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  V (ZH)



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. J.C.M. Baeten
en
prof.dr. W. Damm.

Copromotor: dr. R.T. Gerth.

The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics).

���������
	���	�
���������
�������
����������������������

�� ���
�!�
	�	�"

��#�$&%'�(��)�*�*�+
%-,�)�*/.)

	
0�%21�3�#�4215+�*�1�)63
7�3�)61�#61�+28�*9#�*�:�7�#63�1�+�1�+�8�*93�)
;�+�*�)�$�)�*�1<;�863<$�8
:�)�=
4�>�)�42?�+�*�@!A���)�*�*�+
%-,�)�*/.)���#�$&%CBD�9��+�*�:6>�8�E�)�*GFH��+I*�:6>�86E�)�*
J *�+�E�)�3�%�+�1�K�8
;L��)�4�>�*�8�=
86@�KMBN�5��=�=OB
�
>�)�%�+6%-��)�4�>�*�+
%�4�>�) J *�+�E�)63�%�+�1�)�+�1<��+�*�:6>�8�E�)�*/B ��P�+�1
>Q+�*�:�)6RO�(3�)
;MB
��P�+�1
>S%�T�$�$�#�3�K5+�*U�
T�1�4�>/B
��V����UW�X��6Y�Z�[��
X
X�\�Z���]
V�T�0�^�)�421<>�)�#6:�+�*�@�%_F`;�8632$�#�=a$�)616>�8
:�%<A<7�3�86@
3�#�$UE�)�3�+2;�+
4�#61�+�8�*LA
$�8
:�)�=!4�>�)�42?�+I*�@

Copyright c
b

1996 by Dennis Dams
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven.
c %�+�*�:
:�d c +�*eBf1
T�)�Bg*�=

Cover: P.C. Mondriaan, Compositie met rood en blauw (1936).

printed and bound by CopyPrint 2000, Enschede.



Contents

Acknowledgements vii

1 Program Analysis and Verification 1
1.1 Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Program Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Program analysis and Abstract Interpretation . . . . . . . . 8
1.4.2 Program verification . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13
2.1 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Lattice and Fixpoint Theory . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Functions over posets . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Galois connections . . . . . . . . . . . . . . . . . . . . . 17

2.3 Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Nextless fragments . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Interpretation of CTL∗ . . . . . . . . . . . . . . . . . . . 22
2.4.2 Behavioural preorders and equivalences . . . . . . . . . . . 25
2.4.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . 27

3 Abstraction and Preservation 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Abstract Interpretation . . . . . . . . . . . . . . . . . . . 30
3.1.2 Overview of the chapter . . . . . . . . . . . . . . . . . . . 34

3.2 Preservation Results . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Frameworks for weak preservation . . . . . . . . . . . . . . 35

iii



iv C

3.2.2 Strong preservation . . . . . . . . . . . . . . . . . . . . . 49
3.3 Abstract Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Approximation of fixpoints . . . . . . . . . . . . . . . . . 51
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Abstract Interpretation of Nondeterministic Systems 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Overview of the chapter . . . . . . . . . . . . . . . . . . . 58
4.2 Abstract Kripke Structures . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Valuation of literals . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Abstract initial states . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 Abstract transition relations . . . . . . . . . . . . . . . . . 62

4.3 Abstract Interpretation of Programs . . . . . . . . . . . . . . . . . 67
4.3.1 Example: dining mathematicians . . . . . . . . . . . . . . 69

4.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 Abstract interpretation gives approximations . . . . . . . . 79
4.4.2 Dining mathematicians continued (I) . . . . . . . . . . . . 82

4.5 Optimal Abstract Interpretations . . . . . . . . . . . . . . . . . . 83
4.5.1 Conditions on the abstract domain . . . . . . . . . . . . . 83
4.5.2 Adapting the abstract interpretation . . . . . . . . . . . . . 87

4.6 Computing Approximations . . . . . . . . . . . . . . . . . . . . . 87
4.7 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.8 Refinement of Abstractions . . . . . . . . . . . . . . . . . . . . . 92

4.8.1 Abstraction families . . . . . . . . . . . . . . . . . . . . . 93
4.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9.1 Comparing the simulation-based and Galois-insertion ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.9.2 [KDG95]: An application . . . . . . . . . . . . . . . . . . 107
4.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Logical Partition Refinement 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.1 Overview of the chapter . . . . . . . . . . . . . . . . . . . 119
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Companions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 A Generic Splitting Algorithm . . . . . . . . . . . . . . . . . . . . 126
5.5 Splitting for ∀CTL . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . . 130



C v

5.6 Splitting for ϕ ∈ ∀CTL . . . . . . . . . . . . . . . . . . . . . . . 136
5.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Logics, Equivalences and Behavioural Partition Refinement 145
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.1 Logics and equivalences . . . . . . . . . . . . . . . . . . . 147
6.1.2 Equivalences and partition refinement algorithms . . . . . . 148
6.1.3 Overview of the chapter . . . . . . . . . . . . . . . . . . . 148

6.2 CTL∗, CTL, and Bisimulation . . . . . . . . . . . . . . . . . . . . 149
6.3 Nextless CTL∗ and CTL . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.1 The Next operator . . . . . . . . . . . . . . . . . . . . . . 152
6.3.2 CTL∗( � ), CTL( � ) and stuttering equivalence . . . . . . . 155

6.4 Partition Refinement Algorithms . . . . . . . . . . . . . . . . . . 163
6.5 Flat CTL and CTL∗ . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.5.1 flat−CTL( � ) and flat equivalence . . . . . . . . . . . . . . 170
6.5.2 flatCTL∗( � ) and flat star equivalence . . . . . . . . . . . . 173

6.6 Partition Refinement for Flat Logics . . . . . . . . . . . . . . . . . 178
6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 180

7 In Conclusion 183
7.1 Research Goal & Approach . . . . . . . . . . . . . . . . . . . . . 184
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2.1 Weak preservation . . . . . . . . . . . . . . . . . . . . . . 186
7.2.2 Strong preservation . . . . . . . . . . . . . . . . . . . . . 187

7.3 Looking Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Bibliography 191

Samenvatting (Summary in Dutch) 211

Index 215

Curriculum Vitae 219





Acknowledgements

According to the Dutch regulations for doctorates, the dissertation may contain mod-
est words of thanks. But how can I remain modest on this point? There are so many
people who have contributed to this thesis in one way or another, and many of them
were so very important to me.

First of all, there is Rob Gerth, my supervisor, teacher, and co-author, who is
always available to answer my questions. His broad perspective of computer science,
and far beyond, has helped me many times to make the right choices — but he has
never forced anything upon me. Rob: I hope we can continue our cooperation in the
future.

I would like to thank Jos Baeten for being my first promotor, keeping an eye on
my progress, and thinking about the future when I was too busy with the present.
Most likely he is going to be my boss for the time to come too.

It is an honour to have Werner Damm as my second promotor. In December
’93, he invited Rob and me to his department, where I learned the inspiring effect
of a well organised “bull session”. I joined the sessions half a year later again —
while I wasn’t even invited —, and I hope there will be more occasions to travel to
Oldenburg.

Loe Feijs was the perfect reader. He must have invested vast amounts of time in
correcting spelling and style, pointing out inclarities, and uncovering mistakes in the
darkest corners of proofs. During the past weeks he has generously let me use his
room — which I did, up to the last square inch.

Over the years, Susanne Graf has never failed to read my articles and to provide
extensive feedback. Often she knew what I was doing, or what I was trying to do,
before I did so myself. And when I look through all those messages that have piled
up in my e-mail folder over the past months, discussing my thesis, I am convinced
that Susanne is the most patient person I know.

Like nobody else, Orna Grumberg knows how to make hard work feel like sheer
fun. Thanks to Ed Clarke, I had the opportunity to work with her while visiting

vii



viii A

CMU in the summer of ’92. Those two weeks were to be the inspiration for the
largest part of this thesis. I hope we can work, eat cakes, and dance many more times
together.

Mike Codish is not directly involved in the research of this dissertation. Yet, he is
responsible for much of the knowledge and many of the skills that were so important
in its writing. But also has he never failed to be a great advisor in more personal
affairs.

There are a number of people who have contributed to this thesis by providing
useful feedback, pointing to related research, or just answering my many e-mailed
questions. Mentioning Rob van Glabbeek, Anthony McIsaac, Purush Iyer, Peter
Kelb, Doron Peled, Amir Pnueli, Joseph Sifakis, Howard Wong-Toi, Sergio Yovine, I
only realise that there are many more. Thank you all.

During all those years, my collegues have provided the climate without which
I would not have enjoyed being an “AIO”: Alda Bouten, Arie van Deursen, Bart
Knaack, Chris Verhoef, Hans Mulder, Herman Geuvers, Jozef Hooman, Kees Hui-
zing, Michel Reniers, Peter Peters, Pleun van der Steen (who probably doesn’t remem-
ber his role in my decision to become a scientist), Rob Nederpelt, Roel Bloo, Roland
Bol, Ruurd Kuiper, Sjouke Mauw, Twan Basten, Twan Laan, and Wojtek Penczek.
In particular I’m grateful to my roommates over the years, Jan Joris Vereijken, Javier
Blanco, Paula Severi, Ping Zhou, and Tijn Borghuis, for the good company, and the
discussions about work or completely different matters.

Starting March ’95, I have spent one year in the Applied Logic group at Utrecht
University. Alex, Albert, Bas, Henri, Jaco, Jan, Jan, Kees, Kees, Marc, Marco, Peter,
Wan: thanks to all of you, every day has been worth the trip to Utrecht. Special
thanks go to Jan Friso, for pushing me to finish, for which he unexpectly turned out
to have another good reason. To Karst, for keeping the hardware and software going.
And to Freek, for being a tireless source of information about fonts. Together with
Niene, whom I met during the last weeks in Utrecht, I wanted to try all fonts and
style packages that we kew, while Freek kept installing them.

My family and friends have always been there, to listen to me or endure me,
understanding or making me understand.

To my wife and best friend, Lieve: bedankt voor al je geduld en steun. Het ei is
eindelijk gelegd — en het is lente.

Finally, there are two people to whom I owe most of what I know and what I am.
Pa & ma: bedankt!

Eindhoven, May 1996



Voor mijn ouders





Chapter 1

Program Analysis and Verification

Verification is the process of deciding whether a program satisfies a given
specification or property, and should yield a “yes” or “no” answer. On
the other hand, analysis seeks to infer any information about a program
that may be useful for a certain purpose, but does not impose an exact
minimum on the amount of information to be obtained. This thesis is
an attempt to tackle the state-explosion problem, that occurs when the be-
haviour of complex programs has to be investigated, by considering an ab-
straction of this behaviour. We argue that in the context of program analy-
sis, weak preservation of the abstraction’s properties is sufficient, while for
program verification, properties need to be strongly preserved. We pro-
pose to use Abstract Interpretation for the construction of weakly preserv-
ing abstractions, and Partition Refinement for the construction of strongly
preserving ones.
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2 P A  V [1.1

1.1 Program Verification

Computer programs should be correct. In industry, testing has traditionally been the
main debugging technique. For example, “beta-releases” of a program are sent out to
a group of people who are willing to use it and report on errors encountered. As soon
as the rate of such error reports has decreased to an acceptable level, the program
is put on the market. Other programs, like microprocessor code implemented in
hardware1, are often automatically tested by feeding them sequences of inputs and
comparing the corresponding outputs to the desired ones. Because such components
have to be highly dependable, efforts are made to design such simulations in such a
way that as many of the (combinations of ) functions of the processor as possible are
drawn on. However, exhaustive testing is usually infeasible as the number of possible
execution sequences is too large (or even infinite). Also, the specification of what are
the desired output patterns may be very difficult. Such specifications tend to result
in bulky documents in which ambiguity, inconsistency and incompleteness are hard
to pinpoint.

Recent applications increasingly require programs that maintain a continuous
interaction with their environment. Such systems are often embedded, meaning that
they are an integral part of an environment that consists of some physical process. An
example is a controller of a chemical plant, which monitors and influences processes
taking place in reactors through sensors and actuators. Typically, these programs
consist of many separate processes that communicate with each other by message
passing or memory sharing. Such programs are called reactive, in contrast to the
“old-fashioned” view of a program as something that takes some input, computes for
a while, and then produces a result and terminates. Specifications of reactive systems
also differ radically from those of traditional programs. Instead of implementing
a certain relation between input and output, such systems are required to satisfy
properties like safety (certain situations may not occur), liveness (situations have to
occur), and constraints involving time and probabilities. The high complexity of
reactive systems together with the often disastrous consequences of malfunctioning
turns their specification, design and verification into an intricate undertaking.

In order to overcome the problems mentioned above, the scientific community
has proposed the use of formal methods. This term covers all approaches to specifi-
cation and verification based on mathematical formalisms. Their aim is to establish
program correctness with mathematical rigour. Every formal approach to program
correctness has three basic ingredients:

1In this thesis, the word program has a very general meaning and may denote, e.g., an algorithm
written in PASCAL, but also a robot controller implemented on a chip, or a distributed airline reserva-
tion system.
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• A mathematical model of the program.

• A formal language for expressing the specification.

• A methodology to establish whether the model of the program satisfies the
specification.

Most approaches to formally establishing the correctness of programs can be classified
according to a number of categories which are explained below.

A-priori/a-posteriori Verification of a given, complete program is called a-posterio-
ri verification. Alternatively, a program may be designed hand-in-hand with a proof
of its correctness — which we refer to as a-priori verification. In practice, this di-
chotomy is too simple. A program may be built up hierarchically while the cor-
rectness of the building blocks is established before combining them. A-posteriori
verification of the parts then is part of a-priori verification of the whole. Also, the
advent of high-level programming languages that encourage prototyping of programs,
and the development of executable specification languages render a clear separation
more difficult.

What is important is that the correctness of programs be established at an early
stage in the development phase, so that errors can be corrected without too much
effort.

Proof-based/model-based In proof-based or syntactic methods, the notation of a
program in some programming language is taken to be its model, while the specifi-
cation is expressed in some powerful formal language. The meaning of elementary
programming-language constructs is expressed by axioms, and that of larger con-
structs by inference rules in some proof system. The designer proves correctness by
constructing a proof within this system. In the notation of logic, denoting the pro-
gram by P and the specification by ϕ, this would be written as P ` ϕ.

In model-based or semantic methods, the model of a program consists of a de-
scription of all its possible behaviours in a mathematical structure like a transition
system. The correctness criterion is a formula in a logic that is interpreted over such
structures (e.g. temporal logic). Proving correctness then boils down to showing that
the formula is satisfied by the model, i.e. P |= ϕ is demonstrated. As the size of the
model is potentially of the same order of magnitude as the total number of states that
a program has, model-based verification easily runs into the same “state-explosion”
problem as exhaustive testing.
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Manual/automatic Here, the question is whether the designer carries through the
proof by hand, or a computer does this automatically. Approaches that lie somewhere
in between these extremes are often called computer-assisted. Typically, proof-based
methods are more manual, while model-based methods are intended to be automatic.

Full verification/property verification Even if a specification can be written that
captures all desired aspects of a program (not only functional ones but also those
concerning efficiency, appearance, etc.), it probably is too much work to check it all.
Rather, one is often more interested in checking certain aspects of the behaviour, like
deadlock freedom, responsiveness, etc.

1.2 Program Analysis

Data-flow analysis (also static or compile-time analysis) is the name given to a collec-
tion of diverse methods aimed at the investigation of specific aspects of a program’s
behaviour. The location of errors is only one of the purposes that such analyses may
serve. Another aim is the optimisation of programs through, e.g., dead-code detec-
tion or strictness and binding analysis (in functional languages). Also, information
may be extracted that is useful in the compilation of programs, e.g. the identification
of independent fragments of code that may be executed in parallel. Although their
goals may be more diverse, data-flow analyses can be given a place in the taxonomy
presented above. They are a-posteriori, model-based, automatic and property-aimed.

In [CC77], a unified formal framework for data-flow analyses is proposed, called
Abstract Interpretation. According to this theory, every analysis can be viewed as a
“non-standard execution” of the program, where concrete data values are replaced
by symbolic descriptions of data and the operators of the programming language are
given corresponding non-standard interpretations. Many applications of Abstract
Interpretation have focussed on the analysis of safety (or invariance) properties, that
hold in all states along all possible executions of a program.

When comparing data-flow analyses to program verification methods as discussed
in the previous section, we note a difference in “attitude”. In verification, the prop-
erties to be checked are stated in advance. They form the specification that has to be
validated against the program, resulting in one of two answers: “yes” or “no”. On the
other hand, while in a program analysis the domain of properties to be investigated
is known beforehand (e.g. “possible deadlocks”, “definite aliasing of variables”, etc.),
which specific information is inferred from a program is of less importance. One
might say that verification seeks to answer specific questions, while analysis seeks to
find any answers to less specific questions. The reason for this is the different use
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of the results of each of the methods. In verification, the answer should eventually
be “yes” and certify the correctness of the program. In analysis, any of the answers
found can be employed to improve the program (e.g. by removing errors, by opti-
mising the code, by parallellising its execution, etc.), but many questions may remain
unanswered.

1.3 Scope of the Thesis

This thesis deals with both the topics introduced above, analysis and verification,
applied to the correctness problem of reactive programs. One assumption is that
model checking is used to establish the validity of properties over programs; this is an
a-posteriori, model-based, automatic method for property verification and was intro-
duced by Queille and Sifakis in [QS82] and independently by Clarke and Emerson
in [CE81]. An alternative approach, often called model checking as well, based on
inclusion between automata over infinite words, was developed by Vardi and Wolper
([VW86]) and by Kurshan ([Kur90], also see [Kur94]). A closely related method
is the tableau-based approach, see [LP85, PZ86]. Model checking has been quite
successful in the verification of finite-state programs like protocols and controllers.
Some reports may be found in the “Applications” sessions of the CAV conferences
([Sif89], [CK90], [LS91], [vBP92], [Cou93], [Dil94], [Wol95]). Model checking a
program (in the narrow sense) involves two distinct phases, depicted in Figure 1.1a.
First, a given notation2 P of the program has to be “unfolded” into a model � — this
is called (model) construction. This is formalised by a mapping � called interpretation.
Second, the property ϕ of interest has to be checked over this model: � |= ϕ.

It is no surprise that in applying this method, the abovementioned state-explosion
problem, visualised in Figure 1.1b, forms the limiting factor. Being oriented on ver-
ification of reactive properties, the sort of programs that model checking is applied
to often consist of several concurrent processes whose execution speeds are loosely
related at most. As a result, the set of possible behaviours of the program as a whole
contains a sequence for every possible interleaving of actions of the individual compo-
nents. It is not hard to see that the number of such sequences may grow exponentially
in the number of concurrent processes. In a similar fashion the presence of data val-
ues contributes to the problem. Every extra bit of memory that a program may access
and every extra bit of width on a data channel potentially doubles the size of the
state space. However, for many properties that one is interested in, the differences

2We use the term program notation or program text (program for short) for a representation (of an
algorithm) written in some programming language. The word specification is reserved for correctness
criteria, while model and denotation will, from now on, be used for a mathematical structure represent-
ing the behaviour of a program.
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Figure 1.1: Model checking and abstraction.
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between various interleavings or between the precise values sent over a channel are
immaterial. Such aspects may then be abstracted in such a way that the size of the
model is drastically reduced, but the property is still safely verified. This is illustrated
in Figure 1.1c. Ideally, the model should be reduced to an abstraction

�
on which an

efficient check can be performed, but under the condition that satisfaction of ϕ over
�

implies satisfaction over � . Note that we do not require that negative results carry
over as well: if ϕ is not satisfied over

�
, then this does not imply that this is also the

case for � . It may equally well be that too much information was abstracted away
from the concrete model. We call this implication in one direction weak preservation
(of property ϕ under the abstraction).

Preferably, the full model � is not constructed at all during this — such an inter-
mediate phase would still be the bottleneck. Rather, we would like to have a mapping
from programs directly to the abstract model

�
: an “abstract interpretation function”

α � , see Figure 1.1d.
Precisely these two aspects, the weak preservation of properties and the construc-

tion of abstract models directly from the program notation, are central in the theory
of Abstract Interpretation. The first part of this thesis, to wit, (most of ) Chapter 3
and Chapter 4, deals with these aspects. Chapter 3 presents a general theory of ab-
straction and preservation. In particular, it offers a systematic overview of the theory
of Abstract Interpretation (Sections 3.2 and 3.3.1). In Chapter 4, Abstract Inter-
pretation is extended to the analysis of reactive properties. In the first part of that
chapter, a notion of an abstract model for reactive programs is introduced that pre-
serves any property expressed in the specification logic CTL∗. Then, it is shown how
such abstract models can be constructed by abstract interpretation of the operations
in a simple programming language, which is introduced for that purpose.

Weak preservation is compatible with program analysis: any property that can be
inferred from the abstract model is guaranteed to hold in the concrete model as well.
However, the absence of a property does not give information. If our goal is the ver-
ification of properties, then we would like the converse direction of the implication
in Figure 1.1c to hold as well. This is called strong preservation (of property ϕ under
the abstraction), see Figure 1.1e. Strong preservation forms the main theme of the
second part of this thesis. Section 3.2.2 indicates the changes to our starting points
if we move from weak to strong preservation. A different paradigm, partition refine-
ment, is then introduced in Chapters 5 and 6. Figure 1.2 gives a pictorial roadmap of
the chapter structure.

Origin of the chapters Although part of the material contained in this thesis has
been published in the form of articles, it has been restructured and extended. Chap-
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3. Abstraction and Preservation

5. Logical Partition Refinement

6. Logics, Equivalences and
Behavioural Partition Refinement

4. Abstract Interpretation of
Nondeterministic Systems

2. Preliminaries

Weak Preservation/Analysis Strong Preservation/Verification

1. Program Analysis and Verification

7. In Conclusion

Figure 1.2: Structure of the chapters.

ter 4, with the exception of Section 4.8, is based on [DGG94]. Chapter 5 is a revision
of [DGG93a] and contains some material from [DGD+94] as well, while another
part of [DGD+94] is worked out in Section 4.8. Chapter 6 covers more recent re-
search that has not yet been published. Chapter 3 summarises a series of unfinished
notes that attempt to set up a systematic introduction to Abstract Interpretation.

All general preliminary material has been collected in Chapter 2 to which explicit
references are provided throughout.

1.4 Related Work

References will be given at the end of each chapter. Here, we indicate a few main
lines of research relating to program analysis and verification, and point out some
work that is closest to the subject of this thesis.

1.4.1 Program analysis and Abstract Interpretation

Data-flow analysis has traditionally been aimed at the optimisation of programs. Typ-
ical applications include dead-code detection, type checking and inference, perfor-
mance analysis, and partial evaluation. Furthermore, in the field of program cor-
rectness it has been used, for example, to prove termination and discover inductive



1.4] R W 9

invariants. Literature on these subjects can be found through the bibliographies pro-
vided in [CC77] and [AH87]. [CC77] is the seminal paper that introduced Abstract
Interpretation as a unifying framework for data-flow analyses. Since then, it has
become particularly popular in the fields of functional and logic programming, the
main reasons being (a) the uniform structure and mathematically simple semantics
of programming languages in these areas, and (b) the urgent need to optimise com-
pilers due to the relatively low performance of implementations of such languages. A
main issue in functional programming seems to be strictness analysis, while in logic
programming properties of logical variables, like groundness, sharing and freeness
are intensively studied. Besides that, also various applications relating to program
correctness, like debugging and type checking, have been formulated as abstract in-
terpretations. See [AH87], [CC92a], and [JN95] for references.

Recently, ideas from Abstract Interpretation have been applied to correctness of
reactive programs in a number of studies. [CGL92]3 shows how to construct abstract
models that weakly preserve universal4 safety and liveness5 properties expressed in (a
fragment of ) the temporal logic CTL∗. Preservation of full CTL∗ is shown in the
context of strong preservation only. The preservation results are based on the proper-
ties of homomorphic functions, which have a long history in property preservation;
see also Section 4.9. [BBLS92] generalises some of these results by presenting preser-
vation results in the setting of simulations, which may be considered a generalisation
of homomorphisms, and the µ-calculus, which exceeds CTL∗ in expressivity. Weak-
preservation results are presented for the universal and existential fragments of the
µ-calculus, while for the full µ-calculus only a strong-preservation result is given.
The topic of constructing abstract models, which is briefly illustrated in that paper, is
worked out further in the journal version, [LGS+95], where it is also shown how the
abstraction of a parallel system can be constructed compositionally from the abstrac-
tions of the individual components. In [Loi94], this theory is not only worked out
in full detail, the implementation of a tool based on it is described and analysed too.
The theory about preservation between, and the construction of, transition systems
presented in Chapter 4 of this thesis is based on [DGG94], presenting material that
was developed independently from [BBLS92, Loi94]. That paper focusses on the
definition of a notion of abstraction of transition systems that preserves properties
from full CTL∗. The relation between a concrete and abstract systems is defined
in terms of a Galois insertion, in a way that is less general than the approach based
on simulation relations, but more general than homomorphic functions. The ad-

3A journal version appears as [CGL94].
4A property is called universal iff it expresses that something holds along all possible executions of a

program.
5A liveness property expresses that something happens eventually.
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vantage of this Galois-insertion approach is that notions of precision and optimality
can be captured, allowing for a better distinction between the quality of abstractions
and of construction methods. Another advantage is that weak preservation of both
universal and existential properties can be combined within a single notion of abstrac-
tion, without necessarily having strong preservation, which would limit the maximal
reduction possible. [DGG93a] and [DGD+94] investigate approaches to the con-
struction of strongly preserving abstractions for fragments of CTL∗, the former from
a more theoretical and the latter from a more practical point of view. Chapter 5 of
this thesis is based on [DGG93a], while part of the material in [DGD+94] is worked
out at the end of Chapter 4.

[Kel95] develops preservation results for the µ-calculus in the context of sym-
bolic model checking (see Section 1.4.2 below and 2.4.3). The interpretation of a
µ-calculus formula, which is a set of states, is approximated from below and above.
By combining these dual approximate interpretations, using one for the � -operator
and the other for the � , weak preservation of arbitrary µ-calculus formulae is ob-
tained. This technique is similar to the mixed abstractions of [DGG94] that will
be presented in Chapter 4. Kelb presents an application of these techniques to the
verification of StateChart programs. Part of that work was carried out jointly; see
[KDG95]. An extensive discussion of the results will be given in Section 4.9.2.
Another interesting point in [Kel95] is the generalisation of preservation results to
stutter-insensitive specifications, by forbidding an explicit next-step operator.

[CIY95] also develops preservation results for CTL∗ which are similar to ours.
However, the focus of that paper is on the optimality of abstractions. As the notion
of optimality defined there is a refined version of the one used in this thesis, the
obtained results improve on ours. Another difference is that the construction of
abstract models is not considered in [CIY95].

Application of Abstract Interpretation to verify properties of CCS is described in
[DFFGI95]. A recent paper, [KDG95], reports on progress in the practical applica-
tion of Abstract Interpretation techniques to compositionally construct abstractions
preserving the full µ-calculus. A more extensive overview and comparison can be
found in Section 4.9.

1.4.2 Program verification

For proof-based methods, introductions as well as bibliographies may be found in
[AO91], [Fra92] or [MP92, MP95] for example. The latter books are also recom-
mended for an overview of temporal logic. Model checking was introduced inde-
pendently in [QS82] and [CE81]. It has led to a large stream of both practically
and theoretically oriented articles. Recently, much research has concentrated on
tackling the state-explosion problem, see the two subsections below. In connection
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with the automata-theoretic approach to model checking ([VW86, Kur90, Kur94]),
we should mention the recent developments of [BG93, BVW94], which extend the
method to branching-time temporal logics.

In process algebraic theories ([Mil80, Hoa85, BW90]), the specification of a pro-
gram is usually expressed by another (simpler) program that it has to be “behavioural-
ly equivalent” to. Thus, this is closer to the full verification of programs.

State abstraction in model checking

The distinction between data and control suggests a natural abstraction: in order
to verify control properties, the actual values of data may sometimes be ignored.
Clearly, this is only possible if the program is data-independent, i.e. the data values
do not affect the course of the computation. An example is a simple protocol whose
only task is to transport messages from sender to receiver, without performing any
error checking etc. [Wol86] describes such abstractions. Our approach treats data
and control in a uniform way and hence has a more general applicability. Other
general frameworks for abstraction in the context of model checking, besides those
already mentioned above, are presented in [Sif82, Sif83] (containing much pioneer-
ing research), [Kur90] (“homomorphic reductions”), [Bur92] (in the context of trace
theory, mainly in a real-time setting) and [Lon93] (combined with compositional
techniques).

In Chapters 5 and 6 of this thesis, we study partition refinement algorithms,
which reduce the size of a transition system by constructing the quotient under some
equivalence relation. An overview of other research in this field is given at the end of
those chapters.

Other state-space reduction techniques

Many possible solutions to the state-explosion problem have been suggested, resulting
in a number of research directions. Roughly, the approaches can be divided into
those that are aimed at efficient representations of the full state space, and those which
reduce the state space by abstracting from certain aspects.

A very popular approach in the first category is symbolic model checking , in which
the transition graph is represented by a reduced, ordered binary decision diagram (see
[Bry86]). This is a tree-like structure that is used to, often compactly, represent a set
of bitstrings; BDDs have gained popularity in the field of verification lately — see e.g.
[DJS95, McM93]. That this approach may lead to spectacular results is evidenced by
papers like [BCM+92, MS92b, CGH+93]. Although symbolic model checking has
actually found its way into industry on an extensive scale, it is not a panacea. At best,
it pushes forward the block that is formed by the state explosion — which indeed
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holds for all reduction/abstraction methods. For an overview see [CGL93].
On-the-fly (or: on-line) techniques minimise the memory demands of model

checkers by only expanding those parts of the program that are needed to verify
the given property. Being exposed in e.g. [JJ89, BFH90, FM91], these techniques
have indeed been used before in many verifiers developed by G. Holzmann; see e.g.
[Hol84, Hol91].

An approach from the second category is formed by the partial-order techniques,
which abstract from different interleavings of actions originating from concurrent
components of a program. Originally developed for verification of linear-time tem-
poral logic properties ([PL90, Val90, GW91, JK90, KP92, God96]), this technique
has recently been extended for branching-time properties in [GKPP95].



Chapter 2

Preliminaries

This chapter introduces the mathematical machinery and reviews some
specific notions from computing science that will be used in the rest of
this thesis. The reader may choose to skip (parts of ) it and only return
here if necessary. In order to facilitate this, we provide references to this
chapter in the chapters to come.

13
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2.1 Relations and Functions

Let A and B be sets. A relation R over A × B is defined in the usual way as a
set of pairs; A is called the domain and B the range of R. If A = B, then R is
sometimes called a relation on A. In the rest of this section, R ⊆ A × B. We often
write R(a, b) for (a, b) ∈ R, or also sometimes aRb, e.g. in a → b when→ is a
transition relation. When R is functional and R(a, b), then R(a) denotes b. R−1 is
the inverse of R; for relations like ≤, ⊆, etc. the inverses will be written as ≥,⊇, etc.
The composition1 (product) of relations R ⊆ A × B and S ⊆ B × C is denoted
RS and defined as {(a, c) | ∃b∈B R(a, b) ∧ S(b, c)}. If R and S are functions,
then we sometimes write S ◦ R for RS. Totality on the domain and totality on the
range are defined as usual; (plain) totality means totality on the domain (also known
as seriality). Thus, surjectivity of a function means totality on its range. A → B is
the set of all total functions from A to B. Functions are extended to sets pointwise,
unless explicitly stated otherwise.

2.1.0.1 D The pre-image function preR : � (B) → � (A) and post-
image function post R : � (A)→ � (B) are defined as follows.

preR(Y ) = {x ∈ A | ∃y∈Y R(x, y)}

post R(X) = {y ∈ B | ∃x∈X R(x, y)}

The dual functions p̃reR : � (B) → � (A) and p̃ost R : � (A) → � (B) are defined
by p̃reR(Y ) = A \ preR(B \ Y ) and p̃ost R(X) = B \ post R(A \ X). The functions2

pre •R : B → � (A) and post •R : A→ � (B) are defined by pre •R(y) = preR({y}) and
post •R(x) = post R({x}).
The relations R∃∃, R∀∃ ⊆ � (A) × � (B) are defined as follows.

R∃∃ = {(X,Y ) | ∃x∈X ∃y∈Y R(x, y)}

R∀∃ = {(X,Y ) | ∀x∈X ∃y∈Y R(x, y)}

2.1.0.2 D R is a difunctional iff RR−1 R ⊆ R.

Since we always have R ⊆ RR−1 R, R is a difunctional iff RR−1 R = R.

2.1.0.3 D R is image-finite iff for every a ∈ A, post •R(a) has finite car-
dinality.

1Other authors sometimes denote this by R; S.
2We need these functions in the next chapter.
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2.2 Lattice and Fixpoint Theory

2.2.1 Orderings

Let S be a set and v a relation over S × S. v is a pre-order(ing) iff it is reflexive and
transitive, and a partial order(ing) iff it is anti-symmetric in addition. For a partial
ordering v, the pair (S,v) is called a partially ordered set, or poset for short; it is
sometimes denoted S when the ordering is clear. Let (S,v) be a poset, s, s ′ ∈ S
and T ⊆ S. When s v s′ we say that3 s is below s′ and that s′ is above s. s � s ′

abbreviates s v s ′ ∧ s 6= s′. s and s′ are comparable iff s v s ′ or s′ v s. T is
a chain iff any two elements of T are comparable. s (not necessarily in T ) is a lower
bound for T iff s is below all elements of T ; it is an upper bound for T iff it is above
all elements of T . A lower bound for T is the greatest lower bound (glb) for T iff it is
above any lower bound for T . An upper bound for T is the least upper bound (lub)
for T iff it is below any upper bound for T ; it is denoted

⊔
T if it exists. t ∈ T is a

minimal element of T iff no other element of T is below t ; it is a maximal element
of T iff no other element of T is above t . min(T ) and max(T ) denote the sets of
minima and maxima of T respectively. t ∈ T is the least (or bottom) element of T iff
it is below all elements in T ; it is the greatest (or top) element of T iff it is above all
elements in T . ⊥T and >T denote the bottom and top of T respectively. Note that
if T has a least element, min(T ) is a singleton {t}. We write min(T ) = t in such
cases. Similarly for the greatest element.

T is downwards-closed iff for any t ∈ T , whenever some s ∈ S is below t then
s ∈ T . T is upwards-closed iff for any t ∈ T , whenever some s ∈ S is above t then
s ∈ T . T is a principal ideal iff it is downwards-closed and the greatest element of T
exists. T is a principal filter iff it is upwards-closed and the least element of T exists.
T is downward-chain-limited iff for every chain U ⊆ T , T contains a lower bound
for U . T is upward-chain-limited iff for every chain U ⊆ T , T contains an upper
bound for U .

2.2.1.1 L If R ⊆ A × B is total 4 and image-finite, then for every X ⊆ A
there exists a ⊆-minimal Y ⊆ B such that R∀∃(X,Y ).

P Let X ⊆ A. Take C to be the collection of sets Z such that, for every x ∈ X ,
post •R(x) is not contained in Z . For a chain Z0 ⊆ Z1 ⊆ Z2 · · · of sets in C , let Z ∗ be the
union of the Z i . Z ∗ is an upper bound of the chain of sets. We prove that Z ∗ is in C . If Z ∗

is not in C , then there is some x ∈ X such that post •R(x) is contained in Z ∗. Since post •R(x)
is finite, post •R(x) must be contained in some Z i . Contradiction.

3In order to avoid confusion we sometimes say s is R-below s ′ and s ′ is R-above s to denote s Rs ′ .
Similarly: R-minimal, R-maximal, R-downward, maxR , etc.

4I.e. for every x ∈ A there exists y ∈ B such that R(x, y).
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We can now apply Zorn’s Lemma5 to conclude that C has a maximal element. Its com-
plement is a minimal set Y as required. �

A poset (S,v) is a complete partial order (cpo) iff every chain has a lub in S.
Because ∅ is a chain, it follows that every cpo has a bottom element. It is a complete
lattice iff every subset has a lub in S. Note that in the latter case also every subset
T ⊆ S has a glb in S, namely the lub of the lower bounds of T . The lub and glb of
∅ constitute the bottom and top elements resp. of a lattice.

2.2.2 Functions over posets

Let (P,v) and (Q,�) be posets. R ⊆ P × Q is monotonic iff p v p′, R(p, q)
and R(p′, q ′) imply q � q ′; it is pre-monotonic iff p v p′, R(p, q) and R(p′, q ′)
imply q 6� q ′. If R is functional, it is an embedding iff p v p′ ⇔ R(p) � R(p′).
R ⊆ P × P is reductive iff R(p, p′) implies p′ v p and pre-reductive iff R(p, p′)
implies p′ 6 � p. It is extensive iff R(p, p′) implies p′ w p and pre-extensive iff
R(p, p′) implies p′ 6 � p.

Assume that (P,v) and (Q,�) are cpos and let
⊔

and
∨

denote the respec-
tive lubs. f : P → Q is continuous iff it is monotonic and for every non-empty
chain P ′ ⊆ P , f (

⊔
P ′) = ∨ f (P ′). Note that if Q is a complete lattice, the re-

quirement of monotonicity in this definition is redundant. A more general notion is
distributivity: f distributes over finite lubs iff for every finite P ′ ⊆ P such that

⊔
P ′

exists,
∨

f (P ′) exists and equals f (
⊔

P ′). f distributes over (arbitrary) lubs iff these
conditions hold for every P ′ ⊆ P . Similar definitions can be given for distributivity
over glbs. Distributivity over arbitrary lubs is also called additivity.

For a poset (P,v) and a function f : P → P , x ∈ P is a fixed point (fixpoint)
of f iff f (x) = x . Every monotonic function f on a cpo has a least fixpoint lfp( f ),
satisfying the following properties.

f (lfp( f )) = lfp( f ) (2.1)

for every y ∈ P : f (y) v y ⇒ lfp( f ) v y (2.2)

Property 2.1 just says that lfp( f ) is a fixpoint of f . Property 2.2 can be proven using
the “Fundamental Lemma of Bourbaki” ([Bou50]): see e.g. Exercise 14 in [DP90].
Note that 2.2 implies that lfp( f ) is below any fixpoint of f . Hence 2.1 and 2.2
together imply that lfp( f ) is the least fixpoint of f and thus can be taken as an
alternative definition.

5Zorn’s Lemma, when specialised to this case, states that for any non-empty collection C of sets, if
every increasing chain of sets in C has an upper bound in C , then C has a maximal element.
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The following well-known6 result provides a characterisation of lfp( f ) for con-
tinuous f that is often more useful in practice than the above definitions. It states
that least fixpoints can be computed by repeated function application. f i denotes
the i -fold application of f .

2.2.2.1 L Let (P,v) be a cpo and f : P → P a continuous function. Then
lfp( f ) =⊔{ f i (⊥P) | i ∈ � }.

P From⊥ v f (⊥) and monotonicity of f it follows by induction on i that f i (⊥) v
f i+1(⊥) for every i ≥ 0. So { f i(⊥) | i ≥ 0} is a chain. Because f is continuous, we
therefore have that f (

⊔{ f i (⊥) | i ≥ 0}) = ⊔ f ({ f i(⊥) | i ≥ 0}) = ⊔{ f i(⊥) | i ≥ 1}.
The latter term is equal to

⊔{ f i(⊥) | i ≥ 0} and hence this is a fixpoint of f . Furthermore,
for any fixpoint x of f , it follows with induction on i that f i (⊥) v x for every i ≥ 0; hence⊔{ f i(⊥) | i ≥ 0} v x . �

2.2.3 Galois connections

Let (P,v) and (Q,�) be posets.

2.2.3.1 D ( f, g) is a Galois connection7 from P to Q iff f : P → Q,
g : Q → P , and for all x ∈ P and y ∈ Q, f (x) � y ⇔ x v g(y). f is called the
lower adjoint (of g) and g the upper adjoint (of f ).

Galois connections have many properties, of which we mention a few. The interested
reader is referred to [Ore44, Pic52, MSS86, CC92a, ABH+92]. A Galois connection
( f, g) can alternatively be defined by the following conditions:

f and g are monotonic (2.3)

f ◦ g is reductive (2.4)

g ◦ f is extensive (2.5)

Such f and g are each other’s semi-inverses: f ◦ g ◦ f = f and g ◦ f ◦ g = g.
f uniquely determines its upper adjoint, if it exists. The latter is the case iff f
distributes over lubs and the set {x | f (x) � y} has a lub for every y ∈ Q; this lub
is then g(y). g uniquely determines its lower adjoint, if it exists. The latter is the
case iff g distributes over glbs and the set {y | x v g(y)} has a glb for every x ∈ P ;

6The investigations reported in [LNS82] suggest that this lemma is a folk theorem in the sense of
[Har80].

7In fact, Galois connections as defined here are semi-dual with respect to the original definition of
[Ore44]: the definition given there requires f and g to be antitone ( f is antitone if x v y ⇒ f (x) �
f (y)) and both f ◦ g and g ◦ f to be extensive. An equivalent definition is obtained by requiring that
f (x) � y ⇔ x v g(y).
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this glb is then f (x). It follows that if P and Q are complete lattices, a function is
a lower adjoint iff it distributes over lubs and an upper adjoint iff it distributes over
glbs.

If in addition f ◦g is the identity function, then ( f, g) is called a Galois insertion
from P to Q. We refer to Lemma 3.2.1.10 (page 43) for more details.

2.3 Temporal Logic

One of the ingredients of a “formal method” (see Section 1.1) is a formal language
for expressing properties of programs. In particular, we want to be able to express
typical properties of reactive systems — also called reactive properties. To this purpose,
we use temporal logic. Examples are LTL (linear temporal logic, see [Pnu77]), CTL
(computation tree logic, see [CES86]), CTL∗ ([EH86, EL87]), HML (Henessy-Milner
Logic, see [HM85]) and Lµ (the µ-calculus, see [Koz83]). Such logics are all able,
to some extent, to express both universal and existential properties (properties that
have to hold along all executions of a program and properties that have to hold along
some execution respectively), as well as safety (“nothing bad may happen”) and liveness
properties (“something good has to happen”).

In this thesis, we use8 CTL∗, which combines a relatively high expressive power
with good readability of formulae. Universal and existential properties are expressed
through path quantifiers ∀ and ∃ that quantify over (infinite) execution sequences.
The temporal operators � , � and � express properties of a single execution sequence.
The Next operator � is used to express that something holds in the next state, while

� , the Until operator, expresses that one property holds up to the point where another
property holds. The latter operator can also be used to express safety or liveness
alone (see below). � is called the Release operator and is the dual of the Until (i.e.
� (ψ1, ψ2) ≡ ¬ � (¬ψ1,¬ψ2), see Section 2.4.1).

Given is a set Prop of propositions. We choose to define CTL∗ in its positive
normal form, i.e. negations only appear in front of propositions. This facilitates
the definition of universal and existential CTL∗. The set of literals is defined by
Lit = Prop ∪ {¬p | p ∈ Prop}.

2.3.0.1 D State formulae ϕ and path formulaeψ are inductively defined
by the following grammar, where p ∈ Lit.

state formulae: ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀ψ | ∃ψ .

8In fact, there exist many versions of CTL∗, exposing small but unnegligible differences in syntax
and semantics. In Section 2.4.1, where the interpretation of the formulae is defined, we briefly discuss
this point.
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path formulae: ψ := ϕ | ψ ∧ψ | ψ ∨ψ | � ψ | � (ψ,ψ) | � (ψ,ψ).

The logic CTL∗ is defined as the set of state formulae.
For ϕ ∈ CTL∗, the formula ¬ϕ is considered to be an abbreviation of the equiv-

alent CTL∗ formula in negation-normal form, which is obtained by applying the
following “rewrite rules” 9:

¬(ϕ1 ∧ ϕ2)→ ¬ϕ1 ∨ ¬ϕ2 ¬ � ψ → � ¬ψ
¬(ϕ1 ∨ ϕ2)→ ¬ϕ1 ∧ ¬ϕ2 ¬ � (ψ1, ψ2)→ � (¬ψ1,¬ψ2)

¬∀ψ → ∃¬ψ ¬ � (ψ1, ψ2)→ � (¬ψ1,¬ψ2)

¬∃ψ → ∀¬ψ

The abbreviations true, false and→ can then be defined as usual. For a path formula
ψ , � ψ and � ψ abbreviate � (true, ψ) and � (false, ψ) respectively.

∀CTL∗ and ∃CTL∗ (universal and existential CTL∗) are subsets of CTL∗ in which
the only allowed path quantifiers are ∀ and ∃ respectively.

Note that every state formula is also a path formula. For the meaning of formulae,
we refer to the next section.

2.3.0.2 E Let p, q ∈ Prop. The formula ∀ � p → ∀ � q is not in ∀CTL∗,
because (assuming that false abbreviates p ∧ ¬p) it is an abbreviation of the CTL∗

formula ∃ � (p ∧ ¬p,¬p) ∨ ∀ � (p ∧ ¬p,¬q), which contains an ∃.

CTL∗ can alternatively be defined by allowing the negation ¬ to be applied to any
formula. It is then not necessary to include the dual operators ∨, � and ∀ of ∧, �
and ∃ resp. In places where the universal and existential fragments do not play a role
(e.g. Chapter 6), we use this alternative definition.

The approximants � i (ψ1, ψ2) and � i (ψ1, ψ2) correspond to the “unfolding” of
the � and � operators (see Lemma 2.4.1.3 in the next section). They are abbrevia-
tions that are defined as follows:

� 0(ψ1, ψ2) = false � i+1(ψ1, ψ2) = ψ2 ∨ (ψ1 ∧ � � i (ψ1, ψ2))

� 0(ψ1, ψ2) = true � i+1(ψ1, ψ2) = ψ2 ∧ (ψ1 ∨ � � i (ψ1, ψ2))

The fragment CTL is obtained by requiring that a quantifier is always directly
followed by a single temporal operator:

9Note that � is its own dual; see the interpretation defined in Section 2.4.1.
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2.3.0.3 D The logic CTL is the set of (state) formulae ϕ defined induc-
tively by the following grammar, where p ∈ Lit.

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀ � ϕ | ∃ � ϕ |
∀ � (ϕ, ϕ) | ∃ � (ϕ, ϕ) | ∀ � (ϕ, ϕ) | ∃ � (ϕ, ϕ).

For ϕ ∈ CTL, the formula ¬ϕ is considered to be an abbreviation of the equiva-
lent CTL formula in negation-normal form (obtained in the usual way). The abbre-
viations true, false and→ can then be defined as usual. For a CTL formula ϕ, ∀ � ϕ
and ∀ � ϕ abbreviate ∀ � (true, ϕ) and ∀ � (false, ϕ) respectively, and similarly for ∃.
∀CTL and ∃CTL (universal and existential CTL) are subsets of CTL in which the
only allowed path quantifiers are ∀ and ∃ respectively.

Note that in CTL quantifiers and temporal operators appear only “glued together”,
so that these combinations can be viewed as single operators. There are several alter-
native definitions for CTL that all yield equivalent logics. One possibility is to allow
arbitrary negation; in that case not all operators of Definition 2.3.0.3 are needed. For
example, ∀ � , ∀ � and ∃ � may be dropped. Negation also allows to express ∀ � in
terms of ∃ � and ∃ � (see Lemma 2.4.1.2), suggesting another way to obtain a func-
tionally complete set of operators. A third possibility is to allow the negation symbol
to occur in between a quantifier and a temporal operator; see e.g. [DNV90b].

The level of ϕ ∈ ∀CTL is the maximal number of nested ∀ � operators in ϕ if
there are no ∀ � and ∀ � operators in ϕ, and ω otherwise, i.e., assuming ω+ 1 = ω:

level(p) = 0 for p ∈ Lit (2.6)

level(ϕ1 ∧ ϕ2) = level(ϕ1 ∨ ϕ2) = max(level(ϕ1), level(ϕ2)) (2.7)

level(∀ � ϕ) = 1+ level(ϕ) (2.8)

level(∀ � (ϕ1, ϕ2)) = level(∀ � (ϕ1, ϕ2)) = ω (2.9)

Similar definitions may be given for ∃CTL, however, we do not need these.

2.3.0.4 E Let p, q ∈ Lit. The level of p and of p ∧ q is 0. The level of
∀ � (p ∧ ∀ � q) is 2. The level of ∀ � ϕ is ω for any ϕ, the level of ∀ � (p ∧ ∀ � (p, q))
is ω, and the level of ∀ � (p ∧ ∀ � 5(p, q)) is 6. In general, for i ≥ 2, the level of
∀ � i(ϕ1, ϕ2) is i − 1+max{level(ϕ1), level(ϕ2), 1}.

2.3.1 Nextless fragments

Another way to restrict the logics defined above is by dropping the Next operator.
See Section 6.3.1 for a discussion of the motivations for doing this.
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2.3.1.1 D The logic CTL∗( � ) contains all CTL∗ formulae that do not
contain � , i.e. it is the set of state formulae defined by the following grammar, where
p ∈ Lit.

state formulae: ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀ψ | ∃ψ .

path formulae: ψ := ϕ | ψ ∧ ψ | ψ ∨ψ | � (ψ,ψ) | � (ψ,ψ).

Similarly, CTL( � ) consists of all CTL formulae that do not contain � .

2.3.1.2 N Throughout this thesis, we write CTL◦ whenever both CTL∗

and CTL may be read. A similar convention is used for all fragments of these logics.

2.4 Transition Systems

A transition system (over 6) is a pair � = (6,R) consisting of a set 6 of states and a
transition relation R ⊆ 6 × 6. A path in � is an infinite sequence π = s0s1 · · · of
states such that for every i ∈ � , R(si , si+1); we say that π starts in s0. π(i) denotes
si . A subsequence of π is called a part of π or also a block sometimes; it is denoted
πI where I is a connected subset of � (i.e. for every two numbers in I , all numbers
in between are also in I ). A part of π that starts in s0 is called a prefix of π and a part
that continues infinitely is called a suffix of π . Also finite sequences π = s0s1 · · · sk of
states such that for every 0 ≤ i < k, R(si , si+1), but for which there is no outgoing
transition from sk (i.e. they are not parts of paths), are called prefixes. In a more
operational context, we sometimes use the term computation instead of prefix. The
notation πn denotes the suffix of π that begins at sn . A partitioning of π is a (finite or
infinite) sequence π{0,... ,i0}, π{i0+1,... ,i1}, . . . of parts of π ; when it is finite, the last
part must be a suffix of π . The length of a prefix or part ŝ of a path, denoted length(ŝ),
is the number of states on it; note that the last state of ŝ is ŝ(length(ŝ)−1) if it exists.
For s ∈ 6, a ( � , s)-path (or s-path when � is clear from the context) is a path in �
that starts in s; similarly for prefixes. paths( � , s) (or simply paths(s)) denotes the set
of all s-paths while prefixes( � , s) (prefixes(s)) contains all their prefixes. � is called
image-finite iff R is (Definition 2.1.0.3).

A transition system may have various attributes. Often, a subset I ⊆ 6 is desig-
nated to represent the initial states. In this case, a state s ∈ 6 is reachable iff, for some
t ∈ I, there exists a t-path containing s. Also, a transition system may come with an
interpretation function ‖·‖Lit : Lit→ � (6) that specifies the interpretation of literals
(see Section 2.3, page 18) over states. Intuitively, ‖p‖Lit is the set of states where p
holds. We assume that ‖p‖Lit ∩ ‖¬p‖Lit = ∅ for every proposition p ∈ Prop. We
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do not impose that ‖p‖Lit ∪ ‖¬p‖Lit = 6; this means that, intuitively, the valua-
tion of a literal may be undetermined or unknown in some state10. Alternatively, the
valuation of literals in states may be given by a labelling function £ : 6 → � (Lit)
specifying the literals that hold in a state. We use ‖·‖Lit and £ intermixedly with the
implicit understanding that £(s) = {q ∈ Lit | s ∈ ‖q‖Lit}. Hence, we have for all
s ∈ 6 and all p ∈ Prop, {p,¬p} 6⊆ £(s).

2.4.0.1 D Let £ : 6 → � (Lit) be a labelling function and s, t ∈ 6.
We define s ≡0 t ⇔ £(s) = £(t).

A transition system with initial states and an interpretation function is also called
Kripke structure ([Kri63]). ��� (6) ( ��� when 6 is implicit) denotes the set of all
Kripke structures over 6.

2.4.1 Interpretation of CTL �

CTL∗ formulae are interpreted over Kripke structures. Satisfaction of formulae is
defined inductively as follows.

2.4.1.1 D Let � = (6,R, I, ‖·‖Lit) be a Kripke structure. Let p ∈ Lit,
ϕ, ϕ1, ϕ2 be state formulae and ψ,ψ1, ψ2 be path formulae, s ∈ 6 and π a path in
� .

1. ( � , s) |= p iff s ∈ ‖p‖Lit.

2. ( � , s) |= ϕ1 ∧ ϕ2 iff ( � , s) |= ϕ1 and ( � , s) |= ϕ2, ( � , s) |= ϕ1 ∨ ϕ2 iff
( � , s) |= ϕ1 or ( � , s) |= ϕ2.

3. ( � , π) |= ϕ, where π = s0s1 · · · iff ( � , s0) |= ϕ.

4. ( � , π) |= ψ1∧ψ2 iff ( � , π) |= ψ1 and ( � , π) |= ψ2, ( � , π) |= ψ1∨ψ2

iff ( � , π) |= ψ1 or ( � , π) |= ψ2.

5. (a) ( � , π) |= � ψ iff ( � , π1) |= ψ .

(b) ( � , π) |= � (ψ1, ψ2) iff there exists n ∈ � such that ( � , π n) |= ψ2

and for all i < n, ( � , π i ) |= ψ1.

(c) ( � , π) |= � (ψ1, ψ2) iff for all n ∈ � , if ( � , π i ) 6|= ψ1 for all i < n,
then ( � , πn) |= ψ2.

10The reason that we allow undetermined truth values is that in Chapter 4, we define abstract states
as (representations of ) sets of concrete states. Concrete states in which some proposition p holds may
occur together in such a set with states in which p does not hold, so that the valuation of p in the
abstract state is “unknown”.
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6. ( � , s) |= ∀ψ iff for every s-path π , ( � , π) |= ψ , ( � , s) |= ∃ψ iff there
exists an s-path π such that ( � , π) |= ψ .

For a set S of states or paths, the notation ( � , S) |= ϕ abbreviates ∀s∈S ( � , s) |= ϕ.
When � is clear from the context, we write s |= ϕ for ( � , s) |= ϕ, and similar for
( � , S) |= ϕ. � |= ϕ now is defined as ( � , I) |= ϕ.

