Applying verification methods to non-exhaustive
verification of software/hardware systems

M.C.W. Geilen, D. R. Dams and J.P.M. Voeten

Abstract—In order to handle the increasing complexity of hardware / temporal logic formulas, called tableau constructi@h [4] is
software designs, system level design methods are being used. These metishown, SectiofiZll shows how these transition systems can be

ods are directed to produce operational system models at a high level of . . . e e
abstraction. They can be used to assess early in the design phase if speysed during simulation, to verify if a run of the system satisfies

cific functional or performance requirements can be met. Since the systems ItS requirements.

that are being designed are often concurrent and real-time, the behaviour

of these models can become rather complex. It is not always easy to check

whether a model indeed satisfies the desired requirements. If the speci- II. POOSLMODELS

fication model has a well-defined semantics, and the requirements can be

expressed exactly, it is possible to automate some of these checks. Several As an example of system-level formal models, we will look at

techniques exist to verify if a given model satisfies certain formally defined models in the Ianguage POOSL (Parallel Object-Oriented Spec-

properties. A popular approach is model-checking, which is an automata ope .
based approach in which the verification problem is reduced to standard ification Language.) This Ianguage IS part ofa spe0|f|cat|on and

checks on finite state automata, as used in the tool Spifi][for example. design methodology for hardware/software systems, SHE (Soft-
In this paper we investigate the use of such automata based verification ware/Hardware Engineerind?][) A POOSL model describes

techniques in 5|mul_at|0n of h_|gh—|evel system spemflcat_lons_ln POOSI2L a system as a set of asynchronous concurrent processes, con-
We show how certain properties expressed in the formalism linear temporal

logic (LTL), can be automatically monitored during simulations of complex N€cted by channels. Figuishows an example of a POOSL

distributed systems. model of a datalink protocol. The inserted text box shows a part
Keywords— formal verification, temporal logic, tableaux, simulation, of the description of the behaviour of one of the processes, the
object-oriented methods datalink sender (DLS.)
I. INTRODUCTION E—
Systems that need to be designed are becoming more an mot HL1 orotocali 00 | prFackettFrame | NL2
complex. They are often real-time concurrent systems, consist taDL frormL2pac ket p); toDL fomDL
ing of a large number of components operating together. These —= PR |
systems need to be designed as fast as possible, containing { toPLirame(;
few errors as possible. Formal methods are very helpful to auto- | e | * R oL
mate parts of the design process and to design with fewer errors DLS or DLR
Systems, designed using formal methods have a well-definec toPL — fomPL
behaviour, which allows the use of automated tools. Automatic |
verification techniques can be used to assess the correctness il ~ . i il
the design. Such techniques include simulations and formal ex{ | fombl1 toLU oL fomDl2 toDL2
haustive verification techniques. Simulations are easy to use

easy to understand and provide much insight in the behaviour of
the system. Their capability of finding errors however is limited.
Exhaustive verification methods on the other hand are better at
finding certain types of errors. They are however still hard to use
and suffer from the state space explosion problem. This makes
that they can only be applied to either very small or very ab-
stract systems. In the latter case, it might be possible that thd he language POOSL has a formal semantics, which defines
abstract model does no longer exhibit all errors present in tAdliscrete transition system, based on the POOSL model. This
actual design. Both methods should therefore be used, simdfansition system can be finite or infinite. Figl@ehows such a
tion in early stages and on global design, exhaustive methdtghsition system for the Datalink Sender object of the POOSL
later on and Concentrating on speciﬁc pr0b|em areas. This pag@ecification. Transitions represent either internal transitions of
describes the possibility to verify certain temporal logic requiréde system or communications with other systems. Concurrency
ments during simulation of concurrent distributed system mol§-modelled as interleaving of discrete transitions of the indi-
els. Sectiorill describes an example in the language POOSIdual components. A transition in the global transition graph
and the transition systems that are generated by POOSL modé&lgresents a local internal transition or, in case of a Synchronous
Then, tempora| |ogic is discussed as a way to formalise Systém‘nmunication, a simultaneous transition of the Communicating
requirements. A known method to build transition systems froRfOCESSES.
_ _ - _ A tool has been implemented, which simulates the behaviour

Section of Information and Communication Systems, Faculty of Electrical En- . . " -
gineering, Eindhoven University of Technology, P.O.Box 513, 5600 MB Eind2f POOSL models by traversing this transition system. Valida-
hoven, The Netherlands. E-mail: geilen@ics.ele.tue.nl tion is currently done by manually observing this simulation.

