Eindhoven University of Technology

Department of Mathematics and Computing Science

Abstract Interpretation of Reactive Systems:
Abstractions Prescrving YCTL*, ICTL* and CTL*

by

D. Dams, O. Grumberg and R. Gerth
94124

Computing Science Note 94/24
Eindhoven, May 1994

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.

Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.

Copies of these notes are available from the
author.

Copies can be ordered from:

Mrs. M. Philips

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem
prof.dr. K.M.van Hee.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving YCTL", 3CTL" and CTL*

Dennis Dams” Orna Grumberg? Rob Gerth*$

Abstract

The need for formal verification of systems on one hand, and the advent of complex reactive
systems on the other, call {or the development of automated veritication technigues. Model
checking is one such technique, which has proven quite successlul. However, the state explosion
problem remains the stumbling block in many situations. Recent experience indicates that solutions
are to be found in the application of tcchniques for property preserving abstraction and successive
approxination ol models. However, a coherent basis for these notions is still lacking.

The theory of Abstract Tnterpretation offers a framework for the definition and justification of
property preseeving absiraciions. Furthermore, it provides a method for the effective computation
of such abstract models directly from the text of a program, thercby avoiding the need tor
intermediate storage of a full-blown model. Finally, it allows trading precision for speed by
computing sub-optimal abstractions; this is formalized in the notion of approximation,

However, Abstract Interpretation has traditionally been focussed on abstractions that preserve
safety properties of programs, properties that hold in all states along every possible execution
path. In this paper, we show how it can be extended 1o the analysis of different kinds of
reactive properties. To this purpose, we introduce two notions of abstraction of non-deterministic
systems. One preserves YCTLY, the fragment of the branching time logic CTL™ which allows only
universal path quantification. Another preserves SCTL®, the fragment only allowing existential
path quantification. Furthermore we show that a combination of both notions preserves full CTL",

This brings several powerful techinigues (rom Abstract Interpretation within the reach of model
checking, including the construction of abstract modcls by symbolic execution of programs and
the use of approximalions to find an optimum beiween precision and speed. Examples are given
to illustrate these.

Keywaords: verification, model checking, approximation, simulation

*Dept. of Math. and Computing Scicnce, Eindhoven University of Technology, PO. Box 513, 5600 MB Eindhoven, The
Netherlands, {wsindd, robg}@win. tue.nl.

iUZZ(Jmpuu:r Science Dept., Technion, Haifa 32000, Isracl. ornales. technion. ac. il. Partially supported by the
U.S -Israchi Binational Science Foundation,

SCurrently working in ESPRIT project P6021: Building Correct Reactive Systems (REACT)”,

1 Introduction

In the modei checking approach [CES86, P85, QS81] to program verification, a model of the program
is constructed over which formulae are checked for satisfaction. The model reflects the possible
behaviours of the program, the formulae express certain required properties of such behaviours.
Obviously, the size of the model is the limiting factor to the feasibility of the model checking
approach. In the worst case, it doubles with every extra bit of memory that the program may access.
This problem is referred to as the state explosion problem. One solution to it is the application of
abstraction techniques, which aim te abstract the mode! to a smaller one, in such a way that if some
property holds for the abstracted model, it also holds for the original model.

Such abstraction techniques are formalized in the framework of Abstract Interpretation [CC77],
which was originally conceived as a unifying theory of compile-time (data-flow) analyses. Applica-
tions of Abstract Interpretation have traditionally been focussed on the analysis of universal safety
properties (see [AH87] and [CC92] for an overview and bibliography). A universal property is one
that holds along all possible executions of the program. The notion of safety (or: invariance) is used
relative to an execution and means that property holds in all states of that execution!. An example
of a universal safety property is “whenever program P reaches location £, the value of 2 will be
positive”, which may alternatively be seen as expressing invariance of the predicate “P is notin £ or z
is positive”. Such information may for exaimple be used to perform dead-code detection; to suppress
certain run-time operations like type-checks, occur-checks (in logic programs), or garbage collection:
to transform programs (partial evaluation, parallelization); and to verity and debug programs.

With the advent of reactive systems, intercst has broadened to a larger class of properties. Reactive
systems are systems whose main role is to maintain an ongoing interaction with the environment, rather
than to produce some final result on termination. Usually, such systems consist of several concurrent
processes, and display a non-deterministic behaviour. Typical examples are flight reservation systems,
industrial plant controllers, embedded systems and operating systems. In the presence of non-
determinism, one may be interested to know whether some property holds along some possible
execution path. Such properties will be called existential. An example of an existential safety property
is “there is a run of # which kecps cycling in location {7, indicating for example that there is a danger
of livelock. Besides safety, another kind of property that is often considered is liveness, meaning
that something should hold eventually (given an execution). Thus, we have classified properties into
four kinds by the criteria universal/existential and safety/liveness. A typical combination of universal
safety and existential livencss properties is “alon g every possible execution path, in every state there
is a possible continuation which will eventually reach a reset state”.

The semantic models and abstraction techniques used in the analysis of universal safety properties
cannot be used for properties which involve aspects of existentiality and eventuality. The reason
is that they abstract away from information about the choices that a program encounters during
execution. The analysis of existentiality and eventuality properties of behaviours, however, requires
models which, in addition to information about single states, also provides the transitions between
states. For this reason, in model checking reactive systems, {ransition systems are used to model
the behaviour of programs. Being directed graphs over program states, such transition systems give
detailed information about program executions, including the possible choices in every state. Our aim
is to find notions of abstraction of such transition systeins that preserve certain combined forms of
universal/existential safety/liveness properties. This means that in order to know that such a property

"The notions of universality and salety of o property are not abways distinguished as explicitly as we do in this paper.
The notion that we call “universul sufety™ is elsewhere often termed just “safety™.

holds in the original system, it suffices to know that it holds in the abstracted system.

The different classes of properties may be formalized by expressing them in a formal logic whose
formulae can be interpreted over transition systems. One such logic, which is commonly used, is
CTL* (computation tree logic, see [EH8G6T). Tt contains universal and existential quantification over
execution paths, as well as temporal operators that express that, along a path, some property will hold
(a} in the next state, (b} in every state (safety), or {¢) in some state (liveness),

In this paper we investigate different ways to abstract a nondeterministic transition system. We
present (in Sect. 3) notions of abstraction which preserve universal and existential properties respec-
tively, and show how these abstractions may be combined in order to get preservation of full CTL*.
Then, in Sect. 4, it is shown how these abstractions may be computed directly from a program text
by “lifting” the operations of a programming language to a domain of data descriptions. This is
illustrated by an example in Sect. 5. Sect. 6 defines a notion of approximation which is an ordering on
abstract systems. It allows the formalization of the idea of approximate computation, which speeds up
the computation of abstract models at the cost of a less precise result. The coarser the approximations
made, the fewer will be the number of properties that hold 11 the abstract model, and hence the fewer
the number of propertics that may be concluded to hold in the original system (note that if a property
does not hold on the abstracied model, this does not give any clue as to whether it holds on the original
model or not). Sect. 7 compares ours to related work, and Sect. 8 conciudes.

These results are not only valuable to the practice of verification, where they may lead to an
advance of the limits of feasibility of the model checking approach, but also they provide an interesting
generahization of Abstract Interpretation in the analysis of a more gencral class of properties than is
usually constdered (namely universal safety properties).

2 Preliminaries
2.1 Temporal logic

We assume given a set Prop of propositions. We choose to define CTL” in its positive normal form,
i.e., negations only appcar in front of propositions. This facilitates the definition of universal and
existential CTL*. The set of atoms is defined by Alom = Prop U {~p | p € Prop}.

2.1.1 DermNrnion. The logic CTL® is the set of state formulae given by the follawing inductive
definition.

I Ifp € Atom, then p is a state formula,

2. If o and 1) are state formulae, then so are o A) and o V 1.

3. Any state formula is afso a path formula.

4. If v and 1 are path formulac, then so are A+ and o V).

5. If @ and 4 arc path formulae, then so are X, o U shand o V' 4.
6. If ¢ is a path formula, then Yo and 3 are state formulae.

The abbreviations true, fafse and — are defined as vsual. For a path tormula o, Fo and G abbreviate
(zrue U @) and (false V') respectively.

YCTL® and ACTL™ (universal and existential CTL*) are subsets of CTL* in which the only allowed
path quantifiers are V and 3 respectively.

)

2.2 Transition systems

CTL" formulae are interpreted over transition systems 7 = (£, /, R) where X 1s a set of states, I C X
1s a set of initial states, and f2.1s a total transition relation over X (R is total means Vyez Jyez Bz,).
A path in 7 is an infinite scquence 7 = sp¢; - - - of states such that for every i € IV, R(s;, $i41). The
notation 7" denotes the suffix of = which begins at s,,. For s € X, a (7, s)-path (or s-path when T
ts clear from the context) ts a path in 7 that starts in s.

We assume a function ||[] : Afom — P(X) specifying the interpretation of atoms over states.
Intuitively, ||p|) is the set of states where p holds. Transition systems thus defined are essentially the
same as Kripke structures. The only difference s that we have the function ||-]| instead of a labelling
function from X to sets of atoms. We require that for every proposition p € Prop, ||pli 1t ||-p]] = §.