Equivalence of formulae is defined as follows. Let ϕ1 and ϕ2 be state or path
formulae. ( � , s) |= ϕ1 ≡ ϕ2 (or s |= ϕ1 ≡ ϕ2 for short) iff s |= ϕ1 ⇔ s |= ϕ2.
� |= ϕ1 ≡ ϕ2 iff � |= ϕ1 ⇔ � |= ϕ2. |= ϕ1 ≡ ϕ2 (or ϕ1 ≡ ϕ2 for short) iff for
every � ∈ ��� , � |= ϕ1 ≡ ϕ2.

CTL∗ formulae can be used to express a variety of properties of transition systems.
Apart from state based properties expressed by formulae built from literals and bool-
ean connectors, properties of paths may be expressed through the Next, Until and
Release operators. For example, π |= � � (p, q) expresses that along path π , from
the next state on, p will hold in all states until we eventually get to a state where q
holds. π |= � � � p says that p holds in the fourth state of π . π |= � p and π |= � p
state that p will hold eventually resp. always along π . Note that, strictly speaking,
path formulae are not in CTL∗: they have to be preceded by ∀ or ∃, resulting in state
formulae. It can easily be seen that a sequence of path quantifiers directly following
each other may be replaced by the last (rightmost) quantifier of the sequence under
equivalence of the formula. E.g. ∃∀∀∃∀ � (p, q) ≡ ∀ � (p, q). If literal r charac-
terises reset states, then s |= ∀ � ∃ � r means that along every possible execution path
from s, in every state there is a possible continuation that will eventually reach a reset
state.

Note that CTL∗ formulae containing path quantifiers express properties about
the infinite computations of a system only, because the quantifiers are interpreted
over paths (which are infinite computations by definition). Although in the original
definition of CTL∗ in [EH86] also finite computations are taken into consideration,
both [EL87] and the recent overview article [Eme90] revise the original definition
by quantifying over (“full-”)paths only. A similar definition is given in [CGL94].
As a consequence, this version of CTL∗ cannot express properties of computations
that end in a “deadlock” state (i.e. a state from which no transitions are possible)
and hence some care has to be taken in (intuitively) interpreting the formulae. For
example, s |= ∀ � p expresses that p is true in all states that lie on any path starting
from s, which, by the definition of path as an infinite sequence, is not the same as
the statement that p is true in all states that can be reached from s by taking finitely
many transitions. Another approach, taken in [DNV90b] for example, interprets
formulae along maximal prefixes, i.e. prefixes that cannot be extended because either
they are infinite, or their last state has no outgoing transitions. In yet other articles
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(e.g. [EC82, CES86]), transition relations are required to be total : every state must
have an outgoing transition. This requirement avoids the type of misinterpretations
discussed above, but imposes the obligation to ensure that every system being defined
has a total transition relation. This may be cumbersome. In Section 4.7 of this thesis,
a solution is proposed that relies on a “trick” to perform deadlock checking. Once
the system has been checked to be free from deadlock, CTL∗ path formulae may be
interpreted along maximal computations, which are then always infinite.

� is the dual of � ( � (ψ1, ψ2) is semantically equivalent to the negation of
� (¬ψ1,¬ψ2)) and has the intuitive meaning of “release”: ψ2 must be true as long as
ψ1 is false, and only if ψ1 becomes true, ψ2 may become false afterwards. It has been
added as the dual of � to compensate for the fact that formulae like ¬ � (ψ1, ψ2) are
not well-formed. For the same reason both ∧ and ∨ are primitive in the logic.

We stress that the � operator is not the same as the Weak-Until or Unless operator�
that is defined by

�
(ψ1, ψ2) = � ψ1 ∨ � (ψ1, ψ2). The relation between the

two is given by |= � (ψ1, ψ2) ≡
�
(ψ2, ψ1 ∧ ψ2) (or |= � (ψ1, ψ2) ≡

�
(ψ2 ∧

� ψ2, ψ1)) and |= �
(ψ1, ψ2) ≡ � ( � ψ2, ψ1); these equivalences can easily be

verified via the semantics of the operators, as defined in Definition 2.4.1.1 above.

2.4.1.2 L Letψ1, ψ2, ψ ∈ CTL∗. We have |= ∀ � (ψ1, ψ2) ≡ ¬∃ � (¬ψ2,

¬ψ1 ∧ ¬ψ2) ∧ ¬∃ � ¬ψ2. Reversely, ∃ � ψ is equivalent to ¬∀ � (true,¬ψ).

P ∀ � (ψ1, ψ2) ≡ ¬¬∀ � (ψ1, ψ2) ≡ ¬∃ � (¬ψ1, ¬ψ2) ≡ ¬∃ � (¬ψ2,¬ψ1 ∧
¬ψ2) ≡ ¬∃( � ¬ψ2 ∨ � (¬ψ2,¬ψ1 ∧ ¬ψ2)) ≡ ¬∃ � ¬ψ2 ∧ ¬∃ � (¬ψ2,¬ψ1 ∧ ¬ψ2)

(the third step uses the relation between � and � given above and the fourth step applies the
definition of � .) The second fact is obvious. �

The following lemma shows that the approximants � k(ψ1, ψ2) and � k(ψ1, ψ2)

correspond to the “depth-k versions” of the � and � operators:

2.4.1.3 L Let � , π , ψ1 and ψ1 be as in Definition 2.4.1.1, and k ∈ � .

1. ( � , π) |= � k(ψ1, ψ2) iff there exists 0 ≤ n < k such that ( � , π n) |= ψ2

and for all i < n, ( � , π i ) |= ψ1.

2. ( � , π) |= � k(ψ1, ψ2) iff for all 0 ≤ n < k, if ( � , π i ) 6|= ψ1 for all i < n,
then ( � , πn) |= ψ2.

P By induction on k. �
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Distinguishing power

A logic L interpreted over the states of a transition system � = (6,R) induces an
equivalence relation ≡L ⊆ 6 × 6 defined by s ≡L t iff ∀ϕ∈L s |= ϕ ⇔ t |= ϕ. ≡L

is called the logical equivalence induced by L or L-equivalence for short. It captures the
distinguishing power of L: states are equivalent iff no L-property distinguishes them.
This notion is not to be confused with the expressive power of L, which measures the
capability to characterise sets of states by a single formula. The expressive power is
normally used to compare logics, as follows: L1 ≤ L2 iff ∀ϕ1∈L1 ∃ϕ2∈L2 ϕ1 ≡ ϕ2 (see
Definition 2.4.1.1).

The relation between distinguishing and expressive power is given by the follow-
ing lemma.

2.4.1.4 L L1 ≤ L2 ⇒ ≡L1 ⊇ ≡L2

P Assume that (1) L1 ≤ L2 and s ≡L2 t , i.e. (2) ∀ϕ2∈L2 s |= ϕ2 ⇔ t |= ϕ2. We have
to show that then s ≡L1 t , i.e ∀ϕ1∈L1 s |= ϕ1 ⇔ t |= ϕ1. Let ϕ1 ∈ L1 and assume (3)
s |= ϕ1. By 1, we can choose ϕ2 ∈ L2 such that (4) ϕ1 ≡ ϕ2. From 3 and 4 we have s |= ϕ2,
from which by 2, t |= ϕ2. With 4 again, we get t |= ϕ1. The other direction is symmetric. �

The other direction of the implication does not hold. The following small example11

clarifies this. Consider the sets L1 = � ( � ) and L2 = { � \ {k} | k ∈ � } of
propositions. As states, over which the propositions are interpreted12, take the natural
numbers, defining for i ∈ � and ϕ ∈ L1, L2: i |= ϕ iff i ∈ ϕ. Clearly L2 � L1.
However, it is also easy to show that any two numbers that can be distinguished by
L1, can also be distinguished by L2, implying that ≡L1 = ≡L2 .

2.4.2 Behavioural preorders and equivalences

In this subsection, � 1 = (61,R1) and � 2 = (62,R2) are transition systems with
labelling functions £1 : 61 → � (Lit) and £2 : 61 → � (Lit) respectively.

2.4.2.1 D Let σ ⊆ 61 × 62 be a relation such that for every s ∈ 61

and t ∈ 62, σ(s, t) implies:

1. £1(s) = £2(t).

11Thanks to Ruurd Kuiper.
12The sets of propositions induce the temporal logic CTL∗ and its fragments, which are the only

logics that we have defined. Formally speaking, we have to define Kripke structures (and not just
individual states) over which such formulae are interpreted. This may be done by turning each state i
into the Kripke structure with state set (and initial-state set) {i}, transition relation ∅, and interpretation
function as suggested by the definition of |= in this example.
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2. For every s ′ such that R1(s, s′), there exists t ′ such that R2(t, t ′) and σ(s′, t ′).

Then σ is called a simulation (from � 1 to � 2, or from13 61 to 62), and R1 σ -
simulates R1. The largest simulation is denoted sim. s simulates14 t iff sim(s, t). If
sets I1 and I2 of initial states for � 1 and � 2 resp. are given, then a simulation σ is
proper iff σ ∀∃(I1, I2). In this case we say that � 1 (σ -)simulates � 2.

Sometimes we consider relations σ ⊆ 61 × 62 for which 2 holds, but not 1.
Such relations are called non-consistent or pseudo-simulations. In that case we say
that R1 σ -pseudo-simulates R1, etc.

Because the empty relation is always a simulation and simulations are closed under
union, the largest simulation sim always exists. It is easy to see that sim(s, t) iff there
exists a simulation σ such that σ(s, t).

An alternative, algebraic definition of simulations is suggested by the following
lemma (recall Definition 2.4.0.1 of ≡0).

2.4.2.2 L Let � 1, � 2, £1 and £2 be as above. σ ⊆ 61×62 is a simulation iff
σ ⊆ ≡0 and σ−1R1 ⊆ R2σ

−1.

The following definition and lemma suggest an alternative definition of simula-
tion for image-finite (page 21) transition systems.

2.4.2.3 D The sequence {simn}n∈ � of relations on 61 × 62 is defined
as follows.

1. sim0(s, t) iff £(s) = £(t).

2. simn+1(s, t) iff for every s ′ such that R1(s, s′) there exists t ′ such that R2(t, t ′)
and simn(s′, t ′).

2.4.2.4 L If � 1 and � 2 are image-finite, then for all s ∈ 61, t ∈ 62, we have
sim(s, t) iff ∀n∈ � simn(s, t).

P Like, e.g., the proof of a similar property of bisimulation (see Definition 2.4.2.7
below) in [HM85]. �

2.4.2.5 P If simk+1 = simk for some k ≥ 0, then for all j ≥ 0, simk+ j =
simk .

13When confusion about the domain and range of a simulation may occur, we attach the type as a
subscript.

14The intuition is that t can “mimic” everything that s can do. From this point of view, the termi-
nology “s simulates t”, introduced in [Mil71], is awkward.
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P Define the function � : � (61 × 62) → � (61 × 62) by � (σ ) = {(s, t) ∈ σ |
∀s′∈61 [R1(s, s ′) ⇒ ∃t ′∈62 [R2(t, t ′) ∧ (s ′, t ′) ∈ σ ]]}. Clearly, (*) simn+1 = � (simn) for
every n ≥ 0. Now assume that simk+1 = simk for some k ≥ 0. By induction on j , we prove
that for all j ≥ 0, simk+ j = simk . The base case is obvious. For the induction step we have:

simk+ j+1 (∗)= � (simk+ j )
i.h.= � (simk)

(∗)= simk . �

Two common behavioural equivalences are derived from simulations.

2.4.2.6 D The relation simeq ⊆ 61 × 62 is defined by simeq(s, t) ⇔
sim61×62(s, t) ∧ sim62×61(t, s). The relations simeqn are defined similarly in term
of simn .

An equivalence relation σ ⊆ 61 × 62 is called a simulation equivalence iff
σ ⊆ simeq. s and t are simulation equivalent iff simeq(s, t).

Given sets I1 and I2 of initial states for � 1 and � 2 resp., a simulation equivalence
σ is proper iff σ ∀∃(I1, I2) and σ−1∀∃(I2, I1). In this case we say that � 1 and � 2 are
simulation equivalent.

If 61 = 62, then simeq = sim ∩ sim−1.

2.4.2.7 D The relation ≡bis ⊆ 61 × 62 is defined as the largest simu-
lation σ such that σ−1 is a simulation as well.

An equivalence relation σ ⊆ 61 × 62 is called a bisimulation iff σ ⊆ ≡bis. s
and t are bisimilar iff s ≡bis t .

Given sets I1 and I2 of initial states for � 1 and � 2 resp., a bisimulation σ is proper
iff σ ∀∃(I1, I2) and σ−1∀∃(I2, I1). In this case we say that � 1 and � 2 are bisimilar.

We return to bisimulation in Chapter 6.

2.4.3 Model checking

Given a formula ϕ and a Kripke structure � , model checking is the process of ver-
ifying whether � |= ϕ holds. In a narrow sense, the term usually applies to the
satisfiability of a temporal-logic formula by a finite transition system, being checked
automatically. Many model-checking algorithms exist for several fragments of CTL∗,
as well as for different formalisms like the µ-calculus ([Koz83]). A number of ap-
proaches can be distinguished. A division often made is between automata-theoretic
and graph-traversal algorithms. In the first, the formula ϕ is transformed into a (fi-
nite) automaton over infinite words that accepts exactly those behaviours that satisfy
¬ϕ. This automaton is then “multiplied” with the transition system � . The re-
sulting automaton accepts the behaviours in the intersection of � and ¬ϕ. Thus,
if (and only if ) this intersection is empty, � |= ϕ holds. See e.g. [VW86, Kur94].
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Related is the tableau-based appoach — see e.g. [LP85, PZ86]. In the graph-traversal
approach, ϕ is checked over � in a more direct fashion. For example, the states of �
are labelled with subformulae of ϕ in an iterative fashion, starting with propositions
and labelling with longer formulae in every subsequent step. Such an algorithm is
presented in [CES86]. Another approach is presented in [QS82], in which a fix-
point algorithm is used to compute sets of states satisfying the subformulae of ϕ. It
relies on the availability of the pre-image function preR (Definition 2.1.0.1) of the
transition relation R, which may be viewed as an “implicit” or “symbolic” represen-
tation of the transition system. Hence, such algorithms are often termed symbolic.
Recently, reduced ordered binary decision diagrams (BDDs, see [Bry86]) have been
proposed as efficient representations of both sets of states and transition relations
([BCM+92, CBM89]), leading to a renewed interest in this symbolic approach.

Traditionally, automata-theoretic algorithms are used for linear-time temporal
logic, while the graph-traversal algorithms were devised in the context of CTL and
the µ-calculus. Indeed, the first model-checking algorithm for CTL∗, which sub-
sumes both LTL and CTL, combines both techniques in one algorithm (see [EL87]).
Recent work, [BG93, BVW94, Kup95], shows that efficient branching-time model
checking can be captured in the automata-theoretic framework too, using alternating-
tree automata.

The complexity of model checking increases with the expressivity of the temporal
logic. More particularly, the time complexity of model checking CTL is linear in
both the size of the transition system and of the formula ([CES86]), while for LTL
([LP85]) and CTL∗ it is linear in the size of the transition system but exponential in
the size of the formula ([EL87]).

Although this thesis is about techniques that aim to extend of the applicability
of model checking, the particular model-checking approach that is chosen and the
details of the algorithms are immaterial. The interested reader is referred to the arti-
cles mentioned above. Furthermore, a number of overviews have recently appeared:
[Eme90, Sti92, CGL93, Kur94].



Chapter 3

Abstraction and Preservation

Besides introducing abstraction and Abstract Interpretation, this chapter
presents a systematic reconstruction of several frameworks for abstraction
that occur in the literature. We formalise the notion of property preser-
vation, and investigate how weak and strong preservation lead to different
frameworks. New results are the characterisation of weaker frameworks in
terms of weakenings of the notion of Galois connection, and a generalisa-
tion of the “power construction”.

29
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3.1 Introduction

This chapter introduces the notion of an abstraction theory, which is a framework
to construct and justify abstractions used to analyse the properties of complex ob-
jects. Special attention will be paid to Abstract Interpretation, which is a rather
well-developed and popular framework — or rather, a class of frameworks — for
the so-called weak preservation of properties. As the presentation in the rest of this
chapter is on a fairly abstract level, we shall briefly introduce the ideas of Abstract
Interpretation on an intuitive level first in Section 3.1.1 below.

A systematic approach to motivate, classify and present Abstract Interpretation
frameworks has long been lacking. Indeed, Abstract Interpretation has long been
a rich pool of ideas and results of which the sources were based on two articles
([CC77, CC79]) whose accessibility in some points is reduced due to the density
of information. The approach that we follow in this chapter has been influenced
by the (successful) efforts of Marriott and Søndergaard to give an orderly account of
the theory and some of its applications: [MS89b, Søn90], and especially [Mar93].
More recently, the Cousots’ overview articles [CC92a] and [CC92b] take a similar
systematic approach in their presentation.

Although many of the results concerning Abstract Interpretation in this chapter
are well-known, we do have a number of contributions that are new, to the best of
our knowledge. First, we take a more general approach to abstraction, which ac-
counts for various forms of property preservation. In particular, the viewpoint taken
in Section 3.2.2 paves the way to Chapters 5 and beyond, which adopt a different ap-
proach to the construction of abstract models than the “non-standard semantics” of
Abstract Interpretation. Second, in Section 3.2.1 we present a number of character-
isations of weaker frameworks in terms of conditions placed on the abstraction and
concretisation relations, being generalisations of Galois connections. Furthermore,
the section on power construction exposes and formalises a common “dilemma” in
Abstract Interpretation, giving a number of theoretical results.

3.1.1 Abstract Interpretation

The term Abstract Interpretation was introduced in [CC77] and denotes a unified
approach to program analysis (also called data-flow, static or compile-time analysis) by
formalising an analysis as an approximate computation operating on descriptions of
data. The following informal definition is given in that paper.

“A program denotes computations in some universe of objects. Abstract in-
terpretation of programs consists in using that denotation to describe compu-
tations in another universe of abstract objects, so that the results of abstract
execution give some informations on the actual computations.”
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A simple and commonly used example of Abstract Interpretation is the use of
the rule of signs to determine the sign of an arithmetic expression. In order to say
whether −1515 ∗ 17 is positive or negative, we do not have to perform the multipi-
cation on the “concrete” level of numbers and then look at the sign of the result, but
instead we can first “abstract” the individual operands to their signs and then apply
∗, the rule of signs for multiplication: ����� ∗ ���	� = �
��� . This rule of signs for
the product enjoys the property that its result always correctly describes the result of
any concrete multiplication on any operands that it abstracts. The relation between
the descriptions { �
��� , �	��� } and the integers � is commonly specified by a concreti-
sation function γ : { �
��� , �	��� } → � ( � ) with γ ( ����� ) = {x ∈ � | x ≤ 0} and
γ ( ���	� ) = {x ∈ � | x ≥ 0}1. The correctness property for ∗, often called safety, can
then be formalised by requiring γ (a ∗ b) ⊇ γ (a) ∗ γ (b) for all a, b ∈ { �
��� , �	�	� },
where we assume that multiplication is pointwise extended to sets. This extension
to sets already indicates that the concrete operation being actually “mimicked” is not
multiplication between numbers, but between sets of numbers. This is also expressed
by γ that maps the descriptions ����� and �	��� to sets. At first, however, it is not
clear why we should formalise things at the level of sets: why not take, for exam-
ple, a description relation ρ ⊆ � × { ����� , �	��� } relating negative numbers (and zero)
to �
��� and positive (and zero) to �	�	� ? Several arguments can be given (see Sec-
tion 3.2.1), but an important one is that to construct a safe abstraction ∗ over, e.g.,
the pair ( �
��� , �
��� ) (suppose we did not know what it should be), we have to take
into account the “behaviour” of the concrete multiplication over all concrete objects
that ( ����� , �
��� ) describes. In a sense, we want to have the most general object that
( �
��� , ����� ) describes — and to be able to formalise this notion of generality, we lift
� to its power set: “more general than” then becomes “a superset of”. This construc-
tion corresponds to the adoption of a description relation ρ̆ ⊆ � ( � )× { ����� , ���	� }:
each set of non-positive (non-negative) numbers is described by �
��� ( �	�	� ). Note that
ρ̆(C, a) ∧ C ′ ⊆ C implies ρ̆(C ′, a), i.e. pre •ρ̆(a) is ⊆-downward closed. γ then
maps a description to the largest set described. This shift of attention from single
elements to sets is indeed explicitly made in much of the Cousots’ work, where it
occurs through the lifting of the “standard semantics” to the “collecting semantics”
— see e.g. [CC92b] or [CC77], where the term “static semantics” is used instead of
collecting semantics.

Alternatively, we may specify the relation between concrete and abstract objects
through an abstraction function α ∈ � ( � )→ { �
��� , �	�	� }. Clearly, we would like to
have, e.g., α({−7,−2}) = ����� and α({x ∈ � | x ≥ 0}) = �	��� . But what should,
e.g., α({−3, 1}) be? And what about α({0})? As to the first question: considering
another operation that might have to be abstracted, addition, shows that it would be

1Note that we choose to let 
���� describe the negative integers as well as 0, and similarly for ����� .
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useful if α also provides a description for sets containing both negative and positive
numbers. Denoting the rule of signs for addition by +, the result of �
��� + �	���
should intuitively be “don’t know”. This is usually denoted by α>, the top element
of the abstract domain, with γ (α>) = � and α(S) = α> for any set S ⊆ � that
contains both negative and positive numbers. It is “larger” than the other descriptions
in the sense that γ (α>) ⊇ γ ( ����� ) and γ (α>) ⊇ γ ( �	��� ). We may formalise this
and define an approximation or precision ordering � on the abstract domain by a �
b ⇔ γ (a) ⊆ γ (b).

In dealing with {0}, we may resort to different solutions. First, we may just
weaken the framework and allow α to be a relation, linking {0} both to �
��� and
to �	��� . Second, we may choose α({0}) to be one of ����� and ���	� . A third solution
consists in enriching the domain of descriptions with an element ����� � such that
α({0}) = ����� � . The abstraction function obtained by this last solution maps every
non-empty set of numbers to its �-least description. Symmetrically to γ giving the
most general concrete element being described, α then returns the “most precise”
description. It turns out that this renders (α, γ ) a Galois connection — indeed even
a Galois insertion, by the way� is defined (see Section 3.2.1) — from ( � ( � )\∅,⊆)
to ({ � ��� � , ����� , ���	� , α>},�). Each solution has its pros and cons, which we will not
discuss here. The interested reader is referred to [CC79], [Mar93] and [CC92b].

Another point is whether ∅ should have an α image. One may claim that this
is not necessary because there is no need for a description of it. There are situations
however where the empty set does fulfil an essential role in the concrete domain, e.g.
to model the effect of errors or non-termination. And even in absence of such reasons
it may be useful from the point of view of symmetry between abstract and concrete
domains to introduce an element α⊥ such that α(∅) = α⊥ and γ (α⊥) = ∅. This
turns ({α⊥, � ��� � , �
��� , �	�	� , α>},�) into a lattice.

In the presence of an abstraction function, safety of some abstract operator ⊗
with respect to the concrete operator ⊗ may be expressed in different ways, e.g.
α(C) ⊗ α(D) � α(C ⊗ D) for all C, D ⊆ � , or γ (α(C) ⊗ α(D)) ⊇ C ⊗ D,
or a ⊗ b � α(γ (a) ⊗ γ (b)) for all descriptions a, b. All formulations, including
the one given earlier, are easily shown to be equivalent for any Galois connection
(α, γ ). The last formulation is probably the most helpful when designing abstract
operators: for each a and b it specifies how “large” a ⊗ b should be at least to be
safe. A different aspect that then comes to mind is optimality: preferably, the result
of a ⊗ b should also be as precise as possible. Hence, ⊗ should be defined by
a ⊗ b = α(γ (a)⊗ γ (b)).

In this example, arithmetic operations are interpreted over descriptions, or ab-
stractions: they are “abstractly interpreted”. The term abstract interpretation, written
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in lower case, is used with this connotation in this thesis. The capitalised term Ab-
stract Interpretation, on the other hand, denotes a particular theory (or: collection of
theories), which will be presented in Section 3.2.1.

In the definition from [CC77] quoted above, as well as in the example, the main
concern of Abstract Interpretation is the construction of descriptions of concrete ob-
jects by “mimicking” the effect of concrete operations with suitable (safe) abstract
operations defined over descriptions. An aspect that is also covered, but less explic-
itly, is the nature of property preservation: what does the description tell us about the
object being described? In most treatments and applications of Abstract Interpreta-
tion, this point remains rather unexposed. A formalisation of property preservation
would involve the definition of a language to express properties about concrete and
abstract objects, and satisfaction relations to express when a property holds for an
object. Then, the soundness of the abstraction with respect to the properties could
be expressed by formally stating that whenever α(C) = a and a satisfies ϕ (in the
above example, ϕ could denote, e.g. the property “is positive” or “is negative”), then
C (or rather all c ∈ C) satisfies ϕ as well.

The main reason for this attitude in most works on Abstract Interpretation is
that the properties being analysed are often of the same kind: they express invariance
properties2 about objects. Also, the type of preservation considered is always of the
form “if ϕ holds for a, then it holds for C”; conversely, the absence of property ϕ for
a does in general not justify the conclusion that it is false for C as well. One may
see this as the very nature of abstraction theories — however, we show that this is
not necessarily so. As argued in Section 1.1, when verification rather than analysis of
programs is our goal, interest shifts towards preservation of truth as well as falsehood
of properties (strong preservation).

Chapter 4 of this thesis shows how the framework of Abstract Interpretation
may be extended to cover the preservation of other properties than invariance. It
is demonstrated that for these cases, descriptions may also be constructed through
abstract interpretation of operations in the program text. Then, in Chapters 5 and
onwards, the focus is shifted towards strong preservation. There, it turns out that
different techniques for the computation of abstractions may be useful. For this
reason, we use the more general term abstraction theory to capture this case too.

In conclusion, we give the following working definition:

2An invariance property states that “nothing bad can happen” (cf. [Lam83]). More to the point, it
does not say whether anything will happen at all.
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An abstraction theory:

• Provides ways to relate concrete to abstract objects and, for each
of these, specifies how properties are preserved.

• Provides ways to compute abstract objects in an efficient fashion.

3.1.2 Overview of the chapter

The rest of this chapter presents a formalisation of this notion. Section 3.2 concen-
trates on the first point, while Section 3.3 deals with the second.

This chapter is not only an introduction to the rest of the thesis, but also con-
tains some results that are interesting in their own right. These are the outcome of an
attempt to set up a general theory of abstraction that explains the choices made in the
more specific Galois-insertion framework. Therefore, by their level of abstractness,
certain parts may be less relevant to the understanding of the chapters to come. The
reader whose main purpose is to understand the application of abstract-interpretation
techniques to model checking, rather than to get involved in the background of Ab-
stract Interpretation, may safely skip the part from the paragraph “Approximative
description” (page 39) until Section 3.2.2 on strong preservation (page 49) at first. In
Section 3.3, the theory about fixpoints, including Lemmata 3.3.1.1 and 3.3.1.2, has
been included for completeness and will not be used in the remainder of the thesis.

3.2 Preservation Results

As explained above, one of the two pillars that an abstraction theory should be built
on is concerned with preservation of properties between objects. In general, a preser-
vation result relates some correspondence (expressed as a relation for example) be-
tween two objects to the fact that certain properties that hold for one object also hold
in the other. A common example is found in Model Theory: if two structures are
isomorphic, then they satisfy exactly the same first-order properties. In this example:

1. The correspondence between the structures is an equivalence relation (isomor-
phism).

2. The relation between the satisfaction of first-order formulae is bi-implication
(a formula is satisfied in one structure iff it is in the other).

3. The connection between the existence of the equivalence relation (point 1)
and the satisfaction of the same first-order formulae (point 2), is a strict impli-
cation: in general, the result does not hold in the reverse direction.
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This theme can be varied, giving rise to a hierarchy of preservation types. The di-
chotomy weak vs. strong preservation determines the structure of the following sub-
sections (and in fact constitutes one of the major themes of this thesis). In Sub-
section 3.2.1, we consider weak preservation and give a general presentation of it
that captures many frameworks that have been proposed in the literature. Subsec-
tion 3.2.2 focusses on various types of strong preservation and lists some conse-
quences for the previously discussed frameworks. First, we provide some basic in-
gredients.

Description relations We assume sets C and A of concrete and abstract objects
respectively and a relation ρ ⊆ C× A linking concrete objects to their descriptions.
The fact that objects have properties is formalised by assuming a logic L in which
properties are expressed, and satisfaction relations |= ⊆ C × L and |=α ⊆ A × L
specifying when a property holds for a concrete resp. abstract object (logically speak-
ing: when a concrete resp. abstract object is a model for a formula).3

As the goal is to be able to “reason abstractly” about any concrete object, we
require that every concrete object in C has at least one description4:

ρ is total on C. (3.1)

Conversely, we do not want to have abstract objects around that describe noth-
ing5. Hence we also require

ρ is total on A. (3.2)

A relation ρ that is total on its domain and range is called a description relation (from
C to A).

3.2.1 Frameworks for weak preservation

Safety An abstract object a that acts as a description of a concrete object c should
be safe6 with respect to its properties from L. This means that every L-property that

3We could have chosen a set-up with two logics, Lγ for concrete and Lα for abstract objects, together
with a translation function t : Lγ → Lα , with the idea that to analyse a property ϕ ∈ Lγ over some
c ∈ C (c |= ϕ), one analyses the translation t (ϕ) over a description a of c (a |=′ t (ϕ)). This set-up is
equivalent to the current, with a |=α ϕ defined by a |=′ t (ϕ).

4cf. condition 4.5 in [CC92b].
5There might be a use in having such objects around, though. It could be that A can easily be

defined, but the restriction to the range of ρ is difficult or impossible. In such a case the requirement
that ρ be total on A may be satisfied by extending ρ (to the “superfluous” elements) and possibly also
C.

6This notion of safety should not be confused with safety as introduced in Section 1.2.for c
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holds for a, should hold for c as well; in other words, a should give faithful informa-
tion about c. We may choose the following condition, expressing that descriptions
should be safe7.

∀c∈C,a∈A [ρ(c, a) ⇒ ∀ϕ∈L [c |= ϕ ⇐ a |=α ϕ]] (3.3)

This requirement is referred to as (weak) preservation of L under ρ; “weak” because
the preservation only holds from abstract to concrete objects (the⇐ implication in
the above formula).

From this starting point, we discuss a number of additional conditions that may
be assumed on top of the basic ingredients given above. This results in an incremen-
tal reconstruction, “from scratch”, of various frameworks for Abstract Interpretation
that have been put forward in the literature, carefully motivating each of the design
decisions taken. Along the way, new results and insights are given.

Approximative description relations

Approximation In order to study properties of some concrete object c we need
to construct a description a of it. Requirement 3.1 then ensures that such an a
exists, and by 3.3 we can learn properties of c by studying a. However, the fact
that a describes c does not give a clue as to how useful the object a is in analysing
properties of c. For example, it may be that a enjoys no properties from L (i.e.
∀ϕ∈L a 6|=α ϕ). So as to be able to compare descriptions, we assume an approximation
order � ⊆ A× A. If a � a′, we say that a is approximated by a′, or that a is more
precise than a′. This ordering should be such that

a � a′ ⇒ ∀ϕ∈L [a |=α ϕ ⇐ a′ |=α ϕ] (3.4)

Furthermore, it should be possible to use a less precise object as a description, hence8:

ρ(c, a) ∧ a � a′ ⇒ ρ(c, a′) (3.5)

A notion of approximation should be reflexive and transitive and hence � is a pre-
order. An example can be found in Section 4.4. The approximation relation �
between abstract transition systems defined there is a preorder but not a partial order.

7A different choice would be to identify the description relation (ρ) with the safety relation
(∀ϕ∈L [c |= ϕ ⇐ a |=α ϕ]); see e.g. [CC79, CC92b]. All abstract objects that are safe for c are
then captured in post •ρ(c). Distinguishing the notions of description and safety yields a more general
setup, which allows to ignore some of the safe elements when defining which elements may be used as
descriptions.

8cf. condition 4.19 in [CC92b].
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Of course any preorder can be turned into a partial order by identifying equivalent
elements, in the usual way. In the following, we assume that (A,�) a poset.

An alternative approach to approximation that deviates from “standard” Abstract
Interpretation theory would have been to postulate a metric on A, quantifying the
precision of descriptions. Another choice is to have approximation relations �c for
each concrete object c, so that the precision of a description can be measured relative
to the object it describes. We will not follow these directions any further.

In most theories of Abstract Interpretation, the concrete objects are partially or-
dered too, usually even in a complete lattice. The reasons for doing so may be very
diverse; we list a few.

• Defining the abstract counterpart α f of a concrete function (or relation) f
for some a ∈ A, the values f (c) for all c decribed by a have to be taken
into account. It is convenient if a “most general” c can be selected in such
a way that mimicking the behaviour of f over c suffices to capture all other
cs that are described. This motivates the introduction of a “generality order”,
such that there is a unique most general one among every non-empty set of
concrete objects being described by some a.

If no such ordering preexists, then a natural solution is to move to the power
set lattice over the concrete objects, as was exemplified in the previous section.
The subsection on power construction (page 44) elaborates on this point.

• Often, Abstract Interpretation is used to approximate least fixpoints of func-
tions over C, expressing the semantics of a certain program, by computing least
fixpoints of corresponding abstract functions over A. In order for fixpoints to
exist, it suffices if C and A are complete partial orders and the functions are
monotonic [Tar55].

Indeed, Abstract Interpretation, in a narrow sense, is often understood to be
the analysis of programs by approximating the (least) solution to a system of
recursive equations representing the behaviour of a (repetitive or recursive)
program, see for example [CC92c, Bou92, LV92].

• The third motivation is closely related to the second one. In computer science
applications, the concrete objects are usually semantic models of programs. In
most traditional approaches to semantics, models are partially ordered (some-
times for different reasons than the existence of fixpoints). In denotational
semantics ([Sto77, Sch86]), so-called domains, which are partially ordered al-
gebraic structures, are used to be able to correctly capture the behaviour of
functional programming languages with self-application — and also Scott’s
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information systems ([Sco82]) come with a notion of “informativeness” that is
a partial order. Approaches to devise models for concurrent/nondeterministic
programs are often based on sets ordered by inclusion ([Dil89]), or, if one
sticks to the denotational tradition, on power domains.

• The last reason for introducting a partial order on C that we mention is the
symmetry between A and C that may be desirable. Such a symmetry is needed
for example when abstractions are to be composed, allowing for a stepwise
design of an analysis. Examples of such composed abstractions may be found
in [Mer90], [CDY91] and also in Section 4.8.1 in this thesis.

In general, several orderings on the concrete objects may be introduced, one for each
of these reasons. Because, in this section, our interest is in frameworks for abstract
interpretation rather than in the structure of the (concrete and abstract) semantic
domains, we henceforth assume a partial order v ⊆ C × C to express the notion
mentioned in the first point above. c v c′ expresses that c′ is more general than c
(also: c is approximated by c′, c is more precise than c′). It turns out that in many
applications of abstraction theories, this order coincides with the orderings as meant
under the other points (see also Section 3.3.1). In fact, the framework described in
the seminal [CC77] does not distinguish between those orderings; [CC92b] does.

Symmetrically to 3.4, v should satisfy:

c v c′ ⇒ ∀ϕ∈L c |= ϕ ⇐ c′ |= ϕ (3.6)

and its relation to ρ is specified as follows.

ρ(c, a) ∧ c′ v c ⇒ ρ(c′, a) (3.7)

Thus, if ρ(c, a) then a may be replaced by a less precise object (requirement 3.5)
and c by a more precise object (requirement 3.7) without violating the description
relation between them.

Minimal and maximal elements; optimality We have started from sets C and
A, a language L interpreted over them, a total relation ρ between them and added
approximation orderings � and v satisfying the requirements 3.4, 3.6, 3.5 and 3.7.
Note that by the latter two, post •ρ is �-upward-closed9 and pre •ρ is v-downward-
closed (Definition 2.1.0.1 in Section 2.2).

9The properties “has a minimal element”, “has a maximal element”, “is �-upward-closed” and “is
�-downward-closed” are extended pointwise to functions in this chapter. That is to say, “post •ρ has a
minimal element” abbreviates “for all c ∈ C, post •ρ(c) has a minimal element”, etc.
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A common issue in Abstract Interpretation is the existence of maximally precise,
i.e. �-minimal descriptions. When abstracting a concrete object, one usually looks
for an �-minimal description (indeed, it may be convenient if there exists a unique
such description, i.e. an �-least description).

3.2.1.1 D Let a ∈ A be a description of c ∈ C, i.e. ρ(c, a). Then a is
optimal10 for c iff a is �-minimal in postρ(c), i.e. there is no a′ such that ρ(c, a′)
and a′ ≺ a.

When performing a computation in the abstract domain, the outcome should
preferably be an optimal description of a corresponding operation on the concrete
side. Symmetrically, we are interested in maximally general, i.e. minimally precise
concrete objects being described by a given description. Totality of ρ on C and A
guarantees the existence of some description for any concrete object, and reversely, the
existence of something being described by a given abstract object. However, optimal
elements may not exist, e.g. because all the possible candidates are arranged in infinite
chains. We exclude this by requiring:

post •ρ has a minimal element (3.8)

and

pre •ρ has a maximal element. (3.9)

Approximative description An abstraction that satisfies the conditions motivated
so far deserves a name.

3.2.1.2 D A description relation ρ ⊆ C×A is approximative iff (C,v)
and (A,�) are posets, post •ρ is�-upward-closed and has a minimal element, and pre •ρ
is v-downward-closed and has a maximal element.

10Note that in our setting, if a is an optimal description of an object c, it may still be the case that
there exists another description of c that enjoys strictly more L-properties and hence is a more “useful”
description of c. Only when the approximation order� on A coincides with the “L-property ordering”,
i.e. when the⇒ in condition 3.4 on page 36 may be replaced by⇔, then optimal descriptions are also
“maximally useful”. We have chosen for this setting because we think that in applications of Abstract-
Interpretation frameworks this decoupling sometimes occurs naturally. For example, the precision order
for Abstract Kripke structures to be defined in Section 4.4 is in terms of the notion of simulation
relations (Definition 2.4.2.1). If we would want to prove that this order coincides with the “CTL∗-
property ordering” on Abstract Kripke structures, this would constitute a proof obligation that we
prefer to view as a separate concern. (Indeed, this proof would not be straightforward and would
probably only be valid for a restricted class of structures — see the remarks in Section 4.4 on page 78
and cf. [CIY95].) Other authors sometimes identify the precision (�) and property orderings. E.g.
in [CC79] and [CC94], where abstract objects are identified with properties, the precision order on
abstract objects coincides with logical implication.
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An alternative way of specifying an approximative description ρ is through an ab-
straction relation α that associates a concrete object with descriptions for it, and a
concretisation relation γ that associates an abstract object with objects it describes, in
such a way that ρ can be “recovered” from (α, γ ):

3.2.1.3 D Let α ⊆ C × A and γ ⊆ A × C. The relation generated by
(α, γ ) is defined gen((α, γ )) = {(c, a) ∈ C×A | ∃c′,a′ (α(c′, a′)∨γ (a′, c′)) ∧ c v
c′ ∧ a′ � a}.

We obviously have the following

3.2.1.4 P post •gen((α,γ )) is �-upward-closed and pre •gen((α,γ )) is v-down-
ward-closed.

The reader may wonder why we introduce these abstraction and concretisation re-
lations as a substitute for ρ. The reason is that we want to illustrate how the in-
troduction of further constraints on ρ influences the connection between the (as yet
unrelated) α and γ , eventually turning this pair into a Galois connection — but first
passing through some “pre-Galois” phases.

We start with the following requirements. If α only gives�-minimal descriptions
(at least one), and, symmetrically, γ only v-maximal described objects, then (α, γ )
is called a base for ρ:

3.2.1.5 D Let ρ be an approximative description relation from C to A.
The pair (α, γ ) is a base for ρ iff α ⊆ C× A, γ ⊆ A× C, and:

1. gen((α, γ )) = ρ.

2. α is total on C and γ is total on A.

3. ∀c∈C post •α(c) ⊆ min�(post •ρ(c)) and ∀a∈A post •γ (a) ⊆ maxv(pre •ρ(a)).

A given approximative description may have several different bases. Every pair (α, γ )
that is a base of some approximative description is characterised by the properties
given in the following lemma. Property 3.10 can be illustrated as follows (3.11 is
symmetrical). Start from a concrete object c and take an abstract object a that is
related to c via α or γ . Then, move to a less precise description a ′ � a and from
there, return to the concrete side via γ , getting to c′. Now it cannot be the case that
you end up strictly below the starting point c.
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3.2.1.6 L Let α ⊆ C × A and γ ⊆ A × C. Then (α, γ ) is a base of an
approximative description relation if and only if α is total on C, γ is total on A, and
for all c, c′ ∈ C and a, a′ ∈ A both of the following hold:

(α(c, a) ∨ γ (a, c)) ∧ a � a′ ∧ γ (a′, c′) ⇒ c′ 6 � c (3.10)

(γ (a, c) ∨ α(c, a)) ∧ c w c′ ∧ α(c′, a′) ⇒ a′ 6� a (3.11)

P.

⇒ Suppose that (α ⊆ C × A, γ ⊆ A × C) is a base of the approximative description
relation ρ. By point 2 of Definition 3.2.1.5, α is total on C and γ is total on A. Next,
we show that 3.10 is satisfied; 3.11 is symmetric. Suppose α(c, a) ∨ γ (a, c), a � a ′

and γ (a′, c′). Because (α, γ ) is a base of ρ, we have by point 1 of Definition 3.2.1.5
that gen((α, γ )) = ρ. So, from α(c, a)∨γ (a, c) we have ρ(c, a) and from γ (a ′, c′)
we have ρ(c, a′). Because ρ is an approximative description, we have from ρ(c, a)
and a � a′ (see requirement 3.5) that ρ(c, a ′). So both c and c′ are in pre •ρ(a

′). If
furthermore c′ � c, then c′ cannot be maximal in pre •ρ(a

′), so by the requirement on
γ in point 3 of Definition 3.2.1.5, it cannot be that γ (a ′, c′). So c′ 6 � c.

⇐ Suppose that (α ⊆ C×A, γ ⊆ A×C) with α total on C and γ total on A satisfy 3.10
and 3.11. Let ρ = gen((α, γ )). First, we show that ρ is an approximative description
relation. From the totality of α and γ it follows easily, by the definition of gen, that
ρ is total on C and A; so ρ is a description relation. By Property 3.2.1.4 we have that
post •ρ is �-upward-closed and pre •ρ is v-downward-closed. Let c ∈ C. Let a ∈ A be
such that α(c, a); we show that a is a minimal element of post •ρ(c). Namely, suppose
there exists a′ ≺ a such that ρ(c, a ′). Then, by the definition of gen, there must exist
c′ w c such that α(c′, a′) or γ (a′, c′). This is excluded by 3.11. So post •ρ(c) has a
minimal element for every c. Symmetrically, using 3.10, it can be shown that pre •ρ(a)
has a maximal element for every a.

Furthermore, it is now easy to show that (α, γ ) is a base of ρ. �

Properties 3.10 and 3.11 are reminiscent of those of a Galois connection (2.3, 2.4
and 2.5 in Section 2.2.3) — it is not difficult to see that they imply weak versions of
monotonicity, reductiveness and extensiveness (Section 2.2.2), namely:

1. α and γ are pre-monotonic.

2. (a) The composed11 relation γ α is pre-reductive.

(b) The composed relation αγ is pre-extensive.

11Recall that γα means “first γ , then α” while γ ◦ α, which is only used for functions, means “first
α, then γ ”.
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Conversely however, pre-monotonicity and pre-reductive/extensiveness are not suffi-
cient to guarantee properties 3.10 and 3.11. Another difference with Galois connec-
tions is that α and γ do not uniquely determine one another in the above situation.

Least descriptions, greatest concretisations, and Galois connections

The next cases that we consider are those in which it is possible to pick the �-least
(sometimes called best) description for any given concrete object, or to pick the v-
greatest concretisation for a given description.

3.2.1.7 D An approximative description relation ρ ⊆ C × A is A-
principal (C-principal) iff post •ρ has a�-least element (pre •ρ has av-greatest element).

Note that for an A-principal ρ, post •ρ(c) is a principal filter for any c, while for a
C-principal ρ, pre •ρ(a) is a principal ideal for any a (Section 2.2.1).

Again, we study necessary and sufficient properties of a pair (α, γ ) to be a base of
(A- or C-)principal description relations. The corresponding strengthened versions
of properties 3.10 and 3.11 are:

(α(c, a) ∨ γ (a, c)) ∧ a � a′ ∧ γ (a′, c′) ⇒ c′ w c (3.12)

(γ (a, c) ∨ α(c, a)) ∧ c w c′ ∧ α(c′, a′) ⇒ a′ � a (3.13)

We have:

3.2.1.8 L Let α ⊆ C × A and γ ⊆ A × C. Then (α, γ ) is a base of a C-
principal (A-principal) approximative description relation if and only if α is total on
C, γ is total on A, and for all c, c′ ∈ C and a, a′ ∈ A, properties 3.12 and 3.11
(resp. properties 3.10 and 3.13) hold.

P.

⇒ Suppose that (α ⊆ C× A, γ ⊆ A× C) is a base of the C-principal description rela-
tion ρ. By Lemma 3.2.1.6, the conditions on totality as well as 3.11 are satisfied. We
show that 3.12 is satisfied. Suppose α(c, a) ∨ γ (a, c), a � a ′ and γ (a′, c′). Like
in the proof of Lemma 3.2.1.6, both c and c′ are in pre •ρ(a

′). Because, by the C-
principality of ρ, pre •ρ(a

′) has a (unique) greatest element, and hence maxv(pre •ρ(a
′))

is a singleton, it follows from γ (a ′, c′) and the requirement on γ in point 3 of Defi-
nition 3.2.1.5 that this greatest element must be c′. Hence c′ w c.

The case of an A-principal description relation is similar.
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⇐ Suppose that (α ⊆ C × A, γ ⊆ A × C) with α total on C and γ total on A sat-
isfy 3.12 and 3.11. Let ρ = gen((α, γ )). First, we show that ρ is a C-principal
description relation. The fact that ρ is an approximative description relation follows
from Lemma 3.2.1.6. Let a ∈ A. Let c ∈ C be such that γ (a, c); we show that c
is the greatest element of pre •ρ(a). Namely, let c′′ be an aritrary element in pre •ρ(a).
Then, by the definition of gen, there must exist c′ w c′′ and a′ � a such that α(c′, a′)
or γ (a′, c′). In that case, 3.12 implies that c w c′, and hence, by transitivity, c w c′′.
It is now easy to show that (α, γ ) is a base of ρ.

The case that properties 3.10 and 3.13 hold is similar. �

From property 3.12 it can easily be seen that for a base (α, γ ) of a C-principal de-
scription, γ is functional and monotonic, and αγ is extensive. Symmetrically, we
have for a base of an A-principal description: α is functional and monotonic, and γ α
is reductive. As long as a description relation is not both C- and A-principal, α and
γ do not determine each other. However:

3.2.1.9 C Let α ⊆ C× A and γ ⊆ A× C. Then (α, γ ) is the base of a
C- and A-principal description relation if and only if it is a Galois connection.

A Galois connection (α, γ ) enjoys many properties, see Section 2.2.3. We recall that
α distributes over arbitrary lubs (if they exist) and γ over arbitrary glbs (if they exist),
and that the two adjoints determine each other by α(c) = ∧{a | c v γ (a)} and
γ (a) = ⊔{c | α(c) � a}, where

∧
and

⊔
denote the glb on (A,�) and the lub

on (C,v) respectively.

Galois insertions

A situation that occurs in many applications (e.g. see [CC77], [AH87] and also
Chapter 4 of this thesis) is that (α, γ ) forms a Galois connection from C to A,
while in addition γ α is the identity function. One reason for this is that � is often
defined via γ and v by a � a′ ⇔ γ (a) v γ (a′); that this renders γ α the identity
is stated in the lemma below. Another motivation is based on the observation that
descriptions a may always safely be replaced by α(γ (a)), which yields the same or a
better description. Thus, the abstract domain may be normalised to α(γ (A)). This
is called reduction in [CC92a].

In [Ore44], such a Galois connection is called perfect in A, [CC92a] calls it a
Galois surjection and [MSS86] a Galois insertion from A to C.

3.2.1.10 L (T 5.3.0.6  [CC79]) Let (α, γ ) be a Galois connec-
tion from (C,v) to (A,�). Then the following are equivalent.

1. γ α = id .
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2. γ is an embedding.

3. α is surjective.

4. γ is injective.

Another consequence is that if C is a complete lattice and (α, γ ) is perfect in A then
(by the fact that α distributes over lubs and is surjective) A is a complete lattice.

Things are symmetrical for perfectness in C.

The case that (α, γ ) is perfect in both A and C does not occur often in the
practice of Abstract Interpretation. It implies that the posets (A,�) and (C,v) are
isomorphic. The goal of abstraction, to reason on a less complex model, can clearly
not be attained in such a setting.

Abstraction and concretisation frameworks

Following terminology of [Mar93], we refer to the case in which an abstraction func-
tion exists as the abstraction framework, and the case in which a concretisation func-
tion exists as the concretisation framework. If none exists, we speak of the relational
framework. If both exist, Marriott speaks of the adjoint framework, however, to distin-
guish the varieties of this case, we prefer the terms Galois-connection framework and
Galois-insertion framework.

We make a slight generalisation: in case an approximation ordering is not defined
(on either side), we silently assume the identity relation as approximation ordering.
This allows us to also capture these cases in the relational, abstraction and/or con-
cretisation frameworks.

Power construction

A situation that often occurs is the following. Concrete and abstract spaces C and
A resp. are given together with a description relation ρ, but no obvious approx-
imation orderings pre-exist. For example, C = � , A = { ����� , �	��� , ����� , ���
�	� }
and ρ = {. . . , (−2, �
��� ), (−1, �
��� ), (0, �
��� ), (0, ���	� ), (1, ���	� ), (2, �	�	� ), . . . } ∪
{(1, ����� ), (3, ����� ), (5, ����� ), . . . } ∪ {(0, ��� � � ), (2, ��� � � ), (4, ���
�	� ), . . . }. In this
section, we discuss a construction that may be used to embed such a situation into one
of the frameworks mentioned above. In particular, we show how the “elementary”
ρ may be turned into a description relation in the concretisation or Galois-insertion
frameworks by shifting our point of view from C to � (C). Such a construction un-
derlies many of the abstract domains used in program analyses, but often remains
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implicit12 as its result is taken as the point of departure. In the Cousots’ work, this
shifting from C to � (C) is referred to as the construction of the collecting semantics13,
see e.g. [CC92b]. [CC94] discusses a large variety of possibilities to lift elementary
domains to power sets (see Section 3.4).

A natural way to define an ordering that relates the “precision” of abstract objects
is via the subset ordering on sets of described concrete elements: a � b ⇔ pre •ρ(a) ⊆
pre •ρ(b) (note that this ordering satisfies requirement 3.5). In the case of our example,
����� � ���	� and ��� � � � ���	� , while other pairs of descriptions are incomparable. On
the concrete side, we see that our interest is in fact shifted to � (C). We might say that
ρ is lifted to ρ̆ ⊆ � (C)× A defined by ρ̆(D, a) iff D ⊆ pre •ρ(a). This construction
is natural for a number of reasons. First, ρ̆ still has the intuition of a “description”: if
a ∈ A describes both c and c′ in C (by ρ), then we may as well say that a describes
the set {c, c′}; this is captured by ρ̆. Second, the associated “concretisation relation”
pre •ρ(a) is functional and monotonic. However, ρ̆ is not necessarily total on � (C)
and hence is not a description relation. In our example, {−1, 1} is not described by
any abstract element.

We proceed to investigate what is needed to embed this ρ̆ in one of the frame-
works mentioned before. In order to turn ρ̆ into a description relation, we extend
(A,�) to (A′,�′) and ρ to the description relation ρ ′ in such a way that for every
subset of A there exists a �′-upper bound in A′. In order not to alter the intuitive
meanings of the descriptions in A, ρ ′ should extend ρ in a conservative way, i.e. for
every a ∈ A, pre •ρ ′(a) = pre •ρ(a). � is then also conservatively extended by defining
a �′ b ⇔ pre •ρ ′(a) ⊆ pre •ρ ′(b) for a, b ∈ A′. The inclusion of a top element
α> in A′ describing all of C is both necessary and sufficient for the extension of A;
however, more descriptions may be added to provide a richer domain. In particu-
lar, combinations of descriptions may be used to describe the unions of the sets they
describe individually. In the case of our example, ����� �	��� would then describe all
integers while ����� ��� � � describes all non-negative numbers14. We extend ρ̆ to ρ̆′ in
a conservative fashion by defining ρ̆′(D, a) iff D ⊆ pre •ρ ′(a); now it is total on both
� (C) and A′, so it is a description relation.

However, ρ̆′ still is not necessarily approximative. First, �′ is a pre-order. To turn
it into a partial order, we consider the quotient A′/≡ where a ≡ b iff a �′ b ∧ b �′

12And justifiedly so: one would not want to complicate the presentation of an application by expos-
ing these technicalities.

13The meaning of the adjective “collecting” in the context of semantics often has different meanings
in other work.

14This enrichement indeed boils down to also lifting A to its power set. The interpretation that we
gave to the new elements corresponds to the disjunctive completion from [CC92b]; we refer to that paper
for a discussion of this particular and similar constructions.
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a; the definitions of ρ ′, �′ and ρ̆′ are adapted in the usual way15. For our example,
this would mean that �	��� and ����� ��� � � are identified by ≡. Second, post •ρ̆ ′ should
have a �′-minimal element, i.e. for every D ∈ � (C), there should be a �′-minimal
element in {a ∈ A′ | ρ̆′(D, a)}. This is satisfied in our example (note that {0} has
two minimal descriptions in A′/≡, namely { ����� } and { �	�	� , ���������
�	� }). In general,
if A′/≡ is finite, post •ρ̆ ′ has a �′-minimal element.