Fig. 1
A POOSLMODEL

/O « Oy (pronounced as “next”) states that the formula should
\ hold for the remainder of the execution without the first state;

o 01 Ups (“p1 until o) is the most complex operator. It holds
for a traces, if there is some state,,, such that for the trace

o from then'" state onwardss(*) propertyy, holds and for all
2packet(p) frame(h) k < n, s* satisfies property;.
g The fact that a trace satisfies a formulg, will be denoted
e ass = .

Other operators can be defined in terms of these operators:

A/C> false

= -true
P1Ap2 = 2 (7p1Ves)
Y1 =92 = 21V
Fig. 2 Cp = trueUyp
TRANSITION SYSTEM DEFINED BYPOOSLSEMANTICS DSO = ﬁ<>_‘<,0

The meaning of the formulagalse, @1 A 2 andp; = ¢o
are obvious.(y holds for a traces if ¢ will ‘eventually’ hold
I1l. TEMPORALLOGIC for somes™. O holds fors if ¢ ‘always’ holds, i.e. for every

A popular formalism to express properties of state-transition formula implicitly defines a set of traces, that satisfy it. We
based concurrent systems is temporal logic. There exist sevwml denote this set byy]. If © is a requirement for systeisi
varieties of temporal logics. Linear temporal logic (LTL) ex- " :

S S one would like to check ifS] C [¢], i.e. if every trace generated
presses features of one individual (possibly infinitely long) exgr systems satisfies the property

cution of a system. An LTL formula is then supposed to hold fo For example, suppose we have a system with the following
lﬂgservable propertiesasg Arrived (true if a new message has

branching time logics can in addition express features of cho ot arrived) andu f fer Full (true if the buffer in which in-

points during system execution. In this paper we will considgp i, ' messages will be stored is full). One could now express

LTL.’ becal_Jse we want to verify an individual run that 0CCUT o requirement that a new message will never arrive when the
during a simulation of the system. The execution of a SySthessage buffer is full. as follows

can be observed as an (infinite) discrete sequence of boolean

values that can be evaluated in every state of the system. Such ¢ = O (msgArrived = —buf fer Full) .

values can for example correspond to the fact that a message

has just been received, or that a buffer is full. Without specify-his can be pronounced as, “it will always) be the case that if
ing how these observable features are defined, we will call thenmessage has just arrived {g Arrived), then &) the buffer
atomic propositions and denote them with the letgers, etc. will not be full (=buf fer Full.)”

We can now define a trace as the observation of the execution of

a system. For simplicity, we will consider only infinite traces. IV. MODEL CHECKING
Definition 1: (trace) When we have a formal model of the system and have ex-
A traces = opoj02... is an infinite sequence of sets opressed (some of) its requirements in LTL formulas, we would
atomic propositions. like to show that this system does indeed satisfy these require-

p € o, precisely if the atomic propositignis observed to be ments. A popular technique for automatically showing that this
true in state: of the execution. IS is a system, we ugé] to de- is the case, is model checking.
note the set of traces th&tcan produce. |I§ = ogoy02 ... then))
§" = 0pOni10miz . .., the remainder of the execution from the®- Model checking techniques
n'h state onwards. Suppose we have a description of all possible behaviours of
We will now give the syntax and the meaning of LTL formulashe system as a finite state-automatonAg (finite state au-
», by defining which traces satisfy them. The syntax of LTL ifomata accepting infinite words rather than finite words, see

given by the following grammar: sectioniVl) We now want to check whether every possible be-
haviour of Ag, is a model of the desired propertyi.e. satisfies
pu=true|p|-p|p1Vpa| OplpiUps the desired property), hence the name: model-checking. The
automaton-based approach constructs for the progeriynw-
The meaning of LTL formulas is: automatonA,, that accepts precisely the traces that satisfy
« true holds for any trace; This automaton is called a tableau-automaton.
« the formulap refers to the atomic propositign and asserts The model checking problem can be solved by solving the
that it is true in the first state of the trace; language inclusion problent' satisfiesy if L(Ag) € L(A,).
« — holds for a trace if the formula does not hold; This can be done in a time proportional to the product of the