2.2.1 DEFINITION. Satisfaction of formulae is defined inductively as follows. Let p € Atom, s € £
andw apathinT .

1. skEpiffse|nl

2ZskEypApiffslomdslEd s eveiffsi=pors = 4.
3. 7= @, where ™ = sgsy - - and @ is a state formula, iff 5o |= .
d rl=pnrdifrlmpandr = .7 =oViifnl=porm = ¢,

5. @k Xeiffn! = .
(b) 7 |= @ U o ifftherc exists n € JN such that 7 \= # and for all i < n, = = .
(©) ml= o Vhifftoralln € IN,if 7 |- ¢ foralli < n, then 7" |= 4.

6. s |= Y iff forevery s-path 7. 7 |= @, s |= 3o iff therc exists an s-path & such that v k= .

For a sct of states or paths S, the notation § |= ¢ abbreviates Vics s = . When there may be
confusion between different systems, we write (T, 5) |= ¢ to denote that s k= @ in T, and similar for
(7,8) = @. T |= @ abbreviates (T . 1) |= ¢.

These formulae can be used 10 express a variety of properties of transition systems. Apart from state
based properties expressed by formulae built from atoms and boolean connectors, properties of paths
may be expressed through the next-state operator X, the until operator {7 and its dual V (release, see
below). For example, 7 = X (p U/ ¢) expresses that along path 7, from the next state on, p will hold
in all states until we will eventually get to a state where ¢ holds. 7 = X X X psays that p holds in the
third state of 7. 7 [= Fpand 7 = Gp state that p will hold eventually resp. always along 7. Note
that, strictly speaking, path formulae ave not in CTL*: they have to be preceded by V or 3, resulting
i state formulac,

s k= ¥G'p expresses that pis true in all states which are reachable from ¢. If atom » characterizes
reset states, then ¢ = VG 3P means that along every possible execution path from s, in every state
there is a possible continuation which will eventually reach a reset state.

Vs the dual of U7 (p V' 4p = (¢ U/ —f}) and has the intuitive meaning of “release™ 4 must
be true as long as ¢ is false, and only if becomes true, 4 may become false afterwards. It has been
added as the dual of U/ to compensate for the fact that formulae like =(¢ I/ 1)) are not well-formed.
For the same reason both A and Vv are primitive in the logic.

We fix a transition system C = (Z, 1,), called the concrete model. This is the original, large
model that we need to abstract in order Lo be able to verify its CTL* properties.

2.3 Abstract Interpretation

A transition sytem represents the possible behaviours of a program. For the moment, it is irrelevant
what a program is. The only thing that matters right now is that there is a fu nction, called interpretation,
which maps every program to the system that represents its possible behaviours. In other words, the
Interpretation maps programs to their models. Properties of a program may be analysed by studying
tts model. However, the state explosion problem forces us to consider abstractions of this model. It is
important to realize that such abstractions preferably are to be constructed directly from the program,
and not by first building a tull model and then abstracting it. The way in which such an abstract model
is constructed from a program is called abstract interpretation. So, an abstract interpretation maps
programs to abstract models.

In the rest of this section and in the following section we concentrate on the definition of abstract
models and their preservation properties. Then, in Sect. 4, we will touch upon the computation of
abstract models by abstract interpretation.

Abstract states The definition of an abstract system A starts by choosing a set X of abstract states.
Tntuitively, each abstract state is a description of a number of concrete states. This is formalized by
a coneretization function 5 : % — P(X). For cach a € I, v(a) is the set of all concrete states
described by a. Conversely, every set (' of concrete states has a “best” description o(C'); « is called
the abstraction function. “Best” means that ar(C') is the least description of € w.rt. the approximation
(or precision) ordering < on ¥ which is defined by

wXa & yla)Cy(d)

If e < o’ we say that o’ approximates «, or that « is more precise than o, Usually, these requirements
are captured by the condition that the pair (ev,) forms a Galois Insertion from (P(Z),C) to (.Z, %).

2.3.1 DEFINITION. (e,) is a Galois Insertion from {(P(Z), C)to (X, =) iff
L. o and -+ are totad and monotonic,
2. forallC € P(Z), yoa(C) D C, and

3. foralla € X, aoy(a) = a.

Note that these requirements unply that « is surjective, v is injective and that there is a top element
T in X for which «(%) = T and ¥{(T) = Z. We will usually write a(e) for a({c}). For a path
P =apay A, y(p) = {eper - | cgey -+ isa path in Cand V; ¢; € v(q,)}.

Different approaches o specitying the relation between abstract and concerete states may be taken.
One possibility is to define surjection /1 ¥ — | ¥ which maps every concrete state to jts abstraction.
This is the apprach taken in, among others, [CGLI2, Kur89]. Such a function /» induces an equivalence
relation ~ on the concrete states, defined by ¢ ~ d & h{¢) = h({d). The abstract states are then
representations of the equivalence classes of ~. If % is a homomorphism, then universal properties
are preserved from the abstract to the concrete model. See 1CGL92] for details. The restriction to
functional homomorphisms is not neeessary, as is demonstrated in {Sif82, Sif83]. There, it is shown
that a relation p C X x 3, if it is a0 weak homomorphism [Gin68] between T and «2 glarantees
preservation of certain properties from abstract to concrete, and of others from concrete to abstract

models. Such relational homomorphisms are also known as simulations, a term introduced by Milner,
originally in the context of deterministic programs [Mil71].

Galois Insertions (e, v) to specify the relation between abstract and concrete states are more
general than functions and less general than relations. The reasons for choosing a slightly less general
formalism than relations are that (1) 1n the resulting framework we are able to derive in a uniform
fashion results on the preservation of both universal and existential properties, whereas general
relations do not always guarantee the existence of abstract models in this case; and (2) restrictions
have to be imposed on relations anyway when formalizing the notion of optimality of abstract models.
For a further discussion on this sce Sect. 7.

2.4 Relation transformers

In the next section, we define transition systems over abstract states. The definition of an abstract
transition relation boils down to lifting the transition relation to sets of states. We use two such liftings.

2.4.1 DEFINITION. Let A and B be sets and R C A x 3. The relations §33, 73 C P(A) x P(B)
are defined as follows.

R = XYY LY isa minimal (w.et. C) set such that oex yey R, y))}

B3 = {(X,Y) | 'Y is a minimal (w.t. C) set such that Viex Jyey Rz, y))

Note that if #33(X ¥), then |Y| = 1. An exampleis giveninFig. 1. Let £ = {(v, w), (z,v), (2,2)}
be the relation represented by the thin arrows. Then ({v, 2}, {w), ({v, 2}, {y}) and ({v,x}, {z})
are in 37 (fat solid arrows), but, e.g., not ({v, 2}, {w, y}). Furthermore, we have ({v, 2}, {w,y})
and ({v, =}, {w, z}) in B3 (fat dashed arrows), but not ({v, o}, {w,y, 2]

Figure 1: Relation transformers.

3 Abstract Transition Systems

Assume given a set X of abstract states and a Galots Insertion (e, v) which determines its relation
1o the concrete states. We investigate how to define abstract models in such a way that certain classes
of formulae are preserved from abstract to concrete model, This means, letting A denote the abstract
model, that we want the following to hold:

Vocn A= @ = (=g “preservation”)

O

where @ is some subset of CTL*,

The intention of abstracting concrete states is 1o describe them by abstract states. Le., if a(¢) = a,
then a should “behave like” ¢. From this point, it is natural 1o require preservation of formulae on the
level of individual states:

Voednez (A a) @ = (C, Y()) E “statewise preservation” (2)

We take this requirement as the starting point in defining the abstract model 4. Besides o2, Which is
already given, we need three morc ingredients for the definition of such a model:

1. afunction |

-{| specifying the interpretation of atoms over abstract states,
2. aset I of abstract initial states, and
3. an abstract transition relation s

These points are considered in the following subsections.

3.1 Valuation of atoms

We start with considering @ = Atom. in requirement (2): we want the truth of atoms to be preserved,
As atoms are asserting something about individual states and not about computations, the requirement
thus obtained does not concern the definition of the abstract transition relation. In order to satisfy (2),
we must have for every atom p: (A, a) = p = (C, 7(a)) = p. On the other hand, as we intend to
use the abstract model in arder to infer properties of the concrete model, we would like as many as
possible formulae to hold in cach abstract state,

3.1.1 DEFINITION. Forp € Atom, define
allpll = {a € X | (a) C 1}

This choice determines the valuation of atoms in abstract states. Namely, the relation = C T x Atom
is defined as in clause 1 of Def. 2.2.1, where s now denotes an abstract state and |{-|] has to be replaced
by [i-ll. That this choice is “optimal”, in the sense that as many as possible atoms hold in each
abstract state, is implied by the following leimma.

3.12 Lemma. Foreverya € T and P e Atom, (Aa) | p & (C,v(a)) = p.

PROOE. Dircct from the definitions of =, iI-11 and |} 0

Note that if & € T is such that () contains concrete states in which » holds and concrete states
in which —p holds, then « ¢ ,||p|| but also « € .l[=pll. So, although the rule of the excluded third
from classical logic holds on the level of mterpretation of atomic predicates over abstract states (we
have either @ |= p or « £ p, and similarly for —p), this rule does not hold on the level of the logic
itself: @ = p does not necessarily imply that o |= .

3.2 Abstract initial states

Requirement (2) does not mply (). The left-hand side in (1), A = ¢, is an abbreviation for
Vaear (A, @) = ¢. By (2), this implies Veeufta)leeary (Cs ¢} |= . A sufficient condition for this
to imply the right-hand side of (1), ¢ |= ¢, which is an abbreviation for Veer (C,¢) | o, is that
U{v(e) | @« € 7} D 1. When we have preservation, (1), a property of the concrete model can be
verified by checking it on the abstract model, i.c., by verifying that 4 = . Preferably, this condition
is as weak as possible. That means that the set of abstract initial states has to be as small as possible.
In general, it is not possible to choose of such that U{y(a) | « € .1} = 1. However, it can easily be
seen that the following choice for 7 yields the smallest set U{y(«e) | @ € I} which still includes 7.

3.2.1 DeANITION.] = {a(e) | c € 1}

As argued above, statewise preservation, (2), now implies preservation, (1). The following
property states something slightly more general, namely that if statewise preservation holds, and
furthermore some property holds in a superset of the abstract initial states, then it holds in (the initial
states of) the concrete system. Its proof is strai ghtforward.

3.2.2 PROPERTY. If Veedae,r (A 0) = @ = (Cov(aN = gand I D T,
then Voea (A, IVE ¢ = (.

3.3 Abstract transition relations

We now investigate the definition of the abstract transition relation: when is there a transition from
abstract state a to b? As we said earlier, the abstract state @ is intended to be a description of the
concrete states in y(«a}. Hence, the possible transitions from a should depend on those possible
from each of the states in y(«). Many applications of the framework of Abstract Interpretation are
developed in a context where both the concrete and the abstract transition relations are deterministic
(i.e., a transition function f). In such cases, the (unique) abstract successor «f(a) of a would be the
best description of the successors of the states in y(a): fla) = a(f(y(a)))?

In the current case, we have a non-deterministic concrete transition relation, and the question is
how this non-determinism is going 10 be reflected on the abstract side. We consider two possible
points of view. Onc isto allow in « all nondeterminism that is present in any state from y(«): if a state
¢ iny(a)can make a transition to ¢, then « can make 2 transition to the description e{d) of d. We call
this the free abstraction. The other possibility 1s to only allow in « the nondeterminism that is present
in afl states of y(a): « can only make transitions (o those states which are the description of sets of
states which are successor to every ¢ in v{a). This we call the constrained abstraction. Formally:

3.3.1 DEFINITION.
I RE(a,0) = 3y RE(@).Y) A al¥) = b
2. R (a, by & Fy RY(a).¥) A oY) = b
Note that by the requirement of minimality of ¥ (in Def. 2.4.1 of #32 and R¥3), it is not in general

the case that , " C R®. We denote A" = (o2, o RFY and A€ = (o2, o], o RY). As aresult of
these choices, we have the following preservation properties for paths.

2 . . -
Functions are extended 1o seis pointwisely.

8

LEMMA.

< Leta € I c € y(n)and be a(C,c)-path. Then there exists an (AF, a)-path p such that

T € v(p).

Leta € I, ¢ € y(a) and p be an (AC, «)-path. Then there cxists a (C,c)-pathm iny(p).

PROOF,

1.

34

Assumie ™ = cgey - - - wilh g = ¢ Define P =apay - withag = a and a; = a(c;) fori > 1. Because
(e, ¥) is a Galois Inscrtion, we have Ho(e)) 2 {eih, so e € Y(a;) fori > 1. Also, ¢ € v(agp). So
7 € 7(p).

Because for all ¢ > 0, Rlci,eigy), e € yla;), and @; = w(¢;), we have by Def. 3.3.1 of JRE:
R (a5, 004,).

- Assume p = agay - with g = a. We show that there exists an infinite sequence = = cpep - - of

states in X such that forall i > 0, ¢; € y(a:) and R{e;, c;ip)). 7 is constructed inductively, as follows,
Let ¢g = ¢. Then by definition, ¢ € v(t0). Now suppose that for some 1 > 0, ¢, is given such that
tn € Y(an). Becawse , B9,y ,4,,41), there must he (by Def. 3.3.3 of , R) ¥ such that R¥¥((a,,), Y)
and (Y} = a1, By definition of £273, there exists entt € ¥ such that R(cp, ¢py1). Because (o,)
is a Galois Insertion, we have Y(a(¥) D Y. 5000, € Yt 41)-

Thus, 7 is a (C, c}-path and 7 € ().

Preservation of YCTL* and 3CTL*

Satisfaction over abstract models Having defined abstract models, we can check formulae over
them. The satisfaction relation = C ¥ x CTL” is defined by Def. 2.2.1, where ||-|| has to be replaced
by «[|{|. We then have the following result.

34.1
1.

2

THEOREM.
Forevery ¢ € VCTLY, A= = Ck o,

Forevery ¢ € 3CTL*, A% e = Cl= e

PROOF. By Property 3.2.2, it suffices (o prove statewise preservation in both cases.

1.

Let A denote A", We prove the first item by induction on the structure of . So, for state formulae we
prove that for every state @ € X

e (Aa)ke = 7)) Ee

and for path formulac we prove that for every path p in A4

s (ApEe = (Crin) E v
There arc 6 cases, corresponding to those in Def. 2.1 .1

(“base” casc:)

9

1. To PROVE: For every atom p € Afom and every stalea € X
Ay Ep = (@) Ep
PROOF: Follows directly from Def. 3.1.1,

(“step” cases:)

2-5. The cases that ¢ is a conjunction or disjunction of state or path formulae (cases 2 and 5),a
state formula interpreted over a path (casce 3), or a path formula with principal operator X, [/
or V {case 4), arc strai ghilorward.

6. To PROVE: Il is a path formula and
(ih) forevery path pin A, (A, p) E ¢ = CAipN Ee
then
for every state a € L, (A, 0) B Ve = (C, v(a)) E Ve
PROOF: Let a be a state such that (A, a) & Ve, let ¢ € ¥(#), and consider a (C, ¢)-path .
By Lemma 3.3.2, we know that there exists an (A, @}-path p such that 7 € ¥(p), so, because

(A, a) = Yo, (A, p) o By (ih) we have (€, 7) B . So(C,v{a)) E Ve

2. Cases 1-5 are the same as in item |, provided that 4 now denoles A%, Case 6 is a straightforward
variation of case 6 under item 1; it uses Lemma 3.3.2.

0

In Property 3.2.2 we saw that the set of abstract initial states may be enlarged without violating
preservation. Similarly, the following theorem states that it is “safe” to approximate the abstract
transition refations by taking a superset of the transition relation 1T orasubset? of . R This result
will be used in the following section. In order to distinguish these notions of approximation from the
approximation ordering < (which will be extended to relations in Sect. 6), we will refer to them as
=-approximation and C-approximation,

3.4.2 THEOREM. Let 81 2 L R", Ay = ((Z, 1, R\), Ry € RE and A, = {(oZ, o, Ro).
I Forevery ¢ e VCTL®, A/ |=¢ = C E o
2. Forevery p € ACTL*, Az o = (= o.

PrROOF. By Property 3.2.2, it is sulficient 10 prove that
1. forevery ¢ € VCTL and every a € | Z, (A,) Fo = (A") e, and
2. forevery ¢ € ACTLY and every a € 5, (Ao,a) = = (A9 o) e

Together with Thin. 3 4.1 these imply Thin. 3.4.2. Both ilems are easily proven by induction on the structure of
¥. When o has ¥ or 3 as principal operator, the argument is as follows,

I. Suppose ¢ = Vo', Because 2y D, t¥, every pathin A% is also a pathin A,. Therefore, if ¢’ holds for
all (A, a)-paths, it also holds for al) (A" a)-paths.

2. Supposc ¢ = 3’ Because 12y C . RC, every path in A, is also a path in A%, Therefore, if ¢’ holds for
some (Az, «)-path, it also holds for some (AC, a)-path.

O

3 o - .
“Remember however that the transition refation has o remain total.

10

3.5 Mixed Abstraction: preservation of CTL*

When we have a free as well as a constrained abstraction of a system, formulae from both YCTL* and
ACTL™ can be verified. However, the union of YCTL* and JCTL* is not CTL*. In order to have an
abstraction which preserves all CTL* formulae, we can combine the free and constrained transition
relations in one model, which we call mixed abstraction. A similar idea is presented in [Kel94].
There, CTL* formulac are interpreted over a pair of abstract modeis.

3.5.1 DEFINITION. The mixed abstraction is the system AM = (oZyod, n_R‘l“") where ,RM = _RFU
«RC. A free path is a path with all its transitions in «BF; 4 constrained path is a path with all its
transitions in , R© .

The interpretation of CTL™ formulae over a mixed abstraction is defined slightly different from
Det. 2.2.1: clause 6 is replaced by

6. s |= Vo iff for every fiee s-path =, 7 |= ©; s
thatm |= .

In the rest of this paper, we implicitly assume this adapted definition when interpreting formulae
over mixed abstractions or approximations thereof (both the (2. C)-approximations to be introduced
below as well as the <-approximation in Sect. 6). We then have:

= i iff there exists a constrained s-path © such

3.5.2 THEOREM. Forevery o € CTL®, AM Lo = ¢ = .

FROOF. A combination of the proofs of 1 and 2 in Thim, 3.4.1. O

So, mixed abstractions allow verification of full CTL" while the degree of reduction is determined
by the choice of the abstract domain and may hence be arbitrarily large. In contrast, reductions w.r.t.
bisimulation equivalence [Mil71] only allow a limited reduction. These facts may seem contradict-
tng, but the reader should note that by the definition of satisfaction of CTL* formulae over mixed
abstractions, it is possible that neither i, nor ~¢ holds.

The resuit of Thm. 3.4.2 is also adapted for mixed abstractions in a straj ghtforward way. Because
superset- and subset-approximations are combined, we speak of (2, C)-approximations of mixed
abstractions,

3.5.3 THEOREM. Let fy 2, R", By C ,RY and A = (%, ./, R, U Ra). Then forevery ¢ € CTL*,
AEp = Ck=e.

PROOF. Sintilar to the proof of Thm. 3.4.2. O

4 Computing Abstract Models By Abstract Interpretation
After having defined abstract models and proven their preservation properties, we now get to the

topic of how to compute such modcls directly from a program. We will do this through abstract
interpretation of the program text. From [CDY94] we extract the following informal definition:

M

An abstract interpretation is a non-standard semantics defined over a domain of data-
descriptions, where the functions are given corresponding non-standard interpretations.

The abstract states are then valuations of program variables over the domain of data-descriptions,
and the abstract transitions are computed by evaluation of the abstract semantic functions over these
domains.

In order to further develop the theory, we first need to fix a programming language. We use a
simple language which is based on action systems [BKS83]. A program is a set of actions of the
form c;(&) — 1:(7, "), where Z represents the vector of program variables, ¢; is a condition on their
values and ¢; specifies a transformation® of their values into the new vector &’ (¢ ranges over some
index set T). Executing an action means evaluating its condition ¢; and, if this yields rrue, updating
the program variables as specified by the associated transformation /;, A program is run by repeatedly
nondeterministically choosing an action and exceuting it. We let Vel denote the set of values that the
vector & may take, and /Val C Val the set of values that it may have initially. Thus, each ¢; is a
predicate over Val and each 1; a relation on Vul2. The conditions and transformations will typically
be specified in terms of more elementary operations over (components of) the values in Val.

We chose this language because (a) by its simplicity, notably the uniform treatment of data and
control, it allows for a comprehensive presentation of the following results on abstract interpretation—
choosing a more concrete language would needlessly complicate matters, yet, (b) it contains rudimen-
tary forms of the common notions of assignment, test and loop, which will help to grasp the idea of
how to abstractly interpret operations in “real” programming languages.

4.0.1 DERINITION. Let P be the program {oi(®) = (2, 8") | i € I'}. Its concrete model C is defined
as follows:

o 2= Val,

o [=TVal,

o 2= {(7,%) e Val*| ey cil) A L(B, 7)),

Next, we assume a sct , Val of descriptions of sets of values in Va/, via a Galois Tnsertion (e, 7),
and define two types of non-standard, abstract interpretations of the ¢;’s and #;’s over «Valinsuch a

way that - and C-approximations (sec Thm. 3.4 2) for the {free and constrained models respectively
of a program may be computed by interpreting the operators in the program correspondingly.

4.0.2 DEFINITION. Fora, b € _Val,
) CII;?((L) = E,ﬂej,(”’) C;('ﬁ),‘
o 1F(a,0) & Iy 1;3(v(a), YIA oY) =0
. (‘,,!G(a) & Vaeya) (D)

o t90a,0) & Iy L33 (a), YA alY) = b,

*We could have represented this transtormation as the simultancous assignment &' := #;(#). However, by abstracting
the function £; it may become a relation. Hence we denote both the concrete and the abstaact transformations in the same
wily.

Furthermore, we define the abstract models AP = (oZy o, L‘:?‘f?’“), AC = (o Z, c,I,C._}_%-C) and AM =
(X, o, RE U L RCY) where:

o Y= _Val;

o J={alc)]ce Val);

o RF = {(a,0) € Vol | Figg (@) A 1F(a,0));
. :_Iq?-c = {(a,0) € ,Val? | Jic; c“la) A 15 (e, 0)}.

The following lemma expresses that the abstract interpretations given above can be used to compute
C- and 2-approximations.

403 LEMMA. k7 D RF and RC C RC
PROOF. Leta,b & Val.
1. (a,b)ye RV
< {apply Def. 33,1 of , ¥, Def. 2.4.1 of 232 and Del. 401 of R }
Jy [¥ is aminimal set such that Jgey(ayaey [Fies [e:(7) A (0, @)]] A oY) =)
& { oY) = bdocs not depend on 7, so we may move the Jies outside }
Jier Iv- [¥ s a minimal set such that oy mey leil B A L(E,@)] A oY) =1
= { weaken by distributing the s ex(a)mey over the first A }
Fier Iy [V is a minimal set such that Joey(ar (€ {F)] A Foeytar,wey {E:(0,@)] A a(Y) = 8]
< { move the 3y inside }
Jier [Foey(a) [ei(B)] A 3y [¥ is a minimal set such (hat Joev(a),wey [Li(F, @) A a(Y) = 8]
< {apply Def. 2.4.1 of ;(#, @)% and Def. 4.0.2 of cf (@), 1 (a,b), and ’]}‘F }

(a,0) € . IF

2. (a,b) € HC

& {apply Del. 4.0.2 of | RC. ef' (a) and 1§ (a, b), and Def. 2.4.1 of t;(v(w), ¥)"* }

Jier Voeva) [6(8)] A3y [¥ is & minimal set such that Vier(ay Joey (L8, @)] A oY) = §]]
A Vieyay [(8)] does not depend on ¥, so we may move the Jy- outside }

Aicr Iv [V is a minimal set such that Yagyra) [ei(F)] A Yocyia) Fwey [tilB, @] Aa(Y) = 1)
& { «i(7) does not depend on ¥, so we may bring the J5¢y outside the first A }

Tier 3y [¥ is a minimal sct such that Vaeya) Joey [ei(8) A 4:(5,)] A o(Y) =]
= { weaken by moving the 3;¢; inside, over the other quantifiers }

3y [¥ is a minimat sct sach that Vaeyioy Jaey [Fier [¢(8) A Li(, @)]] A o(Y) = b]
< { apply Del. 4.0.1 of /&, Def. 2.4.1 of RY3 and Def. 3.3.1 of i }

(a,0) €., RE

a

The (approximations to) free, constrained and mixed abstractions thus com puted preserve the formulae
of YCTL*, 3CTL* and CTL* respectively.

4.0.4 COROLLARY,

1. Forevery ¢ € VCTL”, AF Ee = (¢

2. Forevery ¢ € ACTL*, AC Eo = C

— (,Q.
3. Forevery p € CTL", ;ﬁ_’ Ee = (FE o

PROOF. From Thms. 3.4.2, 3.5.3 and Lemma 4.0.3. O

If the ¢; and ¢; are built up from more elementary operations, the abstract interpretations of the ¢;
and ¢; can be defined in terms of those, however, it must be seen to that the result of Lemma 4.0.3 is
maintained.

The use of abstract interpretation to model check a property ¢ for a program P is characterized by
the following phases. First, an abstract domain Vel has to be chosen and for all operation symbols
occurring in P, abstract interpretations have to be provided. Depending on the property ¢ to be
checked, free and/or constrained interpretations should be given; these have to satisfy Def. 4.0.2.
Then, the (free, constrained or mixed) abstract model can be constructed by a symbolic evaluation
of the program over the abstract domain, interpreting the operations according to their abstract
interpretations. Finally, ¢ is model checked over the abstract model. Tt is important to notice that only
positive results of this model checking carry over to the concrete model: a negative result 4 }&
docs not imply that A |= —¢ and hence does not justify the conclusion that = =, in spite of the
fact that ~ is equivalent to a CTL* formula.

The same idea of constructing an abstract model by abstract interpretation of program operations,
although based on a different theoretical framework ([LGS193), see Sect. 7.1 fora comparison), is
applied to a “real-lite” example in [Gra94]. Graf shows in that paper how a distributed cache memory,
which is in principle an infinite state system because request queues are unbounded, can be verified
by providing a finite abstract domain and corresponding abstract operations.

Although the model checking procedure itself is an automated process, it is not obvious how the
choice of an appropriate abstract domain with corresponding abstract operations, as well as the proofs
that these operations satisfy the conditions of Def. 4.0.2, can be performed in an automated fashion.
In [Gra94], the abstract domain has to be provided by the user of the method, and the proofs for
the abstract operators form a difficult step in the method. In [DGG93] and [DGD*94], a method is
developed which aims at full automation of these steps.

5 Example

In this section we illustrate the theory on a small example. Consider the system consisting of two
concurrent processes depicted in Fig. 2, which is a parallel variant of the famous 3n + 1 program.
We chose this example because it is small but nevertheless displays a non-trivial interplay between
data and control. The properties that we will verify concern certain control aspects that depend on
the values that the integer variable n takes under the various operations that are performed on it.
Because the state space is infinite, data-abstraction will be necessary in order to verify aspects of the
control-flow. It serves as an illustration of the fact that abstraction techniques bring into reach the
model checking of systems that cannot be verified through the standard approach,

14

noxld n even

neven —

n = 3*n+l n:=n/2

Figure 2: The dining mathematicians.

The program may be viewed as a protocol controlling the mutually exclusive access to a common
resource of two concurrent processes, modelling the behaviour of two mathematicians, numbered 0
and 1. They both cycle through an infinite sequence of “think™ and “cat” states. The right to enjoy
a meal in strict solitude is regulated by having them inspect the value of ». before eating, letting the
one go ahead only if » has an odd vilue, and the other only if » s even. Upon exit from the dining
room, each mathematician has its own procedure for assigning a new value to ». Transitions can only
be taken when the enabling conditions are satisfied, e.g., mathematician 1 can only leave the dining
room if n 1s divisible by 2. An cxccution is any infinite sequence of (arbitrarily) interleaved steps of
both processes which starts in a state where both mathematicians are in their thinking state, and = is
set to some arbitrary positive intcger value. We want to verity that along every execution

¢ the mathematicians have mutually exclusive access to the dining room, and

» mathematician | will not starve, i.e., when mathematician 0 1s eating, then, eventually, mathe-
matician 1 will get access to the dining room.

In order to formalize this, we first express the program as an action system. As data and control are
treated uniformly in such systems, we introduce variables o and (), both ranging over {think, eat},
o encade the effect of “being in a location™ think; or cal;.

Lo = think, odd(n) —) = cal

(o =cat — Cy:=think, n:=3+n+]

£y = think, even(n) —= € 1= eul

£ = eatl, even(n) — £ = think, n:=n/2

il

Note that although we translate a concurrent into a sequential system, we do not have to “unfold” the
inherent non-determinisni: the two processes which describe the mathematicians can be recognized
in the first two lines and last two lines of this program. The state space X of this program is the set
{think, eat}? x IN\ {0} of values that the vector {Cy, £1, 1) of program variables may assume. The
initial states are [= {{think, think,n) | » € IN\{0}}. Its transitions are defined as in Def. 4.0.1,
using the standard interpretations of the tests =, even, odd and operations 3%, +1 and /2 (the latter
three are considered as operations on one argument, i.¢., functional binary relations).

The properties to be verified are expressed in CTL* as follows.
YG-(lp = eat A) = eal) 3
VGl = eat — VI = eal) 4)

As both formulae are in YCTL*, we can verify them via a free abstraction.

The abstract domain is defined by providing abstractions of the components which comprise the
concrete domain. We choose to leave the component {thinik, eat}? the same. Formally, this means
that we take an abstract domain with two clements whose concretizations are {think} and {eat},
however, for readability we just denote these elements by think and eat respectively. To abstract
IN\ {0}, we choose an abstract domain in which » may take the values e and o, describing the even
and odd positive integers respectively, ie, v(e) = {2,4,6,...} and (o) = {1,3,5...}. To both
abstract domains, we add a top element T. The set X of abstract states is now defined as follows.

«Z = {think, cat, T}? x {e,0, T}

It is easily verified that the concretization function thus defined determines a Galois Insertion (v, v)
from P(Z) to ,Z. For the abstract initial states we have:

oF = {{hink, think, e}, (think, think, o)}

Having chosen an abstract domain, we also have to provide abstract interpretations, over this
domain, of the operations that appear in the program, along the lines of Def. 4.0.2. The tables (a)
and (b) in Fig. 3 give the definitions of the free abstract interpretations of the transformations and
tests on the abstract domain {e, 0, T}. The operations 3x, +1 and /2 are considered single symbols.
For completeness, Fig. 3 (¢) gives the table with free abstract interpretations of the tests = think
and = eat (to be considered single symbols) on the domain {think, eat, T}. The tables have to be
interpreted as indicated by the following examples. The entry rrue in row event | column e of table (b)
indicates that evewﬁ(e) holds, e, (ef. Defl. 4.0.2), H,I,e,r(c) even{n). The entry false in row +1%,
column {e, e) of table (a) means that +17 (e, e) is false, i.e., for any ¥ such that +133(v(e), ¥), we
have «(Y') # e (see Defs. 4.0.2 and 2.4.1). From these diagrams we see for example that /2% is not
functional, illustrating that a function may become a relation when abstracted.

Now we can abstractly interpret the program over this abstract domain, using the interpretations
given in the tables. We start in the two initial states (tink, think, e) and {think, think, o). Consider
for example (think, think,e). According to the tables (b) and (c), the only action from the program
whosc condition ¢; evaluates to frie is the 3rd line. As a result of the corresponding transformation
(€1 := eat), the (only) successor of {think, think,e) is (think, cat, e). Continuing from this state,
the only action that applies is the 4th line of the program. From the entries for the operation /2F on
the value e, we see that the results can be both e and o. Hence, we get free abstract transitions from
(think, eat, e) back to (think, think, e}, and also to (think, think, o). Such an abstract execution
yields the abstract model of Fig. 4. We see that in no state the property (g = cat A {; = eat holds.
Hence we have established property (3). Furthermore, the only path from the state where {y = eat
reaches £) = eat within 2 steps, so we have also verified property (4).

I order to illustrate the use of the constrained abstraction, we consider a small extension to the
program: we add a third concurrent process which can “restart” the system by setting » to value 100.
This may only be done when both mathematicians are thinking, otherwise there may be executions
possible which violate the mutual exclusion property. To this effect, the following fifth action is added
to the program:

16

[FREE: || (e,e) [(e,0) (e, T) | (o0,€) I {0,0) | (0,T) | (T,e) | (T,0) l (T,7)]

37 true | fulse | false | false | true | fulse trite true Jalse

+17 | false | true Jalse true | false | false true true Sfalse

/?F triie true | false | false | false | false trie true Jalse
()

fFREE: || € l o J Tj L FREE: ” f‘hi'n,kLeat I T l
even™ | true | false | true (= think)" || true | false | true

odd™ | false | true”| true (= eat)” Jalse | true | true

(b) (c)

Figure 3: Free abstract interpretations of operations (a) and tests (b and ¢).

Figure 4: The free abstract model.

Lo = think, £, = think — n = 100

We want to check whether it is always possible to reach a “restart” state. Writing restart for
thinkg A think; A n = 100, this property is expressed in CTL™ by:

VG Frestart (5)

We extend the abstract domain for » by the value 100, where ¥{100) = {100}. Formula (5) being in
full CTL*, we need a mixed abstraction. Instead of providing the constrained abstract interpretations
of all tests and operations over all abstract values, Figure 5 only provides those entries which will be
needed in an abstract execution of the program. Also the tables from Fig. 3 have to be extended in
order to take into account the new abstract value 100. Being straightforward, these extensions are
left to the reader.

| ConsTR.: || (e, 100) | (e, €) | (e,0) [(e, T)]
[j2r ” Jalse | fualse | false I true J
(a)

[Constr.: [[(0,100} [(0,€} | (0,0) | {0, T) |

3l Jalse false | true | false
+17 Jalse trwe | false | false
(b)

[Constr: [(T,100) [(T,e) [(T,0) [(T,T) |

3 Jalse false | false trie
+17 Julse false | false trie
(c)

[COonsTR.: [[100 [€ | o | T | [Constr.: [think | eat | T |
even® true | true | false | false = think% || true | false | true
odd® false | false | true | false = eal® false | true | true

(d) (c)

Figure 5: Constrained abstract interpretations of operations (a, b, ¢) and tests (d and e).

The resulting abstraction is depicted in Fig. 6. Solid arrows denote free transitions, dashed arrows
represent constrained transitions. Note that it is not in general the case that JRE ¢ RY, asis
illustrated by the arrow from (tfvink, cat, e) to {think, think, T). Property (5) is verified on this
model by interpreting the universal quantification along the free paths, and the existential quantification
along the constrained paths. Tt can easily be seen that (3) holds, hence, we have established its validity
in the concrete program.

restart

Figure 6: The mixed abstract model for the modified program.

6 Approximations

So far we have considered abstractions which were optimal in the sense that in the definition of the
free and the constrained transition relations, the successor of an abstract state 1s the best description
of certain sets of concrete states. This appears from the fact that these descriptions are obtained by the
application of «v in Def. 3.3.1. In practical applications of Abstract Interpretation, approximations,
w.r.t. =, of such best descriptions are often taken instead. One reason is that the computation of optimal
abstract interpretations may be too complex. Another reason is that even if the abstract interpretation
is optimal, it can be cumbersome to actually prove this. The following definition extends the notion
of approximation (>, see Sect. 2.3) to paths and to models®, where also the initial states may be
approximated. It applies to free, constrained as well as mixed abstractions. In the rest of this paper,
the term “approximation™, unless exphicitly stated otherwise, refers to the notion defined here and
should not be confused with 2- and C-approximation.

6.0.1 DEEINITION. Let A = { Z, 1, R U RC) be a transition system where transitions in ,RF
are called free and in (R are called constrained.

I. Forpaths p = age, - and p=ay, . p X piffag < Ty, X Ty,. ..

2. AT A (and)i, A= Aiff (@and (b)ii, and A > A iff A=F A and A»Y A:
(1) foreverya € f thereisan@ € T suchthate <X @
(b) foreverya ¢ X

i. forevery frec (A, «)-path p there is a free (A, a)-pathp = p
ii. for every constrained (A, a)-path p there is a constrained (AY a)-path p < 7.

We have the following preservation results for approximations.

*The extension of = w models is not a partial order anymore, but a pre-order.

19

6.0.2 THEOREM.

1. IfA =T A, then forevery p € VCTL*, A= = Al ¢

2.

N1

PROOF.

IFA =Y A, then forevery o € 3CTL*, A ¢ = AE ¢

CIfA > A thenforevery p € CTLY, Al ¢ = A .

We prove 3; the other proofs are simplifications of this. By condition (a) in Def. 6.0.1, it suffices to

prove statewise preservation. We prove this by induction on the structure of 4. The 6 cases correspond to those

in Def.

2.1.1 of CTL*. For state formulac = € CTL™ we prove that
forevery e € ,Z. (A, a) |E ¢ = (4.¢) e

For path formulac ¢ & CTL?, we prove that

6.0.3

for every a € X and every (A, a)-path p and (A, «)}-path 7 such that p < 7,
(AP Ee = (Al Ee

. The cascs that ¢ is an atom (case 1), a conjunction or disjunction of state or path formulae (cases 2 and

5), a state formula interpreted over a path (case 3), or a path formula with principal operator X, U or V
(case 4), are straightlorward.

To PROVE: Il € CTLY is a path formula such that
(ih) forevery @ € (Eand cvery (A4, a)-path jpand (A, a)-path 7 such that p < B,
AP Ey = (AnEe
then
(a) foreverya € X, (Ao} EVe = (A a)EVe ,and
(b) forevery a € ,Z, (A, a) = I = (A,0) | Jp
PROOF:

(a) Let @ € X be a state such that (A, @) | V. Lel p be a free (A, a)-path. By Def. 6.0.1 of
approximation, there exists a free (A, a)-path 7 such that p < 7. So, because (A, a) |= Ve,
(A, 7) = . By (ih), this implics (A, p) E ¢ So, (4. @) E Ve.

(b} Let @ € T be a state such that {4, «) &= 3. So there exists a constrained (A, a)-path 7 such that
(A, 7) E . By Del. 6.0.1 of approximation. this implies that there exists a constrained { A, a)-path
psuch that p < 7 By (ih), thisimplies (A4, p) | ¢ 8o, (A, @) | e

O

COROLLARY.

1. A>T AT then forevery ¢ € VCTLY, Al ¢ = CEy

2. If A =% AC then forevery v € 3CTL™, A=

©
3. KA x AM then forevery o € CTLY, A= ¢ = (k= o

20

PROOF. From Thm. 6.0.2 and Thms. 3.4.1 and 3.5.2. C

6.1 Computing approximations

Approximations to models may also be computed by abstract interpretation of a program. In this
case, the abstract interpretations of conditions and transformations do not have to be optimal. Here,
we will illustrate such approximation for the transformation operators (/;). It can easily be extended
for the conditions (¢;) as well.

6.1.1 DEFINITION. The definition of approximation is extended to abstract interpretations of the
transformation operators, as follows. For abstract operations® 1,7 € ,Val x Val,

!tf = Vn-,b_.l_)e oVl [,'(ﬂ“'b, - l>~l 'I(” h)] A ['I'(”"b) = 3!)"(5 ’(ﬂ’b)]

Such approximate free and constraincd interpretations 1 ;' = ¥ and f° = f? (for all i € 1) induce

— l
the abstract models AV = (o2, od s BT, AC = (W, 0, RE) and AM = (X, I, . RF U R,
where:

o 2=, Val;

o J={ac)]ce Vall;
o JRF={(a,0) € Val' | Figy e[() A 1F(a, 1))
o JRE = {(a,0) € Val | Figs F(a) A1 (0, b))

[— —— —_— ———

6.1.2 LEMMA. 1. AT = AF. 2 AT » AC and 3. AM = AM,

PROOE

I. Let ¢ € ,Z. We have to prove that Tor every (AF | a)-path p there exists an (AF, a)-path 5 such that
PP
Let p = aajay - - - be an (;F a}-path. We show that for any @ > «, there is an (AF | @)-path 7 such that
p=p (In p'uuculm this implies that there 1s an (A" a)- palh g such that p < p.) Let @ = a. We show
that there exists @, > a such that , RF (@, @). Wehave .Ii’f (a,ap). By Def. 4.0.2 of(,R*r , thisequivales
Jier [ef (0) Al (@, a))]. Because @ = a, we have ¢ (a) = (@) and also tf' (¢, a)) = £ (@, a))
(see Def. 4.0.2 of ¢f and [and Def. 2.4.1 of %), 50 3;¢; [f' (@) A (@, @))]. By Def. 6,1.1 of E,
there exists @) > o such that 3;¢; [ef (@) A L (@, @)], i, . RF (T, @,). This argument may be applied

inductively (cf. the proof of Lemma 3.3.2) to construct the (4%, @)-path p = @@ @y - -

2. Let e € JZ. We have (o prove that for every (A «)-path 7 there exists an (.AC a)-path p such that
p=p
Let 7 = aajaz - be an (F a)-path. We show that for any o' < a, there is an (:4—5, a')-path p such
that p < 7. Let o =< ¢, We show that there exists «f = oy such that ’1‘:.‘_7((1.’, a)). We have F(a, ap).
By Def. 6.1.1 of TRC and !‘ there exists af =< a; such that 3¢y [¢F (o) AE (@, @}')]. Because @’ < a,

6 ‘. H e H H
"Remember that such “operations™ are binary relations.

21

we have ¢f (@) = ¢f ('), and also there must be some af < «f such that t€(a’, a}) (see Def. 4.0.2 of
¢ and t€ and Def. 2.4.1 ol -¥3). So ez [eF (') A1E (o, aj)] e, Ji’._a(a’, ai), and, by transitivity of
=, ay = ap. This argument may be applied inductively (cf. the proof of Lemma 3.3.2) to construct the
(E’:, a’)-path p = a’afaly - - -

3. From 1 and 2.

So, we can compute approximations to the abstract models by choosing non-optimal abstract
interpretations 7; of operations in the program. As an example, consider the dining mathematicians
again (without the “restart” extension). Take optimal free abstract interpretations of all operations but
3+, for which we take the following approximation: 3+7 (o, T) = trueand 3+F (0, e} = 3+F(0,0) =
Jalse. Furthermore, take (think, think, T as the abstract initial state. This gives the free abstraction
of Fig. 7, from which still various properties may be deduced, such as the fact that at least one
mathematician will keep engaged in a cycle of thinking and cating.

Figure 7: An approximation to the free abstraction.

7 Related Work

Property preserving abstractions of reactive systems have been the topic of intensive research lately.
‘The results can be classified according to the type of semantics that is considered and the class of
properties to be preserved. For example, [Dil89, Kur89] focus on trace (linear time) semantics and
universal safety and liveness properties. More recently, [CGL92, GL93] consider branching time
semantics and preservation of both YCTL* as well as CTL™. In those two papers, the relation between
concrete and abstract model is defined by means of o homomorphism. [CGL92] also indicates how
abstract models may be computed by abstract interpretations of the operations in a program. However,
their notion of approximation is based on the subsetordering on abstract transition relations (cf. our
Thm. 3.4.2, item 1); they do not have the approximation relation < which allows non-optimal abstract
interpretations of individual operations. Also, preservation of existential properties is only possible
via abstractions which are bisimilar to the concrete model, thus only allowing for relatively small
reductions in the size of models.

22

In automata theory, property preserving homoemorphisms provide a classical method to construct
language preserving reductions of automata. In [Mil71], Milner introduced the term simulation
to denote a homomorphism between deterministic systems. Since then, it has been re-adapted to
nondeterministic transition systems and has become popular in the areas of program refinement and
verification. We recall the definition of simulation. Juxtaposition of relations denotes composition as
usual.

7.0.1 DEFRINITION. A relation p C £ X X is a simulation (from C to A) iff p~'R C Rp~!. C
simulates A iff there exists a simulation from (to A.

In [LGS*93], the preservation results for simulations are gencralized for the case of the ji-calculus.
Loiseaux et al. show in that paper that if € simulates A, then properties expressed in the universal
p-caleulus (O L) are preserved from A4 to €, and existential properties (O L,,) are preserved from
to A. Again, preservation of the full ji-calcuius is only shown for bisimilar abstractions.

The framework of Galois Insertions, which forms a special case of these simulations, has the
advantage that the distinction between the notions of abstraction and approximation renders the
approach closer to the original approach to Abstract Interpretation [CC77, CC79] and atlows a better
control of the precision of abstractions. This point is further discussed below.

A recent paper by Kelb, [Kel94], also discusses the preservation of universal and existential p-
calculus properties within the framework of Abstract Interpretation. As in [LGS193], the relation
between abstract and concrete systems is defined through simulations. In addition, Kelb shows how
formulae from the full g-calculus may be verified by combining two types of abstractions through a
so-called truth-failure-connection.

7.1 Precision

It can be shown that simulates A" and that A“ simulates €. So, the notion of simulation is a
generalization of that of a Galois Insertion (conversely, not every simulation determines a Galois
Insertion). However, we will show that once optimality is taken into account, the situation changes
and the Galois Insertion framework is the more general. We focus on the free abstraction.

In the sequel we need the following definition.

7.1.1 DEFINITION. Let A and B be sets and R C A x 3. The functions posty, : P(A) — P(B) and
preg P(3) — P(A) are defined as follows.

postp(Ny ={be B 3,cx Ria, b)Y,
prep(Y) = {a € A | Jyey R(a,b)}.
Let preg denote the dual of preg,, Le.. prep(Y) = prep(Y') (overlining denotes complement here).

In [LGST93], it is shown that the existence of a simulation p from ¢ to A is equivalent to the
existence of a Galois Connection” (i,) from (P(X), C) to (P(,Z), C). More precisely, they show
the following.

o If pis a simulation, then {post . pie,) is a Galois Connection from (P(Z), C) to (P(,X), C)
and

postopregopre, C pre_p, (6)

(o denotes function composition).

A Galois Connection is a generalization of a Galois Insertion where ot is required to be C id rather than = id.

23

Figure 8: Abstraction with states of comparable precision.

e Conversely, if (¢, ¢) is a Galois Connection from (P(Z),C) to (P(.X), <) for which
woprepotp T pre_p, then there cxists a simulation p C X x X such that ¢ = post, and
= pre,.

This alternative characterization, (6), of simulation is claimed to be useful to compute the abstract
relation .2 when C, X and p are given. Requircment (6) has many solutions , R, of which the
minimal ones are interesting from the point of view of property preservation. Namely, the smaller is
42, the greater the number of properties that hold in ,A. When p is total, then pre,, C pre,,, and taking
«F such that

posteprepopre, = pre_p €)]

is claimed to define an “interesting” abstraction. However, this is not always an optimal choice, as
illustrated by the following example.

7.1.2 EXAMPLE. Consider the systems C and A depicted in Fig. 8. The problem is to choose an
optimal R-successor of o such that p~' R C Rp~", or, equivalently, (6) above is satisfied. If we
take pre_p such that (7) holds, then both by and ln, become successors of «. This is not an optimal
choice, since taking only b would suffice in order to satisfy (6).

In order to avoid such “bad” absiractions, Loiseaux ef «f. propose a condition under which (7) yields
an optimal abstract relation. Optimality of £ in this case means that the resulting abstract system
is bisimilar to any other abstract system A" = (X, R’) with /2 a minimal solution of (6). This
condition 18

pp~lp=p ®

Expressed in words, it says that if two concrete states share a description, then they share all
descriptions. It is easy to sec that the generatity of simulations over Galois Insertions, namely the
possibility to have scveral optimal but mutually incomparable abstractions of a set of concrete states,
is eliminated by this condition. In fact, requircment (8) implies that it is useless to have a p which
is not functional. This is expressed in the following lemma (which can be found in [LGST93]). It
implies that whenever cpo and epa’ (1w # ') for some c—1i.¢, p is not functional—then « and o’ are
bisimilar. Consequently, one of « and «’ should be removed from A, as the goal of abstraction is to
produce minimal abstract systems after all.

7.1.3 LEMMA. Ifpistotal, R defined by (7), and p v~to = p, then pp~! is a bisimulation on A,
7 4 f

PROOF. We have to show that pp~! and (pp~!)~}! are simulations on A. Because (pp~)"! = pp~t it
suflices to show that pp~! is a simulation, ic. (by Del. 7.0.1). that (pp~")7'.R C R(pp~)7, de,
plp JRC LR p~'p (¥). Because Del. (7) is equivalent to It = p~ ' Rp (sce [LGST93]), (*) is equivalent
to p~lpp~ ' Rp C p~' Rpp~' p. Because pp'p = pand therefore also p'pp~! = p~!, this is equivalent to
p~'Rp C p~! Rp, which is true. a

So, if one wants to be able to distinguish optimal abstractions from approximations, then assump-
tion (8) has to be made, in which case the framework of [LGST93] becomes less general because,
under the reasonable assumption that the abstract system does not contain bisimilar states, it forces p
to be functional.

Consider Fig. 8 again. In our framework, the simulation relation p induces the foliowing Galois
Insertion on sets of states: for any @ € X, v(«) = pre,{{a}} and forany C C Z, o(C) = Aeal
v(a) = C}, where A denotes the meet operation corresponding to the ordering =< (the existence of
a Galois Insertion guarantees that this meet exists). Taking (R (o be R as specified by Def. 3.3.1
(item 1) yields b, as the only successor of a, as desired.

8 Conclusions

We have presented a generalization of the framework of Abstract [nterpretation extending it to the
analysis of reactive properties. This gencralization consists in allowing the next-state relation of a
non-deterministic transition system to be abstracted to a relation, and not a function as is common
practice. This allows us to verify, via the abstraction, not only universal properties—expressing
that something holds along all possible executions—, but also existential properties—expressing the
existence of paths satisfying some property. Furthermore, both safety as well as liveness properties
arc preserved. Two possible ways to abstract a transition relation were presented, differing in the
way they abstract from the choice points occurring in a non-deterministic system. The free abstract
relation , BT yields an abstract model which may be used to verify properties in VCTL™ (universal
CTL* properties). The constrained abstraction , RY results in a model for which existential properties
are preserved: JCTL*. By combining the two abstract transition relations within one model, which
we called the mixed abstraction, it is furthermore possible to verify full CTL* while obtaining better
reductions than is the case with minimization based on bisimufation. The price that has to be payed
is that there will be formulae which do not hold in the abstraction, and neither do their negations.
We have chosen CTL* instead of the more expressive p-calculus because of its better readability.
However, the presented results generalize to the j-calculus as well.

We showed that, after fixing the abstract domain (the set of abstract states), both the free and the
constrained abstract models can be constructed directly from the text of a program, thereby avoiding
the intermediate construction of the full concrete model. This construction is possible by associating
non-standard, abstract interpretations with the operators in a programming language which allows their
evaluation over descriptions of data. To this purpose, we chose a simple programming language and
defined free and construinc}c_!_’tlbstmctfiﬂterprclznions of its tests and operations. The abstract transition
relations thus computed, , 27 and RC, were shown to be D- and C-approximations respectively to
the free and constrained relations , B and ,R® (Lemma 4.0.3), keeping up the preservation results.
It was illustrated by an example that this technigue can be applied to verify properties of systems with
an infimte state space.

Q]
n

The human interaction required in this approach consists in providing abstract interpretations of
elementary operations over data descriptions. The notion of approximation, formalized as an ordering
~< on the abstract domain, and not to be confused with the 2- and C-approximations mentioned above,
offers a degree of freedom herein. By providing approximations to the abstract interpretations, the
user may simplify the task without loosing the preservation results. Furthermore, such approximations
can accelerate the computation of abstract models, be it at the risk of obtaining a model that does not
contain enough information in order to verify the property.

Finally, we compared our approach to related work on property preserving abstractions. The main
conclusion is that, once the notion of precision is taken into account, Galois Insertions are a more
general means to relate concrete to abstract states than homomorphisms or simulation relations.

Further work In the light of the quest for fully automated verification methods, two points remain
open problems: the choice of an abstract domain that is appropriate to allow verification of the
properties of interest, and the computation of abstract interpretations of operations over such a domain.
We are currently investigating these problems; see the papers [DGG93] and [DGD*94]. Other, rather
preliminary ideas point in the direction of using theorem provers and aigebraic manipulation tools.
Although the problem is undecidable in general, there may well be interesting subclasses that can be
decided efficiently.

Acknowledgements We thank Susanne Gral for many intercsting and stimulating discussions, and
Nissim Francez for his helpful comments.

References

[AHSE7] S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarative Languages.
Ellis Horwood, 1987.

[BKS83] R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized
control. In 2nd ACM SIGACT-SIGOPS Symp. on PoDC, pages 131-142. ACM, 1983.

[CC77] P. Cousot and R. Cousot, Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings 4th
ACM Symp. Principles Prog. Lang., pages 238-252, Los Angeles, California, 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Pro-
ceedings 6th ACM Symp. Principles Prog. Lang., pages 269-282, San Antonio, Texas,
1979,

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing

approaches to abstract interpretation. In Procecedings of the Conference on Program-
ming Language Implementation and Logic Programming (PLILP’92), pages 269-295.
Springer-Verlag, August 1992, Lecture Notes in Computer Science 631.

[CDY9%4] M. Codish, D. Dams, and E. Yardeni. Bottom-up abstract interpretation of logic programs.
Journal of Theoretical Computer Science, 1(124):93-125, February 1994,

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, January 1986.

26

[CFM]

[CGL92]

[DGD*94]

[DGGH3)

[Dil89]

[Dil94]
[EHS6]

[Gin68]

[GL93]

[Gra94]

[Kel94]

[Kurg9]

[LGS+93]

[LPS5]

M. Codish, M. Falaschi, and K. Marriott. Suspension analysis for concurrent logic
programs. Submitted and revised for ACM Transactions on Programming Languages
and Systems, (In Press); Also: University of Pisa Technical Report TR-12/92; December
1991.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Proc.
19th Ann. ACM Symp. on Principles of Prog. Lang., January 1992.

D. Dams, R. Gerth, G. Déhmen, R. Herrmann, P. Kelb, and H. Pargmann. Model checking
using adaptive state and data abstraction. In Dill {Dii94].

D. Dams, R. Gerth, and O. Grumberg. Generation of reduced models for checking
fragments of CTL. In C. Courcoubetis, editor, Proc. Fifth Conf. on Computer-Aided
Verification (CAV), Lecture Notes in Computer Science 697, pages 479-490. Springer
Verlag, JTuly 1993.

D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits., ACM Distinguished Dissertations. MIT Press, 1989,

D. Dill, editor. Proc. Sixth Confercnce on Comput.-Aided Verification, 1994,

E.A. Emerson and 1.Y. Halpern. ‘Sometimes’ and ‘Not Never’ revisited: on branching
time versus linear time temporal logic. Journal of the ACM, 33(1):151-178, 1986.

A. Ginzburg. Algebraic Theory of Automata. ACM Monograph Series. Academic Press,
New York/London, 1968.

S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. In
C. Courcoubetis, editor, Proc. Fifth Confercnce on Comput.-Aided Verification, LNCS
697. Springer-Verlag, fuly 1993,

S. Graf. Verification of a distributed cache memory by using abstractions. In Dill [Dil94].
To appear in Distributed Computing.

P. Kelb. Model checking and abstraction: A framework preserving both truth and failure
information, 1994, OFFIS, Oldenburg, Germany.

R.P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Proceedings of the Workshop on Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness, volume 430 of Lecture Notes in
Computer Science, pages 414-454. Springer-Verlag, 1989,

C. Loiseaux, S. Graf, I. Sifakis, A. Bouajjani, and S. Bensalem. Propesty preserving
abstractions for the verification of concurrent systems. Spectre technical report RTCA40,
LGI/IMAG, Grenoble, France, 1993, To appear in Formal Methods in System Design.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proceedings of the Twelfth ACM Symposium on the Principles
of Programming Languages (POPL), pages 97-107, New Orleans, Louisiana, January
1985. ACM Press.

27

Mil71]

[QS81]

[Sif82]

[Sif83]

R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd Int.
Joint Conf. on Artificial Imtelligence, pages 481-489. BCS, 1971.

JP.Quielleand I. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proceedings of the 5th International Symposium on Programming, volume 137 of
Lecture Notes in Computer Science, pages 337-351. Springer-Verlag, 1981.

J. Sifakis. Property prescrving homomorphisms and a notion of simulation for transition
systems. Rapport de Recherche 332, IMAG, Grenoble, France, November 1982.

1. Sifakis. Property preserving homomorphisms of transition systems. In E. Clarke and
D. Kozen, editors, 4th Workshop on Logics of Programs, number 164 in Lecture Notes
in Computer Science, pages 458-473, Pittsburgh, June 1983. Springer Verlag.

Computing Science Notes

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nedcrpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.AM. Schoenmakers

91/04 E. v.d. Sluis
AF. v.d. Stappen

91/05 D. de Rcus
91/06 K.M. van Hce

91/07 E.Poll

91/08 H. Schepers
91/09 W.M.P.v.d. Aalst

91/10 R.C.Backhousc
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
I. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rictman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.JM. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyscs
"if...,then...", p. 26.

Paralle]l Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.
SPECIFICATIEMETHODEN, ecn overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.
Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salcsman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars COrrect:

the representation of arithmetical expressions by DAGs,
p. 25.

e b o o .

R LT S

91/17

91/18

91/19

91720

91/21

91722

91723

91/24

91/25

01/26

91/27

91/28

091729

91/30

91/31

91/32

91/33

91/34

ATM. Aerts
P.M.E. de Bra
K.M. van Hee

Rik van Geldrop

Erik Poll

A.E. Eiben
R.V. Schuwer

J. Coenen
W.-P. de Roever
J.Zwiers

G. Wolf

K.M. van Hee
L.J. Somers
M. Voorhoeve

ATM. Aerts
D. de Reus

P. Zhou

J. Hooman
R. Kuiper
P. de Bra
G.J. Houben
J. Parcdacns

F. de Bocr
C. Palamidessi

F. de Boer
H. Ten Eikelder
R. van Geldrop

J.CM. Baeten
F.W. Vaandrager
H. ten Eikelder
P. Struik

W. v.d. Aalst

J. Coenen

Transforming Functional Database Schemces to Relational
Representations, p. 21.
Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal scmantics for BRM with examples, p. 25.

A compositional proof sysiem for real-lime systcms bascd
on explicit clock temporal logic: soundness and compleic
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embcedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31

An Algebra for Process Creation, p. 29.
Some algorithms to decide the equivalence of recursive
types, p. 26,

Techniques for designing cfficient parallel programs, p.
14,

The meodelling and analysis of qucueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

91/35

92/01

92/02

92/03

92/04

92/05

92/06

92/07

92/08

92/09
92/10
92/11

92112
92/13
92/14

92/15

92/16

92/17

92/18

92/19

92/20

F.S. de Boer
JL.W. Klop

C. Palamidessi
J. Coenen

J. Zwiers

W.-P. de Roever

J. Coenen
J. Hooman

J.C.M. Baeten
J.A. Bergstra

J.P.H.W.v.d.Eijnde

J.P.H.W.v.d.Eijnde

J.C.M. Baelen
J.A. Bergstra

R.P. Nedemelt

R.P. Nederpelt
F. Kamareddine

R.C. Backhouse
P.M.P. Rambags

R.C. Backhouse
J.S.C.Pv.d.Woude

F. Kamareddine
F. Kamareddine
J.C.M. Baecten

F. Kamarcddine

R.R. Scljée

W.M.P. van der Aalst

R Nederpelt
F. Kamareddine

J.C.M.Baeten
J.A. Bergstra
S.A.Smolka

F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwisc cxplicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.
Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.
Set thcory and nominalisation, Part 11, p.22.
The total order assumption, p. 10.

A system al the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unificd approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32,

92/21

92722

92/23

92/24

92/25

92/26

92127

93/01

93/02

93/03

93/04

93/05

93/06
93/07

93/08

93/09

93/10

93/11

93/12

93/13

F Kamareddine

R. Nederpelt
F Kamareddine

F.Kamareddine
E.Klein

M.Codish
D.Dams

Eyal Yardeni
E.Poll

T.H.W.Beelen
W.1.J. St

P.A.C.Verkoulen

B. Watson
G. Zwaan

R. van Geldrop

T. Verhoeff
T. Verhoeff
E.HL. Aarts
J.HM. Korst
P.J. Zwietering

J.C.M. Bacten
C. Verhoef

J.P. Veltkamp
P.D. Mocrland

J. Verhooscl

K.M. van Hce

K.M. van Hee

K.M. van Hee

K.M. van Hce

K.M. van Hee

Non well-foundedness and type freencss can unify (he
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,

p. 33

A Programming Logic for Fo, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern maiching algorithms,

p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner’s Dilemma, p. 17
Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29
Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-
Timc Executions in DEDOS, p. 32,

Systems Engincering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part 1I; Framcworks, p. 44.

Systems Engineering: a Formal Approach
Part II1: Modeling Methods, p. 101.

Systems Enginecring: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engincering: a Formal Approach

93/14

93/15

93/16

93/17

93/18

93/19

93720

93721

93/22
93/23
93/24

93725

93/26
93727

93128

93/29

93/30

93/31

93/32

J.C.M. Baelen
J.A. Bergstra

J.C.M., Bacten
J.A. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-1. Houben

F.S. d¢ Boer

M. Codish

D. Dams

G. Filé

M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst
T. Kloks and D. Kratsch

F. Kamarcddine and
R. Nederpelt

R. Post and P. D¢ Bra
J. Deogun

T. Kloks

D. Kraisch

H. Miiller

W. Kérver

H. ten Eikelder and
H. van Geldrop

Part V: Specification Language, p. 89.
On Scquential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program-
ming, p. 15.

Freencss Analysis for Logic Programs - And Correct-
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.
Relational Algebra and Equational Proofs, p. 23.
Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.
Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p. 49.

GOLD, a Graph Oriented Language for Databascs, p. 42.

On Venex Ranking for Permutation and Other Graphs,
p. 1L

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finile
Automata for Regular Expressions, p. 17.

93/33

93/34

93135

93/36

93/37

93/38

93/39

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

L. Loyens and J. Moonen

J.C.M. Bacten and
J.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. Brunekreefl
J-P. Katoen
R. Koymans
S. Mauw

C. Verhocf

W.P.M. Nuijten

E.H.L. Aarts

D.A.A. van Emp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.P.J. Claesscn
D. Alstein

A. Bijlsma

P.M.P. Rambags

B.W. Watson

B.W. Watson

E.J. Luit
I M.M. Martin

T. Kloks
D. Kratsch
J. Spinrad

W. v.d. Aalsi
P. De Bra

G.]J. Houben
Y. Komatzky

R. Gerth

ILIAS, a scquential language for parallcl matrix
computations, p. 20.

Real Time Process Algebra with Infinitcsimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conscrvative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Mcmbership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in P/T Nets,
p. 23.

A taxomomy of finitc automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14,

Browsing Scmantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

94/01

94/02

94/03

94/04

94/05

94/06

94/07

94/08

94/09

04/10

94/11

94/12

54/13

94/14

94/15

94/16

94/17

P. America

M. van der Kammen
R.P. Nederpelt

0.S. van Roosmalen
H.C.M. de Swart

F. Kamareddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

J.C.M. Baeten
LA, Bergstra

P. Zhou
J. Hooman

T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

KR. Apt
R. Bol

0.S8. van Roosmalen

J.C.M. Bacien
J.A. Bergstra

T. verhoefl

J. Peleska
. Huizing
. Petersohn

Kloks
. Kratsch
. Miiller

A To- N0

. Seljée

W. Peremans

R.J.M. Vacssens
EHL. Aars
J K. Lensira

R.C. Backhouse
H. Doombos

S. Mauw
M.A. Renicrs

The object-oriented paradigm, p. 28.

Canonical typing and TT-conversion, p. 51.
Application of Marcov Decision Processe to Search
Probiems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22,

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62,

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.

p. 31.

A Comparison of Ward & Mellor’s Transformation

Schema with Staic- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Mcssage
Sequence Charts, p. 9.

94/18

94/19

94720

94/21

94/22

94/23

F. Kamarcddine
R. Nederpelt

B.W. Watson

R. Bloo
F. Kamareddine
R. Nederpelt

B.W. Watson

B.W. Watson

S. Mauw and M.A. Reniers

Refining Reduction in the Lambda Calculus, p. 15.
The performance of single-keyword and multiple-
keyword patiern matching algorithms, p. 46.

Beyond B-Reduction in Church’s A—, p. 22,

An introduction to the Fire engine: A C++ toolkil for
Finite automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi-
ons.

An algebraic semantics of Message Sequence Charts, p.
43,

	Abstract
	1. Introduction
	2. Preliminaries
	2.1 Temporal logic
	2.2 Trasition systems
	2.3 Abstract Interpretation
	2.4 Relation transformers
	3. Abstract Transition Systems
	3.1 Valuation of atoms
	3.2 Abstract initial states
	3.3 Abstract transition relations
	3.4 Preservation of ...
	3.5 Mixed Abstraction: preservation of CTL*
	4. Computing Abstract Model By Abstract Interpretation
	5. Example
	6. Approximations
	6.1 Computing approximations
	7. Related work
	7.1 Precision
	8. Conclusions
	References