Under this additional assumption, we have in fact ended up in the concretisation
framework:

3.2.1.11 L (    ) Let (A′/≡,
�′), ρ′ and ρ̆′ be as above, and assume that post •ρ̆ ′ has a �′-minimal element. Then
ρ̆′ is a � (C)-principal description relation from ( � (C),⊆) to (A′/≡,�′).
P Because A′ is a superset of A that is closed under �′-upper bounds, ρ̆ ′ is total on

� (C). ρ̆ ′ is total on A′ too, as we have ρ̆ ′(∅, a) for every a ∈ A′. Hence, ρ̆ ′ is a description
relation. ( � (C),⊆) is clearly a poset, while from the definition of ρ̆ ′ it can easily be seen
that pre •ρ̆′ is ⊆-downward-closed and has a greatest element (namely, pre •ρ′(a) for every a ∈
A′/≡). Furthermore, (A′/≡,�′) is a poset by construction. post •ρ̆′ is �′-upward-closed:
from ρ̆ ′(D, a) and a �′ b we have, by the definitions of ρ̆ ′ and �′ resp.: D ⊆ pre •ρ′(a) and
pre •ρ′(a) ⊆ pre •ρ′(b), from which it follows that D ⊆ pre •ρ′(b), i.e. ρ̆ ′(D, b). Finally, post •ρ̆′
has a �′-minimal element by assumption. �

A � (C)-principal description relation determines a concretisation function (see the
remark about the base of a C-principal description below Lemma 3.2.1.8) that maps
each abstract object to the ⊆-largest set that is described. For our example, such a
function γ maps, e.g., { �
��� } to the set of all nonpositive integers and { �	�	� , ����� ��� � � }
to the set of all nonnegative integers.

So far, we have considered conditions for ρ̆′ to be an approximative description
relation and shown that in that case it is automatically � (C)-principal. We may want
in addition that ρ̆′ is A′/≡-principal as well. The following lemma gives a necessary
and sufficient condition.

3.2.1.12 L (   G- ) Assume
(A′/≡,�′), ρ′ and ρ̆′ to be as in Lemma 3.2.1.11 (including the condition that
post •ρ̆ ′ has a �′-minimal element), and assume that (A′/≡,�′) is a complete lattice
(with lub

∨
). Then the following are equivalent:

1. ρ̆′ ⊆ � (C)× (A′/≡) is a � (C)- and A′/≡-principal description relation.

2. ρ′ is an approximative description relation from (C,=) to (A′/≡,�′) that is
A′/≡-principal.

15I.e. they apply to elements ā of the quotient A′/≡ as to a representative a ∈ ā.
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P For the implication 1⇒ 2 it suffices to observe that post •ρ′(c) = post •ρ̆′({c}) for every
c ∈ C.

We consider the implication 2 ⇒ 1. The fact that ρ̆ ′ is ( � (C),⊆)-principal follows
from Lemma 3.2.1.11. Next, we show that for every D ∈ � (C), post •ρ̆′(D) has a least
element. The assumption that ρ ′ is A′/ ≡-principal determines an abstraction function α ′

from (C,=) to (A′/≡,�′) (see the remark about the base of an A-principal description below
Lemma 3.2.1.8). Define the function α : � (C) → A′/≡ by α(D) = ∨{α′(c) | c ∈ D}.
Then α(D) is the least element in post •ρ̆′(D) for every D ∈ � (C), as we will now show. First,
we show that α(D) ∈ post •ρ̆′(D), i.e., by the definitions of α and post •ρ̆′ resp., we have to show
that for every D ∈ � (C), ρ̆ ′(D,

∨{α′(c) | c ∈ D}), i.e. D ⊆ ⋃{pre •ρ′(α
′(c)) | c ∈ D}, i.e.

∀c∈D c ∈ ∨ pre •ρ′(α
′(c)). By definition of

∨
, the latter follows from ∀c∈D c ∈ pre •ρ′(α

′(c)),
which is easily seen to be true. Furthermore, the fact that α(D) is the �′-least such element
follows from the definition of

∨
. �

Note that by the definition of �′, the base of ρ̆′ is a Galois insertion in this case.
In the case of our running example, condition 2 of this lemma does not hold. ρ ′ is
not A′/≡-principal, because the element 0 ∈ � has two incomparable �′-minimal
descriptions: { ����� } and { �	�	� , ����� ��� � � }.

This power construction may be viewed as a guideline in designing abstract do-
mains. Given an “elementary” notion of description, as captured by ρ, it suggests
conditions on the form of the abstract domain that ensure the existence of a “con-
cretisation connection” (in which only γ needs to be functional) (Lemma 3.2.1.11)
or Galois insertion (Lemma 3.2.1.12). The many properties that Galois connections
enjoy, turn out to be very useful in practice, e.g. when abstract operators are defined,
safety and optimality are to be proven, or abstractions are defined compositionally.

The shift from C to � (C) occurs naturally in this construction. The goal of
abstracting is to reduce complexity in the concrete domain by identifying sets of
concrete objects. These are then “replaced” by abstract objects each of which acts as
a representation of such a set. However, this does not mean that there is a different
representation for each element of � (C). If reduction of complexity really has to be
achieved, many different subsets of C will indeed have the same abstraction. The
point is that in the power-set setting, the collection of concrete objects (where these
concrete objects are now elements of � (C), i.e. subsets of C) that map to the same
description has a nicer structure: it is partially ordered (by⊆), the decription relation
is ⊆-downward closed (so an abstract object representing some set will also represent
every smaller set), and there is a ⊆-greatest set being described.

Similarly, it is a misunderstanding to think that the shift of attention from C
to � (C) causes a “blow-up” of the abstract domain, or makes it more difficult to
reduce complexity. Closing A under upper bounds requires in the worst case the
addition of a single (top) element. The quotient construction (A′/≡) only reduces
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the size of A, as elements are being identified. Requiring post •ρ̆ ′ to have a �′-minimal
element only affects the abstract domain when it is infinite; in that case lower bounds
have to be provided for chains that are infinitely decreasing. Finally, the requirement
that (A′/≡,�′) is a complete lattice (needed to get a Galois insertion) also does not
necessarily complicate its structure. In case of our example, this may be fulfilled by
adding a best description ����� � for {0}, but could also be achieved by replacing �����
by � �
��� only decribing the strictly negative numbers for example.

In the beginning of the next chapter, we will also consider a Galois insertion
between sets of concrete objects and single abstract objects that is defined in terms
of an elementary description relation between concrete and abstract objects. The
following example, which returns in Section 4.2.3, serves as a leg-up while briefly
summarising the relevant aspects of the power construction.

3.2.1.13 E See Figure 3.1. C = {d0, d1, d2, d3} is the set of concrete ob-

b3

b2

d3 d2 d1 b1d0
� �

ρ

Figure 3.1: Description relation inducing a Galois insertion.

jects, each of which is described by one or more abstract objects in A = {b1, b2, b3},
as indicated by the dashed arrows that represent the description relation ρ. We embed
this in the Galois-insertion framework, as follows. Consider ( � (C),⊆) as concrete
and (A,�) as abstract domain where bi � b j iff pre •ρ(bi ) ⊆ pre •ρ(b j ). The lifted
description relation ρ̆ relates D ∈ � (C) to b ∈ A iff D ⊆ pre •ρ(b), i.e. iff ρ(d, b)
for every d ∈ D. In the case of this example, ρ̆ is total on both � (C) and A so
it is a description relation (and so it is not necessary to extend A, ρ and ρ̆ to A′,
ρ′ and ρ̆′ respectively as above). Furthermore, � is a partial ordering (so no quo-
tient construction is needed) and for every D ∈ � (C) there is a �-least description
a such that ρ̆(D, a). So ρ satisfies the conditions of point 2 of Lemma 3.2.1.12
and hence, because point 1 now follows, ρ̆ is � (C)- and A-principal, implying by
Corollary 3.2.1.9 that it has a unique base (α, γ ) that is a Galois insertion from
( � (C),⊆) to (A,�). The concretisation function γ maps every description in A to
the ⊆-largest element of � (C) that it describes (via ρ̆). Thus, by definition of ρ̆, γ
is equal to pre •ρ , so γ (b1) = {d1, d2} and γ (b2) = {d0, d1, d2, d3} for example. The
abstraction function α maps every D ∈ � (C) to its �-least description. Because
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(α, γ ) is a Galois connection, α(D) is for every D equal to
∧{a | D ⊆ γ (a)}. For

example, α({d2}) = α({d1}) = α({d2, d1}) = b1 and α({d3, d1}) = b2.

3.2.2 Strong preservation

The reconstruction of the hierarchy of frameworks in the previous subsection was
founded on the assumption of weak preservation of properties in L: condition 3.3.
This preservation type is used most commonly in “traditional” abstraction theories
like Abstract Interpretation, which is geared towards applications like code optimi-
sation. However, as explained in Section 1.1, if we are interested in verification, a
stronger type of preservation may be needed. Below, we will define a number of such
strong preservation types and indicate briefly how they affect the characteristics of
the abstraction frameworks.

The main point of strong perservation is that not only truth, but also falsehood of
(L-)properties is preserved from abstract to concrete objects. We define two types.

3.2.2.1 D

• ρ is fine for L iff:

∀c∈C,a∈A [ρ(c, a) ⇒ ∀ϕ∈L [c |= ϕ ⇔ a |=α ϕ]] (3.14)

• ρ is adequate for L iff:

∀c∈C,a∈A [ρ(c, a) ⇔ ∀ϕ∈L [c |= ϕ ⇔ a |=α ϕ]] (3.15)

Fineness is obtained from condition 3.3 by replacing the rightmost implication by
a bi-implication. An adequate ρ is, in addition, the maximal description relation
that is fine. It relates a concrete object to every abstract object that has the same
L-properties.

At a first glance, it might seem that the requirement of strong preservation does
not leave any room for a reduction of the complexity of a concrete object, because
the description should have all the same properties. However, the properties that
may be expressed are taken from a limited class (viz., L) and hence any properties
outside this class may be abstracted away in the abstract object. As an example,
consider transition systems with properties expressed in a branching-time temporal
logic like CTL∗. A given transition system is described by a minimal bisimilar system.
Clearly, the description satisfies exactly the same CTL∗-properties, while it is often
considerably smaller than the “concrete” system (and in any case not larger).
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Let us reconsider the development of the frameworks in Section 3.2.1. The first
observation is that the motivation for introducing the orderings v, � has disap-
peared: we do not want to “trade precision for reduction of complexity” any longer,
because this would violate the strong preservation. The point is that if a enjoys
strictly more L-properties than a′ (note that this does not necessarily imply that
a � a′), then a may not be replaced by a′, because approximation is not safe anymore
under the requirement of strong preservation. So, the description relation ρ plays a
solitary role in frameworks for strong preservation. We investigate some properties it
enjoys.

In the variants of strong preservation defined above, ρ is either equal to or a sub-
set of the relation σ defined by σ(c, a) ⇔ ∀ϕ∈L [c |= ϕ ⇔ a |=α ϕ]. Clearly,
if C and A coincide (and also |= and |=α), then σ is an equivalence relation. For
disjoint C and A however, the notion of an equivalence relation does not make sense.
A better alternative is the notion of a difunctional (Definition 2.1.0.2). It is not dif-
ficult to see that σ is a difunctional, i.e. it satisfies a kind of “extended transitivity”:
if σ(c, a), σ(c′, a) and σ(c′, a′), then σ(c, a′). A property of a difunctional σ is
that the relations σσ−1 and σ−1σ are equivalence relations on C and A respectively
([Mal73]), partitioning C and A into the same number of classes, related by a bijec-
tion f : C/σσ−1 → A/σ−1σ with the property that if f (C ′) = A′, then for all
ϕ ∈ L, for all c ∈ C ′ and a ∈ A′, either c |= ϕ and a |= ϕ, or c 6|= ϕ and a 6|= ϕ.
In particular, if C = A, then this means that σ coincides with the equivalence that is
induced by L (page 25).

ρ, being a subset of σ , need not be a difunctional in general. However, it is easily
seen that it has to be consistent (cf. Definition 9 in [LGS+95]) with L:

3.2.2.2 D ρ is consistent with L in a ∈ A iff for all ϕ ∈ L, ∀c∈C [ρ(c, a)
⇒ c |= ϕ] or ∀c [ρ(c, a) ⇒ c 6|= ϕ]. ρ is consistent with L iff it is consistent with
L in every a ∈ A.

It is this observation that forms the starting point for the Chapters 5 and onwards,
which investigate the construction of strongly preserving models.

3.3 Abstract Semantics

The previous section discussed several possibilities for the structure of concrete and
abstract domains, as well as for the correspondence relation between them. It con-
cerned, in a sense, the “static” aspects of abstraction theories: we concentrated on
the existence and form of elements rather than on their construction. The current
section will focus on “dynamic” aspects of frameworks. We assume some notion of
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computation that, on the concrete side, reflects the evaluation or interpretation of
some computer program.

One could say that there are two reasons to use abstraction to reason about some
object. One is that an abstract description of the object is less complex and hence
easier to reason about. The second is that the construction of a description is less
complex. For both reasons, one would not want to construct a description by first
computing the concrete object and then abstracting it. Rather, we also want to per-
form the construction in an “abstract fashion”.

For the construction of weakly preserving models, Abstract Interpretation offers
an established theory that is based on the idea of “mimicking” the concrete interpre-
tation function, � , by a similar function that is, roughly, obtained by replacing the
operators used in � by appropriate abstract operators. The resulting abstract interpre-
tation function can be viewed as specifying a way to “abstractly execute” programs16,
so that, in principle, the same mechanisms used in the interpreter/inference engine
for “running” a program can be used. This theory is briefly explained in the following
subsection.

For the construction of strongly preserving models we propose a different ap-
proach. We postpone this topic until Chapter 5.

3.3.1 Approximation of fixpoints

Let us move this discussion to a somewhat more concrete and more formal level.
The concrete object to be analysed consists of the interpretation � (P) ∈ C of some
program17 P ∈ £. Typically, the function � is defined in terms of operations like
function application and fixpoint computation (reflecting the effect of the program-
ming constructs in £ ) on (interpretations of ) values occurring in P . Of course we
may opt to compute the description of � (P) that we are interested in, in a completely
different way. However, the idea behind Abstract Interpretation is that this abstract
computation is done in a manner that “mimics” the computation of � (P) as closely
as possible. Such a computation can then often be viewed as an “abstract evaluation”
of P , in which the values occurring in P are given abstract meanings, while the oper-
ations occurring in the definition of � are replaced by abstract counterparts yielding
the abstract interpretation function α � . The question is then how these abstract mean-
ings and counterparts should be chosen such that the resulting abstract object α � (P)
in A is a description of � (P), i.e. ρ(� (P), α � (P)).

16Of course this depends on how far the computation of an interpretation function resembles an
execution of the program. In general we could say that the more the programming language is “declar-
ative”, the more an execution corresponds to an evaluation of its standard semantics.

17£ denotes a programming language, whose exact form is irrelevant at this point.
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The answer to this question depends very much on the programming language,
on the way � (P) is defined, and on the abstraction framework that is assumed. We
review a situation that often occurs in the literature — although it will not play a
role in the remainder of this thesis —, namely where � (P) is defined as the least
fixpoint of a monotonic function f : C→ C (where f depends on P in some way).
The computational ordering, with respect to which the least fixpoint is defined, is
assumed to coincide with the concrete approximation order v. Furthermore, we
assume that (C,v) (which is supposed to be a cpo so that least fixpoints exist) and
(A,�) are related through a Galois connection (α, γ ), so that ρ(� (P), α � (P)) is
equivalent to α(� (P)) � α � (P). We do not make any further assumptions about
the form of the programming language or the structure of the function f — hence,
we stay at a very general level. At the end of this section, the interested reader finds
some pointers to the literature on this subject.

So, suppose that � (P) = lfp( f ). To “mimic” � (P) in the abstract domain, we
look for abstract counterparts α lfp and α f such that

α(lfp( f )) � αlfp(α f ) (3.16)

We choose to take for α lfp the least fixpoint operator on the abstract domain (al-
though different choices exist, for example in the form of widening and narrowing
techniques, see [CC77, CC92c, CC92b]). The following result specifies a condition
on α f in order for 3.16 to hold. It appears in many of the papers by the Cousots
and is sometimes referred to as the fundamental theorem18. The elegant proof in-
cluded below is reproduced from [Mat94], where the fundamental theorem is called
µ-fusion.

3.3.1.1 L Let (C,v) be a cpo and f : C → C a monotonic function. Let
(A,�) be a poset, α f : A→ A be monotonic and (α, γ ) a Galois connection from
(C,v) to (A,�). Suppose that

α ◦ f � α f ◦ α (3.17)

Then α(lfp( f )) � lfp(α f ).

P.
α ◦ f � α f ◦ α

⇒ { γ is monotonic }
γ ◦ α ◦ f ◦ γ v γ ◦ α f ◦ α ◦ γ

18The earliest place it is hinted at is paragraph 8.1 of [CC77], as far as we know. Theorem 7.1.0.4 of
[CC79] contains an explicit statement of the result. Proofs, be it of slight variations, appear in [CC92a]
(before Proposition 23) and [CC92b] (Proposition 6.12).
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⇒ { γ ◦ α is extensive; α ◦ γ is reductive }
f ◦ γ v γ ◦ α f

⇒ { instantiate pointwise ordering }
f (γ (lfp(α f ))) v γ (α f (lfp(α f )))

≡ { by 2.1 on page 16, α f (lfp(α f )) = lfp(α f ) }
f (γ (lfp(α f ))) v γ (lfp(α f ))

⇒ { by 2.2 on page 16, for all c ∈ C, f (c) v c⇒ lfp( f ) v c }
lfp( f ) v γ (lfp(α f ))

≡ { (α, γ ) is a Galois connection (Section 2.2.3) }
α(lfp( f )) � lfp(α f ) �

Note that similar to the third through fifth steps in this proof, it can be shown that
also α ◦ f � α f ◦ α implies α(lfp( f )) � lfp(α f ); this result is called simple µ-
fusion in [Mat94]. A function α f for which 3.17 holds is said to be safe for f , or
a safe approximation of f . Indeed, the description relation ρ may be lifted to the
function spaces over C and A, e.g. by defining ρ( f, α f ) as 3.17. Just like we did
in Section 3.2.1 for the description relation between C and A, we may now again
investigate the existence of approximation orderings, of minimal/least descriptions,
and of maximal/greatest described objects for the (monotonic-) function spaces C→
C and A → A. These notions should preferably be “consistent” with the same
notions on the level of individual elements of C and A. For example, for a notion
� (we use the same symbol) of approximation between abstract functions, α f � α f ′

should imply that lfp(α f ) � lfp(α f ′). And: if the �-least description α f of f exists,
it should be such that19 lfp(α f ) = α(lfp( f )).

3.3.1.2 L Assume the same preconditions as in Lemma 3.3.1.1. If in addition
we have

α ◦ f = α f ◦ α (3.18)

Then α(lfp( f )) = lfp(α f ).

P From Lemma 3.3.1.1 and simple µ-fusion. �

19Various notions of optimality of an abstract function α f with respect to f may be found in the
literature; the requirement that α(lfp( f )) = lfp(α f ) is just one. In this thesis, optimality is only
used for abstract objects, in the sense as defined in Definition 3.2.1.1, and not for functions over such
objects.
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In the Galois-insertion framework, if such a function α f exists20, it is defined by
α f = α ◦ f ◦ γ . The “practical” reason for imposing the stronger condition 3.18
instead of 3.17 is that the requirement α(� (P)) � α � (P) can easily be satisfied by
defining α � to be the constant function mapping everything to α>, the “least precise”
abstraction that gives no information at all. Such solutions should clearly be avoided;
hence a criterion for reasoning about the quality of abstractions is introduced.

3.4 Related Work

For an overview of various examples of, and approaches to, program analysis before
the conception of the unifying framework of Abstract Interpretation the reader is
referred to the bibliographies in [CC77], [MJ81], [AH87] and [AU77]. A more
recent overview article is [JN95].

The idea of viewing a program analysis as an approximate computation operating
on descriptions of data appears in computer science as early as 1963 in the work
of Naur ([Nau63]). Another early example of the idea is given in [Sin72]. The
Cousots are the first to relate standard to non-standard semantics by a Galois insertion
[CC77]. They published many papers on the subject around the end of the 70s
(see the bibliography of [CC92b]), and, after a period of relative silence (but see
[CC84]), displayed a renewed interest in the subject at the beginning of the 90s:
[CC92a, CC92c, CC92b]. [CC92a] contains a wealth of examples of “everyday”
abstract interpretations, as well as more advanced program analyses. In [CC94],
many results from their older articles as well as from others’ works are combined and
extended, resulting in an abundance of constructions suggesting how to lift relations,
functions, pairs, etc. from “elementary” domains to domains consisting of sets (cf.
our power construction). It is claimed that by avoiding power-domain constructions
and by keeping the computational orders separate from the approximation orders
(both on concrete and abstract side), a general approach to the abstract interpretation
of higher-order functions is obtained. This is illustrated by a unified analysis that
captures many analyses used in the field of functional languages.

Adaptations of the original Galois-connection framework in the realm of various
programming paradigms are: [BHA86, Nie88] in the context of functional programs,
which drop the requirement of best concretisations; [MS89a, MS92a] in the context
of logic programs, which drop the requirement of best descriptions; and [MJ86] in
the context of non-recursive programs, which drops both the requirements of best
concretisations and best descriptions. See the extensive bibliography of [AH87] for
pointers to applications of Abstract Interpretation in the realm of declarative pro-
gramming languages.

20Note that for the function g = α ◦ f ◦ γ , the equality α ◦ f = g ◦ α does not necessarily hold.
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Papers presenting comparative studies of the various frameworks are [Mar93] and
[CC92b].

In [Mar93], Marriott elaborates a framework that we only sketched superficially
in Section 3.3 above. He assumes a metalanguage M that is a variant of the simple
typed lambda calculus consisting of base types, and product and function spaces,
with expressions built from pairing, projection, λ-abstraction, function application
(β-reduction), conditional, and least fixpoint operators, over basic expressions and
variables. The purpose of this metalanguage is to supply the operators to define con-
crete and abstract semantic functions (cf. our interpretation functions � and α � ). The
idea of abstract semantics “mimicking” the concrete semantic function is enforced by
the introduction of a standard interpretation I mapping expressions in M to some
(concrete) algebra and a non-standard (abstract) interpretation I ′ from M to an ab-
stract algebra, which is connected to the concrete algebra via a concretisation family
γ (corresponding to our description relations). General conditions are investigated
that ensure that γ is consistent with the interpretations I and I ′. The advantage of
this metalanguage approach is that correctness is guaranteed of any abstract seman-
tics defined in M . The idea of using a metalanguage was advocated by Nielson in
[Nie82, Nie88].

3.5 Concluding Remarks

This chapter has given an overview of abstraction theories. To start with, we have
identified two major concerns of such theories. One is how to relate objects to de-
scriptions, and the consequences of this for the preservation of properties. The other
is how to construct descriptions in a practical way. Throughout, the distinction be-
tween weak and strong preservation has formed a border line.

For the case of weak preservation, Section 3.2 takes a systematic approach by
reconstructing a number of frameworks often encountered in literature from scratch.
Abstract Interpretation was originally introduced ([CC77]) in the context of the
Galois-insertion framework, and in many articles about applications that set-up has
been assumed to be the framework. Section 3.2 may be viewed as an attempt to
understand why exactly such Galois insertions are needed (or convenient). By start-
ing from the basic notion of a description relation and introducing extra conditions
one by one, we have been able to unravel several motivations leading to the choice
of Galois insertions, while passing by several weaker frameworks, also proposed in
the literature, on the way. Also — and this is a new result — we have managed to
characterise these weaker frameworks by conditions that are obtained by weakening
the defining properties of a Galois connection. The abstraction framework (in which
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the abstraction relation is a function) will return in the next chapter. A separate sub-
section was devoted to a situation that often occurs in practice, in which a set of
concrete objects is lifted to its power set to embed it into one of the more common
frameworks, usually the Galois-insertion framework (also this construction is used in
the next chapter). We generalised this construction to weaker frameworks.

In the case of strong preservation, the hierarchy of abstraction frameworks col-
lapses because the notion of approximation is dropped.

Section 3.3 gives a brief impression of the folklore of constructing abstractions.
The “fundamental theorems” are reviewed that suggest under which conditions the
abstraction of a least fixpoint of a function f can be approximated, or computed pre-
cisely, as the least fixpoint of an abstracted function α f . The fixpoint-based construc-
tion methods will not be used explicitly in the remainder. Constructing descriptions
in the context of strong preservation is deferred until Chapter 5.



Chapter 4

Abstract Interpretation of
Nondeterministic Systems

The theory of Abstract Interpretation is applied to construct descrip-
tions, called Abstract Kripke structures, of reactive systems, which pre-
serve properties expressible in the branching-time temporal logic CTL � .
In contrast to many traditional applications of Abstract Interpretation,
our framework suits the definition of descriptions displaying nondeter-
minism, maintaining not only universal, but also existential properties.
Conditions are identified under which such descriptions are optimal with
respect to the given abstract domain. Furthermore, we propose the no-
tion of abstraction families providing a framework for the refinement of
descriptions.
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4.1 Introduction

This chapter presents an approach to the analysis of reactive programs, formalised
in the framework of Abstract Interpretation. We model reactive programs by Kripke
structures (Section 2.4), while their properties are specified in temporal logic (Sec-
tion 2.3). The analysis is based on a notion of description of a Kripke structure that
weakly preserves CTL∗.

For a long time, applications of Abstract Interpretation have focussed on the
analysis of universal safety properties, that hold in all states (safety) along all possible
executions (universality) of the program.1 With the advent of reactive systems, in-
terest has broadened to a larger class of properties, also including properties concern-
ing the existence of paths, liveness, timing and even probabilities. This is refected
by a stream of publications2 showing a revived interest in preservation results and
Abstract-Interpretation techniques. The theory described in this chapter is based on
[DGG94].

Several definitions of descriptions that weakly preserve reactive properties have
been proposed in literature before the abovementioned revival, but these are limited
to universal properties only, or they only concentrate on the definition of abstract
models without indicating how such descriptions can be constructed. As argued in
the previous chapter, Abstract Interpretation offers a theoretical framework in which
both aspects, preservation and construction, may conveniently be expressed. The
large body of experience with the topic of constructing abstract models by the ab-
stract interpretation of programs may turn out to be useful in coping with the state
explosion problem as explained in Section 1.3.

4.1.1 Overview of the chapter

In the next section, we investigate a notion of abstraction of Kripke structures such
that CTL∗ is weakly preserved. In other words, we define objects called Abstract
Kripke structures and give a description relation ρ relating these to concrete Kripke
structures, such that requirement 3.3 on page 36 holds (with CTL∗ substituted for
L). Before embedding this setting in one of the abstraction frameworks discussed
in the previous chapter (Section 3.2) by providing notions of approximation and
optimality, as will be done in Section 4.4, we introduce a simple programming lan-
guage and illustrate the process of constructing an abstract model through abstract
interpretation of the program text (cf. Section 3.3). This is then formally justified

1The notions of universality and safety of a property are not always distinguished as explicitly as we
do in this thesis. What we call “universal safety” is often just termed “safety” or “invariance” elsewhere.

2[Kur90, CGL92, BBLS92, Loi94, DGG94, CR94, CIY95, Kel95]; see Section 4.9 for a more
complete overview and comparison.
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in Section 4.4. Section 4.5 identifies conditions under which the abstract model
that is constructed by abstractly interpreting a program coincides with the optimal
abstractions of Section 4.2. Sections 4.6 and 4.7 deal with some practical aspects.
Throughout, we illustrate the theory by means of an elaborate example.

In Section 4.8, we extend the framework of Abstract Interpretation so that con-
structed abstractions can be incrementally refined, which will be needed when a cho-
sen abstraction turns out to be too gross to allow verification of the properties of
interest. Section 4.9 contains an extensive comparison with related work, and Sec-
tion 4.10 concludes.

4.1.1.1 A In the rest of this chapter, we fix a Kripke structure � =
(6,R, I, ‖·‖Lit).

4.2 Abstract Kripke Structures

We want to define a description relation ξ ⊆ ��� × α ��� between Kripke structures
and Abstract Kripke structures (whose exact definition is yet to be determined) under
which CTL∗ is weakly preserved3:

∀ � ∈ ��� , � ∈α ��� [ξ( � ,
�
) ⇒ ∀ϕ∈CTL∗ [ � |= ϕ ⇐ � |= ϕ]] (4.1)

We choose to define a description relation between transition systems in terms of a
more elementary description relation ρ ⊆ 6 × α6 between the concrete states (of
� , see Assumption 4.1.1.1 above), and abstract states (of

�
). The reason for doing so

is that we want to construct abstract models by mimicking the (concrete) semantics
of some programming language. Typically, the definition of such a semantic inter-
pretation function involves tests and transformations that are evaluated over states,
where a state specifies the valuation of all variables. To build an abstract model, the
operations will be evaluated over abstract states that only contain partial information
about the valuation of variables.

Thus, we formulate the preservation requirement on the level of individual states,
which is a natural sharpening4 of requirement 4.1:

∀c∈6,a∈α6 [ρ(c, a) ⇒ ∀ϕ∈CTL∗ [( � , c) |= ϕ ⇐ (
�
, a) |= ϕ]] (4.2)

Thus, the concrete states in 6 take the role of concrete objects, while the abstract
states in α6 act as descriptions. Neither 6 nor α6 come with an obvious approx-
imation ordering. It will turn out to be convenient to assume that this situation is

3Henceforth, we use the symbol |= for the satisfaction relations on both the concrete and abstract
side.

4The term “sharpening” can only be taken formally after defining the set αI of abstract initial states;
see Property 4.2.2.2 on page 62.
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embedded into the Galois-insertion framework. Therefore, we assume that α6 is a
complete lattice with approximation ordering � and that there exists a Galois inser-
tion5 (α, γ ) from ( � (6),⊆) to (α6,�). Recall that then a � b iff γ (a) ⊆ γ (b).

We stress that this construction does not blow up the concrete or abstract state
spaces6. It is meant to impose some structure on α6, about which we did not make
any assumptions so far. On the concrete side, the state space is still 6. The reason
for considering � (6) is just that it turns out to be convenient to cast the relation be-
tween6 and α6 in terms of a Galois insertion between ( � (6),⊆) and (α6,�) (see
Section 3.2.1 and also Section 4.9.1 for a discussion of the advantages). However,
the underlying description relation ρ between 6 and α6, related to γ by γ = pre •ρ ,
will still be used. The rest of this section indeed shows how this description rela-
tion between states lifts to a description relation ξ between Kripke structures (cf.
requirement 4.1).

So, we assume that a set α6 of abstract states is given together with the Galois
insertion (α, γ ) specifying its connection to the concrete states. In order to define an
Abstract Kripke structure, we need three more ingredients:

1. A function α‖·‖Lit specifying the interpretation of literals over abstract states.

2. A set αI of abstract initial states.

3. An abstract transition relation αR.

These points are considered in the following subsections.

4.2.0.1 D For a (finite or infinite) sequence ā = a0a1 · · · in α6, define
γ (ā) = {c0c1 · · · | ∀i R(ci , ci+1) ∧ ci ∈ γ (ai)}.

4.2.0.2 N We will usually write α(c) for α({c}).

4.2.1 Valuation of literals

In order to satisfy requirement 4.2 for the literals in CTL∗, we must have for every
literal p: (

�
, a) |= p ⇒ ( � , γ (a)) |= p. As we intend to use the abstract model

to infer properties of the concrete model, we would like as many literals as possible

5These assumptions may indeed be viewed as an application of the power construction of Sec-
tion 3.2.1, be it that in the current case no set α6 is given in advance. Hence, this embedding into the
Galois-insertion framework should be viewed as imposing conditions on the form of α6, rather than
constructing a new set α6

′/ ≡ of abstract states from some pre-existing α6.
6In particular, the set α6 consisting of a single top element describing all sets of concrete states

would suffice, although it will not be very useful in practice.
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to hold in each abstract state. Therefore, we let p be satisfied in a whenever it is
satisfied in all concrete states described by a:

4.2.1.1 D For p ∈ Lit, define α‖p‖Lit = {a ∈ α6 | γ (a) ⊆ ‖p‖Lit}.

This choice determines the valuation of literals in abstract states. The relation |= ⊆
α6 × Lit is defined as in clause 1 of Definition 2.4.1.1, where s now denotes an
abstract state and ‖·‖Lit has to be replaced by α‖·‖Lit. By this choice, as many literals
as possible hold in each abstract state. Namely, it can be shown directly from the
definitions of |=, ‖·‖Lit and α‖·‖Lit that for every a ∈ α6 and p ∈ Lit, (

�
, a) |=

p ⇔ ( � , γ (a)) |= p.
Note that if a ∈ α6 is such that γ (a) contains concrete states in which p holds

and concrete states in which ¬p holds, then a 6∈ α‖p‖Lit but also a 6∈ α‖¬p‖Lit. So,
although it is always the case that either a |= p holds, or its negation a 6|= p, and
similarly for ¬p, it may occur that for some a we have neither a |= p nor a |= ¬p.
In particular, a 6|= p does not necessarily imply that a |= ¬p.

Furthermore, less precise states satisfy fewer literals, as can easily be proven from
the definitions of �, |= and α‖·‖Lit:

4.2.1.2 L Let a, a′ ∈ α6. If a′ � a, then for all p ∈ Lit a′ |= p ⇒ a |= p.

4.2.2 Abstract initial states

Requirement 4.2 does not imply 4.1. The term
� |= ϕ in 4.1 is an abbreviation

for ∀a∈αI (
�
, a) |= ϕ. By 4.2, this implies ∀c∈∪{γ(a)|a∈αI} ( � , c) |= ϕ. A sufficient

condition for this to imply � |= ϕ in 4.1, which is an abbreviation for ∀c∈I ( � , c) |=
ϕ, is that ∪{γ (a) | a ∈ αI} ⊇ I. When we have preservation, 4.1, a property ϕ of the
concrete model can be verified by checking it on the abstract model, i.e. by verifying
that

� |= ϕ. Preferably, this condition is as weak as possible. That means that the
set of abstract initial states has to be as small as possible. In general, it is not possible
to choose αI such that ∪{γ (a) | a ∈ αI} = I. However, the following choice for αI
yields the smallest set ∪{γ (a) | a ∈ αI} that still includes I.

4.2.2.1 D αI = {α(c) | c ∈ I}.
One may wonder why we did not take α(I) as the (single) abstract initial state. The
reason is that each element of {α(c) | c ∈ I} is in general at least as precise as
the singleton α(I): because α distributes over

⋃
(Section 2.2.3), we have α(I) =∨{α(s) | s ∈ I} (where

∨
denotes the least upper bound in α6), so that for each

s ∈ I, α(s) � α(I). Therefore, the set
⋃{γ (a) | a ∈ αI} of concrete states to which
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αI (as defined above) corresponds, is a subset of the concretisation γ (α(I)). That
it can be a proper subset can be seen in Figure 3.1 on page 48. If we assume that
I = {d3, d2, d1}, then we get αI = {b1, b3} (with “concretisation” {d3, d2, d1}), while
α(I) = {b2} (with “concretisation” {d3, d2, d1, d0}).

As argued above, statewise preservation, 4.2, now implies preservation, 4.1. The
following property states something slightly more general, namely that if statewise
preservation holds, and furthermore some property holds in a superset of the abstract
initial states, then it holds in (the initial states of ) the concrete system. The proof is
straightforward.

4.2.2.2 P Let ϕ ∈ CTL∗. If ∀a∈α6 (
�
, a) |= ϕ ⇒ ( � , γ (a)) |= ϕ and

αI′ ⊇ αI, then (
�
, αI′) |= ϕ ⇒ � |= ϕ.

4.2.3 Abstract transition relations

We now investigate the definition of the abstract transition relation: when is there a
transition from abstract state a to b? When defining the transitions that an abstract
state a can make, requirement 4.2 tells us that we should take into account the possi-
ble transitions of all concrete states described by a. In order for existential properties
to be preserved, the abstract transition relation should be such that the existence of a
successor of a satisfying certain properties, implies, for each c ∈ γ (a), the existence
of a successor of c satisfying the same properties. For preservation of universal prop-
erties, the fact that some property holds for all successors of a should imply that it
holds for all successors of every c ∈ γ (a).

If there has to be a single abstract transition relation αR satisfying both require-
ments, then ρ needs7 to be a bisimulation between (6,R) and (α6, αR), which is a
strong restriction. Also, it immediately puts us in a situation where CTL∗ is strongly
preserved under ρ. Our solution is to define instead two transition relations on α6,
one preserving existential properties, and the other universal properties. As a conse-
quence, abstract transition systems will be essentially different from concrete systems.
In particular, the valuation of CTL∗ formulae will be defined in such a way that ex-
istential formulae may only be evaluated over one type of transitions, and universal
formulae only over the other type. It will turn out that because of this fact, abstrac-
tions are not necessarily strongly preserving: for ϕ ∈ CTL∗, it may be the case that
neither ϕ, nor ¬ϕ holds on the abstract model.

7See Lemma 6.2.0.5 in Chapter 6.
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The constrained abstract transition relation

Consider some a ∈ α6 that has a successor b for which some property ϕ ∈ CTL∗

holds, i.e. a |= ∃ � ϕ. If requirement 4.2 is to hold, then it must be the case that
every concrete state in γ (a) has a successor in which ϕ holds. In other words, there
exists a set Y of concrete states, each satisfying ϕ, such that for every state in γ (a),
there exists a successor in Y . We choose the following condition: b may only be a
successor of a if R∀∃(γ (a),Y ) for some Y ⊆ 6 that is described by b, i.e. Y ⊆ γ (b).
This condition guarantees safety in the sense that existential formulae are preserved,
as will be shown further on. We also would like a to have as many successors as
possible, and furthermore each of them should be a description of Y that is as precise
as possible. The first requirement is satisfied by letting b be a successor of a when-
ever R∀∃(γ (a),Y ); the second by choosing Y to be minimal and b to be the best
description of it, as specified by α (cf. Lemma 3.2.1.8). Formally:

4.2.3.1 D αRC(a, b) ⇔ b ∈ {α(Y ) | Y ∈ min{Y ′ | R∀∃(γ (a),Y ′)}}.

αRC is called the constrained (abstract transition) relation8. This definition is illustrated
in Figure 4.1. Note that the lower part is similar to Figure 3.1 on page 48. The dashed

b3

b2

d3 d2 d1

c2 c1 a

b1d0
� �

ρ

αRCR

Figure 4.1: The constrained transition relation.

8The term “constrained” was chosen because, intuitively, the outgoing transitions from an abstract
state a are being constrained by the transitions that are possible from the corresponding concrete states
c in γ (a): a may only make a transition to b if the cs “agree” in the sense that they can all make a
transition into γ (b).
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arrows represent the description relation ρ, from which the corresponding concreti-
sation and abstraction functions can be derived: e.g. γ (a) = {c1, c2}, α({d3}) = b3,
α({d2}) = α({d1}) = α({d2, d1}) = b1 and α({d3, d1}) = α({d0}) = b2. The
constrained transitions from state a lead to both b1 and b2. From the point of
preservation of properties, the transition to b1 would be enough. Namely, it can be
shown that, because b1 is more precise than b2 (b1 � b2), not only the properties
from Lit (see Lemma 4.2.1.2), but indeed all the ∃CTL∗-properties that b2 enjoys,
are shared by b1. Hence, any property of the form ∃ � ϕ that holds in a because ϕ
holds in successor b2 would still hold in a if b1 were the only successor. In a sense,
the two transition systems (the one with and the one without the transition from a
to b2) are “equipotent”. This will be formalised in Section 4.4.

Although we based this choice for αRC on the preservation of the “single-step”
modality ∃ � , we have the following preservation property for paths.

4.2.3.2 L Let a ∈ α6, c ∈ γ (a) and ā be an ((α6, αRC), a)-path. Then
there exists a ((6,R), c)-path c̄ in γ (ā).

P Assume ā = a0a1 · · · with a0 = a. We show that there exists an infinite sequence
c̄ = c0c1 · · · of states in 6 such that for all i ≥ 0, ci ∈ γ (ai) and R(ci, ci+1). c̄ is
constructed inductively, as follows. Let c0 = c. Then by definition, c0 ∈ γ (a0). Now
suppose that for some n ≥ 0, cn is given such that cn ∈ γ (an). Because αRC(an, an+1), there
must be (by Definition 4.2.3.1 of αRC) Y such that R∀∃(γ (an), Y ) and α(Y ) = an+1. By
definition of R∀∃, there exists cn+1 ∈ Y such that R(cn, cn+1). Because (α, γ ) is a Galois
connection, we have by extensiveness of γ ◦ α (property 2.5 on page 17) that γ (α(Y )) ⊇ Y ,
so cn+1 ∈ γ (an+1). Thus, c̄ is a ((6,R), c)-path and c̄ ∈ γ (ā). �

The free abstract transition relation

Now, consider some a ∈ α6 such that for every successor b, ϕ ∈ CTL∗ holds, i.e.
a |= ∀ � ϕ. By requirement 4.2, every successor of every concrete state in γ (a) should
satisfy ϕ. Because CTL∗ is (semantically) closed under negation (Definition 2.3.0.1),
this may be restated conversely: if some c ∈ γ (a) has a successor for which ϕ holds,
then a must have a successor for which ϕ holds. We choose the following condi-
tion: b must be a successor of a if R∃∃(γ (a),Y ) and Y is described by b. Again,
this condition guarantees safety in the sense that universal formulae are preserved.
Furthermore, we also would like a to have as few successors as possible, and further-
more each of them should be a description of Y that is as precise as possible. The
first requirement is satisfied by letting b be a successor of a only when R∃∃(γ (a),Y );
the second by choosing Y to be minimal and b to be the best description of it, as
specified by α. We get to the following definition:
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4.2.3.3 D αRF(a, b) ⇔ b ∈ {α(Y ) | Y ∈ min{Y ′ | R∃∃(γ (a),Y ′)}}.

αRF is called the free (abstract transition) relation9. It is illustrated in Figure 4.2.

b3

b2

d3 d2 d1

c2 c1 a

b1d0
� �

ρ

R αRF

Figure 4.2: The free transition relation.

4.2.3.4 O For any a ∈ α6, every minimal set Y ′ for which R∃∃(γ (a),
Y ′) holds, is a singleton. For example, in Figure 4.2 these Y ′ are {d3}, {d2} and {d1},
with α(Y ′) being b3, b1 and b1 respectively.

Again, the preservation of single steps (∀ � ), on which the above definition is
inspired, extends to paths:

4.2.3.5 L Let a ∈ α6, c ∈ γ (a) and c̄ be a ((6,R), c)-path. Then there
exists an ((α6, αRF), a)-path ā such that c̄ ∈ γ (ā).

P Assume c̄ = c0c1 · · · with c0 = c. Define ā = a0a1 · · · with a0 = a and ai =
α(ci ) for i ≥ 1. Because (α, γ ) is a Galois connection, we have γ (α(ci )) ⊇ {ci}, so
ci ∈ γ (ai) for i ≥ 1. Also, c0 ∈ γ (a0). So c̄ ∈ γ (ā).

Because for all i ≥ 0, R(ci , ci+1), ci ∈ γ (ai), and ai = α(ci ), we have by Defini-
tion 4.2.3.3 of αRF : αRF(ai , ai+1). �

By the requirement of minimality of Y in Definitions 4.2.3.1 and 4.2.3.3, it is
not in general the case that αRC ⊆ αRF , as can be seen by comparing Figures 4.1
and 4.2.

9The term “free” was chosen as the opposite of constrained.
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In order to accommodate these two different transition relations in a single tran-
sition system, we give the following definition.

4.2.3.6 D A mixed transition system is a triple (S, F,C) consisting of
a set S of states, and two transition relations F and C called the free and constrained
(transition) relations respectively. A free path is a path with all its transitions in F ; a
constrained path is a path with all its transitions in C . The interpretation of CTL∗

formulae over a mixed system is defined slightly different from Definition 2.4.1.1. �
is now assumed to be the mixed system (S, F,C, I, ‖·‖Lit). Clause 6 is replaced by

6′. s |= ∀ψ iff for every free s-path π , π |= ψ ; s |= ∃ψ iff there exists a
constrained s-path π such that π |= ψ .

We can now define the abstraction of a Kripke structure.

4.2.3.7 D An Abstract Kripke structure is a quintuple (S, F,C, J, ‖·‖)
representing a mixed transition system with initial states J and interpretation func-
tion ‖·‖. The notion of reachability in such an Abstract Kripke structure is taken
relative to the union F ∪ C of both transition relations, unless explicitly specified
otherwise.

For the Kripke structure � = (6,R, I, ‖·‖Lit) and the set α6 of abstract states10,
the abstraction function αM : ��� → α ��� maps � to the Abstract Kripke structure
(α6, αRF , αRC , αI, α‖·‖Lit), where αRF , αRC , αI and α‖·‖Lit are as defined above.

We then have:

4.2.3.8 T For every ϕ ∈ CTL∗, αM( � ) |= ϕ ⇒ � |= ϕ.

P We write � M for αM ( � ). By Lemma 4.2.2.2, it suffices to prove statewise preser-
vation for every ϕ in CTL∗. This is done by induction on the structure of ϕ, proving for
state formulae that for every state a ∈ α6, ( � M , a) |= ϕ ⇒ ( � , γ (a)) |= ϕ and for path
formulae that for every free or constrained path ā in � M , ( � M , ā) |= ϕ ⇒ ( � , γ (ā)) |= ϕ.

The base case, ϕ ∈ Lit, follows directly from Definition 4.2.1.1. The cases that ϕ is a
conjunction or disjunction of state or path formulae, a state formula interpreted over a path,
or a path formula with principal operator � , � or � , are straightforward. For ϕ of the form
∀ψ , let a be a state such that ( � M , a) |= ∀ψ , let c ∈ γ (a), and consider a ( � , c)-path c̄.
By Lemma 4.2.3.5, we know that there exists an ((α6, αRF), a)-path ā such that c̄ ∈ γ (ā),
so, because ( � M , a) |= ∀ψ , ( � M , ā) |= ψ . By the ind. hyp. we have ( � , c̄) |= ψ . So
( � , γ (a)) |= ∀ψ . The argument for ϕ of the form ∃ψ is similar. �

10Although, for convenience, � and α6 are fixed throughout this chapter, this definition of αM is
understood to generalise for any given concrete Kripke structure and any set of abstract states.
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So, Abstract Kripke structures allow verification of full CTL∗ while the degree of
reduction is determined by the choice of the abstract domain and may hence be
arbitrarily large. In contrast, reductions with respect to bisimulation equivalence
(e.g. [BFH+92]) only allow a limited reduction, in the sense that only states that are
bisimilar may be identified by the abstraction. These facts may seem contradictory,
but the reader should note that by the definition of satisfaction of CTL∗ formulae
over mixed systems, it is possible that neither ϕ, nor ¬ϕ holds; this is not possible
with bisimulation reduction.

Note that we have defined an abstraction function αM mapping concrete to
abstract systems, but so far we have not introduced an approximation ordering on
Abstract Kripke structures. This will be done in Section 4.4, by lifting the approx-
imation relation � on abstract states to Abstract Kripke structures. First, we take a
brief look at the topic of constructing Abstract Kripke structures and introduce an
elaborate example.

4.3 Abstract Interpretation of Programs

In the previous section we have defined abstract models and proven their preserva-
tion properties. The next topic is how to construct such an abstraction for a given
program11 P ∈ £. We do not want to do this by first constructing the full concrete
model � (P) ∈ ��� of P and then applying αM to this structure. We would then
still have to deal with the possibly unmanageable object � (P), which is precisely
what we wish to avoid. Instead, as explained in the beginning of Section 3.3.1, we
will construct an abstract model in a more direct fashion. The idea is to define a
“non-standard” interpretation function α � : £→ α ��� that “mimics” � , in the sense
that the operations that are performed in computing � are performed in a similar way
to compute α � , but applied to descriptions of objects rather than to the ojects them-
selves12. One may think of α � as the function that is obtained by pushing αM into � ,
distributing it as much over the operators occurring in � as possible, preferably until
the level of the most elementary values, which usually correspond to the values that
program variables can take. In that case, abstract interpretation is a non-standard
interpretation over a domain of data descriptions.

To illustrate this, we need to fix a programming language £. We use a language
that is based on action systems [BKS83], that, although being very simple, will help

11£ denotes the programming language; below, we will become more specific about the syntax of
programs.

12Ideally, α � (P) equals αM (� (P)); indeed, we will later identify conditions under which this is the
case for any P.
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to grasp the idea of how to abstractly interpret operations in “real” (imperative) pro-
gramming languages, as it contains rudimentary forms of the common notions of as-
signment, test and loop. A program is a set of actions of the form ci(x̄)→ ti (x̄, x̄ ′),
where i ranges over some index set J , x̄ represents the vector of program variables,
ci is a condition on their values and ti specifies a transformation of their values into
the new vector x̄ ′. A program is run by repeatedly nondeterministically choosing an
action whose condition ci yields true and updating the program variables as specified
by the associated transformation13 ti . We let Val be the set of values that the vector
x̄ may take, and IVal ⊆ Val the set of values that it may have initially. Thus, each ci

is a predicate over Val and each ti a relation over Val× Val.

4.3.0.1 D The (concrete) interpretation function � : £ → ��� is de-
fined as follows. For P = {ci(x̄) → ti(x̄ , x̄ ′) | i ∈ J } in £, � (P) is the transition
system (6, I,R) where:

• 6 = Val.

• I = IVal.

• R = {(v̄, v̄′) ∈ Val2 | ∃i∈J ci(v̄) ∧ ti(v̄, v̄′)}.

In the following, we fix such a program P and identify � (P)with the concrete Kripke
structure � (see Assumption 4.1.1.1).

Next, we assume a set αVal of descriptions of values in Val, via a Galois inser-
tion (α, γ ) from ( � (Val),⊆) to (αVal,�), and define two types of non-standard,
abstract interpretations of the ci and ti over αVal, corresponding to the constrained
and free transition relations. Note the similarity of these definitions with the Defini-
tions 4.2.3.1 and 4.2.3.3 of αRC and αRF resp.

4.3.0.2 D For i ∈ J , let ci
F , ci

C be conditions on αVal and ti F , ti C be
transformations on αVal× αVal.

• ci
F is a free abstract interpretation of ci iff for every a ∈ αVal,

ci
F(a)⇔ ∃v̄∈γ (a) ci(v̄).

• ti F is a free abstract interpretation of ti iff for every a, b ∈ αVal,

ti F(a, b) ⇔ b ∈ {α(Y ) | Y ∈ min{Y ′ | ti ∃∃(γ (a),Y ′)}}.
13As ti is a relation, there may be several different updated states x̄ ′. In this case, one of these is

selected nondeterministically.
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• ci
C is a constrained abstract interpretation of ci iff for every a ∈ αVal,

ci
C(a)⇔ ∀v̄∈γ (a) ci(v̄).

• ti C is a constrained abstract interpretation of ti iff for every a, b ∈ αVal,

ti C(a, b) ⇔ b ∈ {α(Y ) | Y ∈ min{Y ′ | ti∀∃(γ (a),Y ′)}}.

Furthermore, we define the abstract interpretation α � (P) of P as the system ̂� M =
(α6, α̂RF , α̂RC , αI) where:

• α6 = αVal.

• α̂RF = {(a, b) ∈ αVal2 | ∃i∈J ci
F(a) ∧ ti F(a, b)}.

• α̂RC = {(a, b) ∈ αVal2 | ∃i∈J ci
C(a) ∧ ti C(a, b)}.

• αI = {α(v̄) | v̄ ∈ IVal}.

α̂RF and α̂RC are called the computed free and constrained transition relations re-
spectively.

Of course, the abstract interpretations ci
F , ti F and ci

C , ti C should be effectively com-
putable. The idea of abstract interpretation is that an analysis tool, when provided
with the domain of abstract values and corresponding abstractions of the operators,
should be able to automatically evaluate the abstract semantics α � (P) of any program
P .

Before we proceed to formally justify this definition (by relating α̂RC to αRC and

α̂RF to αRF ), we introduce an example.

4.3.1 Example: dining mathematicians

Consider the system consisting of the two concurrent processes depicted in Fig-
ure 4.3, which is a parallel variant of the Collatz (“3n + 1”) program. We chose this
example because it is small but nevertheless displays a non-trivial interplay between
data and control. The properties that we will verify concern certain control aspects
that depend on the values that the integer variable n takes under the various opera-
tions that are performed on it. Because the state space is infinite, data-abstraction will
be necessary to verify aspects of the control-flow. As such, it is a simple illustration of
the fact that abstraction techniques bring into reach the model checking of systems
that cannot be verified through the standard approach.

The program may be viewed as a protocol controlling the mutually exclusive
access to a common resource of two concurrent processes, modelling the behaviour
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odd(n) even(n)

even(n) →
n := n/2

think0 think1

eat0 eat1

3 ∗ n + 1
n :=

Figure 4.3: The dining mathematicians.

of two mathematicians, numbered 0 and 1. They both cycle through an infinite
sequence of “think” and “eat” states. The right to enjoy a meal in strict solitude is
regulated by having them inspect the value of n before eating, letting the one go
ahead only if n has an odd value, and the other only if n is even. Upon exit from the
dining room, each mathematician has her own procedure for assigning a new value
to n. Transitions can only be taken when the enabling conditions are satisfied, e.g.
mathematician 1 can only leave the dining room if n is divisible by 2. An execution
is any infinite sequence of (arbitrarily) interleaved steps of both processes that starts
in a state where both mathematicians are in their thinking state, and n is set to some
arbitrary positive integer value. We want to verify that along every execution the
following properties hold:

• The mathematicians have mutually exclusive access to the dining room.

• The mathematicians will not starve, i.e. when one mathematician is eating,
then eventually the other will get access to the dining room.

In order to formalise this, we first express the program as an action system14: see
Figure 4.4. As data and control are treated uniformly in such systems, we introduce
variables `0 and `1, both ranging over {think, eat}, to encode the effect of “being in
a location” thinki or eat i . The state space 6 of this program is the set {think, eat}2×
� \{0} of values that the vector 〈`0, `1, n〉 of program variables may assume. The
initial states are I = {〈think, think, n〉 | n ∈ � \{0}}. The transitions are defined
as in Definition 4.3.0.1, using the standard interpretations of the tests =, even, odd

14We use the more operational notion of assignment, :=, rather than the primed variables of Defi-
nition 4.3.0.1. Also note that, although we translate a concurrent into a sequential system, we do not
have to “unfold” the inherent non-determinism: the two processes describing the mathematicians can
be recognised in the first two lines and last two lines of the program in Figure 4.4.
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`0 = think, odd(n) −→ `0 := eat (Act1)

`0 = eat −→ `0 := think, n := 3 ∗ n + 1 (Act2)

`1 = think, even(n) −→ `1 := eat (Act3)

`1 = eat, even(n) −→ `1 := think, n := n/2 (Act4)

Figure 4.4: The dining mathematicians: action system.

and operations 3∗, +1 and /2 (the latter three are considered as operations on one
argument, i.e. functional binary relations), where /2 is assumed to be defined for
even numbers only.

The properties to be verified are expressed in CTL∗ as follows.

∀ � ¬(`0 = eat ∧ `1 = eat) (4.3)

∀ � ((`0 = eat → ∀ � `1 = eat)) (4.4)

∀ � ((`1 = eat → ∀ � `0 = eat)) (4.5)

As these formulae are in ∀CTL∗, we can verify them via an abstraction with free
transitions only.