o 1 V ¢y expresses that either formula or formulag, holds number of states afls and A, (by constructing the automaton
for the trace; for —p rather thanp, and checking the product automaton for

emptiness.) The number of states of the automatgrhow- necessary for example to model a system in such a way that its
ever, is generally exponential in the size of the description sfate space remains within reasonable bounds. Moreover, some
the system. The size of,, is exponential in the length of theexpertise is required to express the desired properties in some
formula. For complex systems, this check is often too hard fiorm of formal logic and to select and apply specialised tech-

perform in reasonable amounts of memory and time. niques for state space reduction.
Some techniques have been developed to reduce the compleGuaranteed to find errorsSince an exhaustive verification
ity of the model-checking problem: will search the entire state-space for errors, it is guaranteed to

« Abstraction The model can sometimes be made more abstréicd all errors in the model. This is however not necessarily true
by removing processes or data that do not influence the propdasthe real-world system that is being verified. Since the model
to be checkedd]. This is done preferably in such a way that thés an abstraction of the system, the system might show errors
result can be proven to hold also in the original system, buttisat the model does not (and possibly vice versa), or worse, the
often based on the judgement of the designer. model might not adequately capture the real behaviour of the
« Symbolic model checkingThis is a technique in which the system. Furthermore, only those requirements are verified, that
state space is not explored explicitly. Sets of states, rather tlaaa captured by the specified formal requirements. It is often
individual states are represented symbolically, for example Hifficult to completely specify, which behaviour is correct or in-
BDDs as used in SMVf] . If the state space contains muclcorrect. Some requirements cannot be expressed by the formal
regularity, this representation can be compact. logic at all. Finally, this guarantee is only useful if the verifica-

« Partial order reduction Sometimes the specific order oftion algorithm terminates within a reasonable amount of time.
events in the system is unimportant. It is then not necessary to

explore all possible orders. This is especially the case if the tréh2 Simulation Techniques

sition system originates from interleaving relatively independentq compare exhaustive verification techniques with simula-
concurrent processes. This is used for example in Gpin [tjons, we will now discuss some properties of simulations.
Another technique to reduce the problem is non-exhaustiyé\on-exhaustive. Simulations typically start exploring the
verification. The above-mentioned techniques reduce the verifjz;e space from the initial state, without remembering which
cation problem while achieving the same result, deciding if th@,ies have been visited before. It is therefore impossible to
system satisfies the formula. But when even these techniquegdgy when all states have been visited. It will rely on proba-
not reduce the problem enough to be able to perform the chggfy 1o explore new states instead of ones it has seen before.

in a reasonable amount of time, one has to settle for a seaff{yrefore it will in general not be able to explore the entire state
through a part of the state space that is as large as possible. Thig-q.

is done for example in SPIN's supertrace algorilinffatrace " poor coverageThe chance of finding an error by simulation
is found, that does not satisfy, one knows thap does nothold jepends heavily on the type of err@|.[Some errors occur in

for the system. If such a trace is not found however, one cannQgge fraction of the entire state-space and can easily be found

be sure that it does. in a simulation. Other errors may depend on a specific order
of events and manifest themselves only in small corners of the
large state space. For certain errors, this may lead to poor cover-
Certain model checking techniques can also be applieddge. Moreover, for some kinds of errors the chances of finding
simulation. Simulation is a popular technique for validation ahem by simulation are extremely small. It is furthermore hard
a design. We will define simulation as a state space exploratignassess the coverage that has been achieved by the simulation.
that does not store the states that have been visited neithereEasy to useSince the size of the state space is not that im-
plicitly, nor implicitly. We will now compare some characterisportant, systems are often modelled more straightforward than
tics of exhaustive verification / model checking and simulatiofiodels intended for verification.
techniques. « No storage of statesSince visited states are not stored, it is
possible to use larger or more detailed models. This makes that
more adequate models can be used, better approximating the
The following aspects apply to exhaustive verification metheal-world behaviour of the system.
ods. « Explores only a single tracé single system simulation gen-
« State space explosiofihe number of states of a system growerates just one of the possibly infinite number of executions of
exponentially with the size of the system. This makes that ethe system. However, within one such infinite trace the same
haustive exploration of the entire state-space (even symbolicgligce of behaviour often occurs more than once. This way in
or using other reduction techniques) is only feasible for relaffect multiple execution paths are verified, instead of just one.
tively small systems. Simulations are helpful during the entire design phase. In the
« Abstract models have to be uséd a consequence of the firstearly phases, when there are still a lot of errors in the design,
characteristic, very abstract models of the system under verifiese errors are found with less effort than using exhaustive ver-
cation have to be used. This leads to the danger that this mafleation methods. Later on, it is helpful to study detailed sys-
might not capture all behaviour of the actual system and migletn models by simulation and gain insights in the system to be
not exhibit all errors contained in the concrete system. designed. Exhaustive verification methods can then be used to
« Hard to use and understandt requires a substantial amounttackle the hard problems, building dedicated abstract models fo-
of expertise to use formal verification methods. This expertisedassing on these problems.

B. Model checking techniques and simulations

B.1 Exhaustive verification

V. TABLEAU CONSTRUCTION B. Construction ofd,,

In this section we will describe the basic ideas behind the con-We want to construct aw-automaton that accepts precisely
struction of thew-automaton from an LTL formule [3], [4]. all traces that satisfy a given formula The alphabet of this
The formula specifies a requirement on the entire (infinite) trasatomaton will consist of propositional formulas, expressing
of the system. After inspection of some finite prefix of this constraints upon the observable features of the system’s current
trace, the state of the automaton represents the requirementsgtzge.
the remaining part of the trace must satisfy. The automaton will The basic concept behind this construction is that the LTL for-
do this by splitting the formula in a requirement on the curremula can be rewritten in a normal form, which separates require-
system state and a requirement on the system’s trace from nients on the current states and requirements on the remainder
next state onwards. For example if a formula states that the sybthe trace. Every formulg can be written in the following
tem must never reach some control locatipthis requirement form:
can be split into the requirements that the system must not be

in location! at the current state and it must never reaghthe e=p1i A APL, ANO(P11 A AP1m,)V
future.

p271/\.../\p27n2 /\Q(gﬁgylA.../\@vaQ)\/...\/
A. w-automata Dk.1 A /\pk,nk A O (ka,l AL A Sﬁk,mk)

w-automata are finite state automata, with the exception thata e allp, ; are atomic propositions ang; ; are subexpres-
they do not accept finite words, but infinite word8JJ[In or- gjons of thleormuIap. "

der to achieve this, the acceptance conditions need to be defineflis means that a trace can satisfy propestyn one of
differently. Traditional finite state automata have final states apdg;fterent ways, namely by satisfying; 1 A ... A pin, A
accept a finite word, if the automaton resides in such afinal st (pi1 A ... A @im,) for somel < i < k. This is f)os-
after consuming the input word. Ap-automaton will neverfin- gipja if the current state of the system satisfies the constraint
ish consuming an infinite word. Therefore the acceptance congli- 1 ., and the remainder of the execution will satisfy
tion requires that the automaton moves through some accepii lq/\ _ «/\Cpi,;m- There will be edges in the automaton from the

state infinitely often. state representing the executions satisfyintp the state repre-

We will not consider acceptance conditions in this paper. '%%nting the executions that satisfy; A ... A @; .. There will

we will see later, they will play no role when applied to simpe sych an edge for every observation that is consistent with the
ulations. w-automata without acceptance conditions are SOMgsnstraint on the current staig; A ... A p;., .

times called ‘safety automata’. A safety automaton accepts anya formula can be converted to normal form, by using the fol-
infinite word, for which it can always consume the next i”p%wing rewriting rules:

symbol.
A (non-deterministicjo-automatord is a tuple(@, Qo, =, A). (o1 Vipa) — 1 A
It consists of a finite set of stated, a set of initial states = (p1 Aga) — -1 Vg
Qo C Q, an alphabet: and a labelled transition relatioA. -Q¢ — O-p
The automaton accepts a wotd = o0z ... (0; € %) if 01 A (2 Vp3) — (o1 Ap2) V(1 A p3)
there is a pathqi¢2 . . . through the automatom € Q), start- (p1Vp2) ANps — (p1Aw3) V(P2 Aps)
ing from an initial stateqy € Q) and such that there is always O(p1 V) — Op1VOp2
an edge from a state to the néut, 0y, gi+1) € A. Op1 AOp2 — Of(p1 Ag2)
Figureld shows an example of arautomaton, accepting all ©1Ups — 02V (01 AO (p1Up2))
infinite words consisting of the symbalsandb, such that there = (p1Ups) — =2 A (1 VO (1 Ups))

are never twa’s next to each other. In the figure, circles rep-
resent the states @§. The initial states (in this case only one) For all states that are thus reachable fromthe same pro-
have a small arrowhead. The transition relation is represented¥@ure can be followed. The constraint they represent can be

arrows from one state to the next, labelled with a symbol fromfitten in normal form, leading to new edges to new or existing
the alphabet. states. One can show that the number of states that will be cre-

ated this way is limited, and consequently that this construction
b will terminate.

One can show that the automaton obtained by this procedure
accepts atrace precisely if it satisfies all safety aspects of the for-
mula it was constructed for. This means that a traiseaccepted
by A, iff every prefix of s can be extended to a full-trace that
satisfiesp.

C. Example
Fig. 3

As an example we will now show the construction of the
AN w-AUTOMATON

tableau automaton for the following formula:

O(p = (pUq))

it expresses that “as soon as some propgeriy true, it must used to find unexpected unwanted behaviours, even though it

remain true until; becomes true”. will never prove that such behaviour cannot occur.
Using the abbreviations = O (p = (pUgq)) andy = pUg, Using satisfiability analysis on the automaton before using it
this formula can be written in normal form: during simulation, states having a unsatisfiable constraint can
be removed. This way, one can guarantee that as soon as the
p=-pAOeVaNOpVpAO(pAY). simulation has witnessed a prefix of the trace that can no longer

. o . ead to satisfaction of the constraint, this can be detected. It is
This leads to two edges from the initial state representing the L : . .
. . . . one by maintaining during simulation, a set of states, that the
requirementy to itself and one edge leading to the requirement ’ : ;
. . . . “tableau automaton can be in after acceptance of the prefix. This
» A . To complete the automatom, A 1) is again written in :) .
normal form set will be empty as soon as the prefix can no longer satisfy the

requirement.
pAY=qAOpVpAO(PAY). VIl. RELATED WORK

Figurel4 shows the corresponding automaton. Note that theThe first construction of an-automaton from an LTL for-
property is not entirely a safety property, it also states that afigula was done by Wolper, Vardi and Sis{8).[It was done by
p has become trug; should also eventually become true. Thigonstructing two automata, one to check state to state consis-
aspect of the formula is not covered by the safety automatesncy (safety) and one to check that all eventualities (liveness
since the automaton can remain in the state forever. requirements) are satisfied. The tableau automaton was then
, created by taking the product of these two automata. A more
efficient on-the-fly construction is presentediih [
The verification of temporal logic requirements in simulations
(P)Va @ is also addressed 9] In this paper a three valued logic is
presented interpreted over finite traces, if the evaluation of the
g formula is not determined by the prefix, the outcome is defined
=CpD (pUa)) as ‘unknown.” Although the same separation of requirements on
w=pUq the current system state and the future execution is used, formu-
las are manipulated directly during simulation, rather than using
Fig. 4 tableau-automata.

A TABLEAU AUTOMATON OF [J (p = (pUq)) There are also some connections to checking temporal pre-
conditions in object-oriented databases, a&ll).[Here, a pre-
condition for a database transaction can be expressed as a past-
time temporal logic expression. It is similar to simulation be-

VI. USING THE TABLEAU IN SIMULATIONS cause it is evaluated in a single forward run of the system. The

One will never finish the inspection of an infinite trace, sincdifference is, that it only deals with finite traces, since the pre-
the system is potentially infinite-state and visited states are §8f'ditions are about the past and the database was started at
stored. At any given time during a simulation, one has wiEome pointin history.
nessed dinite prefix of aninfinite execution of the system. This
has some consequences for the types of properties that one can
check. Violation of liveness properties can never be detected. AFuture work on his topic will include a definition of a full
liveness property is a property that asserts that “something gd@aguage, adapted to the object-oriented paradigm of POOSL
will eventually happen.” It cannot be detected because at ayd including a way to specify the atomic propositions. The
moment, the “good thing” may still happen in the future. Safetjiethod must be implemented in the existing simulation tools
properties can never be established with certainty, but it canfe the language POOSL. We will furthermore investigate the
detected when they are violated. A safety property is a propepgssibilities to verify quantitative timing requirements, using a
which states that “something bad will never happen.” Since tR#nilar construction in which some real-time logic based on LTL
verification is usually aimed at finding error$J), the method is is translated to a timed-automaton.
most useful for checking safety properties. Properties can have
both safety and liveness aspects at the same tirftigy for ex-
ample has the safety aspect, that it will never be the casethat Model-checking techniques can be used to evaluate certain re-
no longer holds before holds. On the other hand it expresseguirements expressed in LTL, during a system simulation. Itis a
the liveness aspect, thatvill eventually hold. kind of non-exhaustive verification, exploring a single execution

Summiarising, by inspection of a finite prefix of a trace ongath instead of all possible execution paths. LTL requirements
can never detect that a liveness aspect is false and one can nesetranslated ta-automata. These automata run together (‘in
detect that a safety aspect is true. One can however sometitoe&-step’) with the simulation and can detect when the execu-
detect that a liveness aspect is true (for that particular tragen can no longer satisfy the requirement that it represents.
only). And most importantly, one can detect that a safety prop-Because the simulation does not search through the entire
erty is violated (for that particulat trace, and thus the propersyate space and does not have to store any states, it does not
does not hold for the system itself.) So simulation is mosthjirectly suffer from the state space explosion. Drawbacks are

VIIl. FUTURE WORK

IX. CONCLUSIONS

that it will not find all errors, it gives little information about
coverage and the actual coverage figures are influenced by state
space explosion. The method is easy to use and applicable to
relatively large models. It can be used in all stages of the design
and it can provide a path to exhaustive verification of the really
hard problems.

REFERENCES

[1] G. Holzmann, Design and Validation of Computer Protocpl®rentice-
Hall, Englewood Cliffs, New Jersey, 1991.

[2] P.H.A.V.D. Putten and J.P.M. VoeteBpecification of Reactive Hardware
| Software SystemsPh.D. thesis, Eindhoven University of Technology,
Department of Electrical Engineering, 1997.

[3] P. Wolper, M.Y. Vardi, and A.P. Sistla, “Reasoning about infinite compu-
tation paths,” inProceedings of 24th IEEE Symposium on Foundation of
Computer Science, Tuscatb83, pp. 185-194.

[4] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper, “Simple on-the-Fly auto-
matic verification of linear temporal logic,” iRroc. IFIP/WG6.1 Symp.
Protocol Specification Testing and Verification (PSTV95), Warsaw Poland
June 1995, pp. 3-18, Chapman & Hall.

[5] D. R. Dams,Abstract Interpretation and Partition Refinement for Model
Checking Ph.D. thesis, Eindhoven University of Technology, P.O. Box
513, 5600MB Eindhoven, The Netherlands, july 1996.

[6] K.L.McMillan, Symbolic Model Checkindluwer Academic Publishers,
Norwell, 1993.

[7] Colin H. West, “Protocol validation in complex system€dmputer Com-
munication Revieywol. 19, no. 4, pp. 303-312, 1989.

[8] Thomas A. Henzinger, “Some myths about formal verificatioACM
Computing Surveysol. 28, no. 4, pp. 119, December 1996.

[9] W. Canfield, E.A. Emerson, and A. Saha, “Checking formal specifications
under simulation,” irProceedings International Conference on Computer
Design. VLSI in Computers and Processdres Alamitos, CA, USA,
1997, pp. 455-460, IEEE Computer Society Press.

[10] S. Schwiderski, T. Hartmann, and G. Saake, “Monitoring temporal pre-
conditions in a behaviour oriented object model,” Tech. Rep. Informatik
Berichte 93-07, Technische Universitaet Braunschweig, November 1993.

	Introduction
	POOSL models
	Temporal Logic
	Model Checking
	Model checking techniques
	Model checking techniques and simulations
	Exhaustive verification
	Simulation Techniques

	Tableau Construction
	-automata
	Construction of A
	Example

	Using the Tableau in Simulations
	Related Work
	Future Work
	Conclusions

