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Abstract Interpretation of Reactive Systems:
Preservation of CTL"

Dennis Dams? Orna Grumberg? Rob Gerth¥

Abstract

The advent of ever more complex reactive systems in increasingly critical areas calls for the
development of automated verification techniques. Model checking is one such technique, which
has proven quite successful. However, the state explosion problem remains the stumbling block
in many situations, Recent experience indicates that solutions are to be found in the application
of techniques for property preserving abstraction and successive approximation of models. Most
such applications have so far been based on the property-preserving characteristics of simulation
relations. A major drawback of all these results is that they do not offer a satisfactory formaliza-
tion of the notions of precision and optimality of abstractions. Furthermore, the use of simula-
tion relations poses difficulties when formalizing the preservation of both existential and universal
properties over the same abstract domain.

The theory of Abstract Interpretation offers a framework for the definition and justification of
property preserving abstractions. Furthermore, it provides a method for the effective computation
of abstract models directly from the text of a program, thereby avoiding the need for intermedi-
ate storage of a full-blown model. Finally, it formalizes the notion of optimality, while allowing
to trade precision for speed by computing sub-optimal approximations. However, Abstract Inter-
pretation has traditionally been focussed on the analysis of deterministic programs, in particular
through abstractions that preserve invariance propetties, i.e., properties that hold in all states along
every possible execution path.

In this paper, we extend Abstract Interpretation to non-deterministic systems. This results in a
uniform basis for the analysis of both existential and universal reactive properties, as expressible
in the branching time logic CTL". It is shown how optimal abstract models may be constructed by
symbolic execution of programs and that approximation may be used to find an optimum between
precision and speed. Examples are given to illustrate this. We indicate conditions under which also
the falsity of formulae is preserved. Finally, we compare our approach to those based on simulation
relations.
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1 Introduction

In the model-checking approach [CES86, LP85, QS81] to program verification, a model of the pro-
gram is constructed over which formulae are checked for satisfaction. The model reflects the possible
behaviours of the program, the formulae express certain required properties of such behaviours. Obvi-
ously, the size of the model is the limiting factor to the feasibility of the model-checking approach. In
the worst case, it doubles with every extra bit of memory that the program may access. This problem
is referred to as the state explosion problem. One solution to it is the application of abstraction tech-
niques, which aim to abstract the model to a smaller one, in such a way that if some property holds for
the abstracted model, it also holds for the original model.

Such abstraction techniques are formalized in the framework of Abstract Interpretation [CC77],
which was originally conceived as a unifying theory of compile-time (data-flow) analyses. Applica-
tions of Abstract Interpretation have traditionally been focussed on the analysis of universal safety
properties, that hold in all states (safety) along all possible executions (universality) of the program.!

With the advent of reactive systems, interest has broadened to a larger class of properties. Reac-
tive systems are systems whose main role is to maintain an ongoing interaction with the environment,
rather than to produce some final result on termination. Usually, such systems consist of several con-
current processes, and display a non-deterministic behaviour. Typical examples are flight reservation
systems, industrial plant controllers, embedded systems and operating systems. In the presence of non-
determinism, one may be interested to know whether some property holds along some possible execu-
tion path. Such properties will be called existential. Besides safety, another kind of property that is of-
ten considered is liveness, meaning that something should hold eventually (given an execution). Thus,
we have classified properties into four kinds by the criteria universal/existential and safety/liveness.
A typical combination of universal safety and existential liveness properties is “along every possible
execution path, in every state there is a possible continuation which will eventually reach a reset state”.

The semantic models and abstraction techniques used in the analysis of universal safety proper-
ties cannot be used for properties which involve aspects of existentiality and eventuality. The reason
is that these techniques abstract away from information about the choices that a program encounters
during execution. The analysis of existentiality and eventuality properties of behaviours, however, re-
quires models which, in addition to information about single states, also provides the transitions be-
tween states. For this reason, in mode! checking reactive systems, transition systems are used to model
the behaviour of programs. Being directed graphs over program states, such transition systems give de-
tailed information about program executions, including the possible choices in every state. Our aim is
to find notions of abstraction of such transition systems that preserve certain combined forms of univer-
sal/existential safety/liveness properties. This means that in order to know that such a property holds
in the original system, it suffices to know that it holds in the abstracted system.

The properties may be formalized by expressing them in a formal logic whose formulae can be
interpreted over transition systems. One commonly used logic is CTL* (computation tree logic, see
[EH86]). It contains universal and existential quantification over execution paths, as well as temporal
operators that express that, along a path, some property will hold (a) in the next state, (b) in every state
(safety), or (c) in some state (liveness).

The structure of this paper is as follows. The next section introduces the formal machinery to be
used. In Sect. 3, a notion of abstract transition system is developed which preserves properties from
CTL". Such an abstract system is an optimal (in a sense that is made precise in Sect. 2) description

! The notions of universality and safety of a property are not always distinguished as explicitly as we do in this paper.
What we call “universal safety” is elsewhere often just termed “safety” or “invariance”.



of a (concrete) transition system. In computing such abstract models, one may decide to sacrifice op-
timality in exchange for a gain in efficiency. The approximation ordering between abstract systems,
defined in Sect. 4, formalises this notion of sub-optimality. Sect. 5 then shows how abstractions may
be computed directly from a program text by “lifting” the operations of a programming language to
a domain of data descriptions. Conditions are given under which the constructed models are optimal,
and an alternative construction method is indicated which yields optimal models even in absence of
those conditions. Furthermore, it is shown that sub-optimal models are constructed when computing
approximations to the lifted operations. An elaborate example is presented in Sect. 6. Sect. 7 briefly
indicates the consequences of insisting on strong preservation, meaning that not only truth, but also
falsehood of formulae is preserved. Sect. 8 compares ours to related work, and Sect. 9 concludes.

2 Preliminaries

Temporallogic Givenis aset Prop of propositions. We choose to define CTL* in its negation normal
form, i.e., negations only appear in front of propositions. This facilitates the definition of universal and
existential CTL*. The set of literals is defined by Lit = Prop U {-p | p € Prop}.

2.0.1 DEFINITION. The logic CTL" is the set of state formulae which is inductively defined by the
following clauses.

1. If p € Lzt then p is a state formula.
2. If @ and v are state formulae, then so are ¢ A 1) and @ V 1.
3

. Any state formula is also a path formula.

RN

. If o and : are path formulae, thensoare p AP, oV 0, X, o U and p V .

¥

. If @ is a path formula, then ¥ and Jyp are state formulae.

For ¢ € CTL*, the formula - is considered to be an abbreviation of the equivalent CTL* formula
in negation normal form (obtained in the usual way). The abbreviations true, false and — can then be
defined as usual. For a path formula @, Fp and (G abbreviate true U ¢ and false V' ¢ respectively.

VCTL* and ACTL* (universal and existential CTL* } are subsets of CTL* in which the only allowed
path quantifiers are V and 3 respectively.

Transition systems CTL* formulae are interpreted over transition systems T = (X, I, R) where &
is a set of states, I C ¥ is a set of initial states, and B is a transition relation over ¥, which is total and
image-finite, so that for every s € I there exists a positive, finite number of ¢ € X for which R(s, t)
holds. A pathin T is an infinite sequence ™ = spsy - - - of states such that forevery i € IV, R{s;, s;11)
holds. The notation 7™ denotes the suffix of 7 which begins at s,,. For s € ¥, a (7, s)-path (or s-path
when 7 is clear from the context) is a path in 7 that starts in s.

We assume a function ||-|| : Lit — P(X), satisfying |lp|| N ||~p|| = @ for every proposition
p € Prop, which specifies the interpretation of literals over states. Intuitively, {|p|| is the set of states
where p holds. Transition systems thus defined are essentially the same as Kripke structures ([Kri63]).
The only difference is that we have the function ||-|| instead of a labelling function from T to sets of
literals.




2.0.2 DEFINITION. Satisfaction of formulae is defined inductively as follows. Letp € Lit,s € &
andm apathinT.

1. skEpiffse|p|.
2 skEphYiffsEpandsE ¥, sEoVYiffsE pors = .

3. 7 |= o, where m = sosq - - - and ¢ Is a state formula, iff 5o |= .

4 mEpAYiffrlmpandr =P, EpVdifftEport E 9.
TE Xpiffr! .
7 k= @ U 1 iff there exists n € IN such that t" |= ¢ and foralli < n, 7 |= ¢.
eV giffforalln € IV, ifn' £ @ forall i < n, then 7" |= 1.

5. s = Vo iff for every s-path =, m |= ¢, s |= 3¢ iff there exists an s-path = such that m |= ¢,

For a set § of states or paths, the notation S |=  abbreviates V,es s = . When there may be
confusion between different systems, we write (T, 3) = ¢ to denote that s |= ¢ in T, and similar for
(T,5)E @. T | @ abbreviates (T,1) E ¢.

These formulae can be used to express a variety of properties of transition systems. For example, s =
Y(p expresses that p is true in all states which are reachable from s. If proposition r characterizes
reset states, then s = Y(G3Fr means that along every possible execution path from s, in every state
there is a possible continuation which will eventually reach a reset state. V' is the dual of U (o V 1 is
semantically equivalent to ~(—¢ U/ %)) and has the intuitive meaning of “release™ ) must be true
as long as ¢ is false, and only if ¢ becomes true, ) may become false afterwards. It has been added
as the dual of I/ to compensate for the fact that formulae like ~{ U7 1) are not well-formed. For the
same reason both A and V are primitive in the logic.

We fix a transition system C = (X, ], R), called the concrete model. This is the original, large
model that we need to abstract in order to be able to verify its CTL* properties.

Abstract Interpretation A transition system forms the interpretation of a program: it models the
possible behaviours. Formally, this is captured by an interpretation function 7 from programs? to
transition systems. Properties of a program P’s behaviour may be analysed by studying Z(P). As
this mode] may be too complex to handle (“state explosion™), we look for abstractions of it which can
provide partial information. Two points are of quintessential importance in the definition of such ab-
stracted transition systems. Firstly, the abstraction should preserve the information that we are inter-
ested in: any (CTL") property that holds for the abstract model, should hold for the original concrete
model as well. Sect. 3 focuses on this aspect. Secondly, such abstractions are to be constructed directly
from the program, and not by first building a full model and then abstracting it. That is, we are look-
ing for an abstract interpretation function ,Z which maps each program P to an abstraction of Z({ P).
Sect. 5 defines such a function, fixing a simple notion of program for this purpose.

In the rest of this section we review the framework of Abstract Interpretation which offers ways to
formalize the notion of abstraction and provides means to design “good” abstract interpretation func-
tions through the notions of optimality and approximation. Briefly, the idea is as follows. As the con-
crete object that we are interested in, in this case the concrete model, is too large to handle, we abstract
from certain aspects of the states. Thereby, states that were different now become identified. This is

*In Sect. 5 we will become more specific about the syntax of programs.



formally captured by introducing a set of abstract states and a concretisation function 7 mapping each
abstract state to a set of concrete states that have become indistinguishable. For example, we may wish
to abstract from everything but the fact whether variable z is greater than 5, in which case we introduce
two abstract states named, e.g., grt_5 and leq_5, acting as descriptions of concrete states as specified
by the function y with y(grt.5) = {s € ¥ | s(z) > 5} and y(leq 5) = {s € ¥ | s(z) < 5} (we
view a state as a valuation function on variables here). The goal is then to construct transition systems
over abstract states by interpreting the operations occurring in the program over the data descriptions
grt_5 and leq_5. For example, the execution of the assignment z := = + 1 in the abstract state grt 5
results in the state grt_S again. On the other hand, executing it in the state leq_5 may yield either grt_§
or leq_5. This can be modelled by introducing more abstract states in such a way that for every subset
C of X, there exists an abstract state o with y(2) 2 C. An abstraction function o may then be in-
troduced which maps each C' to the “smallest” description (see below). Correctness (“‘safety™) of the
abstract interpretation of the assignment = := x + 1 can then be stated by requiring that for each C,
Y(e{C)*+17) D € + 1 (where on the left-hand-side of the 2, the quotes indicates that the function
+1 has to be interpreted abstractly, over the domain of abstract values, and on the right-hand-side, +1
is pointwise extended to sets).

Formally, Abstract Interpretation presupposes the existence of partially ordered sets (often com-
plete lattices) (C, ) and (A, %), the concrete and abstract domains respectively. The elements of
these domains denote (concrete resp. abstract) interpretations of programs or data values (in the ex-
ample above, the concrete domain is (P(X), C)). The approximation orderings C and < relate the
information content, or precision, of elements. If a < o’ we say that a is more precise than a’, or that
o’ approximates ¢; similarly for C. Optimal means maximally precise in this sense. The abstraction
relation between elements from these domains is specified by an abstraction function e : ¢ — A
which maps every concrete element to its most precise, that is <-least, abstraction; so o by definition
yields an (indeed: the) optimal abstraction. Alternatively, it can be specified through a concretization
function ¥ : A — C which yields for every @ € A the most general, that is C-greatest, element that
is abstracted by a. Under these assumptions, the pair (o, v) forms a Galois connection from (4, <) to
(C,C):

2.0.3 DEFINITION. (a:C — A,y : A — C) is a Galois connection from (C,C) to (A, <) iff &
and v are total and monotonic, for allc € C, yoa(c) J c,and foralla € A, aoy(a) < a.

Foranindex set J C IV, if {¢; € C' | j € J} has a least upper bound in C (denoted by | |), then «
distributes over it: (| ;¢ s ¢;) = Ve 7 @(c;) (where \/ denotes the least upper bound in A). See, ¢.g.,
[CC79].

Often, the abstract approximation order is defined in terms of the concreteby a < ¢/ & v(a) C
v(a'}). In that case, we have aoy(a) = a forall ¢ € A, (e,) is then called a Galois insertion from
(C,C)to (A, %)

Under the assumptions of the Galois connection framework, a € A is an abstraction of ¢ € C iff
a{c) = a(or, equivalently, ¢ C v(a)). Given a program P, the goal is to compute, in an efficient man-
ner an abstraction ,Z(P) of Z( P). Usually, ,Z is constructed by providing an abstract “counterpart”
for each operation used in the definition of Z. For example, a concrete interpretation function is often
defined to be the least fixpoint fp of some function f : C' — C (where f depends on P in some way).
Given an abstract domain A and the connection («, ), one looks for a function , f : A — A such that
a(lfo( f)) =< Ufp(.f). This is satisfied if forall ¢ € C, aof(e) < , foa(c) ((CCT9)). In this case, , f is
said to be safe w.r.t. f.



The requirement a(Z( £)) =< ,Z(P) can easily be satisfied by defining .7 to be the constant func-
tion mapping everything to an element T € A which is less precise than all other elements and hence
gives no information at all. In order to avoid such solutions and reason about the quality of abstrac-
tions, the notion of optimality is lifted to functions. An abstract interpretation function . Z is said to
be optimal w.ct. T iff o(Z(P)) = ,Z(P). Likewise, in case of the above example, , f is optimal w.r.t.
Jiff ao f(c) = , foar(c); this is easily seen to imply that Ifp(,, f) is optimal w.r.t. Iifp([). In the Galois
insertion framework, if such an optimal function ,, f exists, it is defined by , f = ao foy.

A number of weaker frameworks than the Galois connection framework have been proposed in
which the abstraction and/or concretization functions are replaced by relations (see [Mar93] for an
overview). These cater for situations where most precise abstractions and/or most general concretisa-
tions do not exist, for example because concrete elements have a number of optimal abstractions which
are mutually incomparable, or because the corresponding approximation orderings have not been de-
fined, or are pre- instead of partial orders. In this paper, we start from a given Galois insertion on the
level of states, and induce a notion of abstraction between transition systems, where concrete systems
are unordered while the approximation order on abstract systems is a pre-order. Although there may
exist different representations of the most precise abstraction of a given concrete system, all these repre-
sentations share the same CTL" properties. An abstraction function is given which maps any concrete
system to one such representative. Hence, by comparing a computed abstraction to this representative,
we are still able to discuss optimality issues.

A more extensive introduction to Abstract Interpretation and overview of its uses can be found in
[CC92a] and [CCH2b].

The relation transformers -39 and -¥3; (bi)simulations We use two relation transformers which lift
transition relations on states to relations on sets of states.

2.0.4 DEFINITION. Let A and B besetsand R C A x B. The relations R¥, R¥3 C P(A) x P(B)
are defined as follows.
R¥ = {(X,Y) | Jeex Jyev R(z,y)} R = {(X,Y) | Yeex dyev R(z,9))

So, if R is a transition relation, R33( X, ¥ iff some state in X can make an R-transition to some state
inY, and R¥3(X,Y) iff every state in X can make an R-transition to some state in V.

Finally, we recall the definitions of simulation ((Mil71}) and bisimulation ([Par81]).

2.0.5 DEFINITION. Let Ry, C X, x ¥ and By C ¥, x X, be transition relations. A relation
a C ¥y x Ly is a simulation (from £ to ) iff o™ Ry C Ryo ™" (juxtaposition denotes composition
of relations). In this case we say that R, o-simulates R,. o is a bisimulation if in addition o~ is a
simulation from ¥ to £,. A (bi)simulation o is consistent iff o(sy, s,) implies {p € Lit | ||p|| >

s1}={p€ Lit||p|| 3 s2}.

An equivalent definition of simulation is the following (see, e.g., [Mil71]). Whenever o (s, s;) and
R1(s1, 8}), then there exists s} such that Ry(s2, s5) and o(s}, sb)°.

3The intuition is that R, can “mimic” everything that /) cando. From this point of view, the by now standard terminology
“Ry simulates B> ", which was introduced in [Mil71], is awkward.



3 Abstract Transition Systems

The definition of an abstract system A starts from a given poset (,Z, =) of abstract states together
with a Galois insertion (e, v) from (P(%), C) to (,X, <) which determines its relation to the concrete
states. We will usually write a(c) for e({c}). Forapath p = aga;--- in A, 7(p) = {cocy -+~ |
Vi R(ci,ciy1) A e; € 7(a;)}. We investigate how to define abstract models in such a way that CTL*
is preserved from abstract to concrete model. The intention is that a concrete state ¢ is described by
any abstraction a - «(c) of it. From this point, it is natural to require preservation of formulae on the
level of individual states:

Veeoritae.z (o) E e = (C,1(a)) F o ey

We take this requirement as the starting point in defining the abstract model A. Besides . %, which
is already given, we need three more ingredients for the definition of such a model: a function ,||-||
specifying the interpretation of literals over abstract states, a set ,J of abstract initial states, and an
abstract transition relation , /2. These points are considered in the following subsections.

3.1 Valuation of literals

In order to satisfy (1) for the literals in CTL*, we must have (A,e) |= p = (C,7(a)) | pforevery
literal p. On the other hand, as we intend to use the abstract model in order to infer properties of the
concrete model, we would like as many as possible literals to hold in each abstract state.

3.1.1 DEFINITION. Forp € Lit, define ,|lp|| = {a € .Z | v(a) C ||p||}.

This choice determines the valuation of literals in abstract states. Namely, the relation |= C ¥ x Lit
is defined as in clause 1 of Def. 2.0.2, where s now denotes an abstract state and J|-|| has to be replaced
by |||l By this choice it can now easily be shown that (A,a) | p & (C,7(a)) & p, for every
a € ¥ and p € Lit, which implies that as many as possible literals hold in each abstract state. Note
that if ¢ € ,X is such that y(a) contains concrete states in which p holds and concrete states in which
—p holds, then a ¢ . |ip|| butalsoa & ,{|-p||. So, although the rule of the excluded third from classicat
logic holds on the level of interpretation of literals over abstract states (we have eithera |= pora [ p,
and similarly for —p), this rule does not hold on the level of the logic itself: a [~ p does not necessarily
imply thata = —p.

3.2 Abstract initial states

The abstract initial states should be chosen in such a way that the requirement (1) of “statewise” preser-
vation implies preservation on the level of models: A = « should imply C | ¢, forall ¢ € CTL*.
A sufficient condition for this is U{~(a) | « € ,I} 2 I. On the other hand, the set of abstract initial
states has to be as small as possible, so that the condition A |= ¢ to be verified is as weak as possible.
In general, it is not possible to choose I such that U{y(a) | @ € .1} = I. However, the following
choice for , I yields the smallest set U{~(a) | « € .1} which still includes I.

3.2.1 DEFINITION. ,J ={a(e)|ce I}

Note that the singleton (1) is in general less precise than this: because o distributes over U (see the
remark after Def. 2.0.3), we have a(I) = V{a(s) | s € I}, so that for each s € I, a(s) < a([).



3.3 Abstract transition relations

Most traditional applications of the framework of Abstract Interpretation are developed in a context
where both the concrete and the abstract transition relations are deterministic, i.e., they are transition
functions f and . f. In such cases, the (unique) abstract successor , f(a) of a would be the best de-
scription of the successors of the states in y(a): . f(¢) = a(f(7(a)))*. On the other hand, we want
to abstract a concrete by an abstract transition relation in such a way that both existential and univer-
sal properties are preserved. However, such an abstract transition relation , R will only exist if there
exists a consistent bisimulation from (£, R) to (X, . R) (see, e.g., [BCG88]), which is a much too
strong condition, as it results in the falsity of CTL* formulae being preserved as well. Qur solution
is to define instead fwo transition relations on ,X; one preserving universal properties, and the other
existential properties.

It is not difficult to see that if properties of the form “there exists a successor state satisfying prop-
erty ¢” are to be preserved, then abstract state b may only be a successor of a if B¥3(y(a), Y) for some
Y ¢ ZandY C v(b). For reasons of optimality, we also would like @ to have as many successors as
possible, and furthermore each of them should be as precise a description of Y as possible. The first re-
quirement is satisfied by letting b be a successor of a whenever R¥(y(a),Y); the second by choosing
Y to be minimal and b to be the best description of it, as specified by «. A similar consideration for the
preservation of universal properties leads to the requirement that b is a successor of a iff R33(y(a), Y),
Y is minimal, and o(Y') = b:

3.3.1 DEFINITION,
1. WBF(a,b) & be{a(Y)|Y € min{Y’| BF(y(a),Y")}}
2. .R%(a,b) & be{a(Y)|Y € min{Y’ | R(y(a),Y")}}

<R and ,RC are called the Jfree and constrained (abstract transition) relations respectively. A few
remarks are in place. Note that for any a € ,X, the minimal sets Y such that R33(y(a),Y"), are
all singletons. By the totality of R it follows that , RY is total®. By image-finiteness, the set {Y" |
R¥3(y(a), Y’)} always has minimal elements so that also , R is total; this follows from the following
lemma.

3.3.2 LEMMA. IfR C A x B is image-finite, then for every X C A there exists aminimalY C B
such that R¥3(X,Y).

PROOF. Let X C A. Take C to be the collection of sets Z such that, forevery z € X, R(z) = {y | R(z,y)}
is not contained in Z. For a chain Zy C Z; € Z5 ... of sets in C, let Z* be the union of the Z;. Z* is an upper
bound of the chain of sets; we will prove that Z* is in C'. If Z* is not in C, there is some z € X such that R(x)
is contained in Z*. Since R(x) is finite, R(z) must be contained in some Z;. Contradiction.

We can now apply Zorn’s Lemma® to conclude that there is a maximal element of C. Its complement is a
minimal set ¥ as required. O

Finally, note that by the requirement of minimality of Y in the definitions, it is not in general the case
that ,R® C  RF.
We have the following preservation properties for paths.

*Functions are pointwise extended to sets.

®We make one exception, namely, the abstract state 1. € T with ¥{L1) = @ (if present) has no successors. However,
note that L itself is not reachable anyway.

®Zomn’s Lemnma states that if in a non-empty collection C of sets, every C-increasing chain of sets in C has an upper
bound in C, then € has a maximal element.



3.3.3 LEMMA.

I. Leta € ,X,c € y(a) and 7 be a ((X, 1, R), c)-path. Then there exists an (.3, .1, RF),a)-
path p such that = € v(p).

2. Leta € X, ¢ € y(a)and p be an ((,Z, .1, .RY), a)-path. Then there exists a ((3,1,R),c)-
pathw iny(p).

PROOF.

1. Assume 7 = cyey - - - with ¢g = ¢, Define p = agay - - withag = e and a; = a(c;) fori > 1. Because
(@, 7) is a Galois Insertion, we have y(«(c;)) 2 {¢;},s0¢; € ¥(a;) fori > 1. Also, ¢ € ¥(ag). So
7 € 71(p).

Because for all i > 0, R(ci, ci+1), ¢ € ¥(a:), and ¢; = ax(c;), we have by Def. 3.3.1 of ,RF: _ RF (a;,
a;+1).

2. Assume p = apay --- with ag = a. We show that there exists an infinite sequence # = cpey - - - of
states in X such that for all 7 > 0, ¢; € y{a;) and R(ei, ¢i+1).  is constructed inductively, as follows,
Let ¢cg = c. Then by definition, ¢y € v(ao). Now suppose that for some n > 0, ¢, is given such that
¢n € 7(an). Because , RS (an, @n41), there must be (by Def. 3.3.1 of . RS) Y such that R"?(v(a,,),Y)
and o(Y) = any1. By definition of R¥3, there exists ¢,41 € ¥ such that R(cy, cn41). Because (e, ¥)
is a Galois Insertion, we have y(a(Y)) 2 Y, 80 cny1 € y(any1)-

Thus, ris a ((X, I, R), ¢)-pathand = € v(p). 0

We now define the abstraction of C as the four-tuple AM = (%, I, \RF, . RC), representing a
transition system with two transition relations. This is called the mixed abstraction. A free pathis a
path with all its transitions in ,RY; a constrained path is a path with all its transitions in . RC. The
interpretation of CTL* formulae over a mixed abstraction is defined slightly different from Def, 2.0.2.
[|-|| has to be replaced by |||, and furthermore clause 5 is replaced by

5. s |= Vo iff for every free s-path w, & |= @; s |= i iff there exists a constrained s-path 7 such
that = .

In the rest of this paper, we implicitly assume this adapted definition when interpreting formulae over
mixed abstractions or approximations thereof (see Sect. 4). We then have:

3.3.4 THEOREM. Forevery p € CTL*, AM ¢ = CE .

PROOF. Itis easy to see that it suffices to prove statewise preservation for every @ in CTL*. This is done by in-
duction on the structure of ¢, proving for state formulae that for every state a € ,Z, (A a) = ¢ = (C, 7(a))
k= ¢ and for path formulae that for every path p in AM, (AM ,p) E ¢ = (C,7(p)) | ». The base case,
¢ € Lat, follows directly from Def. 3.1.1. The cases that ¢ is a conjunction or disjunction of state or path for-
mulag, a state formula interpreted over a path, or a path formula with principal operator X, I/ or V, are straight-
forward. For ¢ of the form V4, let a be a state such that (AM, a) k= V¢, let ¢ € v(a), and consider a (C, ¢)-path
7. By Lemma 3.3.3, we know that there exists an ((. X, .1, . "), a)-path p such that 7 € +{p), so, because
(AM, a) & V9, (AM p) |= ¢; and by the ind. hyp. this gives (C, =) = %. So (C,v(a)) k= V¢. The argument
for ¢ of the form 3¢ is similar. 0O

So, mixed abstractions allow verification of full CTL* while the degree of reduction is determined
by the choice of the abstract domain and may hence be arbitrarily large. In contrast, reductions w.r.t.
bisimulation equivalence [BFH*92] only allow a limited reduction. These facts may seem contradict-
ing, but the reader should note that by the definition of satisfaction of CTL* formulae over mixed ab-
stractions, it is possible that neither ¢, nor =y holds; this is not possible with bisimulation reduction.
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4 Approximations

We have (implicitly) specified an abstraction function o™ mapping each concrete system C to an ab-
stract system .4™ . As explained in Subsection 3.3, the free and constrained transition relations in AM
were chosen in an optimal way by always choosing, for the successors of an abstract state, the =-least
descriptions of certain sets of concrete states, and furthermore by having a minimal number of free and
a maximal number of constrained successors. In this section, we formally define an approximation or-
dering on abstract systems which allows non-optimal successors to be chosen, resulting in less precise
abstract models, satisfying fewer C'T'L* properties. Such approximations turn out to occur in a natu-
ral way when computing abstractions directly from a program P, as will be done in the next section.
Lemma 4.0.3 shows that this notion of approximation can be seen as the “lifting” of the approximation
order < on , X to the level of abstract transition systems.

4.0.1 DEFINITION. Let A= (,%,1,F,CYand A’ = (I, I', F', (') be abstract transition systems.
A = A" iff (1) for every a € I there exists ' € I’ such thata < o, (2) F <-simulates F', and (3) "
»=-simulates C'. For paths p = apay - -+ and p = Go@y - -+, p < P Is defined by Viso a; 2 ;.

Note that = over abstract systems is a pre-order but no partial order (i.e., 4 < A’ and A’ < A does
not imply 4 = A").

4.0.2 THEOREM. If A <X A, thenforeveryp € CTL*, A k¢ = A ¢

PROCF. Itis easily seen that if 4 < A’, then for every free (A, a)-path p there is a free (A', a)-path o’ > p,
and for every constrained (A’, a)-path g there is a constrained (A4, a)-path p < p’. Using these observations
instead of Lemma 3.3.3, the rest of the proof is similar to that of Thm. 3.3.4. a

As an immediate corollary, we have that if A’ > o™ (C), then CTL* is preserved from .A’ to C. For
A = (B, I', F',{"), it can indeed easily be shown that the condition A’ > o™ (C) is equivalent to
the requirement that B p-simulates £ and C” p~!-simulates R (recall that R is the concrete transition
relation), where p(c,a) < ofc) < a. The advantage of our framework over the use of simulations is
that the distinction between the notions of abstraction («™) and approximation (<) in our approach
allows to distinguish optimal abstractions from other descriptions. In the following section, we explore
this distinction in order to define optimal abstract interpretations which compute the optimal abstract
systems directly from the text of a program.

The following lemma, which is easily proven, gives sufficient conditions for <- and >-simulation.
It will be used in the following sections.

4.0.3 LEMMA. Let R and R' be transition relations over . %.
1. Ifforalla,b € %, R(a,b) = Jyyp R'(a,b’) and R’ <-simulates R, then R <-simulates R'.

2. Ifforalla,t’ € X, R'(a,b') = Jy<p R(a,b)and R =-simulates R, then R’ = -simulates R.

Note that R(a,b) = Jyyp R'(a,b’) is satisfied if R C R’ and B'(a,b) = Jy<p R(a,b)if R’ C R.
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5 Computing Abstract Models by Abstract Interpretation

After having defined abstract models and proven their preservation properties, we now get to the topic
of how to compute such models directly from a program. We will do this through abstract interpretation
of the program text. An abstract interpretation may be viewed as a non-standard semantics defined over
a domain of data-descriptions, where the functions are given corresponding non-standard interpreta-
tions. The abstract states are then valuations of program variables over the domain of data-descriptions,
and the abstract transitions are computed by evaluation of the abstract semantic functions over these
domains.

In order to further develop the theory, we first need to fix a programming language. We use a lan-
guage which is based on action systems [BKS83], which, although being very simple, will help to grasp
the idea of how to abstractly interpret operations in “real” programming languages, as it contains rudi-
mentary forms of the common notions of assignment, test and loop. A program is a set of actions of
the form ¢;(Z) — t;(,z’), where Z represents the vector of program variables, ¢; is a condition on
their values and ¢; specifies a transformation” of their values into the new vector Z’ (7 ranges over some
index set JJ). Executing an action means evaluating its condition ¢; and, if and only if this yields true,
updating the program variables as specified by the associated transformation ¢;. A program is run by
repeatedly nondeterministically choosing an action and executing it. We let Vel denote the set of val-
ues that the vector Z may take, and fVal C Val the set of values that it may have initially. Thus, each
¢; is a predicate over Val and each ¢; a relation on Val®.

5.0.1 DEFINITION. Let P be the program {¢i{(Z) — t;(Z,z') | ¢ € J}. Its concrete model C is
defined as follows:

e 3 =Val,

o I = TIVal,

o I{ = {(T_),'l_)’) e Val? l Jics Ci(ﬁ) A ti('l_), ’5’)}

Next, we assume a set , Val of descriptions of sets of values in V!, via a Galois insertion («, v),
and define two types of non-standard, abstract interpretations of the ¢;’s and #;’s over ,Val in such

a way that approximations of the abstract models of a program may be computed by interpreting the
operators in the program correspondingly.

5.0.2 DEFINITION. Fora,b¢  Val,
o cf(a) & Foeya) (D)
o tfa,b) & be{a¥)|Y € min{Y’ | :3(v(a),Y')} };
o f(a) & Yogqy(a) ci(b);
o 19(a,b) & be {a(¥)|Y € min{¥Y" | ;"3(v(a),Y")}}.

Furthermore, we define the abstract model ﬁ” = (o2, o1, aﬁ, jl_b) where:

"We could have represented this transformation as the simultaneous assignment 2’ := t.(Z). However, by abstracting
the function t;, it may become a relation, and we prefer to denote both the concrete and the abstract transformations in the
same way.
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o ¥ = Val;
o I ={a(?)|veVa};
o JRF = {(a,b) € Val? | Jies F(a) A tF(a,5));

o JRC = {(a,b) € ,Val? | Jics €a) A 1§(a,b)).

Totality of , RF follows from the totality of R. In order for J‘tﬁc to be total, we need to require that for
every abstract state a € , X, there exists ¢ € J such that Y. () €i(v) = true. Note that in particular,
this should hold for the abstract state T = «(X) (although it need not be reachable). We satisfy this
requirement by assuming that there is always an action of the form true — skip in P; an alternative
solution is discussed in Sect. 5.1.2.

The followinglemma and theorem express that the abstract interpretations given above can be used
to compute approximations to A .

5.0.3 LEMMA.
I. .RF D _RF

2. Foralla,b € ,%, .RS(a,b) = pr<p «RC(a,V").

PROOF.

1. Leta,b € ,Val and suppose (a, b) € , RY. By Def. 3.3.1 of . RY', Def. 2.0.4 of ¥2 and Def. 5.0.1 of R,
this is equivalentto b € {(Y) | Y € min{Y" | sey(a)wey’ [Bics [ci(?) At:(¥, w)]]}}. Exchanging
existential quantifiers yields the equivalentb € {a(Y) | ¥ € min{Y’ | Jics [Foey(a)wey [ci(v) A
t;(v,w)]]}}. Because the elements of the set min{Y" | ...} are singletons, the subterm ¥ € min{Y"’ |
;e ...} is easily seen to be equivalent with 3;c7 ¥ € min{Y" | ...}. After performing this replace-
ment, we can bring the 3;¢ ; outside, resulting in the equivalent formulaJ;c 5 [ € {a(Y) | ¥ € min{Y" |
Fsey(a)wey [ci(F)Ati(T, @)} }]. Now this is weakened by distributing the innermost existential quanti-
fier overthe A: Jiey [b € {a(Y) | Y € min{Y” | Tgey (o) [ci(¥)]AToey(a), ey [t:i(7,®)]}}]. Because
the set does not depend on 3¢ (4) [e:(#)], this conjunct may be taken out of the (inner) set brackets. Us-
ing Def. 2.0.4 of t;(7, @) and Def. 5.0.2 of ¢ (a), tF (a, b), and , R, the resulting equivalent term can

then be rewritten to (a,b) € , RF.

2. Leta,b € ,Val and suppose (a,b) € . RC. By Def. 5.0.2 of . RC, ¢f (a) and t¥(a, b), and Def. 2.0.4 of
ti(v(a), )", this is equivalent to Fies[Voeya) [6(F)] A b€ {a(Y) | Y € min{Y’ | Vyeq(a) Taey
[t:(%, ®)]}}]. This expression can be rewritten to the equivalent:

be{a(Y)|Jies [V € mindY' | Voey(a) ey [e:(8) Ati (5, @)]}]} 2)
{assume min @ = § in this proof). Now consider the subexpression

Fies [Y € min{Y" | Voey(a) Juey [ei(®) Atal(v, @)]}] 3)
By pushing the J;¢ s inside, this subexpression is weakened:

Y € min{Y" | 3ies [Voey(a) Jaey’ [ci(®) A (0, )]} (4)

Clearly, for each Y that satisfies (3), there exists a subset of it that satisfies (4), so that if b satisfies (2),
there exists & < b which satisfies:

e {a(Y) | Y e min{Y’ | 3,:5_] [V,—,e-).(ﬂ) Hweyf [C,‘(T_J) /\t,'(l_}, "J))]]}} (5)
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A similar step can be made again: if &' satisfies (5), then there exists 6” < b satisfying:
Ve {Q’(Y) |Y e min{Y’ | VﬁE—Y(a) Jgey: Jics [c,'(i_)) A t,'(’l_), ‘Jj)]}} {6)

which is, by Def. 5.0.1 of R, Def. 2.0.4 of R¥? and Def. 3.3.1 of . RC, equivalentto , R(a, b"). O

5.0.4 THEOREM. AM > AM

PROQI_:; The proofis based on Lemmata 5.0.3 and 4.0.3. From the definitions of :1%7‘" and , R€ it easily follows
that , R¥ <-simulates , R¥ and that , R® >-simulates , RC. O

5.1 Optimal abstract interpretations

Construction of an abstract model by abstract interpretation of the “elementary” operations (the ¢; and
t;) occurring in a program is a natural thing to do — it resembles the way abstractions are computed in
traditional applications of Abstract Interpretation. However, the computed abstract models (Def, 5.0.2)
are, in general, strictly less precise than the optimal abstractions of Def. 3.3.1. How much precision is
lost exactly depends on the program to be analysed and the choice of the abstract domain. In orderto get
some insight, we discuss two approaches to obtain optimality. Firstly, we derive sufficient conditions
on the abstract domain (and program) for the computed abstract models of Def. 5.0.2 to be optimal.
Secondly, we indicate how, alternatively, the abstract interpretation of programs may be adapted in
such a way that computed models are optimal.

5.1.1 Conditions on the abstract domain

In order to pinpoint the reasons why the computed abstractions are not optimal, we analyse the proof
of Lemma 5.0.3. In part 1, concerning the free abstraction, the only place where the formula being
manipulated is (strictly) weakened, is when the term 3;¢., (4} zey [¢:i(%) A;(7, @)] (T1) is replaced by
Joerta) [€i(PY A Foey(a),mey [1:i(F, ©)] (T2). The following small example illustrates what happens.
Suppose that the concrete state space consists of a single integer variable v, and that the abstract domain
contains values e and o, being descriptions of the even and the odd numbers respectively. Assume that
P contains as action ¢: v = 4 — v := v/4 (specifying ¢;(v)tobe v = 4 and ¢;(v, w)to be w = v/4).
Then (T1), with e for ¢ and y(e) for Y, does not hold. On the other hand, (T2) does hold: there exists
an even number which is equal to 4 and there exists a (different) even number which, when divided by
4, yields an even number. In order to avoid this situation and enforce equivalence of (T1) and (T2), we
can impose a condition on the abstract states.

5.1.1 LEMMA. Letﬁ be the abstract model computed according to Def. 5.0.2, and .’ C X and

— —_— ——
«RF C ,RF bethesets of states and transitions resp. which are reachable along transitions from , R¥'.
Let ,RY " be the set of transitions of the optimal abstraction AM which are reachable along transitions

from .RF. If forall a € .5 and i € J, ¥oen(a) ¢i(B) OF Voen(a) ci(D), then ,RF = ,R¥".

PROOF. The same condition for all states, i.c., foralla € X and ¢ € J, Ygey(a) ¢i(7) O Vogy(a) Dei(v), is
easily seen to imply equivalence of the terms (T1) and (T2). Therefore, , R = _ RY in that case. It easily fol-

lows that the restriction of the condition to reachable states implies a similar result for the reachable transitions,
a
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So, under the given condition, the reachable part of the computed abstract model — which is the only
part that matters for evaluation of CTL" formulae — coincides with the reachable part of the optimal
model. The given condition is quite strong if the set of reachable states contains “large” states like
T. However, as can be seen from Def. 3.3.1 and the remark, following it, about the sets Y’ being
singletons, only the atoms of the abstract domain can be reachable, i.e., the elements {a({c}) | c € Z}.
Hence, we should preferably choose the abstract domain in such a way that these atoms are “small”.
See [CC79] for a variety of techniques for the construction of suitable abstract domains.

Though being sufficient, the condition required in Lemma 5.1.1 is not necessary. However, it is
a reasonable condition that can be checked rather easily: one has to check that for each atomic ab-
stract state e and each condition ¢; of the program, either “¢ = ¢;” or “a N ¢; = . For instance, in
the example above, “being even” neither implies nor excludes “being equal to 47, so the condition is
not met. The condition also gives a deeper insight in how to design “good” abstract domains given a
program(ming language).

For the constrained relation, we analyse part 2 of the proof of Lemma 5.0.3. The last two steps
in this proof introduce the differences between ,R® and , RC. By replacing subformula (3) by (4),
the minimality of the “V3-successors” Y of y(a) over the diﬁerentqgtions is “divided out” and made
global to all actions. As a result, each of the ¥Y3-successors under , R© of y(a) is a superset of an V3-
successor under , RC of v(a). In the step from formula (5) to (6), the “action-wise” computation of
V3-successors (for asingle action 7 € J, Y must be an ¥3-successor of y(a), i.e., all states in y(a) must
be able to make a transition to some statein ¥ viaaction i) is replaced by an “action-wide” computation
(all states in y(a) must be able to make a transition to some state in Y via any action). This difference
does entail a true loss of information.

Both effects are eliminated by imposing a condition on the “overlapping™ of abstract successor
states in different directions (i.e., taking different actions), as follows.

5.1.2 LEMMA. Ifforalli,j € J withi # j and a,b;,b; € . such that ¢ (a) A 17 (a, b;) and
e (@) A 15 (a, bs), we have Ve, = [y(b) N (b)) = 0 v 4(b;) Ny(b) = B v (7(b:) C v(b) Ay(by) €
v(b))), then . R® = R,

Intuitively, the condition in this lemma specifies that two abstract successors corresponding to different
actions may only both be overlapped by a third state if they are completely subsumed by this third state.

PROOF. It is easy to check that the condition implies that for ¢, j € J with¢ # j and @ € X both of the
following hold:

1. there cannot exist ¥; € min{Y” | Voeqy(a) Jwey ¢i(9) A (7, @)} and Y; € min{Y’ | Y5ey(a) Iway-
¢;j(9) At; (¥, w)} such that ¥; C Y.

2. min{Y" | Vogq(a) Foeyr [6i(D) A 6i(T, D)} V Yoeq(a) Jaev: [¢(F) AL (5, ®)]} =
min{Y" | Voey(a) Joey: [(i(®) Ai(5,0)) V (¢;(3) AL (5, @))]}

Point 1 now implies that in the step from formula (2) to (5) in part 2 of the proof of Lernma 5.0.3, computing the
minimal ¥ globally to all actions does not affect the computed constrained transition relation. Point 2 ensures
that also the step from (5) to (6} in the proof yields an equivalent formula. O

5.1.2 Adapting the abstract interpretation

Instead of imposing conditions guaranteeing optimality of abstract models computed as specified by
Def. 5.0.2, we may change the definition of these abstract interpretations themselves in such a way
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that the “loss” of Lemma 5.0.3 does not occur. For the free abstract interpretation, this means that it
cannot be distributed over the individual condition and transformation parts of an action. In case of the
example given above, this would mean that an abstract interpretation act! has to be provided for the
action acti(v,w) & v =4 A w = v/4 as a whole, satisfying act! (a,b) Joeq(a) [c{v) A b E
{e(Y) Y € min{¥" | :3({0}, Y")}}].

In case of the constrained abstract interpretations, loss of optimality already occurs at the point
where they are distributed over the individual actions of a program. Here, the adaptation would require
the generalization of the abstract interpretation of actions by taking into account the effect of executing
an arbitrary number of actions “at the same time” by defining actin i@ 8) & Jayaibio brens
a1 Ve Vap=a,bi Ve Vg =b,Vie(s, 1) cg(aj) A tg(aj,bj)] for subsets {i1,...,7x} of J
(recall that / and V denote least upper bounds on ,X). This approach corresponds to the merge over
all paths analysis of [CC79).

5.2 Computing approximations

One may deliberately choose to compute non-optimal abstractions by specifying approximations to the
abstract interpretations of the ¢; and #;. A reason for doing so may be that the computation of optimal
abstract interpretations is too complex, when, e.g., the ¢; and ¢; involve intricate operations. In that
case, even if the abstract interpretations are optimnal, it may be cumbersome to actually prove so, and
one may settle for proving approximation without bothering about optimality.

5.2.1 DEFINITION. The definition of approximation is extended to abstract interpretations of the
transformation operators, as follows. For abstract operations® t,7 € ,Val x ,Val,

tzt & Y 5c . va [t(a,b) = 5oy f(a,g)] A [f(a,g) = 3,43 t(a,b)]

Approximations f > t¥ and ? - t,ic (for all i € I) to the free and constrained interpretations (see
Def. 5.0.2) induce the abstract model AM = (%, I, .R¥, ,R"), where:

o 2= _Val;
o J={a(v)|velVd);
o JBF = {(0,b) € Vai® | i ' (a) A tF(a,b)}

o .BC = {(a,b) € ,Val® | Aic; €(a) A 1€(a,b)}

5.2.2 LEMMA. AM = AM,

PROOF. We show that (1) :}q?,} =<-simulates , R and (2) . RC »-simulates :ﬁb.

1. Leta,a;,a@ € X with ;R}(a, a1) and @ > a. We show that there exists @; = a; such that :R_F(E,El).
By Def. 5.0.2 of :E’B, ﬁ(a, a1) equivales Ji¢s [cf () Atf (a, a1)]. Because @ > a, we have cf (a) =
cf (@) andalsotf (a,a;) = tF(, a1) (see Def. 5.0.2 of ¢ and ¢ and Def. 2.0.4 of 33), 50 J;¢; [cF (@) A
tF (@, a1)]. By Def. 5.2.1 of tF, there exists @; = a; such that 3¢y [cF (@) AtF (@, 7)), ie., . RF(T, @)

®Remember that such “operations” are binary refations.
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2. Leta, 0.1,9:_6,,2 with , R (a, a1) and ¢’ < a. We show that there exists a] < a1 such that aﬁa(a’, ay).
We have ,/i(a, a;). By Def. 5.2.1 of ,R® and 1€, there exists a} < a; such that J;¢; [cF(a) A
tZ(a,af)]. Because o’ < a, we have cf(a) = c¥(a’), and also there must be some aj =< af such
that tf'(a’, a7) (see Def. 5.0.2 of ¢f and ¢ and Def. 2.0.4 of -%3). So Jies [c€(a’) A tE(d, )], ien

H

«R%(a’, al), and, by transitivity of <, a} < a;. 0

5.3 Practical application

The use of abstract interpretation to model check a property ¢ for a program P is characterized by
the following phases. First, an abstract domain ,Val has to be chosen and for all operation symbols
occurring in P, abstract interpretations have to be provided. Typically, the tests and transformations
are defined in terms of more elementary operations, in which case abstract interpretations may be pro-
vided for these. Depending on the property ¢ to be checked, free and/or constrained interpretations
should be given; these have to satisfy Def. 5.0.2. Then, the abstract model can be constructed by a
symbolic evaluation of the program over the abstract domain, interpreting the operations according to
their abstract interpretations. Finally, ¢ is model checked over the abstract model. It is important to
notice that only positive results of this model checking carry over to the concrete model: a negative
result A [£ ¢ does not imply that A |= - and hence does not justify the conclusion that C = -,
in spite of the fact that ~¢ is (an abbreviation of) a CTL" formula. However, it may be possible to
resolve such a negative answer for ¢ by checking the negation —¢. If frue is returned, then we know
that C |= —¢, 1.e., C [ . Of course, the dual abstraction should be well-chosen for this. We do not
further investigate this point; solutions can be found in [DGD*94].

The same idea of constructing an abstract model by abstract interpretation of program operations,
although based on a different theoretical framework ([LGS* 93], see Sect. 8 for a comparison), is ap-
plied to a “real-life” example in [Gra94]. Graf shows in that paper how a distributed cache memory,
which is in principle an infinite state system because request quenes are unbounded, can be verified by
providing a finite abstract domain and corresponding abstract operations.

Although the model checking procedure itself is an automated process, it is not obvious how the
choice of an appropriate abstract domain with corresponding abstract operations, as well as the proofs
that these operations satisfy the conditions of Def. 5.0.2, can be performed in an automated fashion.
In [Gra94], the abstract domain has to be provided by the user of the method, and the proofs for the
abstract operators form a difficult step in the method. In [KDG95], approximations to the transition re-
lation of StateCharts ([Har87]) are used to verify p-calculus properties of a production cell ((DHKS95])
in a compositional fashion. In [DGG93a] and [DGD*94], a method is developed which aims at full
automation of these steps.

6 Example

In this section we illustrate the theory on a small example. Consider the system consisting of two con-
current processes depicted in Fig. 1(a), which is a parallel variant of the Collatz 3n + 1 program. We
chose this example because it is small but nevertheless displays a non-trivial interplay between data
and control. The properties that we will verify concern certain control aspects that depend on the val-
ues that the integer variable n takes under the various operations that are performed on it. Because the
state space is infinite, data-abstraction will be necessary in order to verify aspects of the control-flow.
It serves as an illustration of the fact that abstraction techniques bring into reach the model checking
of systems that cannot be verified through the standard approach.
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n odd n even fo = think, odd(n) — £y := eat
fo=¢eat — fy:=think, n:=3xn+1

neven — £y = think, even(n) — £y := eat
ni= 3+l ‘ n:=n/2 {; = eat, even(n) — {4 := think, n = n/2

@ @

(a)

Figure 1. The dining mathematicians (a). Expressed as an action system (b).

The program may be viewed as a protocol controlling the mutually exclusive access to a common
resource of two concurrent processes, modelling the behaviour of two mathematicians, numbered 0
and 1. They both cycle through an infinite sequence of “think” and “eat” states. The right to enjoy
a meal in strict solitude is regulated by having them inspect the value of n before cating, letting the
one go ahead only if » has an odd value, and the other only if # is even. Upon exit from the dining
room, each mathematician has its own procedure for assigning a new value to n. Transitions can only
be taken when the enabling conditions are satisfied, e.g., mathematician 1 can only leave the dining
room if = is divisible by 2. An execution is any infinite sequence of (arbitrarily) interleaved steps of
both processes which starts in a state where both mathematicians are in their thinking state, and = is
set to some arbitrary positive integer value. We want to verify mutual exclusion and the absence of
individual starvation along every execution. In order to formalize this, we first express the program as
an action system. As data and control are treated uniformly in such systems, we introduce variables
{o and £,, both ranging over {¢think, eat}, to encode the effect of “being in a location” think; or eat;.
See Fig. 1(b). The state space ¥ of this program is the set {think,eat}? x IN\{0} of values that the
vector (€o, €1, n) of program variables may assume. The initial states are [ = {(think, think,n) |
n € IN\{0}}. Tts transitions are defined as in Def. 5.0.1, using the standard interpretations of the
tests =, even, odd and operations 3*, +1 and /2 (the latter three are considered as operations on one
argument, i.e., functional binary relations).

The properties to be verified are expressed in CTL* as follows.

VG (4o = eat A £y = eat) (7N
VG (€ = eat — VF{, = eat) )
VG4 = eat — YFly = eat) 9

As these formulae are in VCTL”, we can verify them via a free abstraction.

The abstract domain is defined by providing abstractions of the components which comprise the
concrete domain. We choose to leave the component {think, eat}* the same. Formally, this means that
we take an abstract domain with two elements whose concretizations are {think} and {eat}, however,
for readability we just denote these elements by think and eat respectively. To abstract IV\ {0}, we
choose an abstract domain in which n may take the values e and o, describing the even and odd positive
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integers respectively, i.e, y(e) = {2,4,6,...} and y(o) = {1,3,5...}. To both abstract domains, we
add a top element T. The set . ¥ of abstract states is now defined as follows.

o3 = {think,eat, T}? x {e,0, T}

It is easily verified that the concretization function thus defined determines a Galois insertion (a,7)
from P(X) to ,X. For the abstract initial states we have:

o1 = {{think,think,e), (think,think, o)}

Having chosen an abstract domain, we also have to provide abstract interpretations, over this do-
main, of the operations that appear in the program, along the lines of Def. 5.0.2. The tables (a) and (b)
in Fig. 2 give the definitions of the free abstract interpretations of the transformations and tests on the
abstract domain {e, o, T}. The operations 3%, +1 and /2 are considered single symbols. The tables
have to be interpreted as indicated by the following examples. The entry true in table (b), row even?,
column e, indicates that even’'(e) holds, i.e. (cf. Def. 5.0.2), Jneq(e) even(n). The entry false in
table (a), row +1%, column (e, e), means that +17 (e, e) is false, i.e., for any minimal ¥ such that
+1%3(v(e),Y), we have a(Y') # e (see Defs. 5.0.2 and 2.0.4). From these diagrams we see for ex-

| FREE: ” (e,€) I (e,0) | (e, T) ’ (0,€) I (0,0) | (0, T) | (T,e) I (T,o0) | (T,T) |
3t true | false | false | false | true | false true true false
+15 || false | true | false | true | false | false true triie false
/2F true | true | false | false | false | false frue true Jfalse
(a)
|FRee: | e [ o | T | | ConstR.: [ (0,100) [ (0,€) [ (0,0) [ (0, T) |
event || true | false | true 3 false false | true | false
odd”™ || false | true | true +1F false true | false | false
(b) (©)
|ConsTR.: 100 [ e [ o | T | Constr.: [[think [ eat | T |
even® true | true | false | false = think" || true | false | false
odd® false | false | true | false = eat’ false | true | false
(d) (e

Figure 2: Free abstract interpretations of operations (a) and some of the tests (b). Constrained abstract
interpretations of some operations (¢) and tests (d and e).

ample that /2¥ is not functional (table (a), row /2F, first two columns), illustrating that a function may
become a relation when abstracted. The tables (¢){e) are explained below.

Now we can abstractly interpret the program over this abstract domain, using the interpretations
given in the tables. Such an abstract execution yields the abstract model of Fig. 3. In this model, only
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<eqnt,
think,
o>

Figure 3: The free abstract model.

the reachable abstract states are shown. We see that in no reachable state the property £y = eat A £ =
eat holds. Hence we have established property (7). Furthermore, the only path from the state where
£ = eat reaches £; = eat within 2 steps, so we have also verified property (8).

However, the abstraction does not allow verification of the other non-starvation property, (9): a
counterexample in the abstract models is the path cycling infinitely between (think,think,e) and
(think, eat, e}. Tt turns out that the negation of property (9) can also not be established via the con-
strained transition relation. So, only refinement of the abstract domain may bring the answer. In this
case, the abstract states where n = e would have to be unraveled into infinitely many states represent-
ing the cases where n is divisible by 4, by 8, by 16, .... Hence, with our methodology, it is impossible
to verify property (9) through a finite abstraction.

Nevertheless, an interesting question is how the refinement of an abstract model, in order to decide
indeterminate results, can be computed. In [DGG93a] we identify conditions under which a strongly
preserving abstraction may be computed by a successive refinement which is guided by the form of the
formula to be checked.

In order to illustrate the use of the constrained abstraction, we consider a small extension to the
program: we add a third concurrent process which can “restart” the system by setting » to value 100.
This may only be done when both mathematicians are thinking, otherwise there may be executions
possible which violate the mutual exclusion property. To this effect, the following fifth action is added
to the program:

£y = think, {3 = think — n := 100

We want to check whether it is always possible to reach a “restart” state. Writing restart for thinkg A
think; A n = 100, this property is expressed in CTL™ by:

V& A Frestart (10)

We extend the abstract domain for » by the value 100, where ¥{100) = {100}. Formula (10) being in
full CTL", we need a mixed abstraction. The tables (c)—(e) in Fig. 2 provide some of the entries which
will be needed in an abstract execution of the program. The tables from Fig. 2 have to be extended in
order to take into account the new abstract value 100. Being straightforward, these extensions are left
to the reader.

The resulting abstraction is depicted in Fig. 4. Solid arrows denote free transitions, dashed arrows
represent constrained transitions. Note that it is not in general the case that ,R® C R¥, as is illus-
trated by the arrow from (think, eat, e) to {think,think, T). Property (10) is verified on this model,
interpreting the universal quantification along the free paths, and the existential quantification along
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Figure 4: The mixed abstract model for the modified program.

the constrained paths. It can easily be seen that (10) holds, hence, we have established its validity in
the concrete program.

As an example of the computation of approximations by choosing non-optimal abstract interpreta-
tions #; of operations in the program, consider the dining mathematicians again (without the “restart”
extension). Take optimal free abstract interpretations of all operations but 3x, for which we take the
following approximation: 3+F (o, T) = true and 3+F (0, €) = 3%F (0,0) = false. Furthermore, take
(think,think, T) as the abstract initial state. This gives the free abstraction of Fig. 5, from which still
various properties may be deduced, such as the fact that at least one mathematician will keep engaged
in a cycle of thinking and eating.

Figure 5: An approximation to the free abstraction.

7 Strong Preservation

In Sect. 5.1, we have identified conditions under which computed abstract models are optimal in the
standard sense of Abstract Interpretation (see Sect. 2). This notion of optimality concerns the quality
of the abstract interpretation used to compute an abstraction, ,Z(P), relative to the “ideal” abstraction
«(Z(P)). In particular, it is optimality with respect to a given abstract domain.
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A different notion of quality is the aptness of the abstract domain itself for the set of properties to
be checked. In other words, given an abstract domain, how often will we get indeterminate answers
as in the case of property (9) in Sect. 67 In posing this question, we enter in fact the area of specific
applications of the framework presented so far: the answer to the question depends very much on the
specific set of properties to be checked and on the programming language that is analysed. Neverthe-
less, we present a few general results that characterize the preservation quality of abstract domains. We
say that a set of properties is strongly preserved when for every property, it is satisfied in the abstract
model if and only if it is satisfied in the concrete model.

According to a well-known result ((BCG88]) in process equivalences, two (image-finite) transition
systems satisfy the same CTL"* formulae if and only if they are bisimilar. In our case this implies that

7.0.1 LEMMA. CTL" is strongly preserved iff the relation p C ¥ X ,I defined by p(c,a) <
a(c) = a is a consistent bisimulation from (X, 1, R) to (,Z, .1, R U ,R®).

PROOF. See [BCG88]. Note that p is total by totality of . m|

It is not difficult to see that a sufficient condition for this in terms of , % is that the partitioning {y{a) |
a € atoms(,Z)} of ¥ (where atoms(,X) = {a({c}) | ¢ € £}) is finer than the partitioning induced
by the coarsest bisimulation on .

In search for a strongly preserving abstract domain, the following may be useful.

7.0.2 LEMMA. A is an abstraction which is p-bisimilar toC if and only if ,R¥ = ,RF.

These results show that the price for strong preservation of full CTL* is that the attainable reduction
of the concrete model is bounded by its quotient under bisimulation equivalence. However, it may
well be the case that we can identify a subset of CTL* in which all the properties of interest can be
expressed. Such asubset induces a coarser equivalence on the concrete states, in general. In [DGG93a]
and [DGD™*94], we develop algorithms which can be used to reduce the system with respect to the
equivalences induced by VCTL* and by a single ACTL formula.

8 Related Work

Property-preserving abstractions of reactive systems have been the topic of intensive research lately.
Most of these efforts are based on the notion of simulation. Homomophisms (see, e.g., [Gin68)), used
in automata theory to construct language preserving reductions of automata, can be seen as a precur-
sor of this. Adapted to our notion of transition system, 2 : ¥ — _X is a homomorphism iff ¢ € [
implies h(c) € I and R(c, d) implies , R(h(c), h{(d)), where T is the set of initial abstract states
and . R the abstract transition relation. In [Mil71], Milner introduced the term simulation to denote a
homomorphism between deterministic systems. Since then, it has been re-adapted to nondeterminis-
tic transition systems and has become popular in the areas of program refinement and verification, see,
e.g., [Sif82, Sif83]. [Dil89, Kur89] focus on trace (linear time) semantics and universal safety and live-
ness properties. More recently, [CGL.94, GL93] consider branching time semantics and preservation
of both YCTL* as well as CTL*. In these papers, as well as in [Kur89], the relation between concrete
and abstract model is defined by means of a homomorphism A, which induces an equivalence relation
~ on the concrete states, defined by ¢ ~ d & h(c) = h{d). The abstract states are then represen-
tations of the equivalence classes of ~. It is shown that universal properties are preserved from the
abstract to the concrete model.
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[CGL94] also indicates how abstract models may be computed by abstract interpretations of the
operations in a program. However, their notion of approximation is based on the subset ordering on
abstract transition relations; they do not have the approximation relation < which allows non-optimal
abstract interpretations of individual operations. Also, preservation of existential properties is only
possible via abstractions which are bisimilar to the concrete model, thus only allowing for relatively
small reductions in the size of models,

In [L.GS*93], the preservation results for simulations are generalized for the case of the p-calculus.
Loiseaux et al. show in that paper that if there exists a consistent simulation from C to .4 which is
total on %, then properties expressed in the universal pi-calculus (O L, ) are preserved from A to C, and
existential properties (< L) are preserved from C to .A. Again, preservation of the full g-calculus is
only shown for bisimilar abstractions.

A recent paper by Kelb, [Kel94], also discusses the preservation of universal and existential u-
calcu- lus properties within the framework of Abstract Interpretation. As in [LGST93], the relation
between abstract and concrete systems is defined through simulations. In addition, Kelb shows how
formulae from the full g-calculus may be verified by combining two types of abstractions through a
so-called truth-failure-connection.

[CTY94] is based on an early version ([DGG93b]) of this paper and independently develops the idea
of mixing both free and constrained abstractions in a single abstract system in order to attain preser-
vation of full CTL*, and presents an optimality result about this.

[CR94] presents a framework for the abstract interpretation of processes that pass values.

Simulations to specify the relation between concrete and abstract systems are a generalization of
our approach using Galois connections. It can easily be shown that R p-simulates , RY while , R®
p-simulates R, where p(c,a¢) < ac) = a. Nevertheless, the use of Galois connections has two
important advantages. Firstly, it allows to derive in a uniform fashion results on the preservation of
both universal and existential properties, whereas general simulation relations do not guarantee the
existence of abstract models in this case. Secondly, the mere requirement that a simulation must exist
in order for preservation to hold has the drawback that it leaves far too much freedom in the choice of
“good” abstractions. The Galois connection framework in which we developed our results may be seen
as a successful attempt to try and quantify the notion of precision of abstractions by distinguishing be-
tween the notions of (optimal) abstraction and approximation. This point is discussed in the following
comparison of our work with that of [LGS193].

8.1 Comparing the simulation and Galois connection approaches

We focus on free abstractions. Given a concrete transition system and a set of abstract states which
is related to the concrete states by a “description relation” p C £ x X (total on X), the require-
ment p~! R C ,Rp~! (R simulates , R) has many solutions in , R. From the point of view of property
preservation, the C-minimal solutions are interesting. However, even such minimal solutions may have
comparable quality, as illustrated by the example in Fig. 6, where the problem is to choose an optimal
« R-successorof a suchthat p~1 R C ,Rp~" is satisfied. The C-minimal solutions are obtained by tak-
ing either b, or b, as successor (but not both). However, choosing b, will generally give better property
preservation, as it describes fewer concrete states.

However, instead of exploring this freedom in order to refine their notion of quality of abstract
transition relations, Loiseaux et al. propose a condition under which all minimal solutions are bisimilar
to each other. This condition is

po~tp=p (1D
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Figure 6: Abstraction with states of comparable precision.

Expressed in words, it says that if two concrete states share a description (abstract state), then they
share all descriptions. It is easy to see that the generality of simulations over Galois insertions, namely
the possibility to have several optimal but mutually incomparable abstractions of a set of concrete
states, is eliminated by this condition. In fact, requirement (11) implies that it is useless to have a p
which is not functional. This is expressed in the following lemma (which can be found in [LGS*93]).
It implies that whenever p(¢, @) and p(e, a') (o # o') for some ¢ — i.e, p is not fenctional — then ¢
and ¢’ are bisimilar. Consequently, one of a and a’ should be removed from .A, as, after all, the goal
of abstraction is to produce minimal abstract systems.

8.1.1 LEMMA. Ifpistotalony, , R isa C-minimal relation such that R p-simulates , R, and pp~1p
= p, then pp~! is a bisimulation on A.

PROOF. We have to show that pp~! and (pp~')~*! are simulations on A. Because (pp~1)~! = pp~1, it suf-

fices to show that pp~! is a simulation, i.e. {by Def. 2.0.5), that (pp~ 1)1 R C .R(pp~ 1)1, ie,p~lp R C
«R p~lp (*). Because any minimal solution , R satisfies , R = p~! Rp (see [LGS193]), (*) is equivalent to
P lpp~ Rp C p~'Rpp~lp. Because pp~lp = p and therefore also p~lpp~! = p~?, this is equivalent to
p~1Rp C p~! Rp, which is true. n!

So, in order to be able to distinguish optimal abstractions from approximations, [LGS*93] makes as-
sumption (11), which renders their framework less general than the Galois connection approach, be-
cause, under the reasonable assumption that the abstract system does not contain bisimilar states, it
forces p to be functional.

Consider Fig. 6 again. In our framework, the simulation relation p induces the following Galois
insertion on sets of states: forany ¢ € ,Z, v(a) = {c | p(c,e)} and forany C C %, o(C) =
A a | v(a) 2 C}, where A denotes the meet operation corresponding to the ordering < defined by
a < a © v(a) C y(a'). Taking . R to be , R as specified by Def. 3.3.1 (item 1) yields by as the
only successor of 4, as desired.

9 Conclusions

The results of this paper may be seen from two points of view. From the position of Abstract Inter-
pretation, we have presented a generalization of the framework extending it to the analysis of reactive
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properties. This generalization consists in allowing the next-state relation of a non-deterministic tran-
sition system to be abstracted to a relation, and not a function as is common practice. This allows the
analysis, via the abstraction, of not only universal properties — expressing that something holds along
all possible executions —, but also existential properties — expressing the existence of paths satisfying
some property. Furthermore, both safety as well as liveness properties are preserved. We have proven
that the truth of every property expressible in CTL* is preserved from abstract to concrete model. As is
common in Abstract Interpretation, the attained reduction depends solely on the choice of the abstrac-
tion function, thus allowing better reductions than is the case with minimization based on bisimulation.
This was possible by considering abstract transition systems having two different transition relations,
each preserving a seperate fragment of CTL*. The use of a Galois insertion to relate concrete and
abstract states allowed the definition of both types of transitions over the same set of abstract states,
resulting in the preservation of full CTL*. The price to be paid is that there exist formulae — and in-
creasingly many when the abstraction becomes coarser — which do not hold in the abstraction, and
neither do their negations. In case of persistence on strong preservation (i.e., preservation of both truth
and faisity of formulae)}, which renders the abstract model bisimilar to the concrete model, we have
shown the implications for the form that the abstract domain takes.

From the viewpoint of property-preserving characteristics of simulation relations, we have man-
aged to define a notion of precision which “allowes to separate the wheat from the chaff”. An abstrac-
tion function « specifies the optimal abstract model for a given concrete system, while an approxi-
mation order < distinguishes the relative precision between abstract models. The embedding of the
property preservation results for simulation in the framework of Abstract Interpretation opens up the
possibility of constructing abstract models directly from the text of a program, thereby avoiding the
intermediate construction of the full concrete model. This construction is possible by associating non-
standard, abstract interpretations with the operators in a programming language which allows their
evaluation over descriptions of data. To this purpose, we chose a simple programming language and
defined abstract interpretations of its tests and operations. Conditions were given under which the free
and constrained abstract transition relations thus computed coincide with the optimal relations as spec-
ified by «. Furthermore, a notion of approximation on the level of operations was given by which the
user may simplify the task without loosing the preservation results. Furthermore, such approximations
can accelerate the computation of abstract models, be it at the risk of obtaining a model that does not
contain enough information in order to verify the property. It was illustrated by an example that these
techniques can be applied to verify properties of systems with an infinite state space.

Further work As pointed out in Sect. 6, the construction of abstract models that strongly preserve
a given property of interest requires refinement of the abstract domain. The framework of Abstract
Interpretation, being based on a given abstract domain, does not offer a methodological approach to
such refinement. A trial-and-error approach would benefit much from the development of heuristics
which are specific to the domain of application, while also a set of powerful diagnostic tools in addition
to the model checker are invaluable in that case.

In the light of the quest for fully automated verification methods, we are currently investigating
the use of partition refinement algorithms for the construction of strongly preserving models; see the
papers [DGG93a] and [DGD194]. Other, rather preliminary ideas point in the direction of using the-
orem provers and algebraic manipulation tools. Although the problem is undecidable in general, there
may well be interesting subclasses that can be decided efficiently.

In a recent paper, [KDG95], we apply the ideas developed in this paper and in [Kel94] to verify
p-calculus properties of a production cell ((DHKS95]) in a compositional fashion.,
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