The abstract domain is defined by providing abstractions of the components that
comprise the concrete domain. We choose to leave the components {think, eat} the
same. Formally, this means that we take an abstract domain containing elements
����� ��� and ��� � whose concretisations are {think} and {eat} respectively. To abstract
� \ {0}, we choose an abstract domain in which n may take the values � and � ,
describing the even and odd positive integers respectively, i.e. γ ( � ) = {2, 4, 6, . . . }
and γ ( � ) = {1, 3, 5 . . . }. To both abstract domains, we add a top element >. The
set α6 of abstract states is now defined as follows.

α6 = { ���	� ��� , �
� � ,>}2 × { � , � ,>}

Its top element is 〈>,>,>〉, while the approximation relation � is the obvious
extension of the orderings on each of the three components. It is easily verified
that the concretisation function thus defined determines a Galois insertion (α, γ )
from ( � (6),⊆) to (α6,�). For the abstract initial states we have, according to
Definition 4.2.2.1:

αI = {〈 ����� ��� , ���	� ��� , � 〉, 〈 ����� ��� , ���	� ��� , � 〉}
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Having chosen an abstract domain, we also have to provide abstract interpre-
tations, over this domain, of the operations that appear in the program, along the
lines of Definition 4.3.0.2. Tables a and b in Figure 4.5 give the definitions of the
free abstract interpretations of the transformations and tests15 on the abstract do-
main { � , � ,>}. The operations 3∗, +1 and /2 are considered single symbols. For
completeness, Figure 4.5c gives the table with free abstract interpretations of the tests
= think and= eat (to be considered single symbols) on the domain { ����� ��� , ��� � ,>}.
The tables have to be interpreted as indicated by the following examples. The entry
true in Table b, row evenF , column � , indicates that evenF( � ) holds, i.e. (cf. Defini-
tion 4.3.0.2), ∃n∈γ ( � ) even(n). The entry false in Table a, row +1F , column ( � , � ),
means that +1F( � , � ) is false, i.e. for any minimal Y such that +1∃∃(γ ( � ),Y ), we
have α(Y ) 6= � (see Definitions 4.3.0.2 and 2.1.0.1). From these diagrams we see

F: ( � , � ) ( � , � ) ( � ,>) ( � , � ) ( � , � )
3∗F true false false false true
+1F false true false true false
/2F true true false false false

F: ( � ,>) (>, � ) (>, � ) (>,>)
3∗F false true true false
+1F false true true false
/2F false true true false

(a)

F: � � >
evenF true false true
odd F false true true

(b)

F: �����	��
 �
� � >
(= think)F true false true
(= eat)F false true true

(c)

Figure 4.5: Free abstract interpretations of operations (a) and tests (b and c).

for example that /2F is not functional (Table a, row /2F , first two columns, as well
as the columns for (>, � ) and (>, � )), illustrating that a function may become a
relation when being abstracted. The abstract interpretation of the composed opera-
tion 3 ∗ ... + 1 that occurs as a transformation in the program, is now obtained by
composition of the abstract interpretations of the constituents.

15The abstract interpretations extend to α6 in the obvious way.
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Observe that both 3∗F(>, � ) and 3∗F(>, � ) hold, but that 3∗F(>,>) is false.
Although this is in correspondence with Definition 4.2.3.3, it may seem surprising
as, intuitively, the result of multiplying an unknown number by 3 yields an unknown
number again. However, it should be noted that we are dealing with the free inter-
pretation of the operation 3∗ here, so that the transitions in the Abstract Kripke
structure will be universally quantified. Hence, the intuition of the interpretations
3∗F(>, � ) and 3∗F(>, � ) should be as follows: starting from an unknown number,
multiplication by 3 may yield an even number and may yield an odd number.

Now we can abstractly interpret the program over this abstract domain, using the
interpretations given in the tables. We start in the two initial states 〈 ����� ��� , ���	� ��� , � 〉
and 〈 � ��� ��� , ����� ��� , � 〉. Consider for example 〈 ����� ��� , ����� ��� , � 〉. According to Ta-
bles b and c, the only action from the program whose condition ci evaluates to true is
Act3 (see Figure 4.4). As a result of the corresponding transformation (`1 := eat), the
(only) successor of 〈 ���	� ��� , ���	� ��� , � 〉 is 〈 � ��� ��� , �
� � , � 〉. Continuing from this state,
the only action that applies is Act4. From the entries for the operation /2F on the
value � , we see that the result can be both � and � . Hence, we get free abstract tran-
sitions from 〈 � ��� ��� , �
� � , � 〉 back to 〈 � ��� ��� , ����� ��� , � 〉, and also to 〈 ���	� ��� , ����� ��� , � 〉.
Such an abstract execution yields the abstract model of Figure 4.6. In this model,

����� 
�� ,
� 〉

〈 ����� 
�� ,����� 
�� ,
� 〉

� 〉
����� 
�� ,
〈 �	� � ,

〈 ����� 
���	� � ,
� 〉

〈 ����� 
�� ,

Figure 4.6: The free abstract model.

only those states are shown that are reachable along the computed free transition
relation.

In order to illustrate the use of the constrained abstraction, we consider a small
extension to the program: we add a third concurrent process that can “restart” the
system by setting n to value 100. This may only be done when both mathematicians
are thinking (otherwise there may be executions possible that violate the mutual ex-
clusion property). To this effect, the following fifth action is added to the program:

`0 = think, `1 = think −→ n := 100 (Act5)
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We want to check whether along every path, in every state there is a continuation
of the path that reaches a “restart” state. Writing restart for `0 = think ∧ `1 =
think ∧ n = 100, this property is expressed in CTL∗ by:

∀ � ∃ � restart (4.6)

We extend the abstract domain for n by the value
�����

, where γ (
�����

) = {100}.
Formula 4.6 being in full CTL∗, we need a mixed transition system. Instead of
providing the constrained abstract interpretations of all tests and operations over all
abstract values, Figure 4.7 only provides those entries that are needed to construct
the system of Figure 4.8 (in which only part of the reachable state space is shown —
see below). Also, the tables of Figure 4.5 have to be extended to take into account the
new abstract value

�����
. Being straightforward, these extensions are left to the reader.

C.: ( � , ����� ) ( � , � ) ( � , � ) ( � ,>)
/2C false false false true

C.: ( ����� , ����� ) ( ����� , � ) ( �	��� , � ) ( ����� ,>)
/2C false true false false

(a)

C.: ( � , �	��� ) ( � , � ) ( � , � ) ( � ,>)
3∗C false false true false
+1C false true false false

(b)

C.: �	��� � � >
evenC true true false false
oddC false false true false

(d)

C.: �����	� 
 �
� � >
= thinkC true false false
= eatC false true false

(e)

Figure 4.7: Constrained abstract interpretations of operations (a, b, c) and tests (d
and e).

The relevant part of the constructed Abstract Kripke structure is depicted in Fig-
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ure 4.8. Solid arrows denote free transitions, dashed arrows represent constrained
transitions. Not all reachable states are shown, but only those that can be reached
from the initial states by taking a (finite) number of free transitions followed by a
number of constrained transitions. The paths in this model are the only ones that
are needed for checking formula 4.6, because there are only two path quantifiers in
that formula, namely a universal followed by an existential path quantifier (cf. Defini-
tions 2.4.1.1 and 4.2.3.6 giving the interpretation of CTL∗ over mixed systems). The
complete reachable state space includes 10 more abstract states, which are only reach-
able via free transitions starting from 〈 ���	� ��� , � ��� ��� ,>〉. Again, we see that it need
not be the case that αRC ⊆ αRF , as is illustrated by the arrow from 〈 ����� ��� , ��� � , � 〉
to 〈 � ��� ��� , � ��� ��� ,>〉 for example. Before checking properties 4.3–4.6 on this ab-

����� 
�� ,〈 ����� 
�� ,

〈 ����� 
�� , 〈 ����� 
�� , 〈 ����� 
�� ,����� 
�� , ����� 
�� ,

����� 
�� ,

����� 
�� ,

〈 ����� 
�� , 〈 ����� 
�� ,

>〉

� 〉

����� 〉 ����� 〉

� 〉

= restart

� 〉 � 〉

�	� � ,

�	� � ,

〈 �	� � ,

Figure 4.8: The mixed abstract model for the modified program.

straction, we have to establish the correctness of our approach by showing how the
Abstract Kripke structures that result from the abstract interpretation of programs
relate to the (optimal) abstractions that were defined (through αM ) in Section 4.2.

4.4 Approximations

We have defined in Section 4.2 a notion of abstraction of a Kripke structure, through
a function αM : ��� → α ��� . In the previous section, we have defined an abstract in-
terpretation function α � : £ → α ��� mapping programs directly to Abstract Kripke
structures. This abstract interpretation function was defined in terms of abstract in-
terpretations of the test and transformation operators, inspired by the definitions of
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the abstract transition relations αRC and αRF . We have expressed our hope that it
would turn out that α � (P) = αM (� (P)) for every program P , however, we have
postponed answering this question so far.

The answer turns out to be no — which can be seen if we extend Figure 4.8
by considering all the computed free abstract transitions starting from state 〈 � ��� ��� ,
����� ��� , >〉 (currently, only the transition to 〈 ���	� ��� , � ��� ��� , ����� 〉 is shown). The suc-
cessors are then 〈 ��� � , ���	� ��� ,>〉, 〈 ����� ��� , ��� � ,>〉, and 〈 ����� ��� , ���	� ��� , ����� 〉, corre-
sponding to choosing the first, third and fifth actions in the program respectively.
On the other hand, the free successors of 〈 ���	� ��� , ���	� ��� ,>〉 according to αRF (Def-
inition 4.2.3.3) are different, which can be seen as follows. Consider the concretisa-
tion, γ (〈 � ��� ��� , ����� ��� ,>〉) = {〈think, think, n〉 | n ∈ � \ {0}}, call this X . It is not
difficult to see that under the concrete transition relation induced by the program,
every state 〈think, think, n〉 in X has 2 successors: if n is odd, then these succes-
sors are 〈eat, think, n〉 and 〈think, think, 100〉; if n is even, they are 〈think, eat, n〉
and 〈think, think, 100〉. So, the minimal sets Y of states such that R∃∃(X,Y ) holds
are all the singletons {〈eat, think, n〉} with n odd, {〈think, eat, n〉} with n even, and
{〈think, think, 100〉}. Taking the abstractions (α) of each of these, results in the ab-
stract states 〈 �
� � , ����� ��� , � 〉, 〈 ����� ��� , �
� � , � 〉 and 〈 ���	� ��� , ���	� ��� , ����� 〉 being the αRF -
successors of 〈 ����� ��� , ���	� ��� ,>〉— different from the computed free successors above.

Let αF be the function mapping a concrete transition relation R to the free ab-
stract transition relation αRF : αF(R) = αRF . Then the reason that precision is lost
in the example above is that we do not apply αF to R as a whole, but rather we
attempt to compute it compositionally, by breaking it down over the individual op-
erations ci and ti that appear in R’s definition, as specified by α̂RF . Consequently, the
information about n being odd or even prior to the execution of the first resp. third
action is forfeited because the interpretations ci

F of the conditions are separated from
those (ti F ) of the transformations.

On the other hand, although the computed abstraction α � (P) is not the same as
αM(� (P)), it is intuitively “safe”. What we mean is that for every ( αRF -)successor
of 〈 ����� ��� , ����� ��� ,>〉 in αM(� (P)), there is a less (or equally) precise (i.e. �-greater)
successor in the system α � (P), namely the state 〈 �
� � , ����� ��� , � 〉 is “covered” by 〈 ��� � ,
����� ��� ,>〉, state 〈 ����� ��� , ��� � , � 〉 by 〈 ���	� ��� , ��� � ,>〉, and 〈 ���	� ��� , � ��� ��� , ����� 〉 is cov-
ered by 〈 � ��� ��� , ����� ��� , ����� 〉. In the rest of this section, we formalise this intuition
by introducing a notion of approximation between Abstract Kripke structures. This
is done in Definition 4.4.0.1. In Theorem 4.4.0.2 we show that approximations are
safe with respect to the properties we are interested in: any CTL∗ property that holds
in an approximation

� ′′ of
� ′ will hold in

� ′ as well16. Finally, Lemma 4.4.1.1

16Note that this notion is similar to the notion of safety of a description with regard to a concrete
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and Theorem 4.4.1.2 show that the computed abstract model of Section 4.3 is in-
deed an approximation to the one as defined in Section 4.2. In particular, the proof
of Lemma 4.4.1.1 shows what happens when αM is pushed down the expression

� (P). In Section 4.5 we return to that point when we want to identify conditions
under which no loss of information17 occurs when pushing down αM . The dining
mathematicians example is continued in Subsection 4.4.2 below.

For the approximation relation between abstract transition systems we use the
same symbol� that already denotes approximation between individual abstract states
— we will see to it that this overloading will not lead to confusion.

4.4.0.1 D Let
� ′ = (α6, F ′,C ′, I ′) and

� ′′ = (α6, F ′′,C ′′, I ′′) be
abstract transition systems.

� ′ � � ′′ iff each of the following holds.

1. F ′ �-pseudo-simulates18 F ′′.

2. C ′′ �-pseudo-simulates C ′.

3. For every a ∈ I ′, there exists a′′ ∈ I ′′ such that a′ � a′′.

For paths ā = a0a1 · · · and ā′ = a′0a′1 · · · , ā � ā′ is defined as ∀i≥0 ai � a′i .

Note that
� ′ and

� ′′ have the same state sets α6, over which the approximation
relation� is fixed. The condition that F ′ �-pseudo-simulates F ′′ means that for any
two states a′, a′′ ∈ α6 with a′ � a′′, if a′ can make an F ′-transition to some b′, then
a′′ should be able to make an F ′′-transition to some b′′ with b′′ � b′. On the other
hand, C ′′ �-pseudo-simulates C ′ means that for any two states a′, a′′ ∈ α6 with
a′′ � a′, if a′′ can make a C ′′-transition to some b′′, then a′ should be able to make a
C ′-transition to some b′ with b′ � b′′. Hence, Definition 4.4.0.1 imposes conditions
on the transition relations that capture the intuition of “covering” explained above.

The relation � over abstract systems is a pre-order but not a partial order. We
turn it into a partial order by identifying systems

� ′ and
� ′′ whenever both

� ′ � � ′′

and
� ′′ � � ′ hold. For example, the Abstract Kripke structure of Figure 4.1 (which

only contains constrained transitions) is thus identified with the Abstract Kripke
structure obtained from it by removing the transition from a to b2. To improve
readability, we do not explicitly distinguish between equivalence classes and repre-
sentants.

object as defined in Section 3.2.1, page 35.
17We mean loss relative to αM (� (P)). Of course, the fact that we apply abstraction unavoidably

brings about a loss of information.
18Pseudo-simulation, defined in Definition 2.4.2.1, does not take into account the labelling of states

with literals.
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4.4.0.2 T If
� ′ � � ′′, then for every ϕ ∈ CTL∗,

� ′′ |= ϕ ⇒ � ′ |= ϕ.

P It is easily seen that if � ′ � � ′′, then for every free ( � ′, a)-path ā′ there is a free
( � ′′, a)-path ā′′ � ā′, and for every constrained ( � ′′, a)-path ā′′ there is a constrained
( � ′, a)-path ā′ � ā′′ (for every a ∈ α6). Using these observations instead of Lem-
mata 4.2.3.2 and 4.2.3.5, and in addition Lemma 4.2.1.2, the rest of the proof is similar
to that of Theorem 4.2.3.8. �

As an immediate corollary of this theorem and Theorem 4.2.3.8, we have that if
� ′′ � αM ( � ), then CTL∗ is preserved from

� ′′ to � . Conversely, it is not true
that any abstract system that preserves CTL∗ is an approximation to αM( � ). The
conditions under which CTL∗ is preserved may alternatively be based solely on the
existence of simulation relations, without requiring the existence of a Galois insertion
between (sets of ) concrete states and (single) abstract states. We defer a comparison
of our framework with such simulation-based approaches, as we call them, to Sec-
tion 4.9.1.

We should now briefly pause to explain how the concepts that we have defined
so far, in particular the function αM and the order � between Abstract Kripke struc-
tures, fit into the Abstract Interpretation frameworks discussed in Chapter 3. In that
chapter, a central role is played by the notion of a description relation ρ. When-
ever a concrete object c is described by an abstract object a, expressed by the fact
ρ(c, a), then a may safely be used to derive information about c (see condition 3.3
on page 36). An approximation ordering � between abstract objects is assumed such
that�-larger objects satisfy fewer properties and are hence less precise. For a given c,
the �-minimal descriptions of c are called optimal (Definition 3.2.1.1). In the case
that for every c, an �-least description exists, ρ may alternatively be represented by
an abstraction function α that maps every c to its most precise description.

In the current chapter, we have first defined (in Section 4.2) an abstraction func-
tion αM , and only in the current section have we defined an approximation order
between abstract objects (being Abstract Kripke structures). Together, these induce
a description relation19 ξ ⊆ ��� × α ��� , namely ξ( � ,

�
) ⇔ αM( � ) � �

. αM

is then precisely the abstraction function induced by ξ , and αM ( � ) is by definition
optimal20.

One may wonder whether, among the Abstract Kripke structures with state set
α6, αM( � ) is indeed the structure that enjoys the greatest number of properties,

19This description relation on the level of Kripke structures should not be confused with the descrip-
tion relation ρ between states (see Section 4.2).

20Because of the implicit quotient construction that is needed to turn � as defined above into a
partial order, abstract systems � ′ for which both � ′ � αM ( � ) and � ′ � αM ( � ) hold, are also optimal.
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relative to all such Abstract Kripke structures that are safe for � . Although answering
this question is outside the scope of this thesis, we conjecture that this does hold
under additional conditions, namely that (1) the description relation ρ ⊆ 6 ×
α6 between states (see Section 4.2) coincides with the safety relation for literals,
defined by ∀p∈Lit c |= p ⇐ a |= p (cf. the footnote on page 36), and (2)
Kripke structures are image-finite (page 21). A similar result is established in a slightly
different framework in [CIY95], based on a result from [Lar89]. The first condition
above is similar to the requirement of precision of [CIY95] (Definition 20). For a
further discussion see Section 4.9 (page 102).

The following lemma, which is easily proven, gives sufficient conditions for �-
and �-pseudo-simulation. It will be used in the following sections.

4.4.0.3 L Let R′ and R′′ be transition relations over α6.

1. If for all a, b ∈ α6,

R′(a, b)⇒ ∃b′�b R′′(a, b′) (4.7)

and R′′ �-pseudo-simulates21 R′′, then R′ �-pseudo-simulates R′′.

2. If for all a, b′ ∈ α6

R′′(a, b′)⇒ ∃b�b′ R′(a, b) (4.8)

and R′ �-pseudo-simulates R′, then R′′ �-pseudo-simulates R′.

The intuition of condition 4.7 is that an approximation R′′ of R′ may relate an
element a to a less precise state (namely b′) than R′ does. In the case of condition 4.8,
on the other hand, R′′ may only do so if there is a “reason”. Note that 4.7 is satisfied
if R′ ⊆ R′′ and 4.8 if R′′ ⊆ R′.

4.4.1 Abstract interpretation gives approximations

The following lemma and theorem express that the abstract interpretations defined
in Section 4.3 can be used to compute approximations to αM ( � ).

4.4.1.1 L

1. α̂RF ⊇ αRF .

21Refer to Definition 2.4.2.1 and note that this is not a trivial requirement.
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2. For all a, b ∈ α6, α̂RC(a, b)⇒ ∃b′′�b αRC(a, b′′).

While the difference between the free and constrained cases in the lemmata and def-
initions so far has been based on exchanging (some) ∀s and ∃s, this symmetry is
disturbed in the above lemma. The transition relation of a program is a disjunction
of conjunctions: ∃i∈J ci(v̄)∧ ti(v̄, v̄′) (see Definition 4.3.0.1). Distribution of quan-
tifier pairs ∃∃ and ∀∃ over such an expression cannot be performed without loosing
symmetry, as can be seen in the proof below. However, after applying Lemma 4.4.0.3
to the statements of the above lemma, as is done in the proof of Theorem 4.4.1.2
below, symmetry is restored: it then turns out that αRF �-pseudo-simulates α̂RF and

α̂RC �-pseudo-simulates αRC .

P  L 4.4.1.1.

1. Let a, b ∈ αVal and suppose (a, b) ∈ αRF . By Definition 4.2.3.3 of αRF , Defini-
tion 2.1.0.1 of R∃∃ and Definition 4.3.0.1 of R, this is equivalent to

b ∈ {α(Y ) | Y ∈ min{Y ′ | ∃v̄∈γ (a),w̄∈Y ′ [∃i∈J [ci(v̄) ∧ ti(v̄, w̄)]]}}.
(4.9)

Exchanging existential quantifiers yields the equivalent

b ∈ {α(Y ) | Y ∈ min{Y ′ | ∃i∈J [∃v̄∈γ (a),w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]]}}.
(4.10)

Consider the subterm

Y ∈ min{Y ′ | ∃i∈J [∃v̄∈γ (a),w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]]}. (4.11)

Because the elements of the set min{Y ′ | . . . } are singletons (see Observation 4.2.3.4),
this subterm can be rewritten to the equivalent

∃i∈J [Y ∈ min{Y ′ | ∃v̄∈γ (a),w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]}]. (4.12)

After replacing 4.11 by 4.12 in 4.10, we can bring the ∃i∈J outside, resulting in the
equivalent formula

∃i∈J [b ∈ {α(Y ) | Y ∈ min{Y ′ | ∃v̄∈γ (a),w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]}}].
(4.13)

Now this is weakened by distributing the innermost existential quantifier over the ∧:

∃i∈J [b ∈ {α(Y ) | Y ∈ min{Y ′ | ∃v̄∈γ (a) [ci(v̄)] ∧ ∃v̄∈γ (a),w̄∈Y ′ [ti(v̄, w̄)]}}].
(4.14)

Because both the innermost and outermost sets do not depend on ∃v̄∈γ (a) [ci (v̄)], this
conjunct may be taken out of all the set brackets. Using Definition 2.1.0.1 of ti

∃∃

and Definition 4.3.0.2 of ci
F , ti

F , and α̂RF , the resulting equivalent term can then be
rewritten to (a, b) ∈ α̂RF .
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2. Let a, b ∈ αVal and suppose (a, b) ∈ α̂RC . By Definition 4.3.0.2 of α̂RC , ci
C and ti

C ,
and Definition 2.1.0.1 of ti

∀∃, this is equivalent to

∃i∈J [∀v̄∈γ (a) [ci(v̄)] ∧ b ∈ {α(Y ) | Y ∈ min{Y ′ | ∀v̄∈γ (a) ∃w̄∈Y ′ [ti(v̄, w̄)]}}].
(4.15)

This expression can be rewritten to the equivalent:

b ∈ {α(Y ) | ∃i∈J [Y ∈ min{Y ′ | ∀v̄∈γ (a) ∃w̄∈Y ′ [ci (v̄) ∧ ti(v̄, w̄)]}]}
(4.16)

(define min ∅ = ∅ in this proof ). Now consider the subexpression

∃i∈J [Y ∈ min{Y ′ | ∀v̄∈γ (a) ∃w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]}]. (4.17)

Compare this to the expression that is obtained by pushing the ∃i∈J inside:

Y ∈ min{Y ′ | ∃i∈J [∀v̄∈γ (a) ∃w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]]}. (4.18)

If Y satisfies 4.17, then there exists an i ∈ J such that Y is minimal among all “∀∃-
successors” of γ (a) that correspond to action i . On the other hand, if Y satisfies 4.18,
then Y is minimal among all the ∀∃-successors of γ (a), regardless of the specific i .
Hence, this latter Y will be a subset of (or possibly equal to) the Y that satisfies 4.17.
So, for each set that satisfies 4.17, there exists a subset of it that satisfies 4.18, so that
if b satisfies 4.16, there exists b′ � b that satisfies:

b′ ∈ {α(Y ) | Y ∈ min{Y ′ | ∃i∈J [∀v̄∈γ (a) ∃w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]]}}.
(4.19)

A similar step can be made again: if b′ satisfies 4.19, then there exists b′′ � b′ satisfy-
ing:

b′′ ∈ {α(Y ) | Y ∈ min{Y ′ | ∀v̄∈γ (a) ∃w̄∈Y ′ ∃i∈J [ci(v̄) ∧ ti(v̄, w̄)]}}
(4.20)

which is, by Definition 4.3.0.1 of R, Definition 2.1.0.1 of R∀∃ and Definition 4.2.3.1
of αRC , equivalent to αRC(a, b′′). �

4.4.1.2 T For every P ∈ £, α � (P) � α(� (P)).

P We write ̂� M for α � (P) and � M for α(� (P)) = α( � ). We have to show points 1, 2
and 3 as in Definition 4.4.0.1. Point 3 is immediate as the initial states of ̂� M and � M are
identical. As to points 1 and 2, it easily follows from the definitions of α̂RF and αRC that α̂RF

�-pseudo-simulates α̂RF and that αRC �-pseudo-simulates αRC . Hence, by Lemmata 4.4.1.1
and 4.4.0.3, αRF �-pseudo-simulates α̂RF and α̂RC �-pseudo-simulates αRC . �

4.4.1.3 C For every P ∈ £ and ϕ ∈ CTL∗, α � (P) |= ϕ ⇒ � (P) |=
ϕ.

P From Theorems 4.4.1.2, 4.4.0.2 and 4.2.3.8. �
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4.4.2 Dining mathematicians continued (I)

As was summarised in Corollary 4.4.1.3 above, we have formally established all the
machinery that justifies the use of the Abstract Kripke structures that were con-
structed in Section 4.3.1 to infer properties of the original, concrete system.

We see in Figure 4.6 that in no reachable state the property `0 = �
� � ∧ `1 = ��� �

holds. Hence we have established property 4.3 (page 71). Furthermore, every path
from the state where `0 = ��� � , reaches `1 = �
� � within 2 steps, so we have also
verified property 4.4.

However, the abstraction does not allow verification of the other non-starvation
property, 4.5: a counter-example in the abstract model is the path cycling infinitely
between 〈 ���	� ��� , ���	� ��� , � 〉 and 〈 ���	� ��� , ��� � , � 〉. It turns out that the negation of prop-
erty 4.5 can also not be established via the constrained transition relation. So, only re-
finement of the abstract domain may bring the answer. In this case, the abstract states
where n = � would have to be unraveled into infinitely many states representing the
cases where n is divisible by 4, by 8, by 16, . . . . Hence, with our methodology, it is
impossible to verify property 4.5 through a finite abstraction.

In Section 4.8 as well as in Chapter 5 we further investigate the question how
the refinement of an abstract model, in order to decide indeterminate results, can
be computed. The solution proposed in Section 4.8 is based on the idea of a “tun-
able” abstract domain, in which the refinement is determined by a parameter of the
domain. In Chapter 5 we identify conditions under which a strongly preserving ab-
straction may be computed by successive refinement that is guided by the form of
the formula to be checked. It should be said that in their present form, neither of
these approaches indeed help in verifying the specific property 4.5, the main objec-
tion being that the underlying concrete system is infinite. However, on-going work
concentrates on including fairness constraints in the abstract models. This research,
which is further discussed in Section 7.3, has meanwhile yielded results that enable
the verification of property 4.5 via a finite abstraction.

Property 4.6 is verified on the model of Figure 4.8, interpreting the universal
quantification over the free paths, and the existential quantification over the con-
strained paths. It can easily be seen that 4.6 holds, hence, we have established its va-
lidity in the concrete program. Note that the presence of the state 〈 ���	� ��� , ���	� ��� ,>〉,
though it is not reachable via free transitions alone, is essential in proving the prop-
erty.
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4.5 Optimal Abstract Interpretations

Construction of an abstract model by abstract interpretation of the “elementary” op-
erations (the ci and ti ) occurring in a program is a natural thing to do — it re-
sembles the way abstractions are computed in traditional applications of Abstract
Interpretation. However, as we have seen, the computed abstract models (Defini-
tion 4.3.0.2) may be strictly less precise than the optimal abstractions of Defini-
tions 4.2.3.1 and 4.2.3.3. How much precision is lost exactly, depends on the pro-
gram to be analysed and the choice of the abstract domain. In order to get some
insight, we discuss two approaches to obtain optimality. First, we derive sufficient
conditions on abstract states (and on the program) for the computed abstract transi-
tions of Definition 4.3.0.2 to be optimal. Second, we briefly sketch how, alternatively,
the abstract interpretation of programs may be adapted in such a way that computed
models are optimal.

4.5.1 Conditions on the abstract domain

In order to pinpoint the reasons why the computed abstractions are not optimal,
we analyse the proof of Lemma 4.4.1.1. In part 1, concerning the free abstrac-
tion, the only place where the formula being manipulated is (strictly) weakened, is
when the term ∃v̄∈γ (a),w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)] (T1) is replaced by ∃v̄∈γ (a) [ci (v̄)] ∧
∃v̄∈γ (a),w̄∈Y ′ [ti (v̄, w̄)] (T2). The following small example illustrates what happens.
Suppose that the concrete state space consists of a single integer variable v, and that
the abstract domain contains values � and � , being descriptions of the even and the
odd numbers respectively. Assume that P contains as action i : v = 4 → v := v/4
(specifying ci (v) to be v = 4 and ti(v,w) to be w = v/4). Then T1, with � for
a and γ ( � ) for Y ′, does not hold. On the other hand, T2 does hold: there exists an
even number that is equal to 4 and there exists a (different) even number that, when
divided by 4, yields an even number. In order to avoid this situation and enforce
equivalence of T1 and T2, we can impose conditions on the abstract states. For an
abstract state a, this condition intuitively requires that the concrete states in γ (a)
behave uniformly with respect to every condition ci .

4.5.1.1 L Let ̂� M = α � (P) be the abstract model computed according to
Definition 4.3.0.2, and let a ∈ α6. If for every i ∈ J , we have either ∀v̄∈γ (a) ci (v̄)

or ∀v̄∈γ (a) ¬ci(v̄), then every outgoing α̂RF -transition of a is in αRF .

P The precondition of the lemma is easily seen to imply equivalence of the terms T1
and T2 and hence of the formulae 4.13 and 4.14 in the proof of Lemma 4.4.1.1. The
conclusion then follows directly. �
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So, under the given condition, all outgoing free transitions of state a are optimal.
Clearly, the condition is very strong for “�-large” states. E.g. if a = α>, then it
is only satisfied if all program conditions ci are either tautologies or unsatisfiable.
However, as far as properties ϕ ∈ ∀CTL∗ are concerned, it is sufficient to require the
condition to hold only for those states on which ϕ depends. In that case, the result of
model checking ϕ over the computed model ̂� M will be the same as when checking
it over the optimal model

� M . As a consequence, unreachable states may be ignored
alltogether. As to the reachable states, observe that only the atoms of the abstract
domain, i.e. the elements {α({c}) | c ∈ 6}, can be reachable via a free transition.
This follows from Observation 4.2.3.4. Hence, we should preferably choose the
abstract domain in such a way that these atoms are �-small22. However, if ϕ is a
subformula of a formula that contains existential path quantifiers, then also certain
states that are reachable via constrained transitions may have to satisfy the condition
of Lemma 4.5.1.1.

Although sufficient, the condition required in Lemma 4.5.1.1 is not necessary.
However, it is a reasonable condition that can be checked rather easily: one has to
check that for each atomic abstract state a and each condition ci of the program,
either “a ⇒ ci ” or “a ∩ ci = ∅”. For instance, in the example above, “being even”
neither implies nor excludes “being equal to 4”, so the condition is not met. The
condition also gives a deeper insight in how to design “good” abstract domains given
a program(ming language).

For the constrained relation, we analyse part 2 of the proof of Lemma 4.4.1.1.
The last two steps in this proof introduce the differences between α̂RC and αRC .
We consider these steps in reverse direction, going from αRC to α̂RC . While in for-
mula 4.20 the “∀∃-successors” Y ′ of γ (a) are taken relative to transitions via any
action (i.e. all states in γ (a) must be able to make a transition to some state in Y ′

via no matter which action i ), the ∀∃-successors Y ′ of γ (a) in 4.19 are taken “per
action”, i.e. for a single action i ∈ J , all states in γ (a) must be able to make a
transition to some state in Y ′ via action i . This means that in the latter case, certain
∀∃-successors Y ′ may be “missed” and consequently, α̂RC may contain fewer transi-
tions than αRC . However, note that if for such a transition, say from a to b, which
is in αRC but not in α̂RC , there exists another transition in α̂RC from a to a more
precise state b′ � b, this loss does not matter: α̂RC will not be less precise (in the
sense of Definition 4.4.0.1) than αRC because of this. It is this observation on which
the condition in Lemma 4.5.1.2 below is based.

Now consider the step from 4.19 to 4.16 — more precisely, the replacement of
subformula 4.18 by 4.17. In 4.18, the minimality of Y is determined globally over

22See [CC79] for a variety of techniques for the construction of suitable abstract domains.
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all actions, while in 4.17 all Y s that are minimal relative to a single action i ∈ J are
taken. As a result, the set of successors under α̂RC of some abstract state a may be a
superset of its successors under αRC (the fact that α̂RC is not strictly �-below αRC is
explained by observing that for each such extra successor b′ under α̂RC there will be
a more precise successor b � b′ under αRC ). Hence, this effect does not negatively
affect the precision of α̂RC with respect to αRC .

4.5.1.2 L Let a ∈ α6 and suppose that both of the following conditions
hold:

1. For every i ∈ J , ∀v̄∈γ (a) ci(v̄) or ∀v̄∈γ (a) ¬ci(v̄).

2. For all i, j ∈ J with i 6= j and bi , b j ∈ α6 with ci
C(a) ∧ ti C(a, bi ) and

c j
C(a)∧t j

C(a, b j ): if there exists b ∈ α6 with γ (bi)∩γ (b) 6= ∅ and γ (b j )∩
γ (b) 6= ∅, then there exist k ∈ J and bk ∈ α6 with ck

C(a) ∧ tkC(a, bk) such
that γ (bk) ⊆ γ (b).

Then for every b′ ∈ α6, αRC(a, b′)⇒ ∃b�b′ α̂RC(a, b).

Note that condition 1 is similar to the condition in Lemma 4.5.1.1 above. Condi-
tion 2 specifies that two abstract successors bi and b j of a corresponding to different
actions (i 6= j ) may only both be (partially or completely) overlapped by a third state
b if b completely overlaps some successor bk (possibly k = i or k = j ) of a.

P It may be helpful to realise that we are, roughly speaking, trying to reverse the di-
rection of the argument in point 2 of the proof of Lemma 4.4.1.1. Let b ′ ∈ α6 and assume
αRC(a, b′). By Definition 4.2.3.1 of αRC , Definition 2.1.0.1 of R∀∃ and Definition 4.3.0.1
of R, this is equivalent to saying that b′ is an element of

{α(Y ) | Y ∈ min{Y ′ | ∀v̄∈γ (a) ∃w̄∈Y ′ ∃i∈J [ci(v̄) ∧ ti(v̄, w̄)]}}. (4.21)

Next, consider the set that is obtained by taking the ∃i∈J outside of the ∀v̄∈γ (a)∃w̄∈Y ′ :

{α(Y ) | Y ∈ min{Y ′ | ∃i∈J [∀v̄∈γ (a) ∃w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]]}}. (4.22)

We consider two cases. If b′ is an element of 4.22, then we proceed as follows. The subex-
pression

Y ∈ min{Y ′ | ∃i∈J [∀v̄∈γ (a) ∃w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]]} (4.23)

of 4.22 is weakened by bringing the ∃i∈J outside:

∃i∈J [Y ∈ min{Y ′ | ∀v̄∈γ (a) ∃w̄∈Y ′ [ci (v̄) ∧ ti(v̄, w̄)]}]. (4.24)

Therefore, b′ is also an element of the set obtained by replacing subexpression 4.23 of 4.22
by 4.24, resulting in the set

{α(Y ) | ∃i∈J [Y ∈ min{Y ′ | ∀v̄∈γ (a) ∃w̄∈Y ′ [ci(v̄) ∧ ti(v̄, w̄)]}]}. (4.25)
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Similar to the first two steps in point 2 of the proof of Lemma 4.4.1.1, but in reverse order,
this implies that (a, b′) ∈ α̂RC .

The other case is that b′ is not in 4.22. Let Z ⊆ 6 be such that b′ = α(Z). Because b′ is
in 4.21 but not in 4.22, we can choose i, j ∈ J with i 6= j , v̄i , v̄ j ∈ γ (a) and w̄i , w̄ j ∈ Z
such that ci(v̄i )∧ ti (v̄i , w̄i ) and c j (v̄ j )∧ t j(v̄ j , w̄ j ). Because, by condition 1 of the lemma,
∀v̄∈γ (a) ci (v̄) and ∀v̄∈γ (a) c j (v̄), we can also choose Z i , Z j ⊆ 6 such that w̄i ∈ Z i and
w̄ j ∈ Z j . Hence, α(Z) must have a non-empty intersection with both α(Z i ) and with
α(Z j). The precondition of the lemma then requires that there exist k ∈ J and bk ∈ α6

with ck
C(a) ∧ tk

C(a, bk) (and therefore (a, bk) ∈ α̂RC) such that bk � α(Z), i.e. bk � b′.
�

Again, for a formula ϕ ∈ ∃CTL∗ being checked, it suffices to impose the condi-
tions of this lemma only on those states on which the interpretation of ϕ depends. If
ϕ is in full CTL∗, then the condition of Lemma 4.5.1.1 should hold in those states
on whose outgoing free transitions ϕ depends and the conditions of Lemma 4.5.1.2
should hold in those states on whose outgoing constrained transitions ϕ depends. In
that case, model checking ϕ over the computed mixed abstraction ̂� M of Defini-
tion 4.3.0.2 gives the same result as checking it over the optimal

� M .

Dining mathematicians continued (II)

We illustrate the application of the above lemmata to the abstract models that were
constructed in Section 4.3.1. It is easy to check that for each condition ci of the
action system in Figure 4.4 and each abstract state a of the system of Figure 4.6,
either ci evaluates to true in all concrete states in γ (a), or it evaluates to false in all
concrete states in γ (a). This implies by Lemma 4.5.1.1 that (the reachable part of )
the computed free abstraction coincides with (the reachable part of ) the optimal free
abstraction as defined in Definition 4.2.3.3.

In order to check optimality of transitions in the model of Figure 4.8, we ver-
ify the preconditions of Lemma 4.5.1.2 for its states. Condition 1 holds for all
states but 〈 ���	� ��� , � ��� ��� ,>〉. As to condition 2, the only states that have two dif-
ferent (constrained) successors (corresponding to the bi and b j in Lemma 4.5.1.2)
are 〈 ���	� ��� , � ��� ��� , � 〉, 〈 ����� ��� , ����� ��� , � 〉 and 〈 ���	� ��� , ���	� ��� , ����� 〉. The successors of
〈 ���	� ��� , ���	� ��� , � 〉 are 〈 ���	� ��� , ��� � , � 〉 and 〈 ����� ��� , ���	� ��� , ����� 〉. The states in α6 (cor-
responding to the b in Lemma 4.5.1.2) that overlap both of them are 〈 ���	� ��� ,>, ����� 〉
and all states that are �-greater than it. Because 〈 ����� ��� ,>, ����� 〉 completely overlaps
a successor of 〈 ���	� ��� , ���	� ��� , � 〉, namely 〈 � ��� ��� , ����� ��� , ����� 〉 (bk in Lemma 4.5.1.2),
all �-greater states also overlap this successor. In a similar way, condition 2 of
Lemma 4.5.1.2 can be shown to hold for 〈 ���	� ��� , ���	� ��� , � 〉 and 〈 ���	� ��� , � ��� ��� , ����� 〉
too. The conclusion is that only the constrained transition that starts in the state
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〈 ���	� ��� , � ��� ��� ,>〉 may be non-optimal23.

4.5.2 Adapting the abstract interpretation

Instead of imposing conditions guaranteeing optimality of abstract models computed
as specified by Definition 4.3.0.2, we may change the definition of these abstract
interpretations themselves in such a way that the “loss” of Lemma 4.4.1.1 does not
occur. For the free abstract interpretation, this means that it cannot be distributed
over the individual condition and transformation parts of an action. In the case of
the example given above, this would mean that an abstract interpretation act i

F has to
be provided for the action act i(v,w) ⇔ v = 4 ∧ w = v/4 as a whole, satisfying
act i

F(a, b)⇔ ∃v∈γ (a) [ci (v) ∧ b ∈ {α(Y ) | Y ∈ min{Y ′ | ti ∃∃({v},Y ′)}}].
In the case of the constrained abstract interpretations, loss of optimality already

occurs at the point where they are distributed over the individual actions of a pro-
gram. Here, the adaptation would require the generalisation of the abstract interpre-
tation of actions by taking into account the effect of executing an arbitrary number
of actions “at the same time” by defining act{i1,... ,ik}(a, b) ⇔ ∃a1,... ,ak ,b1,... ,bk∈α6
[a1 ∨ · · · ∨ ak = a, b1 ∨ · · · ∨ bk = b,∀ j∈{1,··· ,k} ci j

C(a j ) ∧ ti j
C(a j , b j )] for

subsets {i1, . . . , ik} of J (∨ denotes the least upper bound on α6). This approach
corresponds to the merge over all paths analysis of [CC79].

4.6 Computing Approximations

One may deliberately choose to compute non-optimal abstractions by specifying ap-
proximations to the abstract interpretations of the ci and ti . A reason for doing so
may be that the computation of optimal abstract interpretations is too complex, when
the ci and ti involve intricate operations for example. In that case, even if the abstract
interpretations are optimal, it may be cumbersome to actually prove so, and one may
settle for proving approximation without bothering about optimality.

4.6.0.1 D The definition of approximation is extended to abstract in-
terpretations of the transformation operators, as follows. For abstract operations24

t, t ∈ αVal× αVal,

t � t ⇔ ∀a,b,b̄∈αVal

[
t(a, b)⇒ ∃b̄�b t(a, b̄)

]
∧
[
t(a, b̄)⇒ ∃b�b̄ t(a, b)

]
.

Approximations ti F � ti F and ti C � ti C (for every i ∈ J ) to the free and con-

23In fact, it is optimal, as is easily seen. This indicates that Lemma 4.5.1.2 only gives a sufficient
condition.

24Remember that such “operations” are binary relations.
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strained interpretations (see Definition 4.3.0.2) induce the abstract model
�

M =
(α6, αRF , αRC , αI), where:

• α6 = αVal.

• αRF = {(a, b) ∈ αVal2 | ∃i∈J ci
F(a) ∧ ti F(a, b)}.

• αRC = {(a, b) ∈ αVal2 | ∃i∈J ci
C(a) ∧ ti C(a, b)}.

• αI = {α(v̄) | v̄ ∈ IVal}.

4.6.0.2 L
�

M � α � (P).

P. Write ̂� M for α � (P). We show that (1) α̂RF �-pseudo-simulates αRF and (2) αRC

�-pseudo-simulates α̂RC .

1. Let a, a1, a′ ∈ α6 with α̂RF(a, a1) and a′ � a. We show that there exists a ′1 � a1

such that αRF(a′, a′1). By Definition 4.3.0.2 of α̂RF , α̂RF(a, a1) is equivalent to
∃i∈J [ci

F(a) ∧ ti
F(a, a1)]. Because a′ � a, we have ci

F(a) ⇒ ci
F(a′) and also

ti
F(a, a1)⇒ ti

F(a′, a1) (see Definition 4.3.0.2 of ci
F and ti

F and Definition 2.1.0.1
of ·∃∃), so ∃i∈J [ci

F(a′) ∧ ti
F(a′, a1)]. By Definition 4.6.0.1 of ti

F , there exists
a′1 � a1 such that ∃i∈J [ci

F(a′) ∧ ti
F(a′, a′1)], i.e. αRF(a′, a′1).

2. Let a, a1, a′ ∈ α6 with αRC(a, a1) and a′ � a. We show that there exists a ′1 � a1

such that α̂RC(a′, a′1). We have αRC(a, a1). By Definition 4.6.0.1 of αRC and ti
C ,

there exists a′′1 � a1 such that ∃i∈J [ci
C(a) ∧ ti

C(a, a′′1)]. Because a′ � a, we
have ci

C(a) ⇒ ci
C(a′), and also we can choose a ′1 � a′′1 such that ti

C(a′, a′1) (see
Definition 4.3.0.2 of ci

C and ti
C and Definition 2.1.0.1 of ·∀∃). So ∃i∈J [ci

C(a′) ∧
ti

C(a′, a′1)], i.e. α̂RC(a′, a′1), and, by transitivity of �, a ′1 � a1. �

As an example of the computation of approximations by choosing non-optimal
abstract interpretations ti of operations in the program, consider the dining math-
ematicians without the “restart” extension. Take optimal free abstract interpreta-
tions of all operations except 3∗, for which we take the following approximation:

3∗F( � ,>) = true and 3∗F( � , � ) = 3∗F( � , � ) = false. Furthermore, we take
〈 ���	� ��� , � ��� ��� ,>〉 as the abstract initial state. This gives the free abstraction of Fig-
ure 4.9, from which still various properties may be deduced, such as the fact that at
least one mathematician will keep engaged in a cycle of thinking and eating.
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〈 ����� 
�� ,����� 
�� ,
>〉

〈 ����� 
�� ,����� 
�� ,
� 〉

〈 ����� 
�� ,����� 
�� ,� 〉
〈 ����� 
�� ,
�	� � ,
� 〉

〈 �	� � ,����� 
�� ,
� 〉

Figure 4.9: An approximation to the free abstraction.

4.7 Practical Application

This section discusses a few points relating to the practical application of the method-
ology developed so far.

The use of abstract interpretation to model check a property ϕ for a program
P is characterised by the following phases. First, an abstract domain αVal has to be
chosen and for all operation symbols occurring in P , abstract interpretations have to
be provided. Typically, the tests and transformations are defined in terms of more ele-
mentary operations, in which case abstract interpretations may be provided for these.
Depending on the property ϕ to be checked, free and/or constrained interpretations
should be given; these have to satisfy Definition 4.3.0.2. Then, the abstract model
can be constructed by a symbolic evaluation of the program over the abstract domain,
interpreting the operations according to their abstract interpretations. Finally, ϕ is
model checked over the abstract model. It is important to notice that only positive
results of this model checking carry over to the concrete model: a negative result
� 6|= ϕ does not imply that

� |= ¬ϕ and hence does not justify the conclusion
that � |= ¬ϕ, in spite of the fact that ¬ϕ is (an abbreviation of ) a CTL∗ formula.
However, it may be possible to resolve such a negative answer for ϕ by checking the
negation ¬ϕ. If true is returned, then we know that � |= ¬ϕ, i.e. � 6|= ϕ. As
¬ϕ contains the dual25 path quantifiers of those in ϕ, its satisfaction by the Abstract
Kripke structure

�
may depend on different paths — in particular, it may not hold

either. So, whether this “trick” to resolve negative answers is successful, depends on
how the dual abstractions (in the sense of free vs. constrained) are chosen. We do not
further investigate this point here; the interested reader is referred to [KDG95].

The same idea of constructing an abstract model by abstract interpretation of
program operations, although based on a different theoretical framework ([LGS+95,

25Recall (Definition 2.3.0.1) that ¬ϕ is the abbreviation of a CTL∗ formula in negation-normal
form.
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Loi94], see Section 4.9 for a comparison), is applied to a “real-life” example in
[Gra94]. Graf shows in that paper how a distributed cache memory, which is in
principle an infinite state system because request queues are unbounded, can be veri-
fied by providing a finite abstract domain and corresponding abstract operations.

As a consequence of the interpretation of CTL∗, which is defined over paths
(which are infinite sequences), no properties about finite computations of a program
can be expressed. One could argue that our interest is in verifying reactive systems,
which by definition only exhibit infinite behaviour. But a verification methodol-
ogy should not only enable the formal affirmation of properties of a correct reactive
system, but also detect mistakes in incorrect systems. If a reactive system contains
an unintentional deadlock, i.e. a reachable state without outgoing transitions, this
will not be caught by our methodology: because of the interpretation over infinite
computations only, it is not possible to express deadlock freedom. For example, the
formula ∀ � ∃ � true is valid, meaning it is equivalent to true in any Kripke structure.

This deficiency can be repaired by assuring that all computations of the concrete
system are infinite, before checking any other properties. On the level of action sys-
tems, deadlock freedom may be ensured by extending the set Val with a “special” value
stop and adding an extra action of the form

(∧
i∈J ¬ci(x̄)

)
∨ x̄ = stop → x̄ :=

stop. On a more theoretical level this corresponds to adding a state stop to the Kripke
structure and extending the transition relation by adding a transition leading to stop
from every state that has no outgoing transitions, including stop itself. New literals
is stop and ¬is stop are added to Lit and the valuation of other literals is extended to
stop, in such a way that is stop is the only literal that holds in stop, and ¬is stop holds
everywhere but in stop. Note that for the construction of abstract models, abstract
interpretations for the extra condition

(∧
i∈J ¬ci(x̄)

)
∨ x̄ = stop and transforma-

tion x̄ := stop now have to be provided. Some care has to be taken when specifying
safety properties with regard to the extended system. For example, the property that
ψ holds along all states of the (finite or infinite) computation π in the original con-
crete system should be adapted for the stop extension and is expressed in CTL∗ as
π |= �

(ψ, is stop) (the Weak-Until operator
�

is defined on page 24).
If the existence of stopping states is not intended, in which case they are called

deadlock states, one usually wants to verify that the program is “deadlock free”. This
means that no deadlock state is reachable from any of the initial states. Such an anal-
ysis may be performed within the framework, by checking the formula ∀ � ¬is stop
over the program obtained by applying the transformation described above. If this
succeeds, this implies that the original program is deadlock free. It is not difficult to
see that the extra action may then be removed again from the program when verifying
other properties via abstract interpretations, as long as these properties are evaluated
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in the initial states of the abstract system.
One may wonder whether it is not possible instead to extend the definition of

CTL∗’s interpretation to finite computations, by interpreting the path quantifiers
over maximal prefixes (cf. [DNV90b] for example), i.e. prefixes that cannot be ex-
tended because either they are infinite, or their last state has no outgoing transitions.
The answer is that this would require a revision of the results developed in this chap-
ter. The example in Figure 4.10 illustrates that the preservation results do not hold
anymore in this case. Although ∀ � p clearly holds in abstract state a, it does not
hold in the concrete state c in γ (a): the set of all maximal c-prefixes only contains
the empty prefix ε. However, we have ε 6|= � p, because the next-state operator �
requires the existence of a next state — one might say that it has an “existential char-
acter”. A similar problem occurs with the Until operator � , which is not surprising
once we realise that � may be viewed as being defined in terms of � : � (ψ1, ψ2)

is equivalent to the weakest predicate z for which z ≡ ψ2 ∨ (ψ1 ∧ � z). This

R
αRF

γ

γ

c 6|= ∀ � p d |= ∀ � p a |= ∀ � p

b |= pe |= p

Figure 4.10: When CTL∗ is interpreted over maximal prefixes.

counter-example indeed suggests that for the interpretation over maximal prefixes,
the distinction between the universal and existential fragments of CTL∗ has to be
refined. Technically, the point is that the next-state operator � is not its own dual
when it is interpreted over possibly finite prefixes, i.e. ¬ � ϕ is not equivalent to � ¬ϕ.
A solution would be to introduce the dual operator, say � ′, of � ; this dual operator
would then have a “universal character”. However, such a solution would compli-
cate the definition of CTL∗. These complications are avoided when we take the
µ-calculus (Lµ) as starting point. Because it is defined (when negation-normal form
is considered) in terms of the “existential” next-operator � , its dual � , and fixpoints
over these, it allows a concise identification of the universal and existential fragments
even when interpreted over non-total transition relations. This approach is followed
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in [DGG].

Although the model checking procedure itself is an automated process, it is not
obvious how the choice of an appropriate abstract domain with corresponding ab-
stract operations, as well as the proofs that these operations satisfy the conditions of
Definition 4.3.0.2, can be performed in an automated fashion. So far we have as-
sumed that the abstract domain is provided by the user of the method; an example
of this may be found in [Gra94]. The proofs for the abstract operators may form a
difficult step in the method. In [KDG95], approximations to the transition relation
of StateCharts ([Har87]) are used to verify µ-calculus properties of a production cell
([DHKS95]) in a compositional fashion. In [DGG93a] and [DGD+94], a method
is developed that aims at full automation of these steps. We return to this method in
the next chapter. The following section suggests another possibility.

4.8 Refinement of Abstractions

In the previous sections we have shown how various properties of nondeterministic
systems can be checked by constructing suitable abstractions. Such abstractions can
be constructed by abstract interpretation of programs over appropriate abstractions
of elementary values. Who or what provided such abstractions was, until now, no
matter of our concern. An obvious question that is raised is: What to do when
neither the formula nor its negation can be established over the abstraction? Clearly,
the reason that this occurs is that the abstract model does not contain sufficient detail
to establish or refute the property. Consequently, a general answer to the above
question is: “Refine the abstraction”. But how?

One possibility is to let the user of the verification system be responsible for
indicating how to refine the current abstraction. This answer is in line with the
Abstract Interpretation approach that we have followed so far. In this case, the user
should have information to make a reasonable “guess”. A good way to gain insight is
to analyse why the formula (or its negation) cannot be established. In the case of a
universal formula, useful information may be provided by counter-examples. Several
model checkers exist that offer good facilities to analyse diagnostic information. The
reasons for failure in proving an existential formula are harder to pinpoint. In that
case, it seems important to have powerful tools to “browse” the abstract model. As
this thesis is oriented on automatic methods, we do not pursue this approach.

In this thesis, we discuss two approaches to automatic refinement. The first is
still in line with the idea of Abstract Interpretation. Instead of providing a single
abstract domain at a time, the user is required to supply, in advance, a sequence of
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domains, with corresponding abstract operators, having the property that each next
domain is more refined than the previous. Another way to view this is as an abstract
domain in which the granularity of abstract values is “tunable” through a parameter.
The idea is that when verification yields an indefinite answer, the system moves on
to a more refined domain. If the domain can be refined suffiently, it will eventually
be possible to verify the property of interest. The way in which the abstract model
is refined does not depend on the form of the property, but is only driven by the
shape of the parametrised domain. In this sense, this method is not goal-oriented. In
particular this means that the constructed abstract model may be far larger than the
minimal model strongly preserving the property. This approach is further discussed
in Section 4.8.1 below.

Raising the issue of sufficient conditions for strong preservation and minimality
of models leads to more theoretical, model-theoretic considerations. We return to
these in the next chapter.

