algorithm of [17] which applies an occur check. An interesting direction for future
research is to design an algorithm which instead considers rational trees such as the algorithm
proposed by Colmerauer in [8].
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3 A term is linear if every variable occurs at most once in it.
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Appendix

Different occurrences of a meta-term L[V] will sometimes be denoted L1[V], L3[V], etc.

The condition that a concrete or abstract rule modifies the system is only needed to prove
termination. In the proofs below that do not concern termination (i.e., all except the proof
of Theorem 5.1), it is convenient to drop it, that means, whatever abstract/concrete equation
being selected in a system, an “invariant step” may always be applied. By this assumption,
we avoid the need to consider separately the case that the abstract/concrete system remains
invariant.

Proof of Lemma 5.1

Suppose that £ — FE’' # fail and £ x E. We construct &£ such that £ — £’ and &' x F'.
£ x F implies that there exists an abstract term replacement p, coherent with £, such that
u(€) = EB; fix this y. Let e be the equation in E that is reduced, i.e., £ = e :: . Then there
is ¢ € £ such that p(e) = e, ie., €= ¢ :: €. & is constructed by indicating which rule of the
abstract unification algorithm is applied to reduce . £ o« E’ is then shown by giving a y’,
coherent with &', such that p/(£') = E’. The proof is divided according to the structure of
the abstract unification algorithm in Figure 4.1. P denotes some variable in PVar; ¢, t; and
s; are terms in PTerm, 7 € Term (so 7 ¢ MTerm).

(123)le= X=X, e= f(r,...,7n) =X, or e= f(r,...,7) = f(&1,...,&,.). In these
cases, e is respectively of the form P = P, f(t1,...,t,) = Por f(t1,...,tn) = f(s1,...,5n).
So, e is reduced by respectively a remove, switch or peel step. £ is constructed by applying
the corresponding steps 1, 2 or 3 of the abstract unification algorithm to equation . pu’ is
taken equal to p; clearly, u’ is coherent with £ and u(&') = E'.

(4)| e = X = 7. This case follows in a similar way as case 5(d) below.
(5)|e = 7= L[V]. In this case, e may have one of the following forms.

(a,b) e= P =Pore= f(t1,...,t,) = P. So, e is reduced by respectively a remove or
switch step. &' is constructed by applying the corresponding step 5(a) or 5(b) from
the abstract unification algorithm to equation . u’ is taken equal to u; clearly, u' is
coherent with £ and p(&’) = E'.

(c) e= f(t1,...,tn) = f(s1,...,5,) and e is reduced by applying a peel step, yielding
E'= {ti = s1,...,t, = $,} UE. Then 7 = f(7,...,7,). Applying rule 5(c) of the
abstract algorithm gives & = {r = L4[V],...,7, = L,[V]} U &. Define p to be
the same as p except that the new occurrences of L[V] are mapped by p/'(L;[V]) = s;
(i = 1..n). It is straightforward to show that p’ is an abstract term replacement and
that p/(") = E’. Moreover, let £ and £ be occurrences of equated terms in &£’ such
that p4/(§) = s, p/(¢) = ¢ and vars(s) Nvars(s’) # 0. Then: (1) if s and s are
left or right sides of equations in E then also vars(p(£)) N vars(u(€')) # 0 and hence
vars(§)Novars(E') # 0; (2) if s, 8" € {s1,...,5,} then vars(§) = vars({’) =V and as we
assume that V # 0, vars(&)Nvars(&') # 0; (3)if s € {s1,...,s,} and s’ is an occurrence
of an equated term in F then vars(s)Nvars(s’) # 0 = vars(f(si1,...,s,))Nvars(s’) # 0
which implies that vars(L[V]) N vars(¢') # 0. Hence & x E'.
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(d)

(a,b,c)

(d)

(7)€
tn} U

p(Li[V:

e= P =t and e is reduced by a substitute step, yielding E' = P =1t :: E[P/t]. Then
=X, pu(X)= Pand u(L[V]) =t. Applying rule 5(d) of the abstract algorithm gives
&= X = L[V = E[X + QI[X/L[V'], where V! = V[X/Q]. Define y’ as follows:
p'(X) = P, y/(L[V']) = t, and for every 7 in &, p'(F[X + Q][ X/L[V]]) = u(F)[P/t].

Then &£ «x E’' under y', as we show now.

By construction it is obvious that g’ is an abstract term replacement and that p/(€’) =
E’. We show that u’ is coherent: let s; and sy be occurrences of terms in P =1¢ :: E
and consider the corresponding terms s} and s}, after performing the substitution. Let
£1, &2, €1 and & be such that p(&1) = s1, p(€2) = sq9, p(&)) = s1 and u(&3) = s5. We
have to prove that if s} and s} share, then & and &) do. Clearly, if one of s} and s
is the P, it will not share with the other, as all occurences of P in E are eliminated
by the substitute step. Now suppose s} and s}, are occurrences in E’ that share. Then
s} = s1[P/t] and s, = s3[P/t]. We distinguish the following cases: (1) s; and sy share.
Because p is coherent, £ and & share, and because syntactic substitution preserves
sharing between terms, also & and £} share. (2) s; and s do not share. Then it
must be the case that P appears in (or is equal to) only one of them, say in s; (the
other case is symmetric) and ¢ and sy share. Because p is coherent, L[V] and &; share;
furthermore, X € vars(£y). So & and & share by construction.

6)]e= L[V]=1

The casese= P=P,e= f(t1,...,t,) =P and e = f(t1,...,t,) = f(s1,...,5,) are
similar to cases 5(a,b,c).

e = P =t and the rule applied is a substitute, yielding £’ = P =+t :: E[P/t]. Then
p(L[V]) = P and pu(r) = t. We distinguish two cases:

(i) If P € V, then rule 6(d)(7) should be applied with P for X, giving £’ = P =
7 12 E[P+Q][P/7] (note that P € V and P € vars(t) implies that P € vars(t), in
which case the occur check would lead to failure of the concrete unification; hence,
we may assume P & vars(t)). Define p’ as follows: p/(P) = P, y/(7) =t and for
7in &, W (F[P + QJ[P/7]) = u(7)[P/t]. 1t is easily verified that u’ is an abstract
term replacement and that p/(£’) = E’. In a similar way as in case 5(d), it follows
that u’ is coherent.

(ii)) If P ¢ V, then rule 6(d)(ii) should be applied. Let sq,...,s, be all occurrences
of terms which contain P in E, and let &,...,&, be the correspondmg terms in &,
ie., u(&) = s; for i = 1..n. Now let Y be a variable that is shared by all £;, and
choose this Y in tule 6(d)(ii), giving &' = Q =1 = £[Y + Q][Q/7]. Define y’ as
follows: p/(Q) = P, ,u (t) =t and for 7 in &, p/(F[Y + QJ[Q/7]) = (f)[P/t] It is
easily verified that u is an abstract term replacement and that p/(£') = E'. In a
similar way as in case 5(d), it follows that p’ is coherent.

= 1L[Vi] = L[V3]. Denote V.=ViUVy, e = s =t and E = {sy = to,...,5, =

E (n > 1). So there are occurrences L;[Vi] and L;[V3] such that u(L;[V4]) = s; and
5]) = t; (i = 1..n) and (&) = E. There are four cases depending on the structure of e:
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(a) e = P = P, which is reduced by a remove, giving E' = {sy = ta,...,8, = t,} U E.
Construct g’ to map 2n — 2 occurrences of L[V] to the terms s; and t; (i = 2..n).
Moreover, for every occurrence of an abstract term 7 in &, p’ maps 7] /\ P/L[V]] to

PeV
w(7). Tt is straightforward to show that u’ is a coherent abstract term replacement and

that p/(&') = E'.
(bye) e= f(t1,...,tp)=Pand e = f(t1,...,1,) = f(s1,...,3,) are similar.

(d) e= P =t. In this case y’ is constructed to map 2n occurrences of L[V] respectively
to the terms P, ¢, s,[P/t] and ¢;,[P/t] (i = 2..n). Moreover, for every occurrence of an
abstract term 7 in &, ' maps 7[ /\ P/L[V]] to u(7)[P/t]. Tt is easily verified that p'

PeV
is coherent and that p/(£') = E’. O

Proof of Theorem 5.1

The proof is similar to that given in [17] for concrete unification where equation systems are
associated with elements of the well-founded domain of triplets (nq,ng,nsg) with the lexico-
graphical ordering, where ny is the number of “unsolved” variables (a variable is unsolved if
it does not occur only once as the left-hand side of some equation), ny is the number of oc-
currences of function symbols, and n3 the number of equations of the form X = X ort = X
(where t is compound). In our case, a similar well-founded ordering is used on sextuples
(n1,ng,n3, 4, N5, ng), where:

e 7 is the number of unsolved variables,
e 7y is the number of unsolved variables which have occurrences outside meta-terms,
e ng3 is the number of occurrences of function symbols,

e ny4 is the number of abstract equations that can describe an equation of the form X = X
ort= X, and

e 75 is the number of meta-terms,

e ng is the sum of the sizes of the meta-terms, where the size of a meta-term L[V] in an
equation system is the number of meta-variables occurring in the equation system but
not in V.

Table .1 describes the effect that application of the rules of the abstract unification algorithm
of Figure 4.1 has on the tuple (nq,...,n6). An entry “<” in this table means that the corre-
sponding n; is decreased, “<” means that the n; either stays the same or is decreased. A “7”
indicates that the effect on the corresponding n; is not relevant. No entry means that the n;
stays the same.

For the rules 4, 5(d), 6(d)(7) and 7, a case distinction is made, as follows:

e 4: If X has no occurrences in meta-terms, then ny decreases; otherwise nq stays the
same (because the new variable Q is introduced), but ny decreases because Q only
occurs in meta-terms.

23



(sl 9 ns T4 N5 g
1 < | <L < |7 ?
2 < | 7T ]7?
3 O N
4 S T T A B O
4 O O N
5(a) < | < S I
5(b) < | T
5(c) <l<l<T7]77]7
5(d) <7171 71~?
5(d) <l 7170177
6(a) < | < < v
6(b) < | < < v
6(c) 77 7
6y [< |2 7777
6(d)(7) <7717
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7 <

Table .1: Effect of the rules on the n;.

e 5(d): If X has no occurrences in meta-terms and is not in V, then ny decreases; oth-
erwise ny stays the same (because the new variable @ is introduced), but ny decreases
because Q only occurs in meta-terms.

e 6(d)(¢): If X has no other occurrences in meta-terms, then ny decreases; otherwise ny
stays the same (because the new variable Q is introduced), but ny decreases because Q
only occurs in meta-terms.

o 7: If there are variables from V that have occurrences outside meta-terms, then nq
decreases (while nq stays the same); otherwise, as the rule does not leave the system
invariant, ng decreases.

As for rule 6(d)(i7), ny and ny stay the same because although the new variable Q is intro-
duced, it appears “solved”.

From the table it is clear that the application of any rule decreases the sextuple (nq, ng, ns,
n4, M5, n6) in the lexicographical ordering.

It can easily be seen that this same variant function can be used to prove that Theorem 5.1
also holds for the more concise algorithm of Figure 4.2. O

Proof of Theorem 5.2

An abstract equation system in solved form can represent a concrete system which is not in
solved form. This is possible in the presence of one or more equations of the form L[V] = L[V]
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which possibly represent the unsolved part of a concrete system. This intuition leads to the
following lemma:

Lemma .1 If £ is in solved form, £ x FE and mgu(F) # fail then £ x mgu(F).

Proor. By induction on the number k of steps needed to obtain mgu(F) from E using
the concrete unification algorithm of Figure 2.1 (under the assumption that each such step
modifies the equation system).

base: k = 0 trivial as £ = mgu(FE).

step: Assume e 2 £ — E' —* mgu(E’), i.e., equation e is chosen for reduction. Assume the
abstract system is of the form e :: £ and u(e) = {e,e1,...,e,},n >0, (&) = E\{e1,...,en}.
We show the existence of some coherent p’ such that p'(e :: £) = E’. We distinguish the
following cases according to the form of equation e and the corresponding step being taken

in the concrete unification.

1. e = X = X, the concrete step is remove. Since no rule can modify ¢ :: £, ¢ must have
the form L[V] = L[V]. Sou(e) ={X = X,e1,...,e,}. Define p/ by p'(e) ={e1,...,en}
and p/'(£) = p(&). Then clearly p'(e :: £) = E" and p is coherent.

2. e = f(t1,...,tm) = X, the concrete step is switch. Since no rule can modify ¢ :: £, ¢
must have the form L[V] = L[V]. So u(e) = {f(t1,...,tm) = X,€1,...,€n}. Define p
by p'(e) = {X = f(t1,....tm),€1,...,en} and p/(€) = p(&). Then clearly p'(e 2 &) =

E’" and y' is coherent.

3.¢e = f(t1,..ytm) = f(S1,...,8m), the concrete step is peel. Since no rule can
modify ¢ 1 £, ¢ must have the form L[V] = L[V]. So ple) = {f(t1,...,tm) =
f(81,--y8m),€1,...,en}. Define p/ by p'(e) = {t1 = s1,.. b = Sms€1ye-s€m ]y
and p'(£) = p(&). Then clearly p'(e :: £) = E' and p is coherent.

4. e = X = t, the concrete step is subst. The concrete step modifies the system, so
X € vars(f) with f an equation in . In the following, 7 € Term.

e 1 I/ is not described by Y = 7 :: £ (with (YY) = X)) because then f is described by
E,50Y € vars(€) and rule 4 would modify € (Y is either X or a meta-variable). Also,
Y € vars(r) implies that p(Y') (which equals X) is in vars(u(7)). That is inconsistent
with the assumption that the concrete system does not fail.

Similarily, e :: £ is not described by Y = L[V] :: £ with u(Y) = X because then f is
described by £, s0 Y € vars(€) and rule 5(d) would modify &.

Similarily, e :: F is not described by L[Y,...] =7 = & with (V) = p(L[Y,..]) = X
because then f is described by &, so Y € vars(&) and rule 6(d)(7) would modify &.

(In the above 3 cases the rule would introduce a Q.)

So ¢ must have the form L[V] = L[V] and p(e) = {X = t,e1,...,e,}. Moreover,
the system cannot be modified by application of rule 7 on e, so any toplevel term
containing X in a concrete equation f in £ must be represented by a meta-term L[V]
which remains invariant under application of rule 7 on ¢, so V' O V. Define p'(¢) =
{X = t,e1[X/1],...,e,[X/t]}; for meta-variables Z: p'(Z) = p(Z2)[X/t] = u(2); for
meta-term occurrences L[V']: p/(L[V']) = pu(L[V'])[X/t]. Then clearly p'(e :: &) = E".
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Finally, we show that u’ is coherent. Assume s| and s} are left- or right-hand-sides in
E' described by 7 and 75 in £. Let s; and sy be the corresponding elements in F, i.e.,
st = s;[X/t]. Notice that s; and sy are also described by 7 and 7, respectively, as &
describes both E and E’. Coherence of ' requires that 71 and 75 share when s} and
s do. Assume s} and s}, share. Either s; and sy already shared, in which case 7 and
T also share by coherence of p. Or they did not in which case one of them (say s1) is
X or contains X, so 7y = L[V'] with V' C V' and the other (s3) shares with ¢; as ¢ is
described by L[V], it means 7, shares with L[V], so it also shares with L[V'] = 7. O

The proof of Theorem 5.2 now proceeds as follows. Suppose that & x £ and mgu(F) #
fail. By the latter, there exists a step E — FE’ (possibly leaving the system invariant). If

furthermore the possible steps of £ are & — &;(j =1,...,1), then by Lemma 5.1 there exists
a j such that &; « E'.
By simple induction it can now be shown that if £ has solved forms &,...,&, then for

some 7 € {1,..,n}, & is reached in m steps and F —™ E” such that & o« E”. By Lemma .1
it then follows that & x mgu(E") = mgu(E). O

Proof of Theorem 5.3

Theorem 5.3 follows directly from Theorem 5.2 and the following

Lemma .2 If £ x E and £ is in solved form then freeness of X in &£ implies freeness of X
in F.

ProovF. & isin solved form, so by Lemma .1, £ describes mgu( F). Suppose X is free in £ but
not free in mgu(E), then mgu(F) contains an equation X = f(#1,...,%,). This equation is
described via some p by an equation 71 = 7 in € (11, 72 € ATerm). So 7, must be of the form
f(t21,...,72,) or of the form L[V] with u(L[V]) = f(t1,...,t,). 7 is either X (it cannot
be a meta-variable as the fact that X is free in & implies X € vars(€)) or of the form L[V]
with X € V. All these possibilities contradict the assumption that X is free in the solved
form €. O
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