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Abstract. A conceptually simple and practically very useful form of
data abstraction in model checking is variable hiding, which amounts to
suppressing all information about a given set of variables. The abC tool
automates this for programs written in the C programming language.
It features an integrated demand-driven pointer analysis, and has been
implemented as an extension of GCC.

1 Introduction

The starting point for a model checker [2] is a verification model. The construc-
tion of a suitable such model comprises a major part of the overall verification
effort. A well-chosen model may indeed eliminate the sources of the notorious
state-explosion problem. Tools for automated abstraction assist in the extraction
of verification models from system descriptions that are otherwise too detailed.
The FeaVer tool [1], based on the explicit-state model checker Spin [1, 5], enables
the checking of C source code through a conversion into Spin’s input language.
Case studies with FeaVer have indicated that data hiding and narrowing are
promising candidates for automated abstraction. In data hiding, variables are
removed from the program and their value is assumed to be unknown. In nar-
rowing, the types of variables are replaced by smaller types. In both cases, non-
determinism is introduced at the level of the model checker so that the model’s
behaviour over-approximates the original program, which is needed to ensure
preservation of universal temporal properties. Data hiding and narrowing were
the most effective types of abstractions used in the verification of Lucent’s Path-
Star call-processing software [6]. In this case study, about 30 so-called “class 5”
telephony features were checked mechanically with a method based on model
extraction from the call-processing source code. Over a period of roughly two
years, FeaVer caught 70 errors in the code. The types of abstraction used, and
hiding in particular, are simple enough to justify elaborate tool support, and
also to be readily understood and applied by non-expert users.

These findings motivated the development of abC, a tool that automates
most of the process of hiding data in C code. Given an initial set of variables to
be abstracted, abC performs an analysis to find dependent variables that must
additionally be hidden, and then performs the actual program transformation
in which all such variables are removed from the program. While both tasks
are simple in concept, implementing them for the full (ANSI) C language is a



non-trivial effort. The variable-dependency analysis is complicated by the pres-
ence of pointers and arrays. In their presence, a pointer analysis is necessary in
order to still be able to (over)approximate variable dependencies with reason-
able precision. abC integrates such an analysis into the algorithm for inference
of abstraction, in a demand-driven fashion: Points-to information is only com-
puted when needed for the abstraction inference. The program transformation
can in general not just remove entire assignment statements, because a single
expression may manipulate both abstract and concrete variables—any concrete
side-effects will have to be filtered out and retained in such a case.

The tool has been implemented as an extension to the front end of the GNU
Compiler Collection (GCC version 3.0.1, [1]). GCC’s representation of the parsed
C code is relatively well documented and comes with an extensive API offering
many access and utility functions. Furthermore, this representation is shared
between compilers of various other languages (including an extension of C that
has become commonly used among many programmers), thus facilitating any
extension of abC to such languages.

Various other verification platforms offer facilities for data abstraction. Ban-
dera [1] comes with a library of abstractions for Java data types which includes
the point abstraction, which is similar to hiding. Reference types are currently
not handled but work on this extension is underway [4]. Also the Pet tool [3]
implements a limited form of variable hiding for Pascal programs that does not
handle pointers. Other techniques for abstraction, employed in Bandera, Java
Pathfinder (JPF, [1]), and the BeBop tool set [1] are slicing3 and predicate ab-
straction. Whereas hiding starts from a given set of variables to be abstracted, in
slicing and predicate abstraction one specifies variables (or, more generally, con-
ditions) that need to be retained, which are then propagated backwards through
the program in order to find all code (generally: predicates) that they depend
on. Being dual, both approaches may be used in a complementary fashion.

2 Overview of the Tool

In abC, the objects of abstraction4 are memory locations as specified by variable
names. The intuition is that neither the value, nor the address of such a variable
is known. This design decision determines the granularity of abstraction. Aggre-
gate variables like arrays and structures can only be abstracted as a whole, not
per element or member; in these cases the location of such a variable will be
understood to comprise that whole region of memory. Given a set of abstract
variables, we call an expression (and also its value) abstract if it contains an ab-
stract variable. When an expression is abstract, its value is unknown. Ultimately,
in the transformation phase, this will lead to that expression being replaced by
the special token NONDET, that signifies a nondeterministic choice to the model
checker. In order to avoid the introduction of too much nondeterminism, which
3 Slicing originates in the area of compiler-optimization algorithms, as do many other

techniques used by these verification tools.
4 We refer to objects that are not abstract as concrete.



could easily cancel any positive effect of the abstraction on the state space, an
abstraction inference phase takes place first.

Abstraction inference phase This is a flow-insensitive, context-insensitive inter-
procedural static analysis that finds additional variables to be abstracted, for
example because abstract values are stored to concrete locations. Due to the
presence of reference types, locations may be denoted by expressions whose value
is not determined at compile time (like in *p=...). In order not to abstract too
many additional variables due to this, the abstraction inference is combined with
a pointer analysis. The algorithm is based on 4 inference rules, presented below,
that are applied whenever the value of an expression e2 is stored in a location
denoted by e1. This typically happens as the result of an assignment e1=e2,
but values are also stored e.g. when a function with arguments is called. With
every expression that denotes a location5, we associate a key—intuitively this
a variable in the expression that needs to be abstract if that location must be
abstract. For example, the keys of p, p->f, p++, and q=*p are all p, and the key of
a[i] is a. The definition follows the inductive scheme defining valid expressions
in C and is beyond the scope of this paper.

1. The key of e1 must be abstract if (a) the value of e2 is abstract, or (b) the
value of e1 is abstract.

2. In addition, the key of e2 must be abstract if e2 is of pointer type and (a)
the value of e1 is abstract, or (b) the value of e2 is abstract.

Rules 1 reflect pure abstraction inference. 1(a) says that an abstract value may
only be assigned to an abstract location. 1(b) deals with cases such as a[i]=3
when i is abstract. Even when a is concrete, the value 3 is stored to an unknown
element of the array. The rule then prescribes to also make a abstract6. Rules 2
combine abstraction inference with pointer analysis. For example, if the program
contains a pointer assignment q=p then further operations on q may influence p,
like *q=x. Rule 2(a) captures such aliasing by requiring that p must be abstract
whenever q is. Finally, rule 2(b) captures the combined effect of 1(a) and 2(a)
and is thus merely a shortcut.

Pointer arithmetic (including certain casts) and out-of-bounds array indexing
invalidate the rules. Occurrences of the former are flagged by the tool so that they
can be manually processed. Wrong array indexing is harder to catch—a separate
tool like UNO [7] or FlexeLint [1] may be used. abC also flags calls through
function pointers as these disable the inter-procedural inference; abstraction of
function pointers is disallowed. An example run is given in the appendix.

5 Examples of expressions that denote a location are x, *p, p->f, and &y. Expressions
that do not denote a location are e.g. 3, x+y, p=y, a==b, and y++ when x and y are
not pointers.

6 If the array is short, then an alternative would be to leave a concrete and replace this
assignment by a[NONDET]=3 signifying that 3 has to be stored to a nondeterministic
element in the array. This option could be easily added to the tool if deemed useful.



Transformation phase If the application of the inference rules does not abstract
additional variables, the set of abstract variables is closed under dependencies in
the sense that in no execution of the program, an abstract value will be stored to
a concrete location. At this point7, the program transformation will remove all
code that stores values to abstract variables (“abstract assignments”), as well as
declarations of abstract variables (unless they contain initializers). Furthermore,
abstract expressions that occur as tests in if, while, etc. are replaced by the
token NONDET.

This transformation has to take into account the fact that abstract assign-
ments may contain concrete side effects8. The transformation of an expression
is therefore a recursive procedure. For example, denoting by tr(e) the result
of transforming expression e, tr(e1+e2) is defined as e1+e2 if both operands
are concrete, and as the comma expression ((tr(e1),tr(e2)),NONDET) when
either one is abstract. Intuitively, in the latter case tr first evaluates any side
effects contained inside e1 and e2 before returning NONDET. The full inductive
definition of tr is again beyond the scope of this paper.

Example: If the variables a, m, and n are abstract, then the code fragment
if (k<m) { int n; a[i++] = b[j++] = ( n = k++, k ); }

is transformed into
if (NONDET) { ( i++, b[j++] = ( k++, k ) ); }.
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Appendix

The abstraction inference phase of abC is demonstrated on the following (contrived) C program (line
numbers added for convenience).

1 char *nametab[2][2] = { { "(none)", "(none)" }, { "pi2", "xxxxxxxx" } };
2 typedef struct { float x; float y; char *name; } NamedPoint;
3 short i = 1;
4
5 NamedPoint move(NamedPoint q, short *d)
6 { float xx = q.x+*d, yy = q.y+*d;
7 NamedPoint r = { xx, yy };
8 r.name = nametab[i][i];
9 return r;

10 }
11
12 int main(void)
13 { char *nullstr = "";
14 NamedPoint newp, p = { 3.1415F, 3.1415F, nametab[i][0] };
15 nametab[i][i] = "movedpi2";
16 newp = move(p,&i);
17 p.name = nullstr;
18 printf("%s: (%f,%f)\n", newp.name, newp.x, newp.y);
19 }

Besides this program, the input to abC consists of a file specifying the initial set of variables to be
abstracted. Each variable occupies one line and is preceded by its scope, i.e. the name of the function
to which it is local, or the specifier (global). We let this file contain the single line move d, indicating
that the formal parameter d of function move is to be abstracted. Instructing abC to perform one
abstraction inference step yields a new file containing, besides move d, the lines (global) i, move xx,
and move yy. A log file explaining the newly inferred abstractions is also produced:

line 6: move xx <--- move d
line 6: move yy <--- move d
line 16: (global) i <--- move d

The first line says that xx has to be abstracted because it depends on d in line 6—it is the initializer
of xx that causes rule 1(a) to apply. The inference given in the third line is because the call to move
on line 16 causes the argument &i to be stored in formal parameter d; rule 2(a) applies here.

The next iteration takes the file giving the four currently abstracted variables and produces
again a longer list. The log file now contains the following inferences:

line 7: move r <--- move xx, move yy
line 8: move r <--- (global) i, (global) i
line 8: (global) nametab <--- (global) i, (global) i
line 14: main p <--- (global) i
line 14: (global) nametab <--- (global) i
line 15: (global) nametab <--- (global) i, (global) i

Several variables occur on the right-hand side of an inference in those cases where a single expression
(whose storing causes a new abstraction) contains multiple variables, like the (incomplete) initializer
on line 7 and the double indexes on lines 8 and 15. Note that nametab must be abstracted for three
reasons: rule 2(b) applies to the pointer assignment on line 8 and to the initialization in line 14, and
rule 1(b) applies to the assignment in line 15.

In the next iteration we get:

line 9: (global) move <--- move r
line 16: move q <--- main p
line 17: main nullstr <--- main p

Here, the return on line 9 causes the function name move to be abstracted. One can think of the
return statement as assigning the returned expression, r, to the function name, move. The ensuing
abstraction of move will then flow back into the calling context, causing (in this case) also the variable
newp, to which the return value is assigned, to become abstract. This happens in the next iteration:

line 16: main newp <--- (global) move

Another iteration does not produce any inferences, so the current list of abstract variables is closed
under dependencies. Some care has to be taken; abC also warns that it cannot analyze the definition
of the function printf which is called on line 18. It is easily checked however that the call to printf
cannot cause any dependencies.