4.8.1 Abstraction families

We assume a sequence {α6i }i≥0 of abstractions (with associated approximation orders
�i ) of the concrete domain (6,v) such that each α6i is an abstraction of α6i+1 (see
Figure 4.11). As before, the notion of abstraction is formalised through a Galois con-

6

αi+1

αi

α1

α0

α60α61

γ0

. . .α6i

γ1

γi

γi+1

α6i+1. . .

αi+1
i α1

0

γ i+1
i γ 1

0

Figure 4.11: Abstraction family.

nection. For every i , the relation between 6 and α6i is given by the Galois connec-
tion (αi , γi), while the relation between α6i and α6i+1 is captured by the abstraction
function αi+1

i : α6i+1 → α6i and concretisation function γ i+1
i : α6i → α6i+1. As
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a “sanity condition” we require that

αi = αi+1
i ◦ αi+1 (4.26)

γi = γi+1 ◦ γ i+1
i (4.27)

It is easy to show that, given Galois connections (αi+1, γi+1) and (αi+1
i , γ i+1

i ), their
composition (αi+1

i ◦ αi+1, γi+1 ◦ γ i+1
i ) is a Galois connection as well. Therefore,

the above conditions are satisfiable. On the other hand, it may be possible to devise a
Galois connection (αi , γi) that is different from this composition — but in that case
the intuitive “meaning” of elements of α6i (i.e. what they describe) under (αi , γi)

will be different from their meaning under (αi+1
i ◦ αi+1, γi+1 ◦ γ i+1

i ), which we
consider an undesirable situation. Note that 4.26 and 4.27 can be viewed as defining
(αi , γi) in terms of (αi+1, γi+1) and (αi+1

i , γ i+1
i ), implying that when for some k

the definitions of (αk , γk) are provided as well as the definitions of the connections
(αi+1

i , γ i+1
i ) (for every i ≤ k − 1) between subsequent abstractions26, then this

determines (αi , γi ) for every i ≤ k − 1. On the other hand, given (αi , γi) and
(αi+1

i , γ i+1
i ), it is not possible to determine (αi+1, γi+1). Instead, we have

γ i+1
i ◦ αi = γ i+1

i ◦ αi+1
i ◦ αi+1 � αi+1 (4.28)

γi ◦ αi+1
i = γi+1 ◦ γ i+1

i ◦ αi+1
i � γi+1 (4.29)

αi+1 ◦ γi = αi+1 ◦ γi+1 ◦ γ i+1
i � γ i+1

i (4.30)

αi ◦ γi+1 = αi+1
i ◦ αi+1 ◦ γi+1 � αi+1

i (4.31)

(using the equalities 4.26 and 4.27, and γ i+1
i ◦ αi+1

i � id in the first two, and
αi+1 ◦ γi+1 � id in the last two inequalities).

One property that such a sequence of abstractions should have is that it allows
verification of any property (from some fixed property set L), i.e. for every property
ϕ ∈ L to be verified, there exists i such that

�
i (the abstract model induced by α6i )

strongly preserves ϕ. This guarantees that the successive refinements will eventually
allow us to verify the property. This requirement is clearly satisfied if some α6i is
identical to the concrete domain27 6. However, this is not a necessary condition.
Depending on the form of the property set L, certain aspects of � need not be ex-
posed in any

�
i , yet all L-properties are strongly preserved. We do not investigate

this question at this point. In the following chapters, minimal conditions on the

26As an abstraction function determines the corresponding concretisation, and reversely (see Sec-
tion 2.2.3), indeed only one of these functions has to be provided for each connection.

27This will then be the largest i that will be needed for the purpose of verification. Of course, it is
desirable that verification succeeds at some smaller i , before having to resort to this domain.
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abstract system for strong preservation are identified for the logic CTL∗ as well as for
a number of fragments.

Of course, it should be possible to define the abstractions effectively, i.e. there
should be a finite and preferably compact specification that allows for the automatic
construction of ever finer abstract models. Furthermore, together with the abstract-
state sets α6i , abstract interpretations of the operations from the programming lan-
guage should be provided. Again, it should be possible to effectively define these
interpretations for all i . We summarise by the following definition. For simplicity,
we only deal with a single function f on 6 giving the interpretation of some pro-
gram operator. So, we abandon the more specific conditions and transformations of
the action systems introduced before. We expect that it is not a problem to generalise
this to more functions, possibly being defined over different concrete domains.

4.8.1.1 D Let (6,v) be a poset and f : 6 → 6 a function. An
abstraction family (for 6) consists of an effective definition of the following:

1. A (possibly infinite) sequence {(α6i ,�i)}i of posets such that there exist Ga-
lois connections satisfying the sanity conditions 4.26 and 4.27 on page 94.

2. Corresponding safe28 abstract interpretations α fi : α6i → α6i .

In practice, the fact that these abstractions must all be effectively defined probably
means that there will be a strong uniformity in the α6i .

We consider an example. Let � = {0, 1} and consider the sets � k of bitstrings
of length k ≥ 1 and � ∗ of bitstrings of arbitrary finite length, interpreted as natural
numbers in binary notation, as usual. For a bitstring b̄ and n ∈ � , b̄ div n and
b̄ mod n are assumed to return bitstrings representing the results of integer division
and remainder. We use regular-expression notation (in particular, · for concatenation
and ∗ for finite iteration) to define sets of bitstrings. For example, {0, 1}∗ · 1 · {0, 1}∗
is the set of all bitstrings containing at least one 1, and 0 · (b̄ mod 2k) is the single-
ton containing the string obtained by concatenating 0 and the result of b̄ mod 2k .
When we consider pairs of bitstrings, we write (B1, B2) (where the Bi are sets rep-
resented by regular expressions) to denote {(b1, b2) | b1 ∈ B1, b2 ∈ B2}. The
function cut zeros : � ∗ → � ∗ removes all leading zeros from a bitstring while
fill zerosk : (

⋃k
i=0 � k ) → � k prepends a string of zeros so that the length of the

resulting bitstring is k. Finally, the function bit or : � ∗ → � returns the bitwise “or”
of the bits of a string; ∨ is used for the binary “or”. Functions are extended pointwise
to (regular) sets.

28Safety of an abstract function α f with regard to f is defined as condition 3.17 on page 52.
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We define the concrete domain 6 = � ( � ∗) and for every k ≥ 1, the abstract
domains α6k = � ( � × � k ). Intuitively, we abstract numbers (represented as bit-
strings) by chopping off all bits with the exception of the k lowest (i.e. rightmost —
so we keep the least significant bits, possibly filled up with zeros if there are fewer
than k). Besides these k bits, the abstracted number contains one additional bit that
indicates whether the resulting number is still precise (i.e. the original number can
be represented in k bits). Such a concrete domain may occur in the context of binary
decision diagrams. The elements of the abstract domain � ( � × � k ) can then be
used as approximations that can be represented by BDDs of limited height, see e.g.
[DGD+94]. An element of � × � k is represented as (e, b̄) where e ∈ � is called
the overflow and b̄ is in � k . The abstraction is formally captured by the following
abstraction and concretisation functions. For B ∈ � ( � ∗) and A ∈ � ( � × � k ):

αk(B) = {(bit or(b̄ div 2k), fill zerosk(b̄ mod 2k)) | b̄ ∈ B}
γk(A) =

⋃
{0∗ · cut zeros(ā) | (0, ā) ∈ A}

∪
⋃
{{0, 1}∗ · 1 · {0, 1}∗ · ā | (1, ā) ∈ A}

It is easy to verify that for every k ≥ 1, (αk , γk) forms a Galois insertion from (6,⊆)
to (α6k ,⊆).

Next, we give the relation between successive α6k .

αk+1
k (B) = {(e ∨ (b̄ div 2k), fill zerosk(b̄ mod 2k)) | (e, b̄) ∈ B}
γ k+1

k (A) =
⋃
{({0}, 0 · ā) | (0, ā) ∈ A}

∪
⋃
{({1}, {0, 1} · ā) ∪ ({0}, 1 · ā) | (1, ā) ∈ A}

Again, it is straightforward to show that (αk+1
k , γ k+1

k ) forms a Galois insertion for
every k and that the sanity conditions 4.26 and 4.27 on page 94 are satisfied (with⊆
for �).

If the values in the concrete domain are bounded, then clearly some α6i will
induce a strongly-preserving abstract model.

Incrementally computing abstract functions

It would be desirable if the abstract interpretations can be computed incrementally,
i.e. in such a way that the results from the previous abstraction can be re-used. This
allows for a progressive computation of the transition relation αRi from the previously
computed αRi−1 and hence minimises the effort involved in a refinement step. The
rest of this section documents some initial investigation of this condition.

Consider the function f giving the interpretation of some programming op-
erator, and let α fi : α6i → α6i be its interpretation over α6i . In defining the
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interpretation of f over the next refined abstract domain α6i+1, we could simply use
the Galois connection (αi+1

i , γ i+1
i ) between α6i and α6i+1 and define: α fi+1 =

γ i+1
i ◦ α fi ◦ αi+1

i . This yields a safe function: as α fi is safe, i.e. αi ◦ f � α fi ◦ αi ,
we have α fi � αi ◦ f ◦ γi and hence α fi+1 � γ i+1

i ◦ αi ◦ f ◦ γi ◦ αi+1
i , from

which by the inequalities 4.28 and 4.29 it follows that α fi+1 � αi+1 ◦ f ◦ γi+1.
However, such a definition obviously ignores the extra precision that α6i+1 offers
over α6i , because the element that α fi+1 has to be applied to is abstracted to the
domain α6i . (To formalise this observation, we have to compare α fi+1 and α fi by
applying them to some concrete object via αi+1 and αi resp.: γi+1 ◦ α fi+1 ◦ αi+1 vs.
γi ◦ α fi ◦ αi . By substituting the above definition of α fi+1 in the first and using the
inequalities 4.30 and 4.31, we see that these are equal functions.) We continue our
example to illustrate this.

As function f , we consider multiplication by 2; on bitstrings this has the effect
of appending a zero to the right. Formally, we define f : � ( � ∗) → � ( � ∗) by
f (B) =⋃{b̄ ·0 | b̄ ∈ B}. On abstract values, this operation may cause the overflow
to be set. We define α fk(A) =

⋃{(bit or(e·(ā ·0)div2k), fill zerosk((ā ·0)mod2k)) |
(e, ā) ∈ A}. It is not difficult to see that for the functions α fk thus defined we have
α fk = αk ◦ f ◦ γk for every k.

Now, suppose that for a certain k we compute γ k+1
k ◦α fk ◦αk+1

k instead of α fk+1.
The following example illustrates how precision is lost with respect to α fk+1, for the
case k = 2.

γ 3
2 ◦ α f2 ◦ α3

2({(0, 101)})
=

γ 3
2 ◦ α f2({(1, 01)})

=
γ 3

2 ({(1, 10)})
=
{(1, 010), (1, 110), (0, 110)}

⊇
{(1, 010)}

=
α f3({(0, 101)})

This difference in precision is clearly caused by the loss of information about the
position of the leftmost bit in 101, when abstracting from α63 to α62 in the first
step. On the other hand, for the part of 101 that remains intact when going from
α63 to α62, viz. the last two bits, we could “re-use” the result of applying α f2 to this
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part: the same last two bits of the result, 10, also occur in the desired more precise
value. And to find the rest of this more precise value, we do not need to compute
the function α f3 on the value (0, 101), but we need its effect on that part of (0, 101)
which was lost when going from α63 to α62.

Let us reformulate this more generally, using Figure 4.12. Given are a con-

?

α f1

α f2

α2

α2
1

f

a1 = α2
1(a2) ∈ α61

a2 ∈ α62

6

Figure 4.12: Reuse of the more abstract α f1.

crete domain 6, an operation f on it, an abstraction α61 of 6 with the optimal
abstraction α f1 of f , and a more concrete abstraction α62, i.e. α61 is an abstraction
of α62 that in turn abstracts 6. We want (this intention is indicated by the squiggly
arrow) to define the optimal abstraction α f2 of f on α62, by reusing α f1 as much
as possible. When we abstract a given object a2 ∈ α62 to a1 ∈ α61 and then apply
α f1 to it, certain information is lost. We would like to have some way to extract this
information, say r (“residue”) from a2. Then, it should be possible to compose r
with α f1(a1) in such a way that the result is the same as α f2(a2).

Consider the example again. When {(0, 101)} ∈ α63 is abstracted to {(1, 01)} ∈
α62, information about the leftmost bit of 101 is lost. Furthermore, when α f2 is
applied, resulting in {(1, 10)}, also the middle bit of 101 is lost. Hence, the residue
of {(0, 101)}, relative to the operation α f2 ◦ α3

2 , should at least give the first two bits
of 101 as well as the overflow bit 0.

We formalise this by another abstraction of α62, say αr , into the domain α6r .
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See Figure 4.13. The condition formulated above can now be formalised by requiring

α2
1

a1 = α2
1(a2) ∈ α61

αr

α f1(a1)
α f1

a2 ∈ α62 ⊕(α f1(a1), r)
?= α f2(a2)

r = αr (a2) ∈ α6r

Figure 4.13: Residue abstraction.

the existence of a “composition function”⊕ : α61× α6r → α62 such that for every
a2 ∈ α62, ⊕(α f1 ◦ α2

1(a2), αr(a2)) = α f2(a2).
There is another requirement that we would like to impose, namely that the

residue abstraction provides the least amount of information needed for the existence
of such a compostion function. This should ensure that the composition of αr(a2)

with α f1(α
2
1(a2)), indicated by the two dashed squiggly arrows, which is supposed

to yield the same result as if we had applied the optimal α f2 to a2, does not “redo”
anything that α f1 already does. In terms of the example given above: The residue
abstraction, relative to α f2 ◦ α3

2 , of (0, 101) should not provide the lower bit, 1, of
101, as this information is already provided by α f2 ◦ α3

2 . However, we do not yet see
an appropriate way to formalise this29. Furthermore, we expect that in practical sit-
uations it will sometimes be more convenient if the residue abstraction does contain
some redundancy, as that may allow for simpler composition functions.

We continue our example about bitstrings. It turns out that the residue abstrac-
tion suggested before, which selects the overflow bit as well as the first two bits of the
bitstring, is not yet sufficient to allow the definition of a composition function. The
problem is that the elements of α63 are (unordered) sets. When we take such a set A

29Also, we could continue by defining a notion of “incremental abstraction family”, in which for
every i ≥ 1 there exists a residue abstraction α i

r of α6i with respect to α fi−1 ◦ αi
i−1 such that α fi can be

defined by α fi(ai ) = ⊕i (α fi−1(α
i
i−1(ai )), α

i
r (ai )) where ⊕i is the composition function on α6i with

respect to f . However, because we do not require residue abstractions to give minimal information,
every abstraction family would be incremental. The reason is that the identity function on α6i is a valid
residue abstraction.
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and select, of each of the pairs (e, ā) ∈ A, the overflow bit e and the first two bits of
ā, we get a set again, say α3

r (A), and the information about which element of α3
r (A)

belongs to which elements of A, is lost. Consider A = {(0, 000), (0, 101)} ∈ α63.
α f2(α

3
2(A)) = {(0, 00), (1, 10)}. The residue would be α3

r (A) = {(0, 00), (0, 10)}
(where the first element of a pair is the overflow bit of the abstracted value and the
second element gives the two leftmost bits). A composition function would combine
these two sets into a set with four elements, while the required result should equal
α f3(A) = {(0, 000), (1, 010)}, which has only two elements.

A natural solution is to change the abstract domains so that the elements of sets
become ordered, for example by using lists instead of sets. Then, for every k, a
composition function can be defined as the pointwise extension over these lists of the
following function ⊕′ : ( � × � k )× ( � × � 2 )→ ( � × � k+1):

⊕′((ek , āk), (e2, ā2)) = (e′2, ā′2 · āk) where (e′2, ā′2) = α f2((e2, ā2))

This is as much as we would like to say about abstraction families. Their useful-
ness can only be judged by gaining practical experience from diverse applications —
which is an activity outside the scope of this thesis.

4.9 Related Work

Property-preserving abstractions of reactive systems have been the topic of intensive
research lately. Most of these efforts are based on the notion of simulation (Defini-
tion 2.4.2.1). Homomorphisms (see e.g. [Gin68]), used in automata theory to con-
struct language preserving reductions of automata, can be viewed as a precursor of
this. Adapted to our notion of transition system, h : 6 → α6 is a homomorphism
iff c ∈ I implies h(c) ∈ αI and R(c, d) implies αR(h(c), h(d)), where αI is the set
of initial abstract states and αR the abstract transition relation. In [Mil71], Milner
introduced the term simulation to denote a homomorphism between deterministic
systems. Since then, it has been re-adapted to nondeterministic transition systems
and has become popular in the areas of program refinement and verification; [Sif82],
[Sif83] and [HM80] are some early papers on this topic. [Dil89] and [Kur90] focus
on trace (linear time) semantics and universal safety and liveness properties. Some
of the first papers that consider the (strong) preservation of full CTL∗ and Lµ are
[CGL92] and [BBLS92].

Following [Kur90], [CGL92] defines the relation between the concrete and ab-
stract model by means of a homomorphism h, which induces an equivalence relation
∼ on the concrete states, defined by c ∼ d ⇔ h(c) = h(d). The abstract states
are then representations of the equivalence classes of ∼. It is shown that properties
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expressed in ∀CTL∗ are preserved from the abstract to the concrete model. Preserva-
tion of full CTL∗ is shown to hold when h is exact, which boils down to requiring the
concrete and abstract Kripke structures to be bisimilar (Definition 2.4.2.7). Conse-
quently, CTL∗ is strongly preserved, thus only allowing for relatively small reductions
in the size of model. A notion of approximation between abstract systems is given
based on the subset ordering on transition relations. As a result, an abstraction that is
based on an exact h cannot be approximated, except by itself. Our approach to defin-
ing approximations in Section 4.4 is a generalisation of this — see Lemma 4.4.0.3
and the last sentence of that subsection. Furthermore, our notion of abstract Kripke
structure does allow proper approximations in the context of weak preservation of
full CTL∗. [CGL92] also explains the construction of abstract models and approx-
imations thereof, by abstract interpretation of elementary operations (called abstract
compilation), and illustrates this with a number of examples. A journal version ap-
peared as [CGL94]. [Lon93] also contains these results, presented in a slightly more
general setting.

[BBLS92] presents similar ideas in a more general setting by considering simula-
tion relations to connect the concrete and abstract transition systems. Also, proper-
ties are preserved in the µ-calculus, Lµ, which is a more powerful logic than CTL∗.
Preservation of both the existential ( � Lµ) and the universal ( � Lµ) fragments of Lµ
is dealt with in the setting of weak preservation. It is shown that if there exists a simu-
lation from � to

�
that is total on6, then properties expressed in � Lµ are preserved

from
�

to � , while existential properties � Lµ are preserved from � to
�

. Again,
preservation of the full µ-calculus is only shown for abstractions that are bisimilar
to � . The construction of abstract models, which is only briefly touched upon in
[BBLS92], is worked out further in the journal version, [LGS+95], where it is shown
in addition how the abstraction of a concurrent system can be constructed composi-
tionally from the abstractions of the individual components. In [Loi94], this theory
is not only worked out in full detail, but the implementation of a tool based on it is
described and analysed too. A closely related paper is [GL93]. The approach is sim-
ilar to that taken in Section 4.3, although the results deviate because the underlying
frameworks are slightly different.

In [LGS+95], Loiseaux et al. also use Galois connections to relate concrete and
abstract states spaces, but in a different way than we do. It is shown that in their case,
this is equivalent to using simulation relations. However, being between � (6) and
� (α6), these connections do not impose structure on the set α6 of abstract states (cf.
the remarks below equation 4.2 on page 59). In particular, no approximation order-
ing � to relate the precision of abstract states is defined. As a result, that approach is
more general, but fails to capture the notion of optimality, both on the level of states
and on the level of complete transition systems. On the other hand, our approach is
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a proper instance of the simulation-based framework, and does distinguish between
optimal abstractions of transition systems (as captured by the abstraction function
αM ) and approximations (expressed by the relation � on abstract transition systems,
see Definition 4.4.0.1). This is further discussed in Section 4.9.1 below.

[Kel95] also discusses the preservation of universal and existential µ-calculus
properties within the framework of Abstract Interpretation. As in [BBLS92], the
relation between abstract and concrete systems is defined through simulations cast in
the form of Galois connections. The interpretation of a µ-calculus formula, which is
a set of states, is approximated from below and above. By combining these dual ap-
proximate interpretations, using one for the � -operator and the other for the � , weak
preservation of arbitrary µ-calculus formulae is obtained. This technique is similar
to the mixed abstractions presented in this chapter. A strong point of Kelb’s thesis
is the integration of these theoretical results with symbolic (BDD-based) representa-
tions. Indeed, [Kel95] proceeds by decribing practical experiments on the symbolic
verification of StateChart programs, including part of the material from [KDG95],
which was discussed in Section 4.9.2.

[CIY94] is based on an early version, [DGG93b], of [DGG94] and indepen-
dently develops the idea of mixing both free and constrained abstractions in a single
abstract system to attain preservation of full CTL∗. More recently, [CIY95] focusses
on the issue of optimality. An approximation ordering � h (relative to a homomor-
phism h) on abstract transition systems is defined and shown to coincide with the
CTL∗-property ordering, i.e. � 1 � h � 2 ( � 1 is an approximation of � 2) if and only if
any CTL∗-property satisfied by � 1 is satisfied by � 2 as well. This should be compared
to our approach in which the notion of approximation on Abstract Kripke structures,
�, is more loosely related to the CTL∗-property ordering: see Theorem 4.4.0.2 and
also the footnote on page 39. [CIY95] defines an abstraction function (cf. our αM )
that maps transition systems to “ � h-optimal”30 abstractions. This approach ensures
that the formal notion of optimality corresponds more to the intuition of usefulness.
It would be interesting to investigate how similar results can be obtained in our case.
As shown in [CIY95], it requires certain restrictions on the class of transition systems.
Furthermore, the framework of [CIY95], being based on homomorphic functions h,
is slightly less general than ours so that the results do not translate immediately.

[CR94] presents a framework for the abstract interpretation of processes that pass
values. Application of Abstract Interpretation to verify properties of CCS is described
in [DFFGI95].

While developed independently, and from a different perspective, Abstract Krip-
ke structures bear some resemblance to the modal transition systems of [LT88], which
also combine two types of transition relations (“may” and “must”-transitions) in one

30In [CIY95], a different notation is used for this.
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system. Modal transition systems have been developed in the area of specification.
Must-transitions specify what is required while may-transitions specify what is ad-
missible. In [LT88], a notion of refinement is defined such that the must-transitions
in the specification simulate those in the refined system, while the may-transitions in
the refined system simulate those in the specification. This is similar to our definition
of approximation between Abstract Kripke structures (Definition 4.2.3.7). On the
other hand, in modal transition systems, the must-relation is required to be a sub-
set of the may-relation. Also, there is no notion of approximation ordering between
states.

A recent paper, [KDG95], reports on an application of abstract interpretation
techniques to the verification of properties of a production cell. Section 4.9.2 below
contains an account on the findings. First, we discuss in some more depth the relation
between our Galois-insertion approach and the simulation-based approach taken in
[LGS+95] for example.

4.9.1 Comparing the simulation-based and Galois-insertion approach

The conditions under which CTL∗ is preserved from a mixed transition system
� ′ =

(6′, F ′,C ′, I ′) to the concrete system � = (6,R, I) may be formulated entirely in
terms of pseudo-simulations (Definition 2.4.2.1) as follows. There should exist a
relation σ ⊆ 6 ×6 ′ such that:

1. For every c ∈ 6 and a ∈ 6 ′, if σ(c, a) then ∀p∈Lit a ∈ ‖p‖′Lit ⇒ c ∈ ‖p‖Lit

(where ‖·‖′Lit specifies the valuation of literals over states in 6 ′).

2. R σ -pseudo-simulates F ′.

3. C ′ σ−1-pseudo-simulates R.

4. For every c ∈ I there exists a ∈ I ′ such that σ(c, a).

Such a simulation-based approach, as we call it, is a generalisation of our approach
using Galois insertions, as expressed by the following lemma.

4.9.1.1 L Let
� ′ = (6′, F ′,C ′, I ′) such that

� ′ � αM( � ). Then there is a
relation σ ⊆ 6 ×6 ′ such that the conditions 1–4 above are satisfied.

P. Note that � ′ � αM ( � ) implies, by Definition 4.4.0.1, that 6 ′ is equal to the set
α6 of abstract states, which is connected to the concrete states via (α, γ ) and on which
the relation � and the valuation α‖·‖Lit of literals have been defined (so ‖·‖′Lit = α‖·‖Lit).
Consider the underlying description relation ρ ⊆ 6×6 ′ defined by31 ρ(c, a) ⇔ c ∈ γ (a).
We show that ρ satisfies the conditions 1–4 above.

31Note that this is equivalent to γ = pre •ρ .
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1. Suppose that ρ(c, a). Let p ∈ Lit such that a ∈ α‖p‖Lit. Because (α, γ ) is a Galois
connection, ρ(c, a) implies that α(c) � a, so, by Lemma 4.2.1.2, α(c) ∈ α‖p‖Lit.
By Definition 4.2.1.1 and the fact that γ (α(c)) ⊇ {c}, it now follows that c ∈ ‖p‖Lit.

2,3. For the optimal abstraction αM ( � ), it is easily shown that R ρ-pseudo-simulates αRF

and αRC ρ−1-pseudo-simulates R. From the fact that � ′ � αM ( � ) it follows by
Definition 4.4.0.1 that αRF �-pseudo-simulates F ′ and C ′ �-pseudo-simulates αRC .
Because the composition of ρ with � is ρ again, it now follows by transitivity of
simulation that R ρ-pseudo-simulates F ′ and C ′ ρ−1-pseudo-simulates R.

4. Let c ∈ I. Then by Definition 4.2.2.1 of abstract initial states, α(c) ∈ αI (the initial
states of αM ( � )). From point 3 in Definition 4.4.0.1 of � ′ � αM ( � ) it now follows
that there exists a ′ ∈ I ′ with α(c) � a′. So ρ(c, a′). �

Conversely, if for a mixed system
� ′ = (6′, F ′,C ′, I ′), there exists a relation σ ⊆

6 ×6′ such that conditions 1–4 above hold, then it need not be the case that
� ′ �

αM( � ): although every concretisation function γ induces an underlying description
relation ρ by ρ(c, a) ⇔ c ∈ γ (a) that satisfies conditions 1–4 (see the proof
above), an arbitrary σ satisfying these conditions does not necessarily induce the
concretisation function of a Galois insertion. So why use Galois insertions when
the simulation-based approach is more general? We see two main advantages of our
framework.

Useful constrained abstractions First, to define useful abstractions that preserve
existential properties, where with useful we mean that a fair amount of existential
properties indeed hold in the abstract system, the abstract states need to be partially
ordered anyway. We illustrate this by an example. Consider Figure 4.14. c1, c2,
d1 and d2 are concrete states while a, b1, and b2 are abstract. The relation ρ, indi-
cated by dashed arrows, gives the relation between them, so one could say that c1 is
described by a, or that c1 is in the concretisation of a (although a Galois insertion
does not necessarily exist). In order for universal properties to be preserved from a to
its concretisation, R has to ρ-pseudo-simulate the abstract transition relation. This
implies that there have to be abstract transitions from a to both b1 and to b2. It is
not hard to see that as long as ρ is total on the concrete states, it is always possible
to find an abstract transition relation F such that R ρ-pseudo-simulates F . In order
for existential properties to be preserved, the abstract transition relation C should
ρ−1-pseudo-simulate R. For the situation of Figure 4.14, no C-transition from a is
possible under this requirement. This shows that an abstract domain that is suitable
for defining useful abstractions that preserve universal properties is not necessarily
suitable for defining useful abstractions that preserve existential properties too. In
the case of this example, if we want to have an outgoing C-transition from a, we
need to extend the abstract domain with a state that describes (at least) both d1 and
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� �

R

c1 c2

d1 d2

a

b1 b2

ρ

Figure 4.14: Finding simulations in both ways.

d2. In general, to define useful abstractions preserving existential properties, the ab-
stract domain should contain states describing subsets of concrete states of various
sizes. In particular, if it should always be possible for C to be total, the abstract do-
main should have a “top” element describing all concrete states. The abstract state
〈 ���	� ��� , � ��� ��� ,>〉 in Figure 4.8 is a good example of this. Without it, property 4.6
(page 74) could not have been verified.

Optimal abstractions vs. approximations Second, the mere requirement that a
(pseudo-)simulation must exist in order for preservation to hold has the drawback
that it leaves too much freedom in the choice of “good” abstractions. The Galois in-
sertion framework in which we developed our results may be viewed as a (successful)
attempt to try and quantify the notion of precision of abstractions by distinguish-
ing between the notions of (optimal) abstraction and approximation. This point is
discussed in the following comparison of our work with that of [LGS+95, Loi94].

We focus on the free abstract transition relation. Given a concrete transition sys-
tem and a set of abstract states that is related to the concrete states by a description
relation ρ ⊆ 6 × 6 ′ (total on 6), the requirement ρ−1R ⊆ αR ρ−1 (R pseudo-
simulates αR, see Lemma 2.4.2.2), viewed as an inequality over αR, has many so-
lutions. From the point of view of property preservation, the ⊆-minimal solutions
are interesting. Namely, the ⊆-smaller the abstract transition relation αR, the greater
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c a
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d

d ′
b2

Figure 4.15: Abstraction with states of comparable precision.

the number of universal properties that hold in
�

. However, even such minimal
solutions may have comparable quality, as illustrated by the example in Figure 4.15,
where the problem is to choose an αR-successor of a such that ρ−1R ⊆ αR ρ−1 is
satisfied. The⊆-minimal solutions are obtained by taking either b1 or b2 as successor
(but not both). However, choosing b1 will generally give better property preservation,
as it describes fewer concrete states.

Instead of exploring this freedom to refine the notion of quality of abstract tran-
sition relations, [LGS+95] proposes a condition under which all minimal solutions
are bisimilar to each other. This condition is

ρρ−1ρ = ρ (4.32)

i.e. ρ should be a difunctional (Definition 2.1.0.2). Expressed in words, it says that
if two concrete states share a description (abstract state), then they share all descrip-
tions. For example, in Figure 4.15 also the states d ′ and b1 would have to be related
by ρ. It is easy to see that the generality of simulations over Galois insertions is elimi-
nated by this condition. In fact, requirement 4.32 implies that it is useless to have a ρ
that is not functional. This is expressed in the following lemma (which can be found
in [LGS+95]). It implies that whenever ρ(c, a) and ρ(c, a ′) (a 6= a′) for some c
— i.e, ρ is not functional — then a and a′ are bisimilar. If the goal of abstraction is
to produce abstract systems with a minimal number of states32, then one of a and a′

32In general, the goal is to have minimal representations of the system. When states are not represented
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should be removed from
�

.

4.9.1.2 L If ρ is total on 6, αR is a ⊆-minimal relation such that R ρ-
simulates αR, and ρρ−1ρ = ρ, then ρρ−1 is a bisimulation on

�
.

P In order to show that ρρ−1 is a bisimulation (Definition 2.4.2.7) on � , we have to
show that ρρ−1 and (ρρ−1)−1 are simulations on � . Because (ρρ−1)−1 = ρρ−1, it suffices
to show that ρρ−1 is a simulation, i.e. (by Lemma 2.4.2.2) that (ρρ−1)−1

αR ⊆ αR(ρρ−1)−1,
i.e. ρ−1ρ αR ⊆ αR ρ−1ρ (*). Because any minimal solution αR satisfies αR = ρ−1R ρ

(see [LGS+95]), (*) is equivalent to ρ−1ρρ−1R ρ ⊆ ρ−1R ρρ−1ρ. Because ρρ−1ρ = ρ and
therefore also ρ−1ρρ−1 = ρ−1 (apply the inverse, (·)−1, to both sides), this is equivalent to
ρ−1R ρ ⊆ ρ−1R ρ, which is obviously true. �

So, to distinguish optimal abstractions from approximations, [LGS+95] make as-
sumption 4.32, which renders their framework less general than the Galois-insertion
approach, because, under the reasonable assumption that the abstract system does
not contain bisimilar states, it forces ρ to be functional.

Consider Figure 4.15 again. In our framework, the simulation relation ρ induces
the following Galois insertion on sets of states: for any a ∈ 6 ′, γ (a) = pre •ρ(a) and
for any C ⊆ 6, α(C) = ∧{a | γ (a) ⊇ C}, where

∧
denotes the glb corresponding

to the ordering � defined by a � a′ ⇔ γ (a) ⊆ γ (a′). Taking αR to be αRF as
specified by Definition 4.2.3.3 yields b1 as the only successor of a, as desired.

4.9.2 [KDG95]: An application

In a recent paper, [KDG95], we report on an application of abstract-interpretation
techniques to the verification of universal and existential properties of an industrial
production cell. This section gives a summary. The cell, depicted in Figure 4.16, has
served as a case study for the evaluation of a number of formal methods, see [LL95].
It consists of two conveyor belts (the feed belt in the front and the deposit belt in the
back of the picture), a rotary table (right to the feed belt), a press (to the right of
the picture), a robot with two independent movable arms (between rotary table and
press) and a crane (under the top of the picture). In addition, we assume that there
is a user who puts a metal blank on the feed belt. When the user puts a new metal
blank on the feed belt, it will be transported to the rotary table. The table will rotate
and lift the blank up, so it can be picked up by the first robot arm. The robot puts
the blank into the press. After pressing the blank, the second robot arm fetches the
pressed blank and puts it on the deposit belt, which will transport the blank to the

explicitly, but by BDDs for example, the size of the representation may actually shrink as the number
of states grows. In such cases, it may indeed be useful to have some “redundant” states around.
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Figure 4.16: Production cell.

crane. The crane closes the cycle and moves the blank from the deposit belt to the
feed belt to press it again.

Typical properties to be verified involve various combinations of universal/exis-
tential path quantification and safety/liveness properties. Some examples are (infor-
mally):

1. It is always the case that the vertical position of the rotary table is within the
specified limits.

2. It is always the case that if the vertical position of the rotary table is at its lowest
point and its horizontal position is such that it can accept a metal blank from
the belt and the belt is running while there is a metal blank on its rightmost
end, then there exists a continuation such that eventually there will be a metal
blank on the rotary table.

This system is naturally modelled as a number of individual components that are
composed in parallel. The transition system capturing its behaviours is obtained as
the product of the transition systems modelling the individual components. Such
products tend to be too large for practical purposes. Below, we sketch an application
of the techniques developed in this chapter that alleviates this state explosion.

We model the components of the system as edge-labelled transition systems,
called processes henceforth. The entire system is then represented as the program
formed by the parallel composition of these. For each process, its set of local states
is disjoint from the state set of any other process, while the labels along its edges,
called conditions, are boolean combinations of the states of the other processes. In-
tuitively, an edge may be taken (resulting in a transition) if the current states of
the other processes satify the condition along the edge. Formally, each process Pi

(0 ≤ i ≤ n) induces a Kripke structure � i over the global state space that consists
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of tuples 〈`0, . . . , `n〉 where for each 0 ≤ j ≤ n, ` j is a local state of process j .
There is a transition from 〈`0, . . . , `n〉 to 〈`′0, . . . , `′n〉 in � i if there is an edge
from `i to `′i in Pi that is labelled by a condition that evaluates to true over the
global state 〈`0, . . . , `n〉. Note that there are no restrictions on the local target states
`′0, . . . , `

′
i−1, `

′
i+1, . . . , `

′
n of the other processes — such synchronisation only takes

place when the parallel composition is “expanded”. Such an expansion results in a
“global” Kripke structure � , capturing the behaviour of the parallel composition as
a whole. � is the synchronous product of the � i : its transition relation is the inter-
section of the transition relations of the individual � i . The size of this global Kripke
structure may be prohibitively large for model checking.

In [KDG95], a symbolic model checking algorithm (Section 2.4.3) is used, in
which sets of states and transition relations are represented by BDDs. The global
transition relation R of � is not represented by a single BDD. Instead, a list of
BDDs each representing the local transition relation Ri of the individual process Pi is
kept. When pre-image sets (Definition 2.1.0.1) preR0∩···∩Rn

(S) and p̃reR0∩···∩Rn
(S)

of some set S of states over the global transition relation have to be computed33,
which is a key operation in symbolic model checking, the intersection of the Ri

needs to be computed. It is this intermediate result that turns out to be the bottle
neck in the model-checking process. Hence, the aim is to reduce the size of these
representations. A notorious property of BDDs is that their size does not correlate
directly to the size of the set being represented. In this particular case, it turns out that
the size of the intermediate “product BDD” blows up as a result of the interaction be-
tween the various processes (this observation can be made more precise by looking at
the particular way states are encoded). Accordingly, the idea behind the abstractions
used in [KDG95] is to reduce such interactions. This is achieved by maintaining
both overapproximations R

�
i ⊇ Ri and underapproximations R

�
i ⊆ Ri to the tran-

sition relations Ri . Clearly, the intersection R
�
0 ∩ · · · ∩ R

�
n (R

�
0 ∩ · · · ∩ R

�
n ) of

over-(under-)approximations yields an over-(under-)approximation again. Further-
more, it is not difficult to see that for every state set S, p̃reR

�
i
(S) ⊆ p̃reRi

(S) and that
preR

�
i
(S) ⊆ preRi

(S) for every i . Hence, when p̃re is computed on overapproxima-
tions and pre on underapproximations, the result is always an underapproximation of
the intended set of states. In the symbolic model-checking approach, this set of states
is the characteristic set34 of the formula being checked. Hence, this approximation
is “safe” in the sense that any state in the set that is obtained, is guaranteed to satisfy
the formula being checked.

33The results of [KDG95] are presented in the setting of the µ-calculus. p̃re is needed to evaluate
universal ( � -)properties, while pre is needed for existential ( � -)properties.

34The characteristic set of a formula ϕ is the set of all states satifying ϕ; cf. Definition 5.2.0.2 on
page 121.
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The approach can be formalised in the framework presented in this chapter. Let
� i = (6i , Ri , ‖·‖i ) be the Kripke structure corresponding to process Pi . The ab-
straction function αi : 6i → � (6i ) on the level of states maps each concrete state c
to the singleton {c}. We ignore the difference between single elements and singletons,
so we may say that a concrete state is mapped to itself; hence no real abstraction takes
place. The Abstract Kripke structure αM( � i ) is then (6i , Ri , Ri , ‖·‖i ). The abstract
transition system (6i , R

�
i , R

�
i , ‖·‖i ) over which the properties are interpreted now

is an approximation, in the sense of Definition 4.4.0.1 in Section 4.4, to αM( � i ).
This follows from Lemma 4.4.0.3.

Above, we have described a theoretical solution to the state-explosion problem.
It is difficult to assess how good this solution is in practice. In other words, how
often can we find approximations that both offer substantial reductions and allow
many properties to be verified? Heuristically, the overapproximations R

�
i are often

more useable than the underapproximations R
�
i . This is because in the lattice of

relations, program relations tend to be closer to the empty relation than they are to
the full one. Indeed, a program describes the allowed behaviour rather than those
behaviours that are disallowed. E.g. a function for computing, say, the square root of
its input, is usually not implemented by a program that admits arbitrary behaviour
only constrained by the requirement that it computes the square root. Quite the
opposite: a square root program should only perform those actions that are necessary
for its correct functioning. This means that there tends to be ample room to add
transitions to a relation — as an overapproximation does — without hitting the full
relation, but less so to remove them. The effect of this is that it tends to be easier to
find an overapproximation that preserves the truth of a universal property than it is
to find a usable underapproximation that preserves an existential property.

This problem is overcome in [KDG95] by using the overapproximations R
�
i in

computing an underapproximation to preRi
(S). The key observation is that under a

certain condition on a set S of global states, called independence (see Definition 6.6
in [KDG95]), we have preR

�
i
(S) ⊆ preRi

(S) (even though R
�
i ⊇ Ri ). A closure

operator 0 is defined that maps each set of global states to its largest independent
subset; we then have preR

�
i
(0(S)) ⊆ preRi

(S) for every S. This pre-image set is then
used to improve the quality of preR

�
i
(S) by taking the union preR

�
i
(S)∪preR

�
i
(0(S)),

which is clearly also an underapproximation to preRi
(S).

This idea is applied to the verification of various properties of the production
cell. To this purpose, the system is modelled in StateCharts ([Har87]), a graphical
specification language for reactive systems. It is based on automata theory and allows
the specification of automata that are composed in parallel. It permits a straightfor-
ward translation into (lists of implicitly intersected) BDDs; see [HK94]. The general



4.10] R W 111

structure of the StateChart specification of the production cell is a parallel compo-
sition, where each process corresponds to one of the components mentioned above.
The lock-step composition of processes is such that a process “stutters” (i.e. makes a
transition leading back to its current local state) if no other transitions are enabled.
As a result, the transition relation of the global Kripke structure is total.

The properties are formalised in CTL, which can be considered as an abbrevi-
ation of Lµ. Some of the resulting formulae are in either of the fragments ∀CTL
or ∃CTL, others contain both types of path quantifiers. None of the formulae con-
taining existential quantifiers could be verified over the unabstracted system. The
verification of strictly universal properties requires intermediate BDDs consisting of
approximately 36.000 up to 100.000 nodes, depending on the property.

These numbers are then compared with the results of applying the approximation
techniques explained above. For all properties, the approximations that are applied
are of the same kind: subsets of the edges of processes are selected and all conditions
along these edges are abstracted. Choosing such approximations for the various prop-
erties does not require a lot of ingenuity. Using a few heuristics, approximations can
be determined by looking at the specific form of the property to be checked. Indeed,
all of the verifications performed succeed at the first try.

Having chosen a subset of processes whose interaction can be abstracted, the
actual construction of the (BDD representation of the) abstract Kripke structure is
performed by abstractly interpreting the StateChart specification. Basically, this boils
down to re-interpreting the conditions along edges in the following way. For the R

�

approximation, if a condition c occurs along an abstracted edge, and c is not equiva-
lent to false (i.e. if ¬c is not a tautology), then c is interpreted as true; otherwise, c is
interpreted as usual. For the the R

�
approximation, if a condition c occurs along an

abstracted edge, and c is not equivalent to true (i.e. if c is not a tautology), then inter-
pret c as false; otherwise, interpret c as usual. These abstract interpretations are easily
seen to yield over- and underapproximations respectively. Note that conditions along
unabstracted edges can still be evaluated as usual. The reason is that abstractions only
affect the interactions as expressed by the conditions, and not the states.

The resulting reductions range from 6- to 34-fold, depending on the formula,
with an average of 17. All properties can be checked, including the existential ones
that could not be verified without abstraction. While these initial results are certainly
encouraging, further experiments are needed. In particular, we should compare this
method to an approach where not only the interaction, but all information about
subsets of process is being abstracted. Such a comparison would lead to a better un-
derstanding of the contribution of these approximations over compositional meth-
ods.
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4.10 Concluding Remarks

The results of this chapter may be considered from two points of view. From the
position of Abstract Interpretation, we have presented a generalisation of the frame-
work extending it to the analysis of reactive properties. This generalisation consists
in allowing the next-state relation of a non-deterministic transition system to be ab-
stracted to a relation. This allows the analysis, via the abstraction, not only of uni-
versal properties — expressing that something holds along all possible executions
—, but also existential properties — expressing the existence of paths satisfying some
property. Furthermore, both safety as well as liveness properties are preserved. We
have proven that the truth of every property expressible in CTL∗ is preserved from an
abstract to a concrete model. As is common in Abstract Interpretation, the attained
reduction solely depends on the choice of the abstraction function, thus allowing
better reductions than is the case with minimisation based on bisimulation. This was
possible by considering mixed abstract transition systems, which have two different
transition relations, each preserving a separate fragment of CTL∗. The use of a Galois
insertion to relate concrete and abstract states allowed the definition of both types of
transitions over the same set of abstract states, resulting in the preservation of full
CTL∗.

From the viewpoint of property-preserving characteristics of simulation relations,
we have managed to define a notion of precision that allows us to “separate the wheat
from the chaff”. An abstraction function α specifies the optimal abstract model for a
given concrete system, while an approximation order� distinguishes the relative pre-
cision between abstract models. The embedding of the property-preservation results
for simulations in the framework of Abstract Interpretation opens up the possibility
of constructing abstract models directly from the text of a program, thereby avoid-
ing the intermediate construction of the full concrete model. This construction is
possible by associating non-standard, abstract interpretations with the operators in
a programming language that allow their evaluation over descriptions of data. To
this purpose, we chose a simple programming language and defined abstract inter-
pretations of its tests and operations. Conditions were given under which the free
and constrained abstract transition relations thus computed coincide with the opti-
mal relations as specified by α. Furthermore, a notion of approximation on the level
of operations was given by which the user may simplify the task without losing the
preservation results. Such approximations can accelerate the computation of abstract
models, be it at the risk of obtaining a model that does not contain enough informa-
tion to verify the property. It was illustrated by an example that these techniques can
be applied to verify properties of systems with an infinite state space.

The price to be paid when using these abstract interpretation techniques is that
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there are formulae — and increasingly so when the abstraction becomes coarser —
that do not hold in the abstraction, and neither do their negations. In Section 4.8
we have proposed abstraction families as an approach to deal with such indefinite
answers35 produced by abstractions that turn out to be too coarse. By fixing a se-
quence of ever-finer abstract domains in advance, together with the corresponding
abstract interpretations of program operations, automatic refinement is possible in
the case this is needed. Furthermore, we have attempted to formalise the notion of
incremental computation of the abstract transition relation. Using the new notion of
a residue abstraction we have motivated a condition that should ensure reusability of
the results computed in the previous step.

While we think that the presented framework offers a stable theoretical founda-
tion for the application of abstract interpretation in model checking, further research
has to be performed to confirm this belief. Section 4.9.2 on [KDG95] already men-
tioned one line of on-going research. Also, the experiments described in e.g. [Gra94]
show that the marriage between Abstract Interpretation and model checking is a
fruitful one.

35Also called “false negatives” sometimes.





Chapter 5

Logical Partition Refinement

We now turn to strong preservation and investigate the consequences for
the relation between Kripke structures and their descriptions. The key
notion is that of consistency of the description relation with respect to a
set of formulae called the companion of the property set. Consistency may
be established by a partition refinement algorithm. Specific algorithms are
presented for properties in � CTL.
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5.1 Introduction

In this chapter we turn to strong preservation of temporal properties from abstract
to concrete transition systems. The previous chapter presented a theory for the weak
preservation of CTL∗-properties, formalised in the framework of Abstract Interpre-
tation. The use of abstraction families, introduced towards the end of that chapter to
improve the precision of the abstraction by successive refinements of the abstract do-
main, may be viewed as a tentative approach to getting a decisive answer about truth
or falsehood of a property — the underlying framework was still that of weak preser-
vation. In the current chapter, we re-investigate the relation between the concrete
and abstract model, this time starting from the requirement of strong preservation of
properties.

Weak preservation of CTL∗ does not impose any restrictions on the minimal size
of Abstract Kripke structures. No matter how many aspects are abstracted, it is always
possible to obtain weak preservation from the abstract to concrete model. The only
price that we pay for abstracting a lot is that few CTL∗-properties will hold in the
abstraction. On the other hand, the requirement of strong preservation puts a strict
lower bound on how much we can abstract. For example, strong preservation of full
CTL∗ can only be obtained if concrete and abstract transition systems are properly
bisimilar. In practice, it may be the case that only part of CTL∗ needs to be strongly
preserved. For example, the set of properties of interest is known beforehand, or is
known to be contained in a proper fragment of the logic.

Therefore, we choose a set-up where weak preservation holds for all properties
in the logic, while the conditions for strong preservation are investigated for specific
properties only. The approach towards achieving strong preservation of certain prop-
erties that was taken by the method of abstraction families can be viewed as domain
driven: there it was the form of the abstract domain that determined how the abstract
model was going to be refined. Whether the refinement was in the “right direction”
remained to be seen — the method was not goal oriented. On the other hand, the
approach to refinement of models that is presented in this chapter will be property
driven: it is the form of the specific property (or set of properties) of interest that
determines how to adapt the abstract system.

Like in the previous chapter, we require statewise (strong) preservation: the de-
scription relation ρ is on the level of individual states, so that the properties of some
abstract state give information about all concrete states being described.

We start with a small example that gives an impression of the topics of the
current and next chapters. Central to these chapters is the notion of partition re-
finement. Given some set U of states equipped with an equivalence relation, a
partition refinement algorithm (PRA) computes the equivalence classes by start-
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ing from some initial partitioning of U and repeatedly splitting classes, until the
coarsest partitioning into classes of equivalent states has been reached. Depend-
ing on the nature of the equivalence relation, different criteria for splitting classes
may be used. One instance of the approach is obtained by considering bisimulation
equivalence. On image-finite transition systems, this equivalence coincides with the
equivalences induced (Section 2.4.1) by CTL as well as CTL∗; see e.g. [BCG88]
as well as the next chapter. In this context, a range of algorithms has been pro-
posed [Hop71, CC82, PT87, KS90, BFH+92, LY92, ACH+92, YL93], each im-
proving upon former ones in some way. Different instances of the idea consider vari-
ations like weak and branching bisimulation (the latter equivalence coincides with
the equivalences induced by CTL∗( � ) and CTL( � ); also see the next chapter), see
[BCG88, GV90, FKM93]. Such algorithms may be used to reduce the size of a
transition system while strongly preserving the corresponding logics. Below, we first
briefly recall a simple version of the PRA for bisimulation, which underlies most of
the mentioned algorithms. Then, we argue how we can find a criterion for split-
ting classes in the case that the considered equivalence is induced by a fragment of
CTL∗. To this means, we introduce the difference between logical and behavioural
equivalences.

Bisimulation equivalence of states can be defined in a concise way as follows. Let
≡ be an equivalence relation on states, and consider its equivalence classes. Define the
successor classes of a state to be the classes of its successors. Then ≡ is a bisimulation
if every class S is stable, meaning that all states in S agree on the truth of all literals
and have the same successor classes. This simple characterisation forms the basis
of the elegant PRA that computes the coarsest partitioning into classes of bisimilar
states. The algorithm starts from the coarsest partitioning such that in every class,
all states agree on the truth of all literals. Then, every class S that is not stable is
split into maximal stable subclasses. Note that, as a result of this, a class containing
predecessors of S may become unstable. This splitting is repeated until a fixpoint is
reached, which can be shown to be the coarsest partitioning for which the classes are
bisimulation equivalence classes (see Section 6.4).

As an example, consider the transition system in Figure 5.1. The si and ti are
names of states; p is a proposition. The splitting algorithm described above will start
from the initial partitioning with classes S1 = {s1, s2, s3, t1, t2} and S2 = {t3} —
the states where p holds and the states where ¬p holds respectively. S1 is not stable
because t2 has both S1 and S2 as successor classes, whereas the other elements of S1

only have S1 as successor class. So, in the first step, {t2} is split off S1, resulting
in the subclasses S11 = {s1, s2, s3, t1} and S12 = {t2}. Next, because S11 is not
stable, it is split into S111 = {s1}, S112 = {s2, s3} and S113 = {t1}. These subclasses
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s1 |= p t1 |= p

s2 |= p t2 |= p

s3 |= p t3 |= ¬p

Figure 5.1: Concrete transition system.

can be computed by intersecting S11 with the preimage (pre , Definition 2.1.0.1) sets
(and their complements) of all its successor classes. For example, S11 is intersected
with pre(S11) = {s1, s2, s3, t2}, pre(S12) = {s1, t1}, and pre(S2) = {t2, t3}. The
first two intersections actually split S11 into the three parts mentioned above, the
last intersection has no effect. In the resulting partitioning, indicated by the light
grey areas, all classes are stable, hence, the coarsest bisimulation classes have been
identified.

Thus, the definition of bisimulation, which is in terms of the states and transi-
tions of the underlying model, suggests a PRA for CTL-equivalence. Now suppose
that we want to develop a PRA for the equivalence that is induced by some given
fragment of CTL. Such an equivalence relation is defined as follows (cf. page 25):

Two states s and t are equivalent iff for every formula ϕ in the fragment,
s |= ϕ ⇔ t |= ϕ.

Unlike the case for bisimulation, this definition is not directly in terms of the un-
derlying model. In particular, it is not clear which criterion for splitting classes can
be used. We call a definition in terms of the model, like the above definition of
bisimulation, a behavioural definition, whereas a definition in terms of the formulae
of a logic (fragment) is called a logical definition. Abusively, we will also refer to the
equivalences being defined as behavioural and logical equivalences.
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We now suggest how a logical definition may induce a criterion for splitting
states. First, consider bisimulation (Definition 2.4.2.7) again. An alternative, logical
definition of bisimulation is the following. Over image-finite transition systems it
coincides with the original definition; see e.g. Lemmata 6.2.0.2 and 6.2.0.5.

Two states s and t are bisimilar iff for every formula ϕ in CTL, s |=
ϕ ⇔ t |= ϕ.

The PRA for bisimulation presented above may alternatively be viewed as a process
that splits classes with respect to CTL formulae: as long as there is a formula that can
distinguish among the states within a class, the class should be split accordingly. From
this viewpoint, the first splitting is based on the formula p — which holds in S1 but
not in S2 — and the second splitting on ∀ � p — which holds in S11 but not in S12.
The last splitting is actually based on two formulae: ∀ � ¬∀ � p and ∃ � ¬∀ � p.

Our point is that the same method may be used in a PRA for a fragment of CTL:
classes are split for each formula in the fragment. We illustrate this idea in Figure 5.1,
considering the logical equivalence induced by ∀CTL. The criterion for splitting a
state is now a ∀CTL formula. Thus, state t3 is distinguished from the other states
by formula p, resulting in a split into the same classes S1 and S2 as above. ∀ � p
distinguishes {s1, s2, s3, t1} from {t2}, effecting a split of S1 into S11 and S12, again
as above. Another ∀CTL formula is ∀ � ∀ � p; splitting for it causes S11 to split into
S′111 = {s1, t1} and S′112 = {s2, s3}, this time different from above. Now, there
is no ∀CTL formula ϕ such that splitting for ϕ will cause any more changes. In
particular, class S ′111 (dark grey) is stable; indeed s1 and t1, although not bisimilar,
cannot be distinguished by any ∀CTL formula. This algorithm will be worked out
in Section 5.5.

The fragments of CTL∗ that we consider in this chapter, will indeed be fragments
of ∀CTL. However, there are no theoretical obstacles in extending the results to the
existential fragment (∃CTL), to CTL, or to the “starred” variants ∀CTL∗, ∃CTL∗ or
CTL∗ — see Section 5.8.

5.1.1 Overview of the chapter

After some preliminaries in the next section, we present in Section 5.3 the notion
of a companion of a property set. In Chapter 3, Section 3.2.2, we have identified
consistency of the description relation ρ with some property set L as a necessary condi-
tion for strong preservation. The notion of companion of a property set allows us to
identify a sufficient condition for strong preservation, namely, ρ has to be consistent
with the companion of L. Consistency can be established by splitting the states of an
abstract Kripke structure. A generic splitting algorithm is presented in Section 5.4,
and is specialised to specific cases of property sets in Sections 5.5 and 5.6. The latter
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section also contains an example. Section 5.7 discusses related work while Section 5.8
concludes.

5.2 Preliminaries

This section provides some preliminary material that is specific to this chapter.

5.2.0.1 C We assume that a finite Kripke structure � = (6,R, I,
‖·‖Lit) is given such that R is total (i.e. for every c ∈ 6 there exists d ∈ 6 such
that R(c, d)) and the set Lit (Section 2.3, page 18) is finite. Furthermore, we con-
sider Abstract Kripke structures

�
of which only the (optimal) free transition relation

αRF (Definition 4.2.3.3) will be of interest; therefore we denote such structures by
(α6, αR, αI, α‖·‖Lit) where αR denotes αRF and αI and α‖·‖Lit are defined by Defini-
tions 4.2.2.1 and 4.2.1.1 respectively. α6 and 6 are related by the Galois insertion
(α, γ ) from ( � (6),⊆) to (α6,�); ρ ⊆ 6 × α6 is the corresponding description
relation, i.e. γ = pre •ρ .

Pred is a set of predicates on 6. We sometimes identify p ∈ Pred with its
characteristic set {c ∈ 6 | p(c)}, for example when writing preR(p). An alternative
way to view this is by thinking of preR as a predicate transformer giving the weakest
precondition such that it is possible to make a transition and get to a p-state (a state
where p holds)1. We assume that Pred includes Lit (the set of propositions and their
negations, page 18) and that it is closed under finite and infinite2 conjunctions and
disjunctions, and under p̃re .

The characteristic predicate of a formula ϕ interpreted over � characterises the
set of states in which ϕ holds. We can extend the definition of the interpretation
function ‖·‖Lit (Section 2.4, page 21) to ∀CTL, as follows.

5.2.0.2 D The function ‖·‖ : ∀CTL → Pred , which maps every for-
mula to its characteristic predicate, is defined as follows. Let p ∈ Lit and ϕ1, ϕ2 ∈
∀CTL.

‖p‖ = ‖p‖Lit ‖∀ � ϕ1‖ = p̃reR(‖ϕ1‖)

‖ϕ1 ∧ ϕ2‖ = ‖ϕ1‖ ∧ ‖ϕ2‖ ‖∀ � (ϕ1, ϕ2)‖ =
∨

i∈ � ‖∀ � i (ϕ1, ϕ2)‖

‖ϕ1 ∨ ϕ2‖ = ‖ϕ1‖ ∨ ‖ϕ2‖ ‖∀ � (ϕ1, ϕ2)‖ =
∧

i∈ � ‖∀ � i (ϕ1, ϕ2)‖
1This is not the same predicate transformer as Dijkstra’s weakest precondition wp or weakest liberal

precondition wlp. For example, wp(R, p) characterises the set of states from which any R-transition
(terminates and) leads to a p-state. When R is total, as we assume, then wp corresponds to p̃re .

2Closure under infinite conjunctions and disjunctions is used in Definition 5.2.0.2.
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The first point of the following lemma implies that on � , every ∀ � /∀ � -formula
is equivalent to some finite approximant, meaning that every such formula can be
rewritten into an equivalent form without ∀ � /∀ � -operators. The second point states
that the characteristic predicates of ∀CTL-formulae as defined in Definition 5.2.0.2
above agree with the interpretation of formulae as captured by |=. Finally, point 3
expresses that, on � , the computation of the sequence {∨i‖∀ � i (ϕ1, ϕ2)‖}i stabilises
once two subsequent values are the same, and that this value equals ‖∀ � (ϕ1, ϕ2)‖.

5.2.0.3 L Let ϕ, ϕ1, ϕ2 ∈ ∀CTL, and recall Convention 5.2.0.1.

1. There exists k ∈ � such that � |= ∀ � (ϕ1, ϕ2) ≡ ∀ � k(ϕ1, ϕ2), and similarly
for ∀ � .

2. For every c ∈ 6, c |= ϕ if and only if c ∈ ‖ϕ‖.

3. Let i ∈ � . If � |= ∀ � i (ϕ1, ϕ2) ≡ ∀ � i+1(ϕ1, ϕ2), then ∀ j≥0 � |= ∀ � i (ϕ1,

ϕ2) ≡ ∀ � i+ j (ϕ1, ϕ2) ≡ ∀ � (ϕ1, ϕ2).

P.

1. Let k = |6|. We show that for every c ∈ 6, (*) c |= ∀ � (ϕ1, ϕ2) ⇔ c |=
∀ � k(ϕ1, ϕ2), which implies the first point of the lemma (the ∀ � -case is similar). By
induction on k it is easily shown that the⇐-direction in (*) holds for every k. There-
fore, we only have to show that the⇒-direction holds. Assume that c |= ∀ � (ϕ1, ϕ2).
By Definition 2.4.1.1 of ∀ � (ϕ1, ϕ2) this means that for every c-path π , we can choose
nπ ∈ � as the smallest number such that π nπ |= ϕ2 and for all i < nπ , π i |= ϕ1.
Let π be a c-path and consider the prefix π[0,k]. Because, by our choice of k, the
number of occurrences of states on this prefix is one larger than the total number of
states of � , there must be a cycle in this prefix. Therefore, the point nπ at which ϕ2 is
first fulfilled must be smaller than k, otherwise there would be a c-path π ′ for which
π ′(n) 6|= ϕ2 for every n ∈ � and hence π ′ 6|= ∀ � (ϕ1, ϕ2), namely the path π ′ that
starts like π does, but keeps looping in the cycle. By Lemma 2.4.1.3 it now follows
that c |= ∀ � k(ϕ1, ϕ2).

2. Using point 1, rewrite ϕ into an equivalent form without ∀ � /∀ � -operators. Then use
induction on the structure of ϕ.

3. Using the definition of � i+1(ϕ1, ϕ2), it is easy to define a function � : � (6) →
� (6) such that for every ϕ1, ϕ2 ∈ ∀CTL and every i , the set ‖∀ � i+1(ϕ1, ϕ2)‖ of
states satisfying ∀ � i+1(ϕ1, ϕ2) (see point 2) equals � (‖∀ � i (ϕ1, ϕ2)‖). Hence, if
� |= ∀ � i(ϕ1, ϕ2) ≡ ∀ � i+1(ϕ1, ϕ2) for some i ∈ � , then ‖∀ � i(ϕ1, ϕ2)‖ is a
fixpoint of � , from which it follows that ‖∀ � i+ j (ϕ1, ϕ2)‖ = ‖∀ � i (ϕ1, ϕ2)‖ for
every j ≥ 0; and therefore, by point 2, � |= ∀ � i+ j (ϕ1, ϕ2) ≡ ∀ � i(ϕ1, ϕ2) for every
j ≥ 0. By point 1 we now also have � |= ∀ � i(ϕ1, ϕ2) ≡ ∀ � (ϕ1, ϕ2). �
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In this chapter, we will consider Abstract Kripke structures whose states always
describe sets of concrete states that can be expressed as (characteristic sets of ) pred-
icates in Pred . It turns out to be convenient to identify abstract states with their
concretisations, i.e. an abstract state a with γ (a) = p (p ∈ Pred ) will be denoted by
p, in which case c ∈ p will stand for c ∈ γ (a). As a consequence, the description
relation ρ becomes implicit in such cases.

5.3 Companions

Our goal is to determine conditions for the strong preservation of a given property
set L ⊆ ∀CTL. For a description relation ξ on the level of Kripke structures:

ξ( � ,
�
) ⇒ ∀ϕ∈L [ � |= ϕ ⇔ � |= ϕ] (5.1)

We sharpen this requirement to the level of individual states.

5.3.0.1 D For a ∈ α6 and ϕ ∈ ∀CTL, ρ strongly preserves ϕ in a (cf.
Section 3.2.2) iff

∀c∈6 [ρ(c, a) ⇒ [c |= ϕ ⇔ a |= ϕ]]. (5.2)

For L ⊆ ∀CTL and A ⊆ α6, ρ strongly preserves L in A iff it strongly preserves
every ϕ ∈ L in every a ∈ A. For singletons L , A we usually omit set brackets. ρ
strongly preserves L abbreviates ρ strongly preserves L in α6.

In Section 3.2.2, we saw that a necessary condition for strong preservation is that
ρ be consistent with L. We recall here Definition 3.2.2.2 of consistency (page 50),
specialised for the case of abstract states.

5.3.0.2 D Let L ⊆ ∀CTL and A ⊆ α6. ρ is consistent with L in A iff
for every ϕ ∈ L and every a ∈ A, ∀c∈6 [ρ(c, a) ⇒ c |= ϕ] or ∀c∈6 [ρ(c, a) ⇒
c 6|= ϕ]. Again, we omit set brackets for singletons.

However, weak preservation plus consistency together are not yet a sufficient condi-
tion for strong preservation, as is illustrated by Figure 5.2. We consider a situation
where 6 = {c1, c2} and α6 = {a} with ρ(c1, a) and ρ(c2, a). In (both parts of )
the figure, as well as in all other figures in the remainder, an abstract state is indicated
by a rectangular box in such a way that all concrete states described by the abstract
state lie inside the box. Concrete transitions in R are indicated by thin arrows, while
the thick arrows denote the abstract transition relation αR.

In Figure 5.2a, we consider a singleton property set L = {p ∨ q}. Although
both concrete states in a satisfy p ∨ q, i.e. a is consistent with L, a itself does not
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(a)

|= p
6|= q

6|= p
|= q

6|= q
6|= p

c1 c2

6|= ∀ � ψ

|= ψ
|= ∀ � ψ|= ∀ � ψ

6|= ψ

a

6|= ψ

(b)

c1 c2

Figure 5.2: Abstraction is consistent but not strongly preserving.

satisfy this formula (see Definition 4.2.1.1 of α‖·‖Lit), i.e. it is not strongly preserved.
In part b of the figure, L = {∀ � ϕ} where ϕ is some ∀CTL formula. Again, ρ is
clearly consistent with {∀ � ϕ}, however, it does not strongly preserve {∀ � ϕ}. In both
situations, the point seems to be that ρ is not consistent with the subformulae in L.

Searching for sufficient conditions on subformulae, we find the following result.

5.3.0.3 L Let a ∈ α6, p ∈ Lit and ϕ, ϕ1, ϕ2 ∈ ∀CTL.

1. ρ strongly preserves p in a iff it is consistent with p in a.

2. If ρ strongly preserves ϕ1 in a and strongly preserves ϕ2 in a, then it strongly
preserves ϕ1 ∨ ϕ2 in a.

3. If ρ strongly preserves ϕ1 in a and strongly preserves ϕ2 in a, then it strongly
preserves ϕ1 ∧ ϕ2 in a.

4. If ρ is consistent with ∀ � ϕ in a and strongly preserves ϕ in every (αR-)succes-
sor of a, then it strongly preserves ∀ � ϕ in a.

P. As the states in α6 do already (weakly) preserve ∀CTL, for strong preservation we
only have to show the ⇒ direction of the biimplication in 5.2 on page 122. Recall that
c ∈ γ (a) iff ρ(c, a).

1. Directly from Definition 5.3.0.2 of consistency and Definition 4.2.1.1 of α‖·‖Lit.

2. We use contraposition. Suppose a 6|= ϕ1 ∨ ϕ2. By definition of |=, this is equivalent
to a 6|= ϕ1 and a 6|= ϕ2. Because ρ strongly preserves ϕ1 in a and strongly preserves ϕ2

in a, this implies that ∀c∈γ (a) c 6|= ϕ1 and ∀c∈γ (a) c 6|= ϕ2, i.e. ∀c∈γ (a) c 6|= ϕ1 ∨ ϕ2.

3. Similar to the previous case.
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4. Suppose that a 6|= ∀ � ϕ, i.e. we can choose an αR-successor b of a such that b 6|=
ϕ. By definition of αR, which is equal (see Convention 5.2.0.1) to αRF , defined in
Definition 4.2.3.3, we can choose c ∈ γ (a) and d ∈ γ (b) such that R(c, d). Because
ρ strongly preserves ϕ in b and b 6|= ϕ, we have d 6|= ϕ. So c 6|= ∀ � ϕ. Because ρ is
consistent with ∀ � ϕ in a, it must be that c′ 6|= ∀ � ϕ for every c′ ∈ γ (a). �

Note that this lemma only gives sufficient conditions for strong preservation, except
point 1, where the condition is necessary as well. In search for the weakest possible
conditions, it turns out that these depend, in each of the cases, on the specific form
of the abstract model

�
, as we will now show.

In point 2, where the disjunction is considered, we observe the following. If
a 6|= ϕ1 ∨ ϕ2, then the given condition is the weakest possible — i.e. it is necessary
as well, as can easily be seen. However, when a |= ϕ1 ∨ ϕ2, the fact that ρ strongly
preserves ϕ1 ∨ ϕ2 in a does not imply anything about the strong preservation of the
subformulae ϕ1 and ϕ2. Thus, point 2 of Lemma 5.3.0.3 may be strengthened to: “ρ
strongly preserves ϕ1 ∨ϕ2 in a if and only if [a |= ϕ1∨ϕ2] or [ρ strongly preserves
ϕ1 in a and strongly preserves ϕ2 in a]”.

For point 3, the conjunction, the problem is different. First, notice that when
a |= ϕ1 ∧ ϕ2, then strong preservation of ϕ1 ∧ ϕ2 does imply strong preservation of
both ϕ1 and ϕ2. Now consider the case that a 6|= ϕ1 ∧ ϕ2, i.e. we have a 6|= ϕ1 or
a 6|= ϕ2. We consider three subcases.

• In case that a |= ϕ1 — and hence necessarily a 6|= ϕ2 — we have by weak
preservation that c |= ϕ1 for every c ∈ γ (a). If ϕ1 ∧ ϕ2 is to be strongly
preserved, then we must furthermore have that c 6|= ϕ1∧ϕ2 for every such c,
which can only be the case if c 6|= ϕ2 for every c, implying that ϕ2 is strongly
preserved by a. Furthermore, note that also ϕ1 is strongly preserved as a |= ϕ1.

• A symmetrical argument holds for the case that a |= ϕ2 and a 6|= ϕ1.

• However, it may also be the case that a 6|= ϕ1 and a 6|= ϕ2. In this case,
strong preservation of both formulae is not needed in order to have strong
preservation of their conjunction. In fact, neither of them needs to be strongly
preserved, as illustrated by Figure 5.3. The necessary and sufficient condition
in this case is that for every c ∈ γ (a) we have c 6|= ϕ1 or c 6|= ϕ2. This condi-
tion is not satisfactory as it cannot be expressed in terms of strong preservation
or consistency of ϕ1 and/or ϕ2 by a. A slightly stronger condition that is sati-
fying in this respect is that at least one of them should be strongly preserved.

Thus, point 3 of Lemma 5.3.0.3 may be strengthened to: “if a |= ϕ1 ∧ ϕ2 then: ρ
strongly preserves ϕ1 ∧ ϕ2 in a if and only if it both strongly preserves ϕ1 in a and
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a

|= ϕ1
6|= ϕ2

6|= ϕ1
|= ϕ2

so 6|= ϕ1 ∧ ϕ2 so 6|= ϕ1 ∧ ϕ2

c1 c2 so 6|= ϕ1 ∧ ϕ2

6|= ϕ2

6|= ϕ1

Figure 5.3: ϕ1 ∧ ϕ2 strongly preserved while neither conjunct is.

strongly preserves ϕ2 in a; otherwise, ρ strongly preserves ϕ1 ∧ ϕ2 in a if it strongly
preserves ϕ1 in a or strongly preserves ϕ2 in a”.

Also for point 4 similar considerations may be made.

We went into this bit of hairsplitting to show that we cannot weaken the con-
ditions given by the lemma without getting dependent on

�
. As we would like to

develop a method for the construction of strongly preserving abstract models regard-
less of their specific form, we use the results of Lemma 5.3.0.3 instead of the stronger
facts discussed above.

Furthermore, we wish to develop a method that is global in the sense that it
establishes things like consistency and strong preservation for all states of the abstract
model, instead of considering it per state. For this reason, the following definition
does not involve the individual abstract states that strong preservation or consistency
has to hold for. It defines the companion comp(L) of L as a set of formulae such that
consistency of ρ with comp(L) is a sufficient condition for ρ to strongly preserve L.
Note how the points 1, 2, 3 and 4 are inspired by the corresponding points from
Lemma 5.3.0.3 above. Points 5 and 6 can be understood from Lemma 5.2.0.3.

5.3.0.4 D Let L ⊆ ∀CTL. The function comp : L → � (∀CTL) is
defined inductively as follows. Let p ∈ Lit and ϕ1, ϕ2 ∈ ∀CTL.

1. comp(p) = {p}

2. comp(ϕ1 ∧ ϕ2) = comp(ϕ1) ∪ comp(ϕ2)

3. comp(ϕ1 ∨ ϕ2) = comp(ϕ1) ∪ comp(ϕ2)

4. comp(∀ � ϕ) = {∀ � ϕ} ∪ comp(ϕ)

5. comp(∀ � (ϕ1, ϕ2)) =
⋃{comp(∀ � i (ϕ1, ϕ2)) | i ∈ � }

6. comp(∀ � (ϕ1, ϕ2)) =
⋃{comp(∀ � i(ϕ1, ϕ2)) | i ∈ � }
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comp is extended to sets of formulae by comp(8) = ⋃{comp(ϕ) | ϕ ∈ 8}.
Note that formulae in a companion may still contain ∀ � /∀ � operators (without the
i subscripts).

5.3.0.5 E The companion of the formula p → ∀ � (q,∀ � (r, s)) contains
the formulae ¬p, false, q, r, s as well as ∀ � false,∀ � (s ∨ (r ∧∀ � false)),∀ � (s ∨ (r ∧
∀ � (s∨ (r ∧∀ � false)))), . . . and ∀ � (∀ � (r, s)∨ (q ∧∀ � false)),∀ � (∀ � (r, s)∨ (q ∧
∀ � (∀ � (r, s) ∨ (q ∧ ∀ � false)))), . . . .

The following lemma justifies this definition.

5.3.0.6 L Let L ⊆ ∀CTL be a property set. If ρ is consistent with comp(L),
then L is strongly preserved (in every a ∈ α6).

P Using Lemmata 5.3.0.3 and 5.2.0.3. �

In the next sections, we develop algorithms that establish consistency by splitting
abstract states.

5.4 A Generic Splitting Algorithm

In the sequel we often write “a is consistent with ϕ” when we mean “ρ is consistent
with ϕ in a”.

Consistency with ϕ in abstract state a can be established by “splitting” a into
a1 and a2 (and adapting ρ) in such a way that ∀c∈6 [ρ(c, a1) ⇒ c |= ϕ] and
∀c∈6 [ρ(c, a2) ⇒ c 6|= ϕ].

5.4.0.1 D Let A ⊆ α6 and ϕ ∈ ∀CTL. split(A, ϕ) = {a ∧ ‖ϕ‖, a ∧
‖¬ϕ‖ | a ∈ A}. split(a, ϕ) abbreviates split({a}, ϕ). For p = ‖ϕ‖, we sometimes
write split(A, p) for split(A, ϕ).

Obviously, we have the following

5.4.0.2 L Every a ∈ split(A, ϕ) is consistent with ϕ.

The simple generic algorithm of Figure 5.4 constructs a strongly preserving ab-
straction (for L) by successively splitting abstract states. Initially, the abstract model
consists of the single abstract state true, describing all concrete states. The abstract
model is repeatedly refined by choosing a formula from the companion of L and split-
ting the states with respect to this formula. Computation of the transition relation
αR, initial states αI and interpretation function α‖·‖Lit for the literals is specified by
the following functions.
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α6 := {true};
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
ready := false;
while not ready do

choose ϕ ∈ comp(L);
α6 := split(α6,ϕ);
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
update ready

od;

Figure 5.4: Generic splitting algorithm.

5.4.0.3 D The functions rel : � (α6)→ � (α6× α6), init : � (α6)→
� (α6) and intp : � (α6)→ (Lit→ � (α6)) are defined as follows. (Note that these
functions are defined relative to the concrete transition system � = (6,R, I, ‖·‖Lit).)
For A ⊆ α6,

• rel(A) = {(a, b) ∈ A × A | ∃c∈a,d∈b R(c, d)}.

• init(A) = {a ∈ A | ∃c∈a c ∈ I}.

• intp(A) = λp∈Lit.{a ∈ A | a ⊆ ‖p‖Lit}.

With these definitions of the abstract transition relation, initial states and literal in-
terpretation, we have weak preservation. Because all abstract states are “disjoint” (i.e.
for any two abstract states a and b we have γ (a) ∩ γ (b) = ∅), rel(A) is equal to the
free abstract transition relation αRF . Also, init(A) and intp(A) correspond to αI and
α‖·‖Lit as defined in Chapter 4.

The variable ready controls the termination of the algorithm. At this generic
level it is not further specified. Possible conditions for setting it to true include the
following.

1. All formulae from comp(L) have been chosen to split α6. In this case, α6

is consistent with comp(L) by Lemma 5.4.0.2, and from Lemma 5.3.0.6 it
then follows that L is strongly preserved, in which case both the positive and
the negative results of abstract model checking will carry over to the concrete
model.
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2. A model check of the property of interest has been done and the result is
positive. Because the abstract model being constructed is weakly preserving
(after every step of the while loop), positive results carry over to the concrete
model.

3. Although not all formulae from comp(L) have been explicitly treated, it may
be possible to determine stabilisation of the abstract model, meaning that no
subsequent split operations will cause changes. When comp(L) is an infinite
set, this approach must be used. Also in this case, L is strongly preserved after
stabilisation.

We can already make an optimisation to this generic algorithm. As properties
are interpreted in the initial states, unreachable states may be safely omitted from the
abstract model. Formally, this observation is justified by the following lemma, which
says that unreachability of abstract states is preserved under splitting.

5.4.0.4 L Let
� = (α6, rel(α6), init(α6), intp(α6)), a ∈ α6 and L ⊆

∀CTL. If a is unreachable in
�

, then: for every ϕ ∈ L, if
� ′ = (α6

′, rel(α6′),
init(α6′), intp(α6′)) where α6

′ = split(α6,ϕ), then every a′ ∈ split(a, ϕ) is un-
reachable in

� ′.

P Suppose that a ′ is reachable in � ′. By an induction on the length of the path from
an initial state to a ′, it is easily shown that a contradiction follows. �

So, unreachable abstract states may be ignored in the verification of a property and
may be removed from the constructed abstract model. This provides us with a
method to optimise the expected running-time and memory demands of the splitting
algorithm: the unreachable states do not have to be kept in memory, and no splitting
has to be performed on them. Although the worst-case complexity will remain the
same, in practice we may expect a considerable gain. Of course, the price to be paid
is the repeated recomputation of reachability information.

Another point that is worth noting is that the algorithm may be started on any
set of abstract states — it does not necessarily have to be {true}. For example, it may
be invoked on an Abstract Kripke structured obtained by the abstract interpretation
techniques presented in the previous chapter, when it turns out that the chosen level
of abstraction is too coarse. The partition refinement algorithm then performs a
further refinement of the abstract domain.

Instantiations of this algorithm for specific choices of L will have to compute the
characteristic predicates of all formulae in comp(L), which is usually an expensive op-
eration. Because the characteristic predicates are defined inductively on the structure
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of formulae, practical instantiations of the algorithm should make use of a stratifica-
tion of comp(L) where each higher stratum is defined in terms of formulae from the
previous. If such a stratification exists, the order in which formulae for splitting are
chosen from comp(L) should follow these strata, so that characteristic predicates can
be computed inductively. In the following sections, we will exemplify this by special-
ising the algorithm for two cases in which such stratifications are easily given, namely
L = ∀CTL and L = {ϕ} for some ϕ ∈ ∀CTL. The latter case easily generalises to
any finite property set in ∀CTL (where new chances for optimisation may occur).

5.5 Splitting for
�

CTL

In this section we consider the case L = ∀CTL. Because the complexity of the
splitting algorithm depends on the size of comp(∀CTL), we first try to minimise the
set of formulae that we have to split for. We start with the definition of a fragment
of ∀CTL containing only formulae that are built from literals, disjunctions and ∀ �
operators in some restricted way. For a finite set 8 = {ϕ1, . . . , ϕn} of formulae,∨
8 denotes the formula ϕ1 ∨ . . . ∨ ϕn .

5.5.0.1 D The logic ∀CTL− is the set of state formulae given by the
following inductive definition.

1. Every p ∈ Lit is a ∀CTL− formula.

2. If 8 is a finite set of ∀CTL− formulae, then ∀ � (
∨
8) is a ∀CTL− formula.

5.5.0.2 L Let A ⊆ α6. If A is consistent with ∀CTL−, then it is consistent
with comp(∀CTL).

P We show that every formula in comp(∀CTL) is equivalent, on � (recall Conven-
tion 5.2.0.1 in which it was assumed that � , of which � = (α6, αR, αI, α‖·‖Lit) is an abstrac-
tion, is finite), with a formula in ∀CTL−. Let ϕ ∈ comp(∀CTL). From Definition 5.3.0.4
it is easily shown that then ϕ ∈ Lit or it is of the form ∀ � ϕ ′ where ϕ′ is an arbitrary ∀CTL
formula. The first case is obvious. Otherwise, by Lemma 5.2.0.3, point 1, ϕ ′ is equivalent to
an ∀CTL formula ϕ ′′ without ∀ � and ∀ � operators. By induction on the level of ϕ ′′ it can
now easily be shown that ϕ ′′ is equivalent to a ∀CTL− formula. �

The definition of ∀CTL− suggests the following stratification.

5.5.0.3 D

1. ∀CTL−0 = Lit.
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2. ∀CTL−i+1 = {∀ � (
∨
8) | 8 ⊆⋃0≤ j≤i ∀CTL−j } \

⋃
0≤ j≤i ∀CTL−j .

Note that ∀CTL−i is the subset of ∀CTL− consisting of all formulae of level i (Sec-
tion 2.3, page 20).

The computation of characteristic predicates by the algorithm can be done in-
ductively along the lines of this definition. For the formulae in each higher stratum
(∀CTL−i+1), the characteristic predicates can be computed by taking the p̃re of fi-
nite disjunctions of the characteristic predicates of formulae in all previous strata
(
⋃

0≤ j≤i ∀CTL−j ), except those that have been computed in a lower stratum already.
We arrive at the instantiation of the generic splitting algorithm given by Figure 5.5.
Variable i is auxiliary and only used in the annotations. Note that in the annotations
we confuse (for readability’s sake) between formulae and their characteristic predi-
cates. Comparing this to Figure 5.4, the order in which the formulae from comp(L)
are selected has been straightened out into an initial part where all the literals are
dealt with and a while-loop that iterates along the sets ∀CTL−i+1.

Next, we focus on the termination condition of this algorithm.

5.5.1 Termination

As the underlying concrete model is finite, the abstract model that is constructed
by the algorithm will eventually become stable, meaning that for all ϕ ∈ ∀CTL−,
split(α6,ϕ) = α6. The question is how we can detect this situation. We cannot take
ready := (P = P ′) as a criterion: the program will then never terminate as every
stratum contains new formulae. In similar partition refinement algorithms, e.g. the
algorithm of [BFH+92] that splits for CTL, or the algorithms for preorder checking
in [CC95], one-step-stability is used as a termination criterion: if the constructed
model (or, relation in [CC95]) remains unchanged during one step of the while
loop, it may be concluded that no subsequent steps will cause changes anymore. The
technical reason that this works is that there is a function � such that for every i , the
model α6i+1 that is obtained in the i th step, by splitting the states of α6i , is equal
to � (α6i ). Hence, if the constructed model remains stable during one step, i.e. if
α6i+1 = α6i , then α6i is a fixpoint of � . Obviously, we then have α6i+ j = α6i for
any j ≥ 0 (cf. the proof of Lemma 2.4.2.5). This is not the case for our algorithm,
because the way in which α6i+1 is obtained from α6i is by splitting with respect to
a set of formulae that is different for every i . As a result, it may happen that the
abstract model remains unchanged during one or more steps but changes again in
some later step. The example depicted in Figure 5.6 illustrates this. The propositions
p, q, r , s, t and u are assumed to be mutually exclusive. The partitionings after
every step of the while loop are indicated by the rectangular blocks in the figure. The
outermost rectangle gives the initial configuration, where the only abstract state is
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{ initialise: }
α6 := {true};
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
ready := false;
{ initial split for literals: }
for each ϕ ∈ Lit do α6 := split(α6,ϕ) od;
P := Lit;
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
update ready;
i := 0;
{ iteratively split for formulae in i th stratum: }
while not ready do

{ P = ⋃0≤ j≤i ∀CTL−j }
P ′ := {p̃reR(

∨
Q) | Q ⊆ P} \ P ;

{ P ′ = ∀CTL−i+1 }
for each p ∈ P ′ do

α6 := split(α6, p)
od;
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
update ready;
P := P ∪ P ′;
i := i + 1

od;

Figure 5.5: Splitting algorithm for ∀CTL without termination.
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|= p |= q |= r |= s

|= t|= r|= q|= p

|= u

c5 c6 c7 c8

c9

c1 c2 c3 c4

Figure 5.6: One-step-stability 6= stability.

true (i.e. all concrete states belong to the same abstract state). The solid lines indicate
the situation after splitting for the literals: the p-, q- and r -states remain pairwise
together. In the first step of the while loop, the splittings indicated by the dashed
lines are effected. For example, a distinguishing formula of level 1 for the two q-
states is ∀ � r , for the r -states it is ∀ � s. The second step of the loop does not change
the abstract model: there is no ∀CTL− formula of level 2 that distinguishes between
the p-states (note that there is such a formula in CTL: ∃ � ∀ � r ). However, in the
third time, also the abstract state containing the two p-states is split. A distinguishing
formula is ∀ � ∀ � ∀ � ¬s (indicated by a dotted line).

So, we cannot use stability during one step of the while-do loop as a termination
criterion. Furthermore, there is no reasonable fixed upper bound on the number
of times the abstraction may remain unchanged until it changes again. This bound
depends on the number of (reachable) states of the concrete system. Figure 5.7 illus-
trates a situation where there is “silence” for 4 steps before the states change again.
Clearly, this picture can be generalised to any number k of silent steps.

In order to find a solution, we analyse what is going on exactly.
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|= r5 |= r4 |= r3 |= r2 |= r1 |= r0 |= s

|= t|= r0|= r1

|= u0|= u1|= u2|= u3

|= r5 |= r4 |= r3 |= r2

|= u4

Figure 5.7: k-step-stability 6= stability.

Simulation equivalence

The algorithm for ∀CTL− splitting may alternatively be viewed as an algorithm that
labels the states of the concrete transition system with ∀CTL− formulae that are
satisfied in these states. In every next step, formulae of the next level are considered.
Concrete states are “∀CTL−i -equivalent” iff they have the same labels after step i ; the
equivalence classes thus created form the abstract states. There is an intimate relation
between this ∀CTL−i -equivalence and simulation equivalence (Definition 2.4.2.6), as
explained by Corollary 5.5.1.2 below. For a state s, ∀CTL−i (s) = {ϕ ∈ ∀CTL−i |
s |= ϕ}.

5.5.1.1 L Let s, t ∈ 6. Then simi (s, t) iff ∀CTL−i (s) ⊇ ∀CTL−i (t).

P The⇒ direction is easily proven by induction on the formulae of ∀CTL−, the⇐
direction by induction on i . �

5.5.1.2 C Let s, t ∈ 6. simeqi (s, t) iff ∀CTL−i (s) = ∀CTL−i (t).

Apparently, yet another way to view the algorithm is that it computes simeq i

equivalence classes. From the examples above we know that simeqi = simeqi+1 does
not imply ∀ j≥0 simeqi = simeqi+ j in general. However, we do know that the under-

lying simulation relations simi (recall that simeqi = simi ∩ (simi )
−1

as the domain
and range of the simulation equivalence coincide) do have that property (see Prop-
erty 2.4.2.5). Hence, as soon as this simulation relation remains stable for one step,
it has stabilised and we can be sure that also simeqi is stable:

simi+1 = simi ⇒ ∀ j≥0 simeqi+ j = simeqi
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In order to detect stabilisation of the algorithm, we therefore maintain the simulation
relation in a variable SIM . We do not have to do this on the level of the concrete
states: as the abstract model

�
i that results after splitting for the first i levels, strongly

preserves ∀CTL−i , we have for all abstract states a and b in
�

i and all concrete
states c ∈ a and d ∈ b: simi(a, b) iff simi (c, d). We can use Lemma 5.5.1.1 to
update SIM , because after every step of the loop SIM should contain those pairs
(a, b) of abstract states such that ∀CTL−i (a) ⊇ ∀CTL−i (b). Because also P =⋃

0≤ j≤i ∀CTL−j holds at this point, we may compute SIM as {(a, b) ∈ α6 × α6 |
P(a) ⊇ P(b)}, where for every state s, P(s) = {ϕ ∈ P | s |= ϕ}. This function
P(·) can easily be computed whenever states are being split. Of course, SIM may be
updated rather than be recomputed, because states that have not been split in two do
not have to be considered. We arrive at the algorithm of Figure 5.8. The reader is
invited to run this algorithm on the transition system of Figure 5.6. What happens
is that although during the second step of the while-loop no splitting occurs, SIM
does change, causing ready to remain false. Namely, the pair (c2, c6), that is still an
element of SIM after the first step (when splits are effected for formulae of level 1),
disappears from SIM in the second step of the loop. The reason is that the level-2
formula ∀ � ∀ � ¬s is an element of P ′(c6) at this point, while it is not in P ′(c2). On
the other hand, after the 3rd step, the value of SIM does not change any more and
hence the algorithm terminates.

The fact that the partition refinement algorithm can be viewed as computing
simulation equivalence classes has another implication. It can be shown that simu-
lation equivalence also3 coincides with the equivalence ≡∀CTL∗ induced by ∀CTL∗,
as follows. Because, clearly, ≡∀CTL∗ ⊆ ≡∀CTL and furthermore ≡∀CTL ⊆ simeq as
was shown above, it suffices to show that simeq ⊆ ≡∀CTL∗ . This is straightforward
by induction on the structure of ∀CTL∗ formulae. Several proofs of this sort will be
presented in the next chapter. As a consequence, the algorithm presented in this sec-
tion constructs an abstract model that strongly preserves not only ∀CTL but ∀CTL∗

as well.

In the beginning of this chapter we explained that partition refinement algo-
rithms would be developed for logical equivalences that do not have corresponding
“nice” behavioural definitions. The fragment considered in this section, however,
does turn out to induce a nice behavioural equivalence. Indeed, algorithms exist that
compute the equivalence classes of simulation equivalence — see Section 5.7 on re-
lated work. However, the advantage of our approach, being based on logical partition

3The fact that ∀CTL and ∀CTL∗ induce the same equivalence does not imply that they have the
same expressive power: recall Lemma 2.4.1.4 (page 25) and the remarks below it.
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{ initialise: }
α6 := {true};
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
ready := false;
{ initial split for literals: }
for each ϕ ∈ Lit do α6 := split(α6,ϕ) od;
P := Lit;
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
SIM := {(a, b) ∈ α6 × α6 | P(a) ⊇ P(b)};
ready := false;
i := 0;
{ iteratively split for formulae in i th stratum: }
while not ready do

{ P = ⋃0≤ j≤i ∀CTL−j }
P ′ := {p̃reR(

∨
Q) | Q ⊆ P} \ P ;

{ P ′ = ∀CTL−i+1 }
for each p ∈ P ′ do

α6 := split(α6, p)
od;
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
SIM ′ := {(a, b) ∈ α6 × α6 | P ′(a) ⊇ P ′(b)};
ready := (SIM ′ = SIM);
P := P ∪ P ′;
SIM := SIM ′;
i := i + 1

od;

Figure 5.8: Splitting algorithm for ∀CTL with termination.
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refinement, is that it is easily adapted to less regular fragments of CTL∗. In the next
section we consider such a case where there is not a nice correspondence between the
property set to be strongly preserved and some behavioural equivalence.

5.6 Splitting for � �
�

CTL

If we know in advance that interest is restricted to a limited set of ∀CTL-properties,
then we may consider constructing a strongly preserving model for this subset rather
than for full ∀CTL as was done in the previous section. In this section, we focus on
the case that L = {ϕ}, with ϕ ∈ ∀CTL — the resulting approach may be generalised
to any finite subset of ∀CTL.

Like in the previous section, we start by identifying the companion of the prop-
erty set that we are interested in, as this contains the formulae that the abstract states
have to be split for. subform(ϕ) denotes the set of all syntactic subformulae of ϕ. The
following lemma may be viewed as an alternative definition of comp.

5.6.0.1 L Let ϕ ∈ ∀CTL. comp(ϕ) is the union of the following sets:

1. subform(ϕ) ∩ Lit.

2. The set of formulae in subform(ϕ) that are of the form ∀ � ϕ ′.

3. If ∀ � (ϕ1, ϕ2) ∈ subform(ϕ), then {false} as well as the set of all formulae
∀ � ∀ � i(ϕ1, ϕ2), for i ≥ 0.

4. If ∀ � (ϕ1, ϕ2) ∈ subform(ϕ), then {true} as well as the set of all formulae
∀ � ∀ � i(ϕ1, ϕ2), for i ≥ 0.

P Easy, using Definition 5.3.0.4. �

The next step is to stratify the formulae in comp(ϕ) so as to allow for an effi-
cient computation of their characteristic predicates. We could classify the formulae
according to their levels again. However, note that if ϕ contains nested ∀ � /∀ � op-
erators, then comp(ϕ) may contain formulae with ∀ � /∀ � operators (without the i
subscripts). Consider Example 5.3.0.5, in particular the last two formulae mentioned
there: ∀ � (∀ � (r, s) ∨ (q ∧ ∀ � false)) and ∀ � (∀ � (r, s) ∨ (q ∧ ∀ � (∀ � (r, s) ∨ (q ∧
∀ � false)))). Although both have level ω, it seems natural to compute the character-
istic predicate of the second formula after that of the first one, as the first formula
is a subformula of the second. Therefore, we choose a more refined stratification in
which for each ∀ � /∀ � subformula of ϕ, all the approximants are computed in order
of acsending levels, before any longer subformulae of ϕ are considered. This choice
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α6 := {true};
αR := rel(α6); αI := init(α6); α‖·‖Lit := intp(α6);
S := {ϕ′ ∈ subform(ϕ) | ϕ ′ : 6= : ϕ′1 ∧ ϕ′2, ϕ′ : 6= : ϕ′1 ∨ ϕ′2};
L := length(ϕ);
l := 1;
while l ≤ L do

Q := {ϕ ∈ S | length(ϕ) = l};
for each ϕ ∈ Q do

if ϕ ∈ Lit→
α6 := split(α6,ϕ);

[] ϕ :=: ∀ � ϕ ′→
c := p̃re(‖ϕ′‖);
α6 := split(α6, c);

[] ϕ :=: ∀ � (ϕ1, ϕ2)→
i := 0;
c := false;
α6 := split(α6, c);
ready := false;
while not ready do

i := i + 1;
c′ := ‖ϕ2‖ ∨ (‖ϕ1‖ ∧ p̃re(c));
α6 := split(α6, p̃re(c));
. . . ;
ready := (c′ = c);
c := c′;

od
[] ϕ :=: ∀ � (ϕ1, ϕ2)→

. . .

fi
od;
. . .

l := l + 1
od;

Figure 5.9: Splitting algorithm for ϕ ∈ ∀CTL.
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is reflected in the (sketch of an) algorithm in Figure 5.9. The symbol :=: means “is
of the form”. The length of a ∀CTL formula is the heigth of its syntactic parse tree,
where the ∀ � and ∀ � operators are considered single symbols, and the length of a
literal is set to 1. Note that termination of this algorithm is guaranteed: execution of
the outermost while-loop and for-loop obviously terminates, while the termination
of the inner loop follows from Lemma 5.2.0.3.

5.6.1 Example

We illustrate the algorithm on the dining mathematicians (Section 4.3.1). Because
the concrete transition system of that program is infinite, we make the assumption
that the initial value of n is such that during execution it will never take any value
greater than some bound N .

Again, we are interested in the mutual-exclusion and non-starvation properties,
listed on page 71. We illustrate splitting for formula 4.4. Recall that it is an abbre-
viation of the ∀CTL formula ∀ � (false,¬(`0 = eat) ∨ ∀ � (true, `1 = eat)), whose
length L is 4. The initial value of the abstract model

�
consists of the abstract initial

state true with a transition to itself (see Definition 5.4.0.3 of rel and init):

true

The subformulae of length 1 are `0 = eat and `1 = eat . They are both in Lit.
Splitting for them yields a model with 4 states:

think0 think0

eat0eat0

think1 eat1

think1 eat1

In each abstract state, the valuation of the literals has been indicated. `i = think
is abbreviated by thinki for i = 0, 1; similarly for `i = eat . We use the fact that
thinki is the negation of eat i . The abstract transitions can be computed using the
function preR, where R is the concrete transition relation. From Definition 5.4.0.3
of rel it follows that there is an abstract transition from a to b iff a∧ pre(b) 6≡ false.
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As an example we consider the transition from think0 ∧ think1 to eat0 ∧ think1.
First note that because we assume an interleaving semantics, the concrete transition
relation R is the union of the individual relations R0 and R1 corresponding to each
mathematician in isolation (as defined by the lines Act1, Act2 and by Act3, Act4 resp.
of Figure 4.4 on page 71). In computing pre and p̃re we use the following properties,
which are easily proven:

preR0∪R ≡ preR0
∨ preR1

p̃reR0∪R1
≡ preR0

∧ preR1

We compute:

think0 ∧ think1 ∧ preR0∪R1
(eat0 ∧ think1)

≡
think0 ∧ think1 ∧ (preR0

(eat0 ∧ think1) ∨ preR1
(eat0 ∧ think1))

≡
think0 ∧ think1 ∧ ((think0 ∧ think1 ∧ odd(n)) ∨ (eat0 ∧ eat1 ∧ even(n)))

≡
think0 ∧ think1 ∧ odd(n)

6≡
false

Model checking property 4.4 over the abstract model thus obtained yields “no”.
As the algorithm has not yet terminated, the abstract model is not guaranteed to be
strongly preserving (cf. point 2 on page 128). Hence, we cannot know whether the
property indeed does not hold in the concrete model, or that the abstraction just
does not yet expose sufficient detail. The algorithm continues with the subformulae
of length 2, being ∀ � (true, eat1) (= ∀ � eat1) only. This involves repeated splittings
for the approximants. As ∀ � 0(true, eat1) ≡ false and ∀ � 1(true, eat1) ≡ eat1 ∨
(true ∧ ∀ � ∀ � 0(true, eat1)) ≡ eat1 ∨ (true ∧ false) ≡ eat1 (because the concrete
transition relation R is assumed to be total (Convention 5.2.0.1), ∀ � false ≡ false
over � ), splitting for the approximants 0 and 1 has no effect. As for the next approx-
imant, we compute:

‖∀ � 2eat1‖
≡
‖eat1 ∨ ∀ � eat1‖

≡
eat1 ∨ p̃reR0∪R1

(eat1)
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≡
eat1 ∨ (p̃reR0

(eat1) ∧ p̃reR1
(eat1))

≡
eat1 ∨ ((eat1 ∨ (think0 ∧ even(n)))∧

((think1 ∧ even(n)) ∨ (think1 ∧ odd(n))∨ (eat1 ∧ odd(n))))
≡

(eat1 ∧ odd(n))∨ (think0 ∧ think1 ∧ even(n))

Note that we introduce the “symbolic” representations even(n) and odd(n) during
these calculations. How these predicates are represented by the algorithm is of no
concern here. By our assumption that the underlying concrete model is finite, ef-
fective representations do exist. Splitting states and updating the abstract transitions
yields:

think1 eat1 eat1think1

even(n) odd (n)

eat0eat0
eat1eat1

think0 think0think0 think0

even(n) odd (n)even(n) odd(n)

eat0

think1

Because model checking still yields a negative answer, the model is split for ∀ � 3eat1.
Computing the characteristic predicate of this formula gives:

(eat1 ∧ odd(n))∨ (think0 ∧ think1 ∧ even(n))

∨ (think0 ∧ eat1 ∧ even(n/2)) ∨ (eat0 ∧ think1 ∧ odd(n))

and splitting for it yields the following model:

think0think0
think1 even(n)

eat0
think1

eat0
think1

eat1
odd (n)

odd (n)even(n)

think0
think1

even(n) odd (n)

eat0
eat1

odd (n)

eat0
eat1

even(n)

eat1even(n)
think0 think0eat1

even(n/2) odd (n/2)
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Updating the abstract transition relation and reachability renders only 5 states reach-
able (the states coloured gray). Model checking now establishes validity of prop-
erty 4.4. It can even be strengthened to

∀ � ((`0 = eat → ∀ � 2`1 = eat))

Furthermore, we can use the same abstract model for verification of formula 4.3. This
illustrates an advantage of building an abstract model while computing characteristic
predicates of formulae.

For the verification of property 4.5, further splitting is needed (either starting
from a single true state, or taking the above abstract model as a starting point,
which might save some steps). It turns out that splitting for the approximants
∀ � ieat0 results in a sequence of refinements that distinguish between even(n/2i) and
odd(n/2i). We have to use the fact that for some k all states where n/2i is even or
odd for i ≥ k will be empty, due to our assumption that n will never exceed N . This
fact causes stabilisation of the abstract model, allowing the verification of 4.5. Note
that the verification of the other two properties was performed independent of N .

5.7 Related Work

This chapter is based on [DGG93a] and partly on [DGD+94]. The notion of com-
panion is similar to that of Fischer-Ladner closure ([FL79, Gol92]) while splitting
is reminiscent of filtration ([HC84, Gol92]). Our splitting algorithm for ∀CTL can
be viewed as a partition refinement algorithm for simulation equivalence. Such an
algorithm has been developed before in [CC95]; recently, the topic has enjoyed new
interest in the context of hybrid systems — see [HHK95]. The partition refine-
ment algorithm for arbitrary finite subsets of ∀CTL is novel; however, the iterative
computation of characteristic predicates is common in symbolic model checking,
e.g. [BCM+92]. A paper that is closely related to the idea of “splitting for a single
formula” (Section 5.6) is [ASSSV94]. It studies the behavioural equivalence that is
induced by a single CTL formula. This equivalence is used to reduce the size of
automata in a compositional framework.

Partition refinement algorithms that are based on behavioural definitions of e-
quivalences return in the next chapter — see Section 6.7 for more research related to
that topic.
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5.8 Concluding Remarks

In this chapter we have investigated conditions for the strong preservation of ∀CTL-
properties. The companion comp(L) of a set L of properties was introduced and we
showed that consistency of the description relation ρ with the formulae in comp(L) is
a sufficient condition for the statewise strong preservation of L. On the other hand,
we argued that, in a certain sense, this is also a necessary condition, namely if we re-
quire consistency of ρ to hold uniformly in all states of the abstract Kripke structure.
This requirement is needed if we seek to establish consistency by a partition refine-
ment algorithm that uniformly splits states. Such partition refinement algorithms
were presented for ∀CTL as well as for the case that the property set contains a single
∀CTL-property.

These investigations have exposed a number of interesting facts. First, as stated
in Corollary 5.5.1.2, the equivalence induced by ∀CTL (Section 2.4.1) turns out
to coincide with simulation equivalence (Definition 2.4.2.6). As a consequence,
the splitting algorithm for ∀CTL presented in Section 5.5 can be viewed as a par-
tition refinement algorithm for simulation equivalence. Partition refinement algo-
rithms that divide out the equivalence classes of some behavioural equivalence by
successive refinement of the blocks of a partition have been presented for bisimu-
lation (e.g. in [PT87, BFH+92]) and stuttering (or branching) equivalence (e.g. in
[BCG88, GV90]). These equivalences both correspond to logics that are closed un-
der negation, namely CTL∗ and CTL∗( � ) (also see the next chapter). For simulation
equivalence, the only previous decision algorithm that we know of is [CC95], which
does not fit the partition refinement scheme. More recently, [HHK95] presents an
algorithm that indeed uses ideas from [PT87].

In general, the behavioural equivalence corresponding to a property set that is an
arbitrary subset of a temporal logic will not have a nice regular form like bisimula-
tion, simulation equivalence or stuttering equivalence. When reduction or decision
algorithms for such equivalences are to be developed, it may be worth considering a
type of partition refinement algorithm that is directly based on the (companion of )
the property set, as suggested by the results in this chapter. In contrast to the partition
refinement algorithms that are based on a behavioural equivalence like bisimulation,
and will henceforth be called behavioural partition refinement algorithms, we denote
the type of algorithm presented in this chapter as logical partition refinement.

Another interesting observation is the fact that the “one-step-stabilisation” prop-
erty that holds for the approximants of e.g. bisimulation, does not hold for simulation
equivalence.

A few limitations, assumed in this chapter for simplicity, may easily be lifted. As
already observed in Section 5.5, the splitting algorithm for ∀CTL may be used to split



5.8] C R 143

for ∀CTL∗ too. A natural question is whether also the splitting algorithm for a single
ϕ ∈ ∀CTL may be generalised for ϕ ∈ ∀CTL∗. The results in [Dam94] imply that
every formula in ∀CTL∗ can be expressed in terms of the modality ∀ � and a fixpoint
construct (indeed, expressed in the µ-calculus). Based on this observation, we expect
that a similar splitting algorithm for ϕ ∈ ∀CTL∗ exists. However, the translation
from ∀CTL∗ to theµ-calculus may blow up the size of the formula considerably. The
development of splitting algorithms for the existential fragments ∃CTL and ∃CTL∗

is similar — and also the combination to obtain algorithms that split for fragments
of the full logics CTL and CTL∗ should be straightforward.

Another limitation is the assumption, in Convention 5.2.0.1, that the underlying
concrete model � is finite. We conjecture that when this limitation is weakened to the
requirement that � is finitely branching, most of the results will remain unchanged4

— in particular, the same algorithms can still be used, with the difference that ter-
mination is no longer guaranteed. However, if they terminate, then the constructed
abstract models will be strongly preserving.

Although these results may please the theoretician, it remains to be seen what
the implications are for the practice of model checking. The computation of char-
acteristic predicates, that is necessary to perform the splitting, is also performed in
(symbolic) model checking algorithms. The difference is that our algorithms con-
struct an abstract model at the same time. On the one hand, this means that even
more operations have to be performed (the splitting); on the other hand the avail-
ability of a weakly preserving abstraction, at any stage of the algorithm, may have
advantages. For example, in Section 5.6.1, the abstraction that was constructed by
splitting for one property could be used to establish the truth of another property
as well. Also, it may be that the satisfaction of the formula is often established at
an earlier stage of the algorithm, before stability has been reached. Only practical
experiments can tell.

4More precisely, point 1 of Lemma 5.2.0.3 will become false, but the proofs of points 2 and 3 can
be adapted. Also the proof of Lemma 5.5.0.2 can be adapted.





Chapter 6

Logics, Equivalences and
Behavioural Partition Refinement

In this chapter we take behavioural equivalences as a starting point to
develop partition refinement algorithms. A number of fragments of CTL �
and the induced equivalences are studied. In addition, the correspondence
between these induced behavioural equivalences and partition refinement
algorithms is investigated, leading to a generic scheme.
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6.1 Introduction

The approach to achieve strong preservation that was introduced in the previous
chapter is partition refinement of the abstract model. The splitting of abstract states
can be viewed as the construction of a quotient system where each abstract state rep-
resents a class of concrete states that all agree on certain properties, as is captured
by the notion of consistency. In order to construct a model that strongly preserves
some set 8 of formulae, abstract states have to be split up such that each of the re-
sulting parts is consistent with all formulae in 8’s companion. Taking 8 equal to
all of ∀CTL turned out to lead to the construction of a quotient that coincides with
the quotient under simulation equivalence. Indeed, there are many correspondences
between the equivalence induced (Definition 2.4.1) by a logic on the one hand and
some behavioural equivalence defined directly in terms of states and transitions of a
system on the other. Furthermore, partition refinement algorithms have been devel-
oped for a number of such behavioural equivalences. For example, the partition re-
finement algorithm developed in [BFH+92] computes the equivalence classes under
bisimulation equivalence. Another example is the partition refinement algorithm for
stuttering equivalence (branching bisimulation) of [GV90]. In [BCG88], stuttering
equivalence has been shown to coincide with the equivalences induced by CTL( � )
and CTL∗( � ). In those cases, these algorithms may be used to construct abstract
models that strongly preserve the corresponding logic.

In this chapter, we investigate such partition refinement algorithms that are based
on behavioural definitions of equivalences induced by temporal logics. Such algo-
rithms are called behavioural partition refinement algorithms, abbreviated as BPRA.
To find the equivalence classes of the equivalence ≡CTL∗ induced by CTL∗ (two
states are equivalent iff they make the same CTL∗ formulae true), for example, we
can use the fact that this equivalence coincides with bisimulation, and use a BPRA
that has been developed for this behavioural equivalence. Thus, we are interested in
two kinds of correspondences:

• One between a temporal logic and a behavioural equivalence.

• One between a behavioural equivalence and a BPRA.

Each of these will be further clarified in the following subsections.

6.1.0.1 C Throughout this chapter, we assume a Kripke structure � =
(6,→, £ ) whose transition relation → will be written in infix notation. Like in
the previous chapter, we assume that → is total, i.e. for every s ∈ 6 there exists
s′ ∈ 6 such that s → s ′. £ is the state-labelling function; the initial states remain
anonymous as they are irrelevant. Variables s and t range over 6, unless stated
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otherwise. We recall that paths are by definition infinite sequences of →-related
states; finite such sequences are called prefixes.

6.1.1 Logics and equivalences

In order to formalise the “compatibility relations” between temporal logics and (be-
havioural) equivalences, we give the following definitions1.

6.1.1.1 D Let ≡ ⊆ 6 × 6 be an equivalence relation and L a logic
interpreted over 6.

• ≡ is fine for L iff ≡ ⊆ ≡L.

• ≡ is abstract for L iff ≡ ⊇ ≡L.

• ≡ is adequate for L iff it is both fine and abstract for ≡L
2.

We will consider some cases where L is a logic like CTL∗ or one of its fragments. In
each of these cases, we seek to identify a behavioural equivalence ≡ that is fine for L
and that can be used as the basis of a partition refinement algorithm (see Section 6.1.2
below) that constructs the quotient � / ≡. The states of such a quotient system are
identified with the equivalence classes of ≡. The transition relation of the quotient
is3→∃∃. For every logic L that we consider and every behavioural equivalence≡ that
is fine for it, the quotient system strongly preserves L. This can be proven by show-
ing that there exists a behavioural equivalence, of the same type (e.g. bisimulation,
stuttering) as ≡, which relates every state a of � / ≡ to each of the concrete states
that a contains. If in addition ≡ is abstract, the quotient is also the smallest: every
abstract Kripke structure that strongly preserves L (statewise) is at least as large.

Adequacy has been the subject of many studies not only in computer science but
also in logic. See the section on related work towards the end of this chapter for an

1Indeed, this is a refinement of Definition 3.2.2.1, specialised for the case that ρ is an equivalence
relation.

2In [Pnu86], this is (conversely) called adequacy of the logic with respect to the equivalence — we
also sometimes do this. Also, in some places (e.g. [ACH94]) adequacy is defined/used as what we call
fineness.

3These quotient systems may indeed be viewed as Abstract Kripke structures, introduced in Chap-
ter 4 (Definition 4.2.3.7). There is an abstract state a for each equivalence class C of 6/ ≡, and each
such a is mapped by the concretisation function γ to C . The transition relation of the quotient then
is the free transition relation α→F (Definition 4.2.3.3), defined with respect to the concrete relation
→. Because the associated abstraction function α is such that for each concrete state c, α({c}) is the
≡-equivalence class of c, we have a α→F b iff ∃c∈γ (a) ∃d∈γ (b) c → d . In this chapter, however, we
consider strong preservation and therefore we interpret both the universal and existential path quanti-
fiers of CTL∗ over the same transition relation. Hence, we prefer not to present it as the free transition
relation.
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(incomplete) overview. In this chapter we recall some well-known results and present
several new ones. An interesting trade-off in this area between logics and behavioural
equivalences is that between the expressive power and the distinguishing power of a
logic (Section 2.4.1). On the one hand, we would like our logic to be expressive so
that we can describe our properties in a sufficiently detailed way. On the other hand,
it should induce an equivalence that is as coarse as possible, because this allows for a
good reduction of Kripke structures. Interestingly, the distinguishing power of a logic
does not necessarily strictly increase when its expressive power does, as is witnessed
by the fact that various logics of different expressive power, among which CTL∗ and
CTL, induce the same equivalence (bisimulation). Of course, the distinguishing
power cannot decrease with increasing expressive power (see Lemma 2.4.1.4). But
it may pay off to look for a maximally expressive logic that still induces a certain
equivalence4.

6.1.2 Equivalences and partition refinement algorithms

The relation between equivalences and partition refinement algorithms has been
studied less extensively — and certainly in a less structured manner — than that be-
tween logics and equivalences. As already indicated by their name, such algorithms
compute equivalence classes by iterative refinement of a partition. It seems that there
is a close relation between the format of the definition of the equivalence on the one
hand, and the way in which the blocks of a partition are being refined during such
an algorithm on the other.

In this chapter, we instigate a more systematic investigation of this field.

6.1.3 Overview of the chapter

As an introduction, we refer to, and at some points generalise, some correspondence
results that have been studied rather extensively. In Section 6.2 we look at CTL∗

and bisimulation, while Section 6.3 deals with CTL∗( � ), obtained from CTL∗ by
dropping the Next operator, and stuttering equivalence. Section 6.4 then shows how
partition refinement algorithms for these cases are indeed induced by the definition
of the behavioural equivalences. By varying the notion of splitter, which is central
to these algorithms, we obtain both algorithms as instances of a generic scheme.
Section 6.5 analyses how we may manipulate the splitter to obtain better reductions
of the transition system, leading to a new behavioural equivalence. The search for the

4However, one should also keep in mind that different expressive power may come at the cost of a
more expensive model checking algorithm. For example, although CTL∗ induces the same equivalence
as CTL (see Section 6.2), it is known (see e.g. [Eme90], pp. 1044–1045) to have a higher model-
checking complexity.
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corresponding adequate fragment of CTL∗ brings along some surprises. Section 6.6
presents the appropriate instance of the partition refinement scheme. Section 6.7
contains an overview of some related work, and Section 6.8 concludes.

6.2 CTL
�

, CTL, and Bisimulation

In this section we recall a well-known result, namely that bisimulation (Defini-
tion 2.4.2.7) over finitely-branching Kripke structures is adequate for both CTL∗

and CTL. This case has been studied extensively, not only in the context of com-
puter science, but also in the field of modal logic. The references given in Section 6.7
on related work should help the interested reader in tracing the origins of the reported
results. None of these results is new — proofs are only given for completeness. The
purpose of this section is to serve as a primer, illustrating the general form of the
definitions of behavioural equivalences that we will encounter, the kind of lemmata
that will play a role, and the form of their proofs.

We repeat Definition 2.4.2.7 in a slightly different form.

6.2.0.1 D Let ≡ ⊆ 6 × 6 be a symmetric relation such that for every
s, t ∈ 6, s ≡ t implies:

1. £(s) = £(t).

2. For5 every s → s ′, there exists t → t ′ such that s′ ≡ t ′.

Then ≡ is called a bisimulation. The largest bisimulation6 is denoted ≡bis.

One direction of the adequacy result, namely that ≡bis is fine for CTL∗ (and
hence for CTL), holds for arbitrary Kripke structures.

6.2.0.2 L If s ≡bis t , then ∀ϕ∈CTL∗ s |= ϕ ⇔ t |= ϕ.

The proof of this lemma is based on an inductive argument on the structure of the
formulae. Because the inductive definition of these formulae (Definition 2.3.0.1,
page 19) involves path formulae, bisimulation equivalence is extended to paths so
that the induction hypothesis can be strengthened with a part stating that any two
bisimilar paths satisfy the same CTL∗ path formulae.

6.2.0.3 D Let s̄ and t̄ be paths in � . s̄ ≡bis t̄ iff ∀i≥0 s̄(i) ≡bis t̄(i).

5More precisely, this condition is supposed to mean “for every s ′ such that s → s ′ , there exists t ′

such that t → t ′ and s ′ ≡ t ′”. In the remainder, similar conditions will be abbreviated likewise.
6The largest bisimulation exists because the empty relation is a bisimulation and bisimulations are

closed under union.
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6.2.0.4 L If s ≡bis t , then for every s̄ ∈ paths(s) there exists t̄ ∈ paths(t)
such that s̄ ≡bis t̄ .

This lemma is easily proven by inductively constructing the path t̄ . In the sequel, we
encounter more of such “state-path lemmata”, which are not always proven as easily.

The other half of the adequacy result, abstractness of ≡bis for CTL∗ and CTL,
follows directly from the following lemma.

6.2.0.5 L Assume that � is finitely branching. If ∀ϕ∈CTL s |= ϕ ⇔ t |= ϕ,
then s ≡bis t .

P. Assume that ∀ϕ∈CTL s |= ϕ ⇔ t |= ϕ. We have to show that s ≡bis t . Because
≡bis is the largest bisimulation, we have to show that the pair (s, t) is an element of some
bisimulation ≡ ⊆ 6 × 6. We define this relation as follows: u ≡ v iff ∀ϕ∈CTL u |=
ϕ ⇔ v |= ϕ. Clearly s ≡ t . We show that ≡ is a bisimulation.

1. £(s) = £(t) as CTL includes all literals.

2. Suppose that s → s ′. We have to show that there exists t ′ such that t → t ′ and
s ′ ≡ t ′. (*) Suppose that this is not the case. Consider the set T of all successors of t .
Because→ is total (recall Convention 6.1.0.1), T is nonempty. Because

�
is finitely

branching, T is finite, say T = {t ′1, . . . , t ′n}, with n ≥ 1. By our assumption (*),
there exist formulae ϕ1, . . . , ϕn ∈ CTL such that for every 1 ≤ i ≤ n, s ′ |= ϕi while
t ′i 6|= ϕi . But then s |= ∃ � (ϕ1 ∧ · · · ∧ ϕn) while t 6|= ∃ � (ϕ1 ∧ · · · ∧ ϕn), implying
that s 6≡ t . Contradiction. �

That the condition of image-finiteness is essential, is shown by Figure 6.1. The
states s and t are not bisimilar. An illuminating way to see this is by considering
the definition of bisimulation in terms of a game ([Ehr61, Fra54]). Such a game
is played by two players: Attacker, whose intention it is to show that two states are
not bisimilar, and Defender, who wants to prove the opposite. They take turns in
making moves, where Attacker always takes the initiative and Defender responds
by a “countermove”. The definition of what are allowed moves and countermoves
depends on the equivalence being defined. In the case of bisimulation, we may view
the transition system as the games’ board. There are two pebbles, a black and a white,
which are placed on states of the transition system and may be moved around by the
players. Initially, the pebbles are placed (in any order) on the states s and t that
have to be shown to be (not) bisimilar. A move, of Attacker, consists in choosing
one of the pebbles (a new choice may be made in every move) and moving it to a
successor of the state that it is currently on. In a countermove, Defender must take
the other pebble and move it to a successor state. After every round (i.e. pair of
moves), as well as initially, the states s ′ and t ′ that the pebbles are placed on should
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s s ′
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|= p
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|= p |= q

|= p
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Figure 6.1: Non-image-finite structures that are CTL∗-equivalent but not bisimilar.

satisfy £(s ′) = £(t ′). Now, s and t are bisimilar iff Defender has a winning strategy,
i.e. if she can always choose a countermove such that the resulting configuration is
permitted again — regardless of how Attacker chooses its moves.

When this game is played on Figure 6.1, Attacker may choose the pebble that
is initially on state s, say it is white, and move it to s ′. Defender then has to move
the black pebble from t to one of its infinitely many successors. Suppose she chooses
ti,1. Attacker then may choose the white pebble again and move it to si+1,1. Clearly,
after i − 1 rounds, Defender will not be able to perform a permitted countermove
any more. Thus, we see that there is no winning strategy for Defender, and hence
s 6≡bis t .

On the other hand, it can be proven ([Hol96]) that there is no CTL∗ formula that
distinguishes between s and t . Intuitively, the essential point is that it is not possible
in CTL∗ to form infinite conjunctions — and an infinite conjunction would be the
only way to express the difference between s and t : namely that s has a successor, s ′,
such that for every positive number n there is a path starting from s ′ that reaches a
q-state in precisely n steps, whereas t does not have such a successor.

We summarise:

6.2.0.6 C Assume that � is image-finite (recall that→ is total by Con-
vention 6.1.0.1). Then ≡bis is adequate for both CTL∗ and CTL.
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P From Lemmata 6.2.0.2 and 6.2.0.5. �

The fact that in order for two paths to satisfy the same CTL∗ formulae, the states
on them must be pairwise bisimilar can be intuitively explained by observing that the
Next operator � of CTL∗ allows to differ between paths of different lengths. The
expressive power caused by the presence of the Next operator has been questioned
as will be discussed in Section 6.3.1. In Section 6.3.2, we consider logics that are
obtained by dropping the Next operator from CTL∗ and CTL.

6.3 Nextless CTL
�

and CTL

6.3.1 The Next operator

The notion of a step made by a system and the closely related notion of a next state take
an important place in the modelling of behaviour. We discuss some considerations
that influence the definition of these notions.

What is a step?

From the point of view of the system itself, we may informally define a step to be
determined by the next moment at which something in the system’s state changes.
We refer to such a step as a system step. For real-life systems, such a next moment will
often be non-existent because there are parts of the state that change continuously,
e.g. the positions of electrons in a wire of some electrical device. By (mathemati-
cally) modelling a real-life system we can abstract from state changes that need not
be observable for the purposes we intend to use the model for. However, it is often
not straightforward to remove all irrelevant aspects in the modelling process. For
example, when modelling processes by labelled transition systems (where transitions
carry symbols from an alphabet of actions) or Kripke structures, it is often possible
to further abstract such models by reducing them with respect to some behavioural
equivalence like bisimulation. The reason is that bisimilar states cannot be distin-
guished by the specification formalism one is using in any case, be it a temporal logic
like CTL∗ or a process specification language like µCRL ([GP95]).

So, from the point of view of an observer of the system, what a step is depends
very much on the observer’s observational power. We will consider here the case
that this power consists in the ability to evaluate the truth value of formulae from
some temporal logic L — we might say that the observer is L. The aspects of a
system that are observable by L are certain local properties, as determined by the
propositional literals and propositional formulae of L, and furthermore dynamical



6.3] N CTL �  CTL 153

properties determined by the temporal operators and path quantifiers. Such temporal
operators can look forward (or backward) along a computation path and specify that
certain properties (as expressed by the operands) hold at some point(s) along it. At
which points exactly, depends on the particular form of the operator. An Eventual7

operator (cf. the � operator) says that something should hold at some state along a
path, an Invariant (cf. � ) operator that something should hold at all states along a
path, and an Until operator is a combination of these two.

As opposed to a system step, we assume a logical step to be determined by the
next moment (or: some moment, in the case that nondeterminism is present) that
some L-property changes. Whereas the notion of a system step can be defined locally
(namely in terms of the variables in the state space), a logical step is a global notion
in the sense that a certain change in some variable may well be a logical step in some
cases but not in others.

Many temporal logics include a Next operator, which specifies that something
holds in the next state along a path, where the next state is the state that is reached
by taking one system step. When considered in the light of the distinction between
the “real” system and the way it occurs to the observer L, this Next operator may
be troublesome because it refers to the steps of the “real” system that are caused
by changes in the values of state variables that are not visible through L otherwise.
In other words, it does not make sense to abstract from certain variables while still
making their changes observable. States of the system that cannot be distinguished
by the logic are not of interest and therefore it does not make sense to have a notion
of step that is “finer” than the observed notion of step, i.e. the notion of step induced
by the logic.

A number of solutions have been proposed. In [Lam83], Lamport simply drops
the Next operator from the logic. This approach, as well as a closely related devel-
opment in the field of process equivalences, is discussed in the following section.
Another solution consists in parametrising the Next operator with the state variable
whose alteration it refers to, allowing to express for example that “at the next moment
that p changes, ϕ will hold”. The operator©σ of [ACH94] takes such an approach.
In that framework, which considers actions, it is the occurrence of the next input
symbol (σ ) that determines the notion of step. A variation on this idea is found in
the definition of the timed µ-calculus Tµ [HNSY94]. When the interpretation of
the µ-calculus is extended to systems with continuous time, the Next operator of the
untimed µ-calculus becomes meaningless because the notion of next moment is not
well-defined any more. In the timed version it is replaced by the binary operator F
called “single-step Until”. The formula ϕ F ψ intuitively has the same meaning as

� (ϕ,ψ) with the difference that fulfilment of the eventuality ψ has to take place

7To avoid confusion we capitalise these adjectives.



154 L, E  B P R [6.3

within one “Fδ-step” consisting of a time delay δ ≥ 0 followed by the instantaneous
change of zero or more state variables.

Dropping the Next

One of the early pleas against the Next operator is found in [Lam83]. The objection
there is that inclusion of the Next operator renders a temporal logic too expressive for
the goal it has been conceived for, to wit, the specification of (concurrent) computer
programs at any level between an abstract specification and a concrete implementa-
tion. It allows one to write formulae that specify irrelevant details, like a specification
of a queue that includes the requirement that “putting an element in the queue should
take exactly 17 steps”. Not only is the number of steps that an operation takes not a
meaningful concept when one gives an abstract, high level specification of a queue,
but it also is unnecessarily restrictive in a refinement setting, where a “step” may at
some later point be implemented by a number of steps at a lower lever.

A related development is the research on comparative concurrency semantics
[vG90b] in the context of process algebras with silent moves ([vG93a]). In compar-
ing models for concurrent systems without silent moves, bisimulation equivalence is
commonly considered to be the finest equivalence (i.e. it makes most distinctions)
that one may need, or equivalently, the coarsest equivalence that respects the branch-
ing structure of a process without silent moves. If one is considering silent (τ -) moves,
bisimilarity could be adapted by treating τ -moves as if they were observable, but this
would yield too fine an equivalence. For example, it would distinguish between
the processes a and τ.a and this does not correspond with the intended meaning
of τ . Several observational or weak equivalences have been proposed to more faith-
fully capture the notion of equivalence in the presence of silent moves: observational
equivalence in the sense of [HM85], observation equivalence (called τ -bisimulation
equivalence in [BK85]) of [Mil80], η-bisimulation of [BG87], delay bisimulation of
[Mil83], and branching bisimulation of [GW89]. In [vG93b], van Glabbeek convinc-
ingly argues that, in a sense, branching bisimulation equivalence (branching equiva-
lence for short) is the coarsest equivalence that respects the branching structure of a
process with silent moves.

An essential feature of (semantic models based on) branching equivalence is that
a silent move is only observable if it results in a change of “potential” in the system.
Intuitively, this means that the value of some proposition changes, or that the possi-
bility to follow some execution path has disappeared because another direction was
chosen. It turns out that a silent move is observable iff it coincides with a “CTL∗( � )
step” (Section 2.3.1) in the sense that we discussed above. This follows from the
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results of [BCG88] and [DNV90b], which imply that, roughly8, branching equiva-
lence is adequate for CTL∗( � ). Adding back the Next operator to CTL∗( � ) results
in a logic whose induced equivalence is finer than branching equivalence and thus
too fine according to [vG93b].

So, the development from (strong) bisimulation to branching bisimulation as the
proper notion of equivalence in the world of comparative concurrency semantics, is
the parallel of the shift of attention from CTL∗ to CTL∗( � ) in the world of specifi-
cation logics. As such, it provides another piece of evidence for the objections against
the Next operator.

6.3.2 CTL � ( � ), CTL( � ) and stuttering equivalence

We introduce the following notation to represent transitions that “stutter” under
some notion of equivalence.

6.3.2.1 D If ≡ is an equivalence relation on 6, then the transition rela-
tion −≡→⊆ 6 ×6 is defined by s −≡→ t iff s → t ∧ s ≡ t .

6.3.2.2 D For a path s̄ and an equivalence relation≡ over6, partit≡(s̄)
is the partitioning of s̄ into maximal parts (i.e. “subpaths”; see page 21) such that
within each part, all states are ≡-equivalent.

By dropping the Next operator from CTL◦ (see Notation 2.3.1.2 on page 21), we
loose the possibility to distinguish between paths of different length. It is therefore
not surprising that the behavioural equivalence that is adequate for CTL◦( � ) does
not contain a clause of the form “if s can make a transition to some s ′, then t can
make a transition to some t ′ such that s′ and t ′ are equivalent again”, but rather
something of the form “if s can make a number of transitions to some s ′, then t can
make some (possibly different) number of transitions to some t ′ such that s′ and t ′

are equivalent again”. It turns out that in addition to the recursive requirement that
s′ and t ′ be equivalent, also all the states that lie on the prefix from s to s ′ (including
s but excluding s′) have to be equivalent to the states on the prefix from t to t ′

(including t but excluding t ′). Intuitively, this can be understood by considering the
expressive power of the Until operator (which is the only temporal operator in the
logic): if the formula � (ϕ,ψ) is to hold in both s and t , then it must not only be that
there are states s ′ and t ′, reachable from s and t respectively, which both satisfy ψ —
which can be any formula again so that, recursively, s ′ and t ′ have to be equivalent

8There are some technical points relating to the difference between LTSs and Kripke structures and
to the divergence blindness of branching equivalence.
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—, but also all states on the prefixes between s and s ′ and between t and t ′ have to
satisfy ϕ — so that all these states have to be equivalent as well.

Before presenting stuttering equivalence, which is the behavioural equivalence ad-
equate for CTL◦( � ), we give the definition of divergence blind stuttering equivalence
(dbs-equivalence) [DNV90b, GV90], both on states and on paths.

6.3.2.3 D Let ≡ ⊆ 6 × 6 be a symmetric relation such that for every
s, t ∈ 6, s ≡ t implies:

1. £(s) = £(t).

2. For every s −≡→ s1 −≡→ . . . −≡→ sk−1 → sk such that k ≥ 0, there
exists t −≡→ t1 −≡→ . . . −≡→ tl−1 → tl such that l ≥ 0 and sk ≡ tl .

Then ≡ is called a divergence blind stuttering equivalence (dbs-equivalence). The
largest divergence blind stuttering equivalence is denoted ≡dbs.
≡dbs is extended to paths by defining s̄ ≡ t̄ iff, letting partit≡dbs

(s̄) = s̄I1 , s̄I2 , . . .

and partit≡dbs
(t̄) = t̄J1, t̄J2, . . . , for every i ≥ 0, every s ′ ∈ s̄Ii and t ′ ∈ t̄Ji , s′ ≡dbs

t ′.

Just like in the case of bisimulation, it can be checked easily that the largest divergence
blind stuttering equivalence exists. This remark applies to all other similar definitions
in this chapter; we will not repeat it.

dbs-Equivalence is “almost” adequate for CTL◦( � ). There is a subtle point
that causes a difference. In proving that two dbs-equivalent states satisfy the same
CTL∗( � ) formulae, one has to prove, just like in the case of bisimulation and CTL∗

(cf. Lemma 6.2.0.4), that if s ≡dbs t , then for every s-path s̄ there exists a t-path
t̄ that is dbs-equivalent to s̄. This is not possible because the definition of dbs-
equivalence allows us to match a positive number of transitions, taken from s, with
zero transitions taken from t (i.e. “staying in t”; this corresponds to taking l = 0 in
point 2 of Definition 6.3.2.3 above and should not be confused with taking a single
transition t → t leading back to t). So, although for every s-path there exists a
dbs-equivalent t-prefix, this is not necessarily a t-path. It is this point that makes the
equivalence blind to divergence. For example, the states s and t in Figure 6.2 cannot
be distinguished. In [DNV90b] it is proven that if the interpretation of CTL◦( � )
path formulae is altered in such a way that ∀ and ∃ quantify over all prefixes, then the
equivalence induced by CTL◦( � ) coincides with dbs-equivalence. Here, we adapt
the behavioural equivalence instead of the logic.

The incompatibility is repaired in the following definition of (divergence sensitive)
stuttering equivalence (s-equivalence).
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|= p |= q

|= q|= p

s s ′

t t ′

Figure 6.2: Example of dbs-equivalent structures.

6.3.2.4 D Let ≡ be an equivalence relation on 6. We say that s has
infinite≡-stuttering, denoted infstut≡(s), iff there exists an s-path s̄ such that for all
states s ′ on s̄, s′ ≡ s.

6.3.2.5 D Let ≡ ⊆ 6 × 6 be a symmetric relation such that for every
s, t ∈ 6, s ≡ t implies:

1. £(s) = £(t).

2. infstut≡(s) iff infstut≡(t).

3. For every s −≡→ s1 −≡→ . . . −≡→ sk−1 → sk such that k ≥ 0, there
exists t −≡→ t1 −≡→ . . . −≡→ tl−1 → tl such that l ≥ 0 and sk ≡ tl .

Then ≡ is called a (divergence sensitive) stuttering equivalence (dss-equivalence).
The largest stuttering equivalence is denoted ≡stut.
≡stut is extended to paths by defining s̄ ≡stut t̄ iff, letting partit≡stut

(s̄) =
s̄I1 , s̄I2 , . . . and partit≡stut

(t̄) = t̄J1, t̄J2, . . . , for every i ≥ 0, every s ′ ∈ s̄Ii and
t ′ ∈ t̄Ji , s′ ≡stut t ′.

This adapted definition enables us to prove the following state-path lemma.

6.3.2.6 L If s ≡stut t , then for every s̄ ∈ paths(s) there exists t̄ ∈ paths(t)
such that s̄ ≡stut t̄ .

P. Let s̄ be an s-path. We distinguish the following cases.

1. partit≡stut
(s̄) is an infinite sequence B0, B1 . . . of blocks. Then each block is finite.

For every i ≥ 0, let bi be the first state of Bi (these bi exist because, by definition of
partitioning, each Bi is non-empty). Let c0 = t . By Definition 6.3.2.5, there exists
a state c1 such that c0 −≡stut→ c1

0 −≡stut→ . . . −≡stut→ c j
0 → c1 and b1 ≡stut c1.

Let C0 be the block c0, c1
0, . . . , c j

0 . This way, we can inductively define states ci and
blocks Ci for all i ≥ 0. It is now easily seen that for the path t̄ formed by C0,C1, . . . ,
we have s̄ ≡stut t̄ .
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2. partit≡stut
(s̄) is a finite sequence B0, B1, . . . , Bk of blocks. Then Bk is infinite. For

every 0 ≤ i ≤ k, let bi , ci and Ci be as in the previous case, with the exception of Ck .
Because infstut≡stut

(bk) holds (as is easily seen) and bk ≡stut ck , by Definition 6.3.2.5
also infstut≡stut

(ck) holds. Hence, there is an infinite ck-path of≡stut-equivalent states;
let this be Ck . It is now easily seen that for the path t̄ formed by C0,C1, . . . ,Ck , we
have s̄ ≡stut t̄ . �

The above definition of stuttering equivalence is different from that given in
[DNV90b]. In that paper, the transition relation of a Kripke structure does not have
to be total. s-equivalence of states is defined as dbs-equivalence in the so-called live-
lock extension, which is obtained by the applying the following transformation to the
transition system. For each state that has no outgoing transitions or occurs on a cycle
of states that all have the same labels, a new outgoing transition is added. This transi-
tion leads to a “new” state (called s0 in [DNV90b]) that is labelled by a “new” propo-
sition that occurs in no other label. Another difference is that in [DNV90b], Kripke
structures are assumed to be finite. For finite structures, the condition infstut≡stut

(s)
is true iff s occurs on a cycle of states that all have the same label. Therefore, con-
dition 2 of Definition 6.3.2.5 is not needed in the setting of [DNV90b]. These
variations cause some differences between the proof of Lemma 6.3.2.6 above and the
proof 9 of Lemma 3.13 in [DNV90b]. However, having established Lemma 6.3.2.6,
fineness of ≡stut for CTL◦( � ), stated in the following lemma, can be proven in the
same way as Lemma 3.14 in [DNV90b].

6.3.2.7 L If s ≡stut t , then ∀ϕ∈CTL◦( � ) s |= ϕ ⇔ t |= ϕ.

The converse, abstractness, again only holds for Kripke structures that satisfy a
certain (strong) form of finite-branchingness.

6.3.2.8 D Let ≡ be an equivalence relation on 6. We say that � is
finitely branching under ≡-stuttering iff the reflexive transitive closure −≡→∗ of the
relation−≡→ is image-finite. For a logic L, “finitely branching under≡L -stuttering”
is usually abbreviated by “finitely branching under L-stuttering”.

6.3.2.9 L Let ≡1 and ≡2 be equivalence relations on 6 such that ≡1⊆≡2.
If � is finitely branching under ≡2-stuttering then � is finitely branching under
≡1-stuttering.

6.3.2.10 L Assume that � is finitely branching and also finitely branching
under CTL( � )-stuttering. If ∀ϕ∈CTL( � ) s |= ϕ ⇔ t |= ϕ, then s ≡stut t .

9Proofs can be found in the full version of that paper.
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P. Assume that ∀ϕ∈CTL( � ) s |= ϕ ⇔ t |= ϕ. We have to show that s ≡stut t . Because
≡stut is the largest stuttering equivalence, we have to show that the pair (s, t) is an element
of some stuttering equivalence ≡ ⊆ 6 × 6. We define this relation as follows: u ≡ v iff
∀ϕ∈CTL( � ) u |= ϕ ⇔ v |= ϕ. Clearly s ≡ t . We show that ≡ is a stuttering equivalence.
Recall that by Convention 6.1.0.1,→ is total.

1. It is trivial that £(s) = £(t).

2. Suppose that infstut≡(s), i.e. we can choose an s-path s̄ such that for every i ≥ 0,
s̄(i) ≡ s. We have to show that also infstut≡(t). Suppose that this is not the case.
Then every t-path contains a state from the set T = {t ′′ | t −≡→∗ t ′ → t ′′ ∧ t ′ 6≡
t ′′}. Because → is total, T is nonempty. Because

�
is finitely branching under

CTL( � )-stuttering, i.e. under ≡-stuttering, {t ′ | t −≡→∗ t ′} is finite. Furthermore,
because

�
is (plainly) finitely branching, also {t ′′ | t ′ → t ′′ ∧ t ′ 6≡ t ′′} is finite for

every t ′. Hence, because “finite × finite = finite”, T is finite, say T = {t ′′1 , . . . , t ′′n }.
Because for every 1 ≤ i ≤ n, t ′′i 6≡ t and t ≡ s, we have t ′′i 6≡ s. Hence, by defi-
nition of ≡, we can choose formulae ϕi ∈ CTL( � ) such that s |= ϕi and t ′′i 6|= ϕi ,
for every 1 ≤ i ≤ n. Because all states on s̄ are ≡-equivalent to s, we have s |=
∃ � (ϕ1∧· · ·∧ϕn), but because every t-path contains some t ′′i , t 6|= ∃ � (ϕ1∧· · ·∧ϕn),
implying that s 6≡ t , as ∃ � (ϕ1 ∧ · · · ∧ ϕn) ∈ CTL( � ). Contradiction.

3. Suppose that s −≡→ s1 −≡→ . . . −≡→ sk−1 → sk with k ≥ 0. We have to
show that there exists t −≡→ t1 −≡→ . . . −≡→ tl−1 → tl with l ≥ 0 and
sk ≡ tl . Suppose (*) that this is not the case. Consider the set T = {〈t ′, t ′′〉 |
t −≡→∗ t ′ → t ′′}. Because → is total, T is nonempty. Because

�
is finitely

branching under≡-stuttering and also (plainly) finitely branching, T is finite, say T =
{〈t ′1, t ′′1 〉, . . . , 〈t ′n, t ′′n 〉}. For every 1 ≤ i ≤ n, choose formulae ϕ ′i , ϕ

′′
i ∈ CTL( � ) as

follows.

• ϕ′i = true if t ′i ≡ t ′′i ; otherwise, choose ϕ ′i such that t ′i |= ϕ′i (and hence s |= ϕ′i )
and t ′′i 6|= ϕ′i , which is possible by definition of ≡.

• choose ϕ′′i such that sk |= ϕ′′i and t ′′i 6|= ϕ′′i — this is possible by our assumption
(*).

Define ϕ = ∃ � (ϕ′1 ∧ · · · ∧ ϕ′n, ϕ′′1 ∧ · · · ∧ ϕ′′n ). Then clearly s |= ϕ. Next, we show
that t 6|= ϕ. Suppose that, conversely, t |= ϕ, i.e. we can choose a t-path t̄ such that
t̄ |= � (ϕ′1 ∧ · · · ∧ϕ′n, ϕ′′1 ∧ · · · ∧ϕ′′n ). This means that we can choose l ≥ 0 such that
t̄(l) |= ϕ′′1 ∧ · · · ∧ ϕ′′n while for every 0 ≤ j < l, t̄( j) |= ϕ′1 ∧ · · · ∧ ϕ′n . On the
other hand, every t-path contains one of the t ′′i ; in particular, by definition of T , we
can choose 1 ≤ i ≤ n such that either t̄(l) is t ′′i , or we can choose 0 ≤ j < l such that
t̄( j) is t ′′i . But in the first case, we have t̄(l) 6|= ϕ′′i , implying t̄(l) 6|= ϕ′′1 ∧ · · · ∧ ϕ′′n
and in the second case we have t̄( j) 6|= ϕ′i , implying t̄( j) 6|= ϕ′1 ∧ · · · ∧ ϕ′n. In
both cases we have a contradiction. So we conclude that t 6|= ϕ. But then s 6≡ t , as
ϕ ∈ CTL( � ). Contradiction. �

Although the condition that � is finitely branching under CTL( � )-stuttering is
the weakest condition that suffices to prove the above lemma, it may be impractical
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to check. Note that by Lemma 6.3.2.9, it follows that finite branchingness under
CTL( � )-stuttering is implied by finite branchingness under Lit-stuttering.

6.3.2.11 C Assume that � is finitely branching and also finitely branch-
ing under CTL( � )-stuttering (recall that by Convention 6.1.0.1,→ is total). Then
≡stut is adequate for both CTL∗( � ) and CTL( � ).

Simplifications of stuttering equivalence

In [DNV90b], de Nicola and Vaandrager prove adequacy of CTL◦( � ) for a no-
tion of stuttering equivalence on KSs that is defined slightly differently. That their
definition (Definition 6.3.2.12 below) yields the same equivalence as≡stut from Def-
inition 6.3.2.5 (on finite KSs without deadlock) is stated by Lemma 6.3.2.13.

The definition of branching bisimulation, originally defined on LTSs, when
adapted to KSs in a straightforward fashion (Definition 6.3.2.14 below), seems slight-
ly weaker than stuttering equivalence. Lemma 6.3.2.15 below shows that in fact both
definitions result in the same equivalence.

6.3.2.12 D Consider a symmetric relation ≡ ⊆ 6 × 6 such that for
every s, t ∈ 6, s ≡ t implies:

1. £(s) = £(t).

2. infstut≡(s) iff infstut≡(t).

3. For every s → s ′, there exists t −≡→ t1 −≡→ · · · −≡→ tm−1 → tm such
that m ≥ 0 and s′ ≡ tm .

The largest such relation is denoted ≡stut1.

6.3.2.13 L On every Kripke structure � satisfying the assumptions of Con-
vention 6.1.0.1, ≡stut1 = ≡stut.

P ≡stut ⊆ ≡stut1 is obvious. Also ≡stut ⊇ ≡stut1 is easily proven. �

6.3.2.14 D Consider a symmetric relation ≡ ⊆ 6 × 6 such that for
every s, t ∈ 6, s ≡ t implies:

1. £(s) = £(t).

2. infstut≡(s) iff infstut≡(t).
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3. For every s → s ′, there exists10 t −≡0→ t1 −≡0→ · · · −≡0→ tm−1 → tm
such that m ≥ 0, t ≡ tm−1 and s′ ≡ tm .

The largest such relation is denoted ≡stut2.

That this definition yields the same equivalence as Definition 6.3.2.5 follows imme-
diately from the following lemma.

6.3.2.15 L (S L  K )

• Let s0, . . . , sn ∈ 6. If s0 −≡0→ · · · −≡0→ sn and s0 ≡stut2 sn , then for all
0 ≤ i, j ≤ n, si ≡stut2 s j .

• The same holds for the divergence blind version of ≡stut2 (i.e. without the
infstut condition).

P.

• Let s0, . . . , sn ∈ 6 such that s0 −≡0→ · · · −≡0→ sn and s0 ≡stut2 sn . Define
≡ = ≡stut2 ∪ {(si , s j ) | 0 ≤ i, j ≤ n}. We show below that ≡ satisfies the three
conditions of Definition 6.3.2.14. Hence, it is included in ≡stut2, from which it
follows that for all 0 ≤ i, j ≤ n, si ≡stut2 s j .

Let s, t ∈ 6 such that s ≡ t . If s ≡stut2 t , then the three conditions of Defini-
tion 6.3.2.14 are clearly satisfied. Now we consider the case that s and t are some si

and s j .

1. By assumption, for any 0 ≤ i, j ≤ n, si ≡0 s j , so s and t satisfy condition 1
of Definition 6.3.2.14.

2. Condition 2 is proven in a similar way as the next point.

3. Let 0 ≤ i, j ≤ n. Without loss of generality, we may assume that i ≤ j .

(a) Assume that si → s ′. So, s0 −≡0→ s1 −≡0→ · · · −≡0→ si → s ′.
Because s0 ≡stut2 sn , it can easily be shown (by induction on i ) that
sn −≡0→ s1

n −≡0→ · · · −≡0→ sk−1
n → sk

n for some k ≥ 0 such that
sk

n ≡stut2 s ′. So, s j −≡0→ s j+1 −≡0→ · · · −≡0→ sn −≡0→ s1
n −≡0→

· · · −≡0→ sk−1
n → sk

n such that sk
n ≡ s ′.

(b) The “vice versa” is similar but easier.

So s and t satisfy condition 3 of Definition 6.3.2.14.

• A similar proof can be given for the divergence blind version. �

6.3.2.16 C On every Kripke structure � satisfying the assumptions of
Convention 6.1.0.1, ≡stut2 = ≡stut.

10Recall Definition 2.4.0.1, page 22, of ≡0.
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Note that if there exists an s-prefix that cycles back to s again, such that all states
on this prefix have the same labels, then infstut≡stut2

(s) holds. It is this fact that
justifies the definition of stuttering equivalence as dbs-equivalence in the livelock
extension ([DNV90b]).

Historical note

Stuttering equivalence was first defined in [BCG88] on finite Kripke structures. The
definition given in that paper is as follows (in our terminology).

6.3.2.17 D The sequence E0, E1, E2, . . . of equivalence relations on
6 is defined as follows.

1. s E0 t iff £(s) = £(t).

2. s En+1 t iff

(a) For every s̄ ∈ paths(s) there exists t̄ ∈ paths(t) such that

(*) there exist partitions B1, B2, . . . and C1,C2, . . . of s̄ and t̄ respec-
tively such that for all i ≥ 0:

i. Bi and Ci are both non-empty and finite.

ii. ∀s ′∈Bi ,t ′∈Ci s′ En t ′.

(b) Vice versa.

For paths, s̄ En t̄ iff they satisfy condition (*) above.

s E t iff ∀n∈ � s En t .

One difference is that in this definition, for every path starting in s there has to be
an equivalent path from t , while in all definitions given before, only s-prefixes had
to be matched by t-prefixes t0 → t1 → · · · → tm (even empty prefixes (m = 0)
were allowed as matches). An advantage of Definition 6.3.2.17 is that the condition
infstut En

(s) iff infstut En
(t) can be omitted because divergence-sensitivity is already

obtained by the formulation in terms of paths. A disadvantage is that the proof of
abstractness of E for CTL( � ) is complicated by the fact that s and t may be non-
equivalent while for every prefix from s there is an equivalent prefix from t . This
requires the help of König’s lemma. On the other hand, the previous definitions in
terms of prefixes do not have this complication, however, there we need an additional
state-path lemma of the form of Lemma 6.3.2.6.

Another disadvantage of Definition 6.3.2.17 is that the development of a parti-
tion refinement algorithm for stuttering equivalence seems to require an alternative
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definition in terms of finite prefixes anyway (see Section 5 of [BCG88]). The condi-
tion infstut En

(s) iff infstut En
(t) still enters the picture there11.

6.4 Partition Refinement Algorithms

As already noted at the beginning of this chapter, one motivation for being interested
in adequate behavioural equivalences for temporal logics is the fact that we can base
partition refinement algorithms on them. Indeed, for both bisimulation and stut-
tering equivalence such algorithms have been developed, see [BFH+92], [BCG88]
and [GV90]. In this section, we generalise the common concepts that underly both
algorithms, and present a generic scheme of which they are instantiations that are
induced by the format of the definition of the behavioural equivalence. This renders
the relation between the definition of the behavioural equivalence and the PRA ex-
plicit, thereby suggesting directions to look for equivalences having “cheaper” PRAs.
These new equivalences as well as the temporal logics that they are adequate for, form
the subject of the rest of this chapter.

A partition 5 of a set A is a set of non-empty, pairwise disjoint subsets of A
that covers A, i.e.

⋃
5 = A. The set of partitions of A is partially ordered by the

refinement order
�

defined by 51
�
52 iff ∀B1∈51 ∃B2∈52 B1 ⊆ B2. With this

order, the partitions of A form a lattice (see e.g. [Bir67]); in particular, its glb 4 is
defined by 51452 = {B1 ∩ B2 | B1 ∈ 51, B2 ∈ 52, B1 ∩ B2 6= ∅}. Clearly,
an equivalence relation ≡ on A induces a partition, denoted Part(A,≡), consisting
of the equivalence classes of ≡. Reversely, the equivalence induced by a partition 5
is denoted Eq(A,5). In the sequel we consider partitions and equivalences on 6.
Part(≡) abbreviates Part(6,≡) while Eq(5) abbreviates Eq(6,5).

In order to bring out the analogies in the definitions of bisimulation and stut-
tering equivalence, we try to make their formats as similar as possible. To begin
with, we drop the requirement about infinite stuttering, i.e. we consider in fact Def-
inition 6.3.2.3 of divergence blind stuttering equivalence. The results in [GV90]
indicate that a PRA for (divergence sensitive) stuttering equivalence can be obtained
by adding a simple preprocessing phase to a PRA for divergence blind stuttering
equivalence. Comparing Definition 6.2.0.1 of ≡bis to Definition 6.3.2.3 of ≡dbs, we
see that each equivalence is defined as the largest symmetric equivalence ≡ such that:

1. ≡ ⊆ ≡0.

11The loop predicate in [BCG88] is actually stronger than our infstut . However, it follows from the
Stuttering Lemma (Lemma 6.3.2.15) that also in [BCG88] it may be weakened.
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2. If s ≡ t , then for every s-prefix ŝ of a certain form, there exists a t-prefix t̂ of
similar form.

In the case of bisimulation, this “certain form” of ŝ requires that ŝ has length 2 and
that it ends in a specific ≡-equivalence class; t̂ should then also have length 2 and end
in the same equivalence class. In the case of divergence blind stuttering equivalence,
the lengths of ŝ and t̂ may be arbitrary but finite, while they should both stay in the
same ≡-equivalence class with the exception of their last states, which should both
lie in the same different class. Thus, in both cases the requirements on the prefixes
consist of (1) a restriction on their lengths, and (2) a restriction on the equivalence
classes that they “follow”.

6.4.0.1 D Let � ⊆ � (6) be a collection of sets of states and s̄ a path
or prefix. For i = 1, 2, . . . , let Bi ∈ � ; assume Bi 6= ∅ and Bi 6= Bi+1 for
every i . We say that s̄ follows B1, B2, . . . iff s̄ can be partitioned into non-empty
blocks s̄I1 , s̄I2 , . . . such that for every i , every state of s̄Ii is an element of Bi . This
definition is extended to sequences that possibly contain adjacent sets that are equal
(Bi = Bi+1); in this case, s̄ follows B1, B2, . . . iff s̄ follows the sequence obtained
by removing, for every i , all Bi+1 that are equal to Bi .

The basic refinement step in the algorithms mentioned above is performed by
taking blocks B, B ′ of the current partition, and then splitting B into those states
that have prefixes, of appropriate length, following B, B ′, and those who do not.
(For the definition of prefixes, see Section 2.4.)

6.4.0.2 D Let � ⊆ � (6) be a collection of sets of states. A splitter is a
pair 〈l, 〈B1, B2〉〉 where12 l ∈ � ∪ {fin}, Bi ∈ � and Bi 6= ∅ for i = 1, 2.

Let S = 〈l, B̄〉 be a splitter and ŝ a prefix. S(ŝ) iff ((l ∈ � ∧ length(ŝ) =
l) ∨ (l = fin ∧ length(ŝ) < ω)) ∧ ŝ follows B̄. For a state s, we define S(s) iff
∃ŝ∈prefixes(s) S(ŝ).

A set of splitters induces an equivalence relation on states.

6.4.0.3 D Let T be a collection of splitters. The splitter equivalence
induced by T , is the equivalence relation ≡T ⊆ 6 × 6 defined by s ≡T t iff
∀S∈T S(s)⇔ S(t).

Equipped with these notions, we are now able to define the sets of splitters for bisim-
ulation and dbs-equivalence PRAs.

12l will be interpreted as the length of a prefix. The value fin then means “any finite length”.
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6.4.0.4 D Let � ⊆ � (6).

• bisSPL( � ) = {〈2, 〈B1, B2〉〉 | B1, B2 ∈ � , B1 6= ∅, B2 6= ∅}.

• dbsSPL( � ) = {〈fin, 〈B1, B2〉〉 | B1, B2 ∈ � , B1 6= ∅, B2 6= ∅}.

These definitions are relative to a given set � of state sets. In the partition refinement
algorithms, a partition 5 of the set of all states is maintained; it is this partition
that serves as the parameter to bisSPL and dbsSPL. Initially, 5 is taken equal to the
partitioning Part(≡0) (Definition 2.4.0.1). As 5 is only refined during the course
of the algorithm, this guarantees that the equivalence Eq(5) that is induced by the
resulting partition 5 of the PRA will satisfy condition 1 on page 163. Formally, the
algorithms can be viewed as computing, successively for every n ∈ � , (the partitions
induced by) the equivalence relations ≡n

bis and ≡n
dbs. These are the approximants of

≡bis and ≡dbs, defined as follows.

6.4.0.5 D

1. s ≡0
bis t and s ≡0

dbs t are both defined as £(s) = £(t).

2. s ≡n+1
bis t iff s ≡n

bis t and for every s → s ′, there exists t → t ′ such that
s′ ≡n

bis t ′.

s ≡n+1
dbs t iff s ≡n

dbs t and for every s −≡n
dbs→ s1 −≡n

dbs→ . . . −≡n
dbs→ sk−1→

sk such that k ≥ 0, there exists t −≡n
dbs→ t1 −≡n

dbs→ . . . −≡n
dbs→ tl−1 → tl

such that l ≥ 0 and sk ≡n
dbs tl .

Thus, in every iteration, the algorithms compute Part(≡n+1
xx ) (xx ∈ {bis, stut}) by

refining the blocks of Part(≡n
xx ) with regard to the splitters in xx SPL(Part(≡n

xx )).
Under certain conditions on the branchingness of the transition system, this pro-
cess will eventually distinguish every pair of states that are not ≡xx -equivalent, as is
implied by the following lemma.

6.4.0.6 L

1. Assume that � is finitely branching. Then s ≡bis t iff ∀n∈ � s ≡n
bis t .

2. Assume that � is finitely branching and also finitely branching under Lit-
stuttering. Then s ≡dbs t iff ∀n∈ � s ≡n

dbs t .

P Point 1 is standard, see e.g. [HM85]. Point 2 is similar. �
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The notion of refining a block with respect to a set of splitters is formalised as
follows.

6.4.0.7 D Let B ⊆ 6 and S a set of splitters. split(B, S) = Part(B,≡S

).

The following lemma justifies the idea that for every n ∈ � , Part(≡n+1
xx ) may be

computed by splitting the blocks of Part(≡n
xx) with respect to xx SPL(Part(≡n

xx )).

6.4.0.8 L Let xx ∈ {bis, stut}, ≡ ⊆ 6 × 6 and n ∈ � . Then the following
are equivalent:

1. ≡ ⊆ ≡n
xx and for every B ∈ Part(≡), split(B, xx SPL(≡n

xx )) = {B}.

2. ≡ ⊆ ≡n+1
xx .

P Straightforward from the definitions of ≡n
xx and xx SPL. �

This lemma suggests the algorithm of Figure 6.3 to compute Part(≡xx ) on finite
transition systems. Note that the transition relation→ is a parameter of this algo-
rithm, as split(B, xx SPL(5)) depends on it.

5 := Part(≡0) ;
n := 0;
stable := false;
while not stable do
{5 = Part(≡n

xx) }
5′ := ∅;
for each B ∈ 5 do

5′ := 5′ ∪ split(B, xx SPL(5))
od;
{5′ = Part(≡n+1

xx ) }
n := n + 1;
stable := (5′ = 5);
5 := 5′

od;

Figure 6.3: A generic partition refinement algorithm.
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6.4.0.9 L Let xx ∈ {bis, stut} and assume that � is finite. Consider the
algorithm of Figure 6.3.

1. After the nth iteration of the while-loop, 5 = Part(≡n
xx).

2. After termination of the algorithm, 5 = Part(
⋂

m∈ � ≡m
xx).

3. The algorithm terminates.

P.

1. This follows from the validity of the assertions5 = Part(≡n
xx ) and5′ = Part(≡n+1

xx )

in the algorithm. For n = 0, the first assertion clearly holds by the initialisation of
the algorithm. Furthermore, for every n, executing the for-each loop (including the
initialisation5′ := ∅) in state5 = Part(≡n

xx ) results in a state with5′ = Part(≡n+1
xx

); this follows from Lemma 6.4.0.8.

2. The algorithm terminates if for every B ∈ 5, split(B, xx SPL(≡n
xx )) = {B}. By

point 1 and Lemma 6.4.0.8 this implies that for every n ′ ≥ n, Eq(5) ⊆ ≡n′
xx , which

in turn implies that 5 ⊆ Part(
⋂

m∈ � ≡m
xx ). Because also 5 = Part(≡n

xx ), it follows
that 5 = Part(

⋂
m∈ � ≡m

xx ).

3. Because
�

is finite, the partitions of
�

’s state set, ordered by the refinement relation
�

, form a wellfounded poset in which 5 strictly decreases for every step (the last
excepted) of the while loop. �

6.4.0.10 C Let xx ∈ {bis, stut}. If � is finite, then the algorithm calcu-
lates Part(≡xx) in 5.

6.5 Flat CTL and CTL
�

We are interested in instantiations of the partition refinement algorithm that give
good reductions. The algorithm can be “tuned” by varying the definition of the set
xx SPL of splitters for a certain equivalence≡xx . Splitters are interpreted as predicates
over states (see Definition 6.4.0.2). So, to obtain better reductions, these predicates
have to be less distinctive, i.e. should have uniform valuations over all states of a
block more often. The splitters for dbs-equivalence are less distinctive than those
for bisimulation because they weaken the condition on the length of a path. In
this section, we consider another variation, obtained (from dbsSPL) by weakening
the restriction imposed by the blocks that a path has to follow. Instead of taking
both blocks from the current partition 5 in the algorithm, we only take the second
block from 5 and choose the first block (cf. B1 in Definition 6.4.0.4) from the ≡0-
equivalence. In other words, a prefix ŝ satisfies such a splitter iff along some initial
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part all states have the same labelling, and the rest of the prefix stays inside some
block from the current partition. We conjecture that the corresponding behavioural
equivalence fits with the fragment of CTL∗( � ) in which the first argument of the
Until operator must be a proposition or a boolean combination of propositions. In
order to investigate this, let us define this logic as well as the behavioural equivalence
we have in mind.

6.5.0.1 D bool(Prop) is the set of propositional formulae (i.e. combi-
nations built using negation and conjunction) over Prop. The logic flatCTL∗( � )
is the set of state formulae ϕ defined inductively by the following grammar, where
p ∈ bool(Prop).

state formulae: ϕ := p | ¬ϕ | ϕ ∧ ϕ | ∃ψ .

path formulae: ψ := ϕ | ¬ψ | ψ ∧ ψ | � (p, ψ).

The abbreviation � ϕ is defined as usual (Definition 2.3.0.1). However, � ϕ abbrevi-
ates13 ¬ � ¬ϕ.

Clearly, � ϕ may be considered as a flatCTL∗( � ) formula for any ϕ ∈ flatCTL∗( � ).
The following lemma implies that also � (ϕ, p) can be expressed in flatCTL∗( � ):

6.5.0.2 L Let p ∈ bool(Prop) and ϕ ∈ flatCTL∗( � ). We have � (ϕ, p) ≡
� (true, p) ∧ ¬ � (¬p,¬ϕ ∧ ¬p).

P Via CTL∗: |= � (ϕ, p) ≡ ¬ � (¬ϕ,¬p) ≡ ¬ � (¬p,¬ϕ ∧¬p) ≡ ¬( � ¬p∨
� (¬p,¬ϕ∧¬p)) ≡ ¬(¬ � (true, p)∨ � (¬p,¬ϕ∧¬p)) ≡ � (true, p)∧¬ � (¬p,¬ϕ∧
¬p). The second step uses the relation between � and � (page 24). The third step applies
the definition of � , and the fourth the definition of � (Definition 6.5.0.1 above). �

As this logic is a fragment of CTL∗, its interpretation is defined by Definition 2.4.1.1.
As to the behavioural equivalence, the following seems to be the corresponding adap-
tation of Definition 6.3.2.5 of ≡stut. The third clause considers prefixes along which
all states, up to the last one, are≡0-equivalent; this corresponds to the Until formulae
being restricted to propositional formulae in their first arguments. The last states of
matching prefixes from s and t should be ≡-equivalent again. This should guarantee
that the eventuality expressed by the second argument of the Until, which may be
an arbitrary flatCTL∗( � ) formula again, has the same valuation in both endpoints.
The second clause then again prevents that s-prefixes are only matched by t-prefixes
of length 1.

13Note that this is different from Definition 2.3.0.1 as we do not have � .
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6.5.0.3 D Let ≡ ⊆ 6 × 6 be a symmetric relation such that for every
s, t ∈ 6, s ≡ t implies:

1. £(s) = £(t).

2. infstut≡0(s) iff infstut≡0(t).

3. For every s −≡0→ s1 −≡0→ · · · −≡0→ sk−1 → sk such that k ≥ 0, there
exists t −≡0→ t1 −≡0→ · · · −≡0→ tl−1 → tl , such that l ≥ 0 and sk ≡ tl .

Then≡ is called a flat (stuttering) equivalence. The largest flat equivalence is denoted
≡flat− .

Note that if we would require in addition that sk−1 ≡flat− tl−1 and t ≡flat− tl−1 in
point 3 of the above definition, ≡flat− would be the same as ≡stut. This follows from
Lemma 6.3.2.15, the Stuttering Lemma.

The definition of ≡flat− needs to be extended to paths to formulate a state-path
lemma (cf. Lemmata 6.2.0.4 and 6.3.2.6). This definition should be such that paths
that are ≡flat− -equivalent satisfy the same Until formulae from flatCTL∗( � ). A sim-
ilar definition as ≡stut for paths, where the paths have to consist of corresponding
sequences of ≡stut-blocks, seems too strong. Intuitively, the following would suffice:

s̄ ≡flat− t̄ iff

1. For every k ≥ 0 there exists l ≥ 0 such that s̄(k) ≡flat− t̄(l)
and furthermore, letting partit≡0(s̄{0,... ,k−1}) = s̄I1 , . . . , s̄IK and
partit≡0(t̄{0,... ,l−1}) = t̄J1, . . . , t̄JL , K = L and for every 0 ≤
i ≤ K , every s ′ ∈ s̄Ii and t ′ ∈ t̄Ji , we have s′ ≡0 t ′.

2. Vice versa.

However, proving a state-path lemma like Lemma 6.3.2.6 turns out to be impossible.
We can only show one of the two halves required for ≡flat−-equivalence of paths. In-
deed, there is a counter-example showing that≡flat− is not fine for flatCTL∗( � ). It is
depicted in Figure 6.4. The propositions p, q and r are supposed to be mutually ex-
clusive. Consider the states s2 and s5. The reader is invited to verify that s2 ≡flat− s5.
However, the flatCTL∗( � ) formula ϕ = ∃( � (p, q) ∧ ¬ � (p, p ∧ ¬∃ � r)) distin-
guishes between s2 and s5. Namely, the s2-path s̄ = s2, s3, s4, s4, . . . clearly satisfies

� (p, q) and does not satisfy � (p, p ∧ ¬∃ � r): there is no state on s̄ where p holds
and at the same time the r -state is not reachable. On the other hand, the s5-path
t̄ = s5, s6, s4, s4, . . . satisfies both � (p, q) and � (p, p ∧ ¬∃ � r), because the path
contains s6. Hence s5 satisfies ϕ while s2 does not.
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s1 s2 s3 s4

s5 s6

|= p |= q

|= p |= p

|= r |= p

Figure 6.4: ≡flat− is not fine for flatCTL∗( � ).

We proceed along two lines. First, we restrict the logic flatCTL∗( � ) in such
a way that ≡flat− is fine for it. An analysis of the counter-example suggests that it
may be the capability of flatCTL∗( � ) to assert several path properties ( � -formulae)
about a single path that renders this logic “too strong” for ≡flat−-equivalence. As it
turns out in Section 6.5.1 below, the “unstarred” variant of the logic, in which only
a single path formula may occur in the scope of every path quantifier, fits nicely with
≡flat− -equivalence.

Second, in Section 6.5.2, we strengthen the behavioural equivalence, obtaining a
behavioural equivalence adequate for full flatCTL∗( � ).

6.5.1 flat � CTL( � ) and flat equivalence

The counter-example above suggests that the strength of flatCTL∗( � ) to distinguish
between ≡flat−-equivalent states lies in its capability to assert various until formulae
about the same path. The following restriction delimits this strength.

6.5.1.1 D The logic flat−CTL( � ) is the set of state formulae ϕ defined
inductively by the following grammar, where p ∈ bool(Lit).

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ∃ � (p, ϕ) | ∃ � p.

This definition is directly inspired by the clauses of Definition 6.5.0.3. Clause 2
of that definition suggests that formulae of the form ∃ � p, with p ∈ bool(Lit), are
satisfied in s if and only if they are satisfied in t (actually also the third clause is
needed, see the proof of Lemma 6.5.1.2 below). Looking at clause 3, we predict that
it will not be difficult to show that when s satisfies a formula of the form ∃ � (p, ϕ),
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with p ∈ bool(Lit), then also t will satisfy this formula. Recall that the operator
∀ � may be defined as a derived operator by ∀ � (ϕ, p) = ¬∃ � (¬p,¬ϕ ∧ ¬p) ∧
¬∃ � ¬p. Reversely, ∃ � p is equivalent to ¬∀ � (true,¬p) (Lemma 2.4.1.2). This
means that we could also have replaced ∃ � p by ∀ � (ϕ, p) in the above definition.
Thus, we see that the argument of the � operator that has to be restricted depends
on the preceding path quantifier.

≡flat− is fine for flat−CTL( � ):

6.5.1.2 L If s ≡flat− t , then ∀ϕ∈flat−CTL( � ) s |= ϕ ⇔ t |= ϕ.

P. By induction on the structure of the formula.

• Base: ϕ ∈ bool(Lit). s ≡flat− t implies that £(s) = £(t). From this it follows that
s |= p iff t |= p for all p ∈ bool(Lit).

• Induction step:

1. The cases that ϕ is a negation or conjunction are straightforward.

2. ϕ = ∃ � (p, ϕ′). Assume that s |= ϕ. By Definition 2.4.1.1, this means that
there exists an s-path s̄ and n ≥ 0 such that s̄(n) |= ϕ′ and for every 0 ≤ i < n,
s̄(i) |= p. Because s ≡flat− t , by clause 3 in Definition 6.5.0.3 there exists a t-
path t̄ and m ≥ 0 such that s̄(n) ≡flat− t̄(m) and for every 0 ≤ j < m, t̄( j) ≡0

t . By the induction hypothesis, it follows from s̄(n) |= ϕ′ and s̄(n) ≡flat− t̄(m)
that t̄(m) |= ϕ′. Because s̄(0) |= p and s ≡flat− t and for every 0 ≤ j < m,
t̄( j) ≡0 t , we have t̄( j) |= p for every 0 ≤ j < m. Hence, t |= ∃ � (p, ϕ ′).

3. ϕ = ∃ � p. Assume that s |= ϕ. By Definition 2.4.1.1, this means that there
exists an s-path s̄ such that for every i ≥ 0, s̄(i) |= p. Consider partit≡0(s̄) =
B0, B1, . . . . Along the same lines as the proof of the state-path Lemma 6.3.2.6,
using clause 3 from Definition 6.5.0.3 if partit≡0(s̄) and in addition clause 2
for the last block if partit≡0(s̄) is finite, it is not difficult to show that there
exists a t-path t̄ such that for partit≡0(t̄) = C0,C1, . . . , the states in B j are
≡0-equivalent to those in C j for every j . It follows that t̄(i) |= p for every
i ≥ 0, i.e. t |= ∃ � p. �

Reversely, flat−CTL( � ) can distinguish any two states that are not ≡flat−-equiv-
alent. This follows from the following abstractness result.

6.5.1.3 L Assume that � is finitely branching and also finitely branching un-
der Lit-stuttering. If ∀ϕ∈flat−CTL( � ) s |= ϕ ⇔ t |= ϕ, then s ≡flat− t .

P. Assume that ∀ϕ∈flat−CTL( � ) s |= ϕ ⇔ t |= ϕ. We have to show that s ≡flat−

t . Because ≡flat− is the largest flat equivalence, we have to show that the pair (s, t) is an
element of some flat equivalence ≡ ⊆ 6 × 6. We define this relation as follows: u ≡ v iff
∀ϕ∈flat−CTL( � ) u |= ϕ ⇔ v |= ϕ. Clearly s ≡ t . We show that ≡ is a flat equivalence. Recall
that by Convention 6.1.0.1,→ is total.
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1. It is trivial that £(s) = £(t).

2. Suppose that infstut≡0(s), i.e. we can choose an s-path s̄ such that for every i ≥ 0,
s̄(i) ≡0 s. We have to show that also infstut≡0(t). Suppose that this is not the case.
Then every t-path contains a state from the set T = {t ′′ | t −≡0→∗ t ′→ t ′′ ∧ t ′ 6≡0

t ′′}. Because→ is total, T is nonempty. Because
�

is finitely branching under Lit-
stuttering and also (plainly) finitely branching, T is finite, say T = {t ′′1 , . . . , t ′′n }.
Because for every 1 ≤ i ≤ n, t ′′i 6≡0 t and t ≡ s, we have t ′′i 6≡0 s. Hence, by
definition of ≡0, we can choose formulae pi ∈ Lit such that s |= pi and t ′′i 6|= pi ,
for every 1 ≤ i ≤ n. Because all states on s̄ are ≡0-equivalent to s, we have s |=
∃ � (p1∧· · ·∧ pn), but because every t-path contains some t ′′i , t 6|= ∃ � (p1∧· · ·∧ pn),
implying that s 6≡ t , as ∃ � (p1 ∧ · · · ∧ pn) ∈ flat−CTL( � ). Contradiction.

3. Suppose that s −≡0→ s1 −≡0→ . . . −≡0→ sk−1 → sk with k ≥ 0. We have to
show that there exists t −≡0→ t1 −≡0→ . . . −≡0→ tl−1 → tl with l ≥ 0 and
sk ≡ tl . Suppose (*) that this is not the case. Consider the set T = {〈t ′, t ′′〉 |
t−≡0→∗t ′ → t ′′}. Because→ is total, T is nonempty. Because

�
is finitely branch-

ing under Lit-stuttering and also (plainly) finitely branching, T is finite, say T =
{〈t ′1, t ′′1 〉, . . . , 〈t ′n, t ′′n 〉}. For every 1 ≤ i ≤ n, choose formulae pi ∈ Lit and
ϕi ∈ flat−CTL( � ) as follows.

• pi = true if t ′i ≡0 t ′′i ; otherwise, choose pi such that t ′i |= pi (and hence
s |= pi ) and t ′′i 6|= pi , which is possible by definition of ≡0.

• choose ϕi such that sk |= ϕi and t ′′i 6|= ϕi — this is possible by our assumption
(*).

Define ϕ = ∃ � (p1 ∧ · · · ∧ pn, ϕ1 ∧ · · · ∧ ϕn). Then clearly s |= ϕ. Next, we show
that t 6|= ϕ. Suppose that, conversely, t |= ϕ, i.e. we can choose a t-path t̄ such that
t̄ |= � (p1 ∧ · · · ∧ pn, ϕ1 ∧ · · · ∧ ϕn). This means that we can choose l ≥ 0 such
that t̄(l) |= ϕ1 ∧ · · · ∧ ϕn while for every 0 ≤ j < l, t̄( j) |= p1 ∧ · · · ∧ pn.
On the other hand, every t-path contains one of the t ′′i ; in particular, by definition of
T , we can choose i such that either t̄(l) is t ′′i , or we can choose 0 ≤ j < l such that
t̄( j) is t ′′i . But in the first case, we have t̄(l) 6|= ϕi , implying t̄(l) 6|= ϕ1 ∧ · · · ∧ ϕn

and in the second case we have t̄( j) 6|= pi , implying t̄( j) 6|= p1 ∧ · · · ∧ pn. In
both cases we have a contradiction. So we conclude that t 6|= ϕ. But then s 6≡ t , as
ϕ ∈ flat−CTL( � ). Contradiction. �

6.5.1.4 C Assume that � is finitely branching and also finitely branch-
ing under Lit-stuttering (recall that by Convention 6.1.0.1,→ is total). Then ≡flat−

is adequate for flat−CTL( � ).

A natural question is whether the expressive power of the logic flat−CTL( � ) can
be strengthened without changing its distinguishing power (cf. the remarks at the
end of Section 6.1.1). Adding the “star” is too much, as we have seen above. But it
might be possible to add a restricted amount of “path power”. We do not go further
into this here.
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6.5.2 flatCTL � ( � ) and flat star equivalence

In this subsection we define a behavioural equivalence, stronger than ≡flat− , which
is adequate for full flatCTL∗( � ). We have argued above that it is the power of
flatCTL∗( � ) to assert arbitrarily many path properties about a single path that ren-
ders it more distinguishing than ≡flat− . In order to make the step from flatCTL∗( � )
to an appropriate behavioural equivalence, we consider the equivalence induced by
flatCTL∗( � ) in game-theoretic terms.

Consider states s and t and suppose that they must satisfy the same flatCTL∗( � )
formulae. In particular, we consider formulae of the form ∃ψ , whereψ is an arbitrary
path formula, which may consist of a conjunction of (negations of ) smaller path
formulae. If t has to satisfy formulae of the same form, then Defender must have a
winning strategy to the following two-phase game:

1. Phase 1: Attacker either chooses an s-path, say s̄, which should be matched by
the choice by Defender of a t-path, say t̄ , or Attacker chooses a t-path, say t̄ ,
which should be matched by the choice by Defender of an s-path, say s̄.

This phase reflects the choice that corresponds to the ∃ quantifier in the for-
mula.

2. Phase 2: Attacker chooses either s̄ or t̄ to proceed. Denoting the result of
this choice by ū, Attacker then chooses a state ū(k) on ū such that for every
0 ≤ i < k, ū(i) ≡0 ū(0). Defender now has to proceed from the other path,
call it v̄ (so, v̄ = s̄ if ū = t̄ and v̄ = t̄ if ū = s̄). She should match the move of
Attacker with the choice of a position v̄(l) on v̄ such that for every 0 ≤ i < l ,
v̄(i) ≡0 v̄(0). The game continues from ū(k) and v̄(l).

This phase reflects the statement of an arbitrary path property: The fact that
Attacker chooses either s̄ or t̄ to proceed reflects the fact that this path property
may occur in positive or negated form, while the fact that all states up to ū(k)
have to be ≡0-equivalent carries in it the restriction of Until formulae to a
propositional first argument.

Note that this game-theoretic formulation also explains the inadequacy of ≡flat− for
flatCTL∗( � ). The problem is that Defender has to choose t̄ in Phase 1, without
knowing which k Attacker is going to choose in Phase 2: Definition 6.5.0.3 of ≡flat−

only guarantees that Defender can match any move of Attacker in which the choice
for k is made at the same moment at which s̄ is chosen. After these observations, the
following definition suggests a plausible candidate for a behavioural flatCTL∗( � )
equivalence.
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6.5.2.1 D Let ≡ ⊆ 6 × 6 be a symmetric relation such that for every
s, t ∈ 6, s ≡ t implies:

1. £(s) = £(t).

2. infstut≡(s) iff infstut≡(t).

3. For every ŝ ∈ prefixes(s) there exists t̂ ∈ prefixes(t) such that:

(a) For every ŝ0 −≡0→ · · · −≡0→ ŝk−1→ ŝk such that 0 ≤ k < length(ŝ),
there exists t̂0 −≡0→ · · · −≡0→ t̂l−1 → t̂l such that 0 ≤ l < length(t̂)
and ŝk ≡ t̂l .

(b) Vice versa.

Then ≡ is called a flat star (stuttering) equivalence. The largest flat star equivalence
is denoted ≡flat∗ .
≡flat∗ is extended to paths by defining s̄ ≡flat∗ t̄ iff

1. For every k ≥ 0 there exists l ≥ 0 such that s̄(k) ≡flat∗ t̄(l) and further-
more, letting partit≡0(s̄{0,... ,k−1}) = s̄I1 , . . . , s̄IK and partit≡0(t̄{0,... ,l−1}) =
t̄J1, . . . , t̄JL , K = L and for every 0 ≤ i ≤ K , every s ′ ∈ s̄Ii and t ′ ∈ t̄Ji , we
have s′ ≡0 t ′.

2. Vice versa.

We can now prove the following “state-path lemma”.

6.5.2.2 L If s ≡flat∗ t , then for every s̄ ∈ paths(s) there exists t̄ ∈ paths(t)
such that s̄ ≡flat∗ t̄ .

P The structure of the proof is similar to that of Lemma 6.3.2.6. Let partit≡flat∗
(s̄) be

B0, B1, . . . . For every i ≥ 0 for which Bi exists, let bi be the first state of Bi . Let c0 = t . By
point 3 in Definition 6.5.2.1, there exists a t-prefix t̂ such that for every 0 ≤ k ≤ length(B0)

(note that by definition of B0, all states on it are≡0-equivalent, and that s̄(length(B0)) = b1,
if length(B0) < ω), there exists 0 ≤ l ≤ length(t̂) such that for every 0 ≤ j < l, t̂( j) ≡0 t
and s̄(k) ≡flat∗ t̂(l), and vice versa. Consider the shortest such t-prefix, t̂ ′. Clearly, all states
on t̂ ′, with the exception of its last, are ≡0-equivalent. Define C0 to be t̂ ′ with its last state
excepted, while c1 (the first state of block C1 to be defined) is defined to be the last state of
t̂ ′. This way, we can inductively define states ci and blocks Ci for all i ≥ 0 for which Bi

exists. If some Bi is infinite, then point 2 in Definition 6.5.2.1 guarantees the existence of
an appropriate Ci . It is now easily seen that for the path t̄ formed by C0,C1, . . . , we have
s̄ ≡flat∗ t̄ . �
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Fineness now follows easily.

6.5.2.3 L If s ≡flat∗ t , then ∀ϕ∈flatCTL∗( � ) s |= ϕ ⇔ t |= ϕ.

P. We prove the following two points by induction on the structure of the formula.

1. If s ≡flat∗ t , then for all state formulae ϕ ∈ flatCTL∗( � ), s |= ϕ iff t |= ϕ.

2. For paths s̄ and t̄ : if s̄ ≡flat∗ t̄ , then for all path formulae ϕ that occur in flatCTL∗( � )
formulae, s̄ |= ϕ iff t̄ |= ϕ.

• Base: ϕ ∈ Lit. s ≡flat∗ t implies that £(s) = £(t). From this it follows that s |= p iff
t |= p for all p ∈ Lit.

• Induction step:

1. The cases that ϕ is a conjunction or negation of state or path formulae, or a
state formula interpreted over a path, are straightforward.

2. ϕ = � (p, ϕ′). Assume that s̄ |= ϕ. By Definition 2.4.1.1, this means that we
can choose k ≥ 0 such that s̄(k) |= ϕ′ and for every 0 ≤ i < k, s̄(i) |= p. By
definition of s̄ ≡flat∗ t̄ , there exists l ≥ 0 such that t̄(l) ≡flat∗ s̄(k) and for every
0 ≤ j < l, there exists 0 ≤ i < k such that s̄(i) ≡0 t̄( j). Using the induction
hypothesis, it follows that t̄ |= ϕ.

3. ϕ = ∃ϕ′. Straightforward using Lemma 6.5.2.2. �

For the other direction, abstractness, we again need to impose certain forms of finite
branchingness.

6.5.2.4 L Assume that � is finitely branching and also finitely branching un-
der Lit-stuttering. If ∀ϕ∈flatCTL∗( � ) s |= ϕ ⇔ t |= ϕ, then s ≡flat∗ t .

P. Assume that ∀ϕ∈flatCTL∗( � ) s |= ϕ ⇔ t |= ϕ. We have to show that s ≡flat∗ t .
Because ≡flat∗ is the largest flat star equivalence, we have to show that the pair (s, t) is an
element of some flat star equivalence≡ ⊆ 6 × 6. We define this relation as follows: u ≡ v
iff ∀ϕ∈flatCTL∗( � ) u |= ϕ ⇔ v |= ϕ. Clearly s ≡ t . We show that ≡ is a flat star equivalence.
Recall that by Convention 6.1.0.1,→ is total.

1. It is trivial that £(s) = £(t).

2. Suppose that infstut≡(s), i.e. we can choose an s-path s̄ such that for every i ≥ 0,
s̄(i) ≡ s. We have to show that also infstut≡(t). Suppose that this is not the case.
Then every t-path contains a state from the set T = {t ′′ | t −≡→∗ t ′ → t ′′ ∧ t ′ 6≡
t ′′}. Because→ is total, T is nonempty. Because

�
is finitely branching under Lit-

stuttering and also (plainly) finitely branching, this implies by Lemma 6.3.2.9 that T
is finite, say T = {t ′′1 , . . . , t ′′n }. Because for every 1 ≤ i ≤ n, t ′′i 6≡ t and t ≡ s, we
have t ′′i 6≡ s. Hence, by definition of ≡, we can choose formulae ϕi ∈ flatCTL∗( � )
such that s |= ϕi and t ′′i 6|= ϕi , for every 1 ≤ i ≤ n. Because all states on s̄ are
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≡-equivalent to s, we have s |= ∃ � (ϕ1∧ · · ·∧ϕn), but because every t-path contains
some t ′′i , t 6|= ∃ � (ϕ1 ∧ · · · ∧ ϕn), implying that s 6≡ t , as ∃ � (ϕ1 ∧ · · · ∧ ϕn) is
equivalent to a flatCTL∗( � ) formula by Lemma 6.5.0.2. Contradiction.

3. Let ŝ be an s-prefix. We have to show that there exists a t-prefix t̂ such that:

(a) For every ŝ0 −≡0→ · · · −≡0→ ŝk−1 → ŝk such that 0 ≤ k < length(ŝ), there
exists t̂0 −≡0→ · · · −≡0→ t̂l−1 → t̂l such that 0 ≤ l < length(t̂) and ŝk ≡ t̂l .

(b) Vice versa.

(*) Suppose that this is not the case. Consider the set T = {〈t ′, t ′′〉 | t −≡0→∗
t ′ → t ′′}. Because → is total, T is nonempty. Because

�
is finitely branch-

ing under Lit-stuttering and also (plainly) finitely branching, T is finite, say T =
{〈t ′0, t ′′0 〉, . . . , 〈t ′n, t ′′n 〉}. We let M be the largest number such that ŝ(0) −≡0→
ŝ(1) −≡0→ · · · −≡0→ ŝ(M − 1)→ ŝ(M). This implies that ŝ(M − 1) 6≡0 ŝ(M).
Therefore, we can choose p ∈ Lit such that ŝ(M − 1) |= p (and hence also ŝ(i) |= p
for every 0 ≤ i ≤ M − 1) and ŝ(M) 6|= p. Furthermore, for every 0 ≤ k ≤ M and
0 ≤ j ≤ n, choose formulae p j ∈ Lit and ϕk, j ∈ flatCTL∗( � ) as follows.

• p j = true if t ′j ≡0 t ′′j ; otherwise, choose p j such that t ′j |= p j (and hence
s |= p j ) and t ′′j 6|= p j , which is possible by definition of ≡0.

• ϕk, j = true if ŝ(k) ≡ t ′′j ; otherwise, choose ϕk, j such that ŝ(k) |= ϕk, j and
t ′′j 6|= ϕk, j , which is possible by definition of ≡.

For 0 ≤ k ≤ M , define ψk = � (p1 ∧ · · · ∧ pn, ϕk,1 ∧ · · · ∧ ϕk,n). Furthermore, for
0 ≤ j ≤ n, define ξ j = � (ϕ0, j ∨· · ·∨ϕM−1, j ,¬p). Define ϕ = ∃((∧0≤k≤M ψk)∧
(
∧

0≤ j≤n ξ j )).

Then s |= ϕ, as can be seen as follows. Consider an s-path s̄ that is an extension of ŝ
(such a path exists because→ is total); so s̄(k) = ŝ(k) for every 0 ≤ k ≤ M . First, we
show that s̄ |= ψk for every 0 ≤ k ≤ M . Let 0 ≤ k ≤ M . Then by definition of the
ϕk, j , for every 0 ≤ j ≤ n, s̄(k) |= ϕk, j while for every 0 ≤ i < k, by definition of
the p j and by the fact that s is≡0-equivalent to s̄(i), we have s̄(i) |= p0∧· · ·∧ pn .
Second, we show that s̄ |= ξ j for every 0 ≤ j ≤ n. Let 0 ≤ j ≤ n. By definition of
p, we have s̄(M) |= ¬p. Furthermore, for every 0 ≤ k < M , we have s̄(k) |= ϕk, j

by definition of the ϕk, j , so s̄(k) |= ϕ0, j ∨ · · · ∨ ϕM−1, j .

Next, we show that t 6|= ϕ. Consider a t-path t̄ and suppose (**) t̄ |= ∧0≤k≤M ψk .
We show that then there exists 0 ≤ j ≤ n such that t̄ 6|= ξ j . Our first observation is
that by assumption (**), it must be the case that for every 0 ≤ k ≤ M , there exists
l ≥ 0 such that for every 0 ≤ j < l, t̄( j) ≡0 t and ŝ(k) ≡ t̄(l). Namely, suppose it
were not the case. Then we can choose 0 ≤ k ′ ≤ M such that for every l ≥ 0, [there
exists 0 ≤ j < l such that t̄( j) 6≡0 t] or [ŝ(k ′) 6≡ t̄(l)]. In the first case, p0∧· · ·∧ pn

does not hold for all 0 ≤ j < l and in the second, ϕk′,l does not hold in t̄(l), hence
ϕk′,1 ∧ · · · ∧ ϕk′ ,n does not hold in t̄(l). But that means that t̄ 6|= ψk′ . Contradiction
with assumption (**). So for every 0 ≤ k ≤ M , there exists l ≥ 0 such that for every
0 ≤ j < l, t̄( j) ≡0 t and ŝ(k) ≡ t̄(l). By the definition of M , it is also the case for
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such a k that for every 0 ≤ i < k, we have ŝ(i) ≡0 s. So, condition 3a above holds.
By assumption (*), it must then be the case that condition 3b does not hold, i.e. we
can choose l ′ ≥ 0 such that for every 0 ≤ j < l ′, t̄( j) ≡0 t and for every k ≥ 0
such that ŝ(i) ≡0 s for every 0 ≤ i < k, we have ŝ(k) 6≡ t̄(l ′). Let N be the largest
number such that t̄(0) −≡0→ t̄(1) −≡0→ · · · −≡0→ t̄(N − 1) → t̄(N). Clearly,
we also have l ′ ≤ N . We show that ξl′ cannot hold. Namely, if it has to hold along
t̄ , then the eventuality ¬p can only be fulfilled in t̄(N) or beyond it — this follows
from the definition of p, the fact that s ≡ t , and the definition of N . That means
that the state formula ϕ0,l′ ∨ · · · ∨ ϕM−1,l′ has to hold in t̄( j) for every 0 ≤ j < N .
However, it does not hold in t̄(l ′). This follows from the definition of the ϕk, j and
from the fact that by definition of N , for every 0 ≤ j < N , t̄( j) is equal to some t ′′h
(0 ≤ h ≤ n).

We conclude that ϕ distinguishes between s and t . By Lemma 6.5.0.2, it follows that
then there is also a formula ϕ ′ ∈ flatCTL∗( � ) that distinguishes between s and t ,
from which it follows that s 6≡ t . Contradiction. So assumption (*) cannot be true. �

6.5.2.5 C Assume that � is finitely branching and also finitely branch-
ing under Lit-stuttering (recall that by Convention 6.1.0.1,→ is total). Then ≡flat∗

is adequate for flatCTL∗( � ).

A surprise

So far, we have shown that flatCTL∗( � ) and flat−CTL( � ) have different distinguish-
ing powers14, while both for the case CTL∗/CTL and the case CTL∗( � )/CTL( � )
the starred and unstarred versions of the logic yield the same induced equivalence.
Figure 6.5 gives the picture that we have established so far. Logics that occur on the
same line have equal distinguishing powers (the induced behavioural equivalences are
also given on the same line, between parentheses), while logics that are placed higher
have equal or more distinguishing power than lower ones. A continuous line between
a higher and a lower logic means that the higher logic has strictly more distinguishing
power. In the beginning of this section we have seen an example separating≡flat∗ and
≡flat− , while separating examples for ≡bis and ≡stut are easy to construct. A question
that remained open so far is whether ≡stut is strictly finer than ≡flat∗ . The following
lemma implies that there is no separating example: ≡stut and ≡flat∗ coincide.

6.5.2.6 L ≡stut = ≡flat∗ .

14This is not really surprising, as it can be argued that flat−CTL(
�
), when compared to flatCTL∗(

�
),

not only has the usual restriction that there may only be a single Until formula inside the scope of a
path quantifier, but the use of the negation inside this scope is restricted as well. This is the reason why
we did not call it flatCTL(

�
).
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CTL∗, CTL

CTL∗(
�
), CTL(

�
)

flat−CTL(
�
)

flatCTL∗(
�
)

(≡bis)

(≡stut)

(≡flat∗ )

(≡flat− )

Figure 6.5: Different distinguishing powers.

P Because ≡stut is adequate for CTL∗( � ), ≡flat∗ is adequate for flatCTL∗( � ), and
flatCTL∗( � ) ⊆ CTL∗( � ), we clearly have ≡stut ⊆ ≡flat∗ . In order to prove ≡stut ⊇ ≡flat∗ ,
we have to show that ≡flat∗ satisfies the conditions in Definition 6.3.2.5. Points 1 and 2
are easy. As to point 3, assume that s −≡flat∗→ s1 −≡flat∗→ . . . −≡flat∗→ sk−1 → sk such
that k ≥ 0. By point 3 in Definition 6.5.2.1 of ≡flat∗ , it is easy to see that there exists
t −≡0→ t1 −≡0→ . . . −≡0→ tl−1 → tl such that l ≥ 0 and sk ≡flat∗ tl . Next, we show that
any two states t j and t j ′ with 0 ≤ j ≤ j ′ < l are ≡flat∗-equivalent. Let 0 ≤ j ≤ j ′ < l. By
point 3 in Definition 6.5.2.1 of ≡flat∗ , we can choose 0 ≤ i ≤ i ′ < k such that t j ≡flat∗ si

and t j ′ ≡flat∗ si ′ . By definition, si ≡flat∗ si ′ . So t j ≡flat∗ t j ′ . �

6.6 Partition Refinement for Flat Logics

In this section we indicate how a partition refinement algorithm for flat equivalence
can be obtained by instantiating the generic algorithm of Figure 6.3 in an appropriate
way. As ≡flat∗ coincides with ≡stut, we only consider ≡flat− here. Like in Section 6.4,
we sketch a PRA for the “divergence blind” variant of this equivalence, and then
indicate how it can be adapted to obtain a PRA for ≡flat− . We define ≡dbflat as in
Definition 6.5.0.3, but without clause 2. It is straightforward to define in addition
the approximants ≡n

dbflat (cf. Definition 6.4.0.5) and to prove that for a transition
system � that is finitely branching and also finitely branching under Lit-stuttering,
s ≡dbflat t iff ∀n∈ � s ≡n

dbflat t . (cf. Lemma 6.4.0.6).

6.6.0.1 D Let � ⊆ � (6).

flatSPL( � ) = {〈fin, 〈B1, B2〉〉 | B1 ∈ Part(≡0), B2 ∈ � }.
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Lemma 6.4.0.8 now straightforwardly extends to the case xx = dbflat, implying that
also Lemma 6.4.0.9 holds for this case, and hence the algorithm of Figure 6.3 can be
used to compute Part(≡dbflat).

What is left is to indicate how this algorithm is adapted for the divergence sensi-
tive version of the equivalence, ≡flat− . This turns out to be simple. Unlike the defi-
nition of ≡stut, the second clause of Definition 6.5.0.3, infstut≡0(s) iff infstut≡0(t),
does not depend on the equivalence ≡ that is being defined by this fixpoint defini-
tion. This implies that ≡flat− can alternatively be defined by s ≡flat− t iff [s ≡dbflat t
and infstut≡0(s) iff infstut≡0(t)]. As a result, the PRA for ≡dbflat is adapted for
≡flat− by adding a postprocessing phase that separates the states that have infinite
Lit-stuttering from those that have not. If � is finite, this boils down to detecting
cycles within ≡dbflat classes.

6.7 Related Work

In modal logic, bisimulation-like concepts have been around for a long time, e.g. the
zig-zag relations introduced in the 60s (a survey can be found in [Ben94]), and the
p-relations in [Ben76].

In computer science, bisimulation is usually attributed to Park, who introduced
the term in [Par81], in the context of automata. Milner introduced the notion of
simulation in [Mil71] and observational equivalence in [Mil80]. Branching bisim-
ulation has been proposed as an alternative to observational equivalence in, among
others, [GW89, vG90a, vG93a, vG93b]. A large variety of behavioural equivalences
has been defined and studied over the past ten years; see [DN87] for a discussion.
Also [BK90] contains a lot of material on this topic.

The conception of bisimulation took place independent of the development of
branching-time temporal logics like CTL ([CE81]), CTL∗ ([EH86]), µ-calculus
([Koz83]) and Hennessy-Milner Logic ([HM85]). Several later studies have inves-
tigated the links between bisimulation and the equivalences induced by these logics
([HM80, GS84, HM85, Sti89, BCG88, LGS+95, Cho95]) as well as between vari-
ations on these notions ([BR83, BCG88, DNV90b, BFG+91, GKP92, vBvES94]).
In [Jos90], the results of [BCG88] are generalised by considering Kripke structures
together with constraints on the interaction with the environment. In particular
this answers the question how to characterise fairness. [ASB+94] also studies the
equivalences that are induced by CTL and CTL∗ on Kripke structures with fairness
constraints.

Partition refinement algorithms originate in automata theory. Algorithms for
minimisation of automata (see [Hop71]) form a precursor; optimisations and adapta-
tions have been presented in [PT87, KS90, BFH+92]. For the case of CTL∗( � )/stut-
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tering equivalence, partition refinement algorithms can be found in [BCG88, GV90].
The reader who is interested in game characterisations of equivalences could have

a look at [Ehr61, Fra54, IK87, Tho93, NC94].

6.8 Concluding Remarks

We have investiged the correspondences between a number of temporal logics and
behavioural equivalences, and also between behavioural equivalences and partition
refinement algorithms. After recalling the adequacy result of bisimulation for CTL
and CTL∗, we dropped the Next operator and presented adequacy results of stut-
tering equivalence for the nextless versions of these logics. Although most of these
results are not new, there are a few places where we have established generalisations
of older results. Most notably, we did not require finiteness of the transition system,
while this is an essential condition in both [BCG88] and [DNV90b]. Indeed, in
those papers a stronger correspondence between stuttering equivalence and CTL( � )
is proven, namely that every (finite) Kripke structure can be characterised (up to stut-
tering equivalence) by a single CTL( � ) formula15. For adequacy, only a certain form
of finite branchingness is needed.

These expositions served as a step up to the presentation of a generic partition re-
finement algorithm in Section 6.4. Central to this algorithm is the notion of splitter.
We showed how partition refinement algorithms for the aforementioned logics can
be obtained by varying the definition of the splitter. Since splitters lie at the heart
of the algorithm, its complexity may be expected to be tunable through these split-
ters. The identification of a “cheaper” notion of splitter has led us to consider (see
Section 6.5) further restrictions on the CTL∗ fragments, resulting in the definition
of flat logics. The “starred” version that we considered, flatCTL∗( � ), is obtained
from CTL∗( � ) by restricting the first argument of Until formulae to boolean com-
binations of propositions. On the other hand, we defined an “unstarred” version,
flat−CTL( � ), that not only has the usual restriction that there may only be a single
Until formula inside the scope of a path quantifier, but also that it restricts the use of
the negation inside this scope.

The distinguishing power of flat−CTL( � ) is characterised by the equivalence
≡flat− . This equivalence is similar to that of delay bisimulation introduced in [Mil83].
The only difference is that the latter is defined over edge-labelled transition systems.
So, when flat−CTL( � ) is reinterpreted over such transition systems (for details of
the difference between the state and action-based approaches see [DNV90a]), its

15[Pnu86], which defines a number of “compatibility” types between logics and equivalences, calls
this expressivity.
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induced equivalence will probably coincide with delay equivalence. To the best of
our knowledge, no modal characterisation of this equivalence has been given before.

A surprise occurred when investigating the difference between ≡flat∗ , the equiva-
lence induced by flatCTL∗( � ), and stuttering equivalence: it turns out that there is
no difference. As a consequence, we have shown that nextless CTL∗ can be flattened
without affecting its distinguishing power.

Finally, Section 6.6 showed that a partition refinement algorithm for restricted
flat equivalence, ≡flat− , can be obtained by instantiating our generic algorithm with
the abovementioned “cheaper” notion of splitter.





Chapter 7

In Conclusion

This final chapter looks back and evaluates the research presented in this
thesis. We close by briefly looking ahead.
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This chapter evaluates the research presented in this thesis, focussing on the over-
all picture. After a short summary, we start by briefly looking back at the original
research goal, and shed some light on the choice of the specific topics of the chapters.
Then, we summarise the main achievements and conclusions. This final chapter ends
with a look ahead at on-going and future work. For more specific comments, as well
as pointers to related work, the reader is referred to the concluding sections at the
ends of the individual chapters.

The topics that have been covered by this thesis are grouped around two main
themes, to wit, weak and strong preservation of properties. The context is the ap-
plication of abstraction methods to alleviate the state-explosion problem in model
checking. Weak preservation then means that temporal properties that hold for the
abstraction also hold for the original system. Strong preservation requires that in ad-
dition, any property absent in the abstraction fails to hold for the original system as
well. Besides the investigation of appropriate notions of abstraction and the justifica-
tion of corresponding preservation results, a major concern of a theory of abstraction
is the construction of such abstractions. This thesis suggests Abstract Interpretation
as an appropriate framework for the construction of weakly-preserving abstractions.
For strong preservation, the partition-refinement paradigm is considered.

7.1 Research Goal & Approach

The starting point of our research was to investigate the extension of Abstract In-
terpretation to reactive systems. This goal became more specific when this rather
general topic was narrowed down to the question how to use Abstract Interpretation
to tackle the state explosion in model checking. Partial answers turned into notes
and articles containing, basically, the ideas presented in Chapter 4 of this thesis,
Section 4.8 excepted. The theory of Abstract Interpretation has traditionally been fo-
cussed on program analysis as explained in the first chapter. It aims at the automatic
examination of programs to find properties that can subsequently be used for the op-
timisation or parallellisation of code for instance. Thus, the theory is based on weak
preservation of properties: any property that can be detected in the abstraction in-
creases the knowledge about the concrete system and improves the result. Properties
that do not hold in the abstraction may or may not hold in the concrete system — we
cannot know and hence such information just does not contribute. One may won-
der how effective this method is when employed in the context of model checking,
where definite absence or presence of specific properties needs to be shown. Specifi-
cally, what should be done in the case that a property that we are interested in, does
not hold in the abstracted system? This question led to the investigation of strongly
preserving abstractions of transition systems, which eventually resulted in Chapters 5
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and 6, as well as an extension of the abstract interpretation techniques, described in
Section 4.8.

7.2 Conclusions

Chapter 3 was initially intended as an introduction to Abstract Interpretation. The
approach that we followed was to start from the simple notion of description relation
and to motivate a number of conditions that may be imposed on it, step by step.
Although a similar approach is taken in several other articles (see Section 3.1 for
references), we presented a few new results.

Lemmata 3.2.1.6 and 3.2.1.8 give conditions on the abstraction and concreti-
sation relations, α and γ , which characterise weakenings of the Galois-connection
framework. The need for such weaker frameworks has been recognised before (see
Section 3.4), and indeed many practical applications of Abstract Interpretation are
based on such weakenings. The contribution of Lemmata 3.2.1.6 and 3.2.1.8 is
that they identify the relation between α and γ in such cases. It turns out that this
relation implies weak versions of monotonicity, reductiveness, and extensiveness —
the defining properties of a Galois connection. Thus, we have shown that these
weaker frameworks imply a “pre-Galois” connection. These theoretical results are
certainly not spectacular. Also, they do not directly play a role in the rest of the
thesis. On the other hand, Abstract Interpretation is a relatively young activity that
was developed as a unifying theory for a variety of pre-existing applications, and
a more fundamental study of the underlying choices seems to be justified (see e.g.
[Mar93, CC92a, CC92b]). We think that Section 3.2.1 of this thesis offers an an-
swer to the question why Galois connections are so intimately related to Abstract
Interpretation.

The subsection on the “power construction” (page 44) should also be viewed in
this light. The results presented there are theoretically involved (though not “deep”),
and are not essential to the rest of this thesis. The investigations were motivated by
the shift from the domain C of “elementary” concrete objects to its power set � (C)
that usually takes place. This lifting to the “static” ([CC77]), “collecting” ([CC92b]),
or “accumulating” ([JN95]) semantics as it is called in various articles is standard;
sometimes it even goes without saying. We have tried to expose the motivations for
this shift, while Lemmata 3.2.1.11 and 3.2.1.12 identify conditions under which the
resulting framework fits the characterisations in terms of the (pre-)Galois connections
discussed before.

Section 3.2.2 on strong preservation indicates how the various choices and as-
sumptions, discussed before, are affected in the case that we are interested in strong
preservation of properties. As such, it is a leg-up to Chapters 5 and 6.
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7.2.1 Weak preservation

In Chapter 4, we investigate how the paradigm of Abstract Interpretation may be ap-
plied to the analysis of reactive systems. We model such systems by Kripke structures,
while the properties that should be verified are expressed in CTL∗ (although our re-
sults remain true if we would have taken the more expressive µ-calculus as our prop-
erty language instead — see [DGG]). The main result of Sections 4.2 through 4.7
is that weak preservation of full CTL∗ is possible if we take mixed transition systems
as descriptions of Kripke structures. Such mixed transition systems accommodate
two “dual” transition relations. Universal formulae in CTL∗ are interpreted over the
free transition relation, while existential formulae are evaluated over the constrained
relation. An important point is that the appropriateness of such Abstract Kripke
structures, i.e. how many CTL∗ formulae can be verified via the abstraction, may
be tuned through the form of the abstract states. In particular, preservation of ex-
istential properties is on an equal footing with that of universal properties. This is
the consequence of imposing a partially ordered structure on the abstract states. The
availability of the “larger” states in this ordering is essential in preserving existential
properties — without them, the constrained abstract transition relation tends to be
rather sparse, resulting in many existential properties not holding on the Abstract
Kripke structure (see Section 4.9.1, page 104).

One may argue that existential properties are less interesting in the practice of
verification. Even though this may be true, this should not be a reason for develop-
ing a theoretical framework in which there is an asymmetry between the existential
and universal fragments. Furthermore, the partial-order structure on the abstract
states is useful anyway once it is recognised that it may be desirable to construct
approximations to the optimal descriptions; see Sections 4.4 and 4.6.

In the abstract interpretation approach, it is the task of the user to provide an
appropriate abstract domain. This involves choosing abstract states that have the
right “granularity”. On the one hand, these descriptions should be detailed enough
to induce Abstract Kripke structures over which the properties of interest can success-
fully be verified. On the other hand, the abstract states should not expose too much
detail, to avoid Abstract Kripke structures from blowing up into an intractable size.
Together with the set of abstract states, abstract interpretations of the operations in
the programming language have to be provided. This allows the automatic construc-
tion of Abstract Kripke structure by “running” the program over the abstract values.
These choices require intelligence. The choice of an appropriate set of abstract states
presupposes a thorough understanding of both the program and the property to be
verified. Providing correct abstract operators may turn out to be even more diffi-
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cult1. Several attempts may be necessary before the verification can successfully be
concluded. On the other hand, it may be argued that the process of choosing an
abstract domain, model checking a property, and, if this is unsuccessful, analysing
the reasons, is a direct road to understanding the intricacies of both the program and
specification.

Nevertheless, the question what to do when verifying the abstraction fails remains
a valid one. In particular, approaches with a higher degree of automation seem attrac-
tive. It is this question that provoked the investigations reported on in Section 4.8
and Chapters 5 and 6. Thus, starting from Section 4.8, the focus is directed towards
methods for strong preservation.

7.2.2 Strong preservation

The approach using abstraction families, sketched in Section 4.8.1, is an extension
of the Abstract Interpretation approach. The ideas described there are inspired by
similar notions of “tunable” abstractions in the field of logic programming, see for
example [Pla84]. A novel aspect is the incremental computation of abstract functions.

In Chapters 5 and 6, a different paradigm to construct strongly preserving ab-
stractions is considered: partition refinement algorithms. This approach may be
viewed as a process of stepwise refinement of an Abstract Kripke structure. The idea
is that in every refinement step, the abstract states are split up, until the structure
contains sufficient detail to be strongly preserving. If we compare this approach to
abstract interpretation, some fundamental differences can be observed.

No user interaction is required. One could say that, via successive refinements,
the appropriate abstract domain is constructed by the algorithm rather than being
provided, through trial and error, by the user. Indeed, the transitions are automati-
cally computed too. Second, not only are the successive abstract models automatically
refined, but this process is goal directed too: states are being split according to the
companion set of the properties of interest (Chapter 5), or to the behavioural equiv-
alence induced by the specification logic (Chapter 6), hence ensuring a conservative
approach in which states are only refined when needed. In the abstract interpre-
tation approach the refinement need not necessarily be so goal directed, regardless
of whether the user is responsible for choosing an appropriate abstract domain, or
the granularity of the abstract domain can be tuned through a parameter as in the
abstraction families.

1Although the abstractions of arithmetic operators are rather obvious in the examples given in Chap-
ter 4, practical experience shows that correctness proofs may indeed be quite involved once the concrete
operations to be abstracted have a more complex nature. This is the case with the unification operator
in logic programs for example (see [BCM95]).
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A third difference is that in the partition-refinement approach, the abstract states
are always “disjoint”2. As a result, the intermediate Abstract Kripke structures that
are obtained during the refinement process (which are weakly preserving) may be less
suitable for the analysis of existential properties — cf. the remarks in Section 4.9.1.
However, as soon as a strongly preserving abstract model is constructed, both truth
and falsehood of properties transfer from abstract to concrete model, and hence uni-
versal and existential properties are in equal positions.

The last difference that we mention, concerns the price we are paying for the
fact that the process of finding a suitable abstraction can be automated, namely: the
partition refinement algorithms need to be able to compute the transition relation of
the underlying concrete model. One may ask what the value is of such algorithms in
coping with the state explosion, if the concrete model is still needed. One answer is
that we envisage applications in combination with symbolic methods, where sets of
states and transition relations are represented by BDDs for example. Such symbolic
methods may often be combined with approximation techniques, see e.g. [DGD+94,
DWT95]. The techniques presented in Chapter 5 may then offer an interesting
alternative to symbolic model checking : in addition to computing the set of states
satisfying the specification, an abstract model is also constructed. Such a model may
be useful when other properties need to be verified, possibly serving as a starting
point for further refinement. Also, it facilitates the analysis of counter-examples.

Another answer is that there is a use for reduction techniques, even when the
concrete transition relation is needed as input. In particular, the partition refinement
algorithms of Chapter 6, which compute the minimal abstract system that strongly
preserves all properties of some given specification logic, are often useful as a prepro-
cessing phase. A subsequent phase may then involve several model checking sessions
on this reduced structure; but it can also be that the minimised model is further com-
posed with parallel components. Prior minimisation may then be crucial in keeping
the resulting product tractable.

Chapters 5 and 6 also offer some insights that are interesting from a theoretical
point of view. The distinction between logical and behavioural definitions of equiva-
lences gives rise to complementary ways of designing partition refinement algorithms.
In the case of an equivalence on states that is defined as agreement on the formulae
in (a fragment of ) a logic, partition refinement is parameterised by the companion
of the (fragment of the) logic. This viewpoint is developed in Chapter 5, where the
companion is identified as the minimal set of formulae with regard to which the ab-
stract states need to be consistent. Consistency with respect to a formula directly

2I.e. for any two abstract states a and b of a model obtained by partition refinement, we have
γ (a) ∩ γ (b) = ∅.
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translates to the operational notion of splitting with respect to a formula, hence pro-
viding the basis for a partition refinement algorithm. This type of algorithm is novel
— in Section 5.8 it is argued that it offers new perspectives in those cases where the
equivalence induced by a set of properties does not have a well-behaved behavioural
counterpart.

In the case of a behavioural equivalence, partition refinement algorithms exist for
bisimulation and stuttering equivalence. Chapter 6 shows how both may be viewed
as instances of a generic algorithm that is parameterised by the notion of a splitter,
which is induced by the form of the definition of the equivalence. It then proceeds by
considering two novel variants of CTL∗/CTL. One of these induces an equivalence
that is coarser than stuttering equivalence — and hence offers possibilities for better
model reduction. Yet, the logic’s expressive power is still expected to be sufficient for
most practical uses. The behavioural equivalence induces a new instantiation of the
generic partition refinement algorithm. One could say that, up to optimisations, an
algorithm is obtained for free. The equivalence induced by the other logic coincides
with stuttering equivalence, surprisingly.

7.3 Looking Ahead

This thesis does not give much experimental evidence for the practical usefulness of
the proposed methods — there was simply no more time for a thorough practical
evaluation. This may indeed be a weak point of this work. However, we think that
it is important to have a firm theoretical basis before starting to build tools. This
holds especially when the theory lies at the heart of a quickly expanding research area
with a growing number of applications. This certainly is the case as can be seen from
the considerable attention that the application of ideas and techniques from Abstract
Interpretation to the area of model checking has received lately. Furthermore, we are
embarking on some more practical work at present. One line of on-going work has
been extensively discussed in Section 4.9.2, and will not be repeated here.

Another, more recent development is the start3 of SION4 project nr. 612-33-008,
“A Modular Toolset for µCRL developed using µCRL”. The goal of this project is
the development of a tool set aimed at supporting specification and verification in
µCRL ([GP95]). A major concern is keeping the project manageable, now and in
the long run. We hope to achieve this by a modular approach, connecting tools
that each offer a limited functionality via the ToolBus ([BK95]), and furthermore by

3[DG95] reports on a pilot study.
4“Stichting Informatica-Onderzoek in Nederland” is the computer science branch of the Dutch

national science foundation (NWO).
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taking a strict attitude towards specification, verification and documentation. In the
context of that project, we envisage the integration of model-checking and abstrac-
tion techniques.

Of course, also many questions of a more theoretical nature remain, or are raised
by the various chapters. A topic on which on-going research is focussing is the exten-
sion of the framework of Chapter 4 to transition systems with fairness constraints. One
question that we have answered recently is how fairness constraints lift from concrete
to abstract systems, in other words, how Büchi (Muller/Streett/Rabin) automata are
abstracted. Another possible application of fairness is the generation of constraints
during construction of the abstract model: rather than lifting fairness conditions that
are already present in the concrete model, such constraints are added to the abstrac-
tion so as to constrain its possible behaviours and obtain a more precise description.
This research is indeed motivated by the observation that abstraction often introduces
“loops” that do not correspond to a similar infinite behaviour in the concrete system.
We are currently preparing a publication on the results of these investigations5. An-
other possible extension of Chapter 4 is to consider real-time systems. Verification
of such systems (see [ACD93, HNSY94] for entrances) poses a challenge as the dis-
cretisation of time adds yet another dimension (besides the possible interleavings and
state-space factors that cause a blow-up) to the state explosion. Of a more funda-
mental nature is the investigation of a framework that enables the comparison and
unification of the theories presented in [BBLS92], [Kel95], and Chapter 4.

Also regarding Chapter 6, a possible direction for future work is to extend the
results, in particular the definition of flat logics and the corresponding adequacy re-
sults, to real-time versions of those logics. The distinguishing power of such logics is
very high as a result of the ability to reason about elapsed time. Reduction methods
based on the induced equivalences, which are vital in the context of real-time model
checking, could be improved by weakening the logics as suggested in this chapter.
Indeed, this research was initiated with these motivations in mind. Finally, we men-
tion the research into the distinguishing and expressive powers of the flat variants of
CTL and CTL∗ as a story that is to be continued.

5Joint work with R. Gerth and O. Grumberg, partly sponsored by the Netherlands Organisation
for International Co-operation in Higher Education (Nuffic).
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Samenvatting

De toenemende mate waarin de mens afhankelijk is van apparaten leidt tot verhoogde
eisen aan de betrouwbaarheid van programmatuur. De reden hiervoor is dat steeds
meer toestellen en processen bestuurd worden door geintegreerde processoren en
computers — denk bijvoorbeeld aan liften, automatische bagage-afhandelingssyste-
men en kernreactoren. Deze ontwikkeling vraagt om specificatie- en verificatie-
methoden. Om de correctheid van programmatuur met uiterste nauwkeurigheid te
kunnen vaststellen, zijn wiskundige ofwel “formele” methoden een waardevol hulp-
middel. Zo een methode dient het volgende te bieden:

• Een wiskundig model waarmee het gedrag van een computerprogramma kan
worden beschreven.

• Een formele taal waarin de specificatie kan worden uitgedrukt.

• Een methode om te verifiëren of het model aan de specificatie voldoet.

Model checking is zo een formele methode. Hierin wordt een programma ge-
modelleerd als een transitiegraaf, die alle mogelijke toestanden weergeeft waarin het
programma zich kan bevinden, alsook de toestandsovergangen die kunnen optre-
den. De specificatie wordt uitgedrukt als een formule in een temporele logica. Dit is
een formele taal waarin de volgorde en de noodzakelijkheid van proposities of acties
kunnen worden beschreven. Bijvoorbeeld, men kan er eigenschappen in uitdrukken
als: “wanneer de lift wordt opgeroepen, dan zal hij uiteindelijk komen”. De verifi-
catie gebeurt nu door na te gaan of de formule geldig is in de transitiegraaf. Voor
diverse klasses van modellen en temporele logica’s bestaan algoritmes waarmee dit au-
tomatisch gedaan kan worden. Echter, de afmetingen van de transitiegraaf groeien
zeer snel bij toenemende omvang van het programma. Elke extra bit geheugen leidt
potentieel tot een verdubbelde toestandsruimte. Indien een programma bestaat uit
afzonderlijke componenten die parallel uitgevoerd worden, dan kan ook het aantal
mogelijke aaneenschakelingen (“interleavings”) van acties van de afzonderlijke com-
ponenten zeer groot zijn. Door deze “toestandsexplosie” is model checking alleen
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haalbaar voor kleine programma’s. In de afgelopen jaren is deze grens voortdurend
opgeschoven door toepassing van verschillende technieken om de afmetingen van de
transitiegraaf te reduceren.

In dit proefschrift wordt een reductietechniek bestudeerd die uitgaat van de idee
dat, afhankelijk van de te checken eigenschappen, sommige aspecten van toestanden
genegeerd kunnen worden. Alle toestanden die slechts in die aspecten verschillen,
kunnen dan geı̈dentificeerd worden. Een manier om dit te formaliseren is een ver-
zameling abstracte toestanden te veronderstellen zodanig dat iedere abstracte toestand
een verzameling (concrete) toestanden representeert. De volgende vragen doen zich
hierbij voor:

• Wat is de relatie tussen de te checken eigenschappen en de aspecten die gene-
geerd kunnen worden?

• Hoe is een transitiegraaf op basis van de abstracte toestanden te definiëren
zodanig dat eigenschappen die in dit abstracte model gelden, ook correct zijn
met betrekking tot de concrete graaf?

• Hoe kan, gegeven een programma en een verzameling te checken eigenschap-
pen, een abstract model geconstrueerd worden?

Na een algemene inleiding in Hoofdstuk 1 en een verklaring van de te gebruiken
formalismen en notaties in Hoofdstuk 2, biedt Hoofdstuk 3 een algemene inleiding
tot abstractietheorieën. Een abstractietheorie formaliseert de relatie tussen concrete
en abstracte objecten en geeft preservatieresultaten, d.w.z. specificeert welke eigen-
schappen van abstracte objecten ook voor de concrete objecten gelden. Er wordt een
onderscheid gemaakt tussen zwakke en sterke preservatie. In het geval van zwakke
preservatie is elke eigenschap die een abstract object a heeft, ook geldig voor alle
concrete objecten die door a geabstraheerd worden. Bij sterke preservatie is ook
het omgekeerde het geval. Het moge duidelijk zijn dat indien de logica waarin eigen-
schappen geformuleerd worden, een klassieke notie van negatie heeft, sterke preserva-
tie geimpliceerd wordt door zwakke preservatie. Dit onderscheid speelt een hoofdrol
in de rest van het proefschrift.

Naast preservatieresultaten biedt een abstractietheorie methoden om abstracte
objecten te construeren. In het bijzonder besteedt Hoofdstuk 3 aandacht aan Ab-
stracte Interpretatie. Deze theorie is ontwikkeld als formalisering en unificatie van
verschillende programma-analyses. Deze leiden informatie over het gedrag van een
programma af met als doel het te optimaliseren, bijvoorbeeld door het opsporen van
bepaalde soorten fouten of het detecteren van stukken code die parallel uitgevoerd
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kunnen worden. Doordat zulke analyses in het algemeen op zwakke preservatie ge-
baseerd zijn, zijn ze niet volledig. Bijvoorbeeld, hoewel gedetecteerde fouten in het
abstracte model erop wijzen dat er daadwerkelijk fouten in het programma staan,
geeft de afwezigheid van fouten in de abstractie geen garantie voor correctheid van
het programma. Men zou kunnen zeggen dat vragen naar de geldigheid van eigen-
schappen met “ja” of “weet niet” beantwoord worden door de abstractie.

De constructie van zo een abstractie wordt geformaliseerd als de uitvoering van
het programma over een “niet-standaard” (abstract) domein van beschrijvingen van
concrete data, waarbij de programma-operatoren “abstract geı̈nterpreteerd” worden.
Een eenvoudig voorbeeld is het interpreteren van het vermenigvuldigingssymbool
over de beschrijvingen “positief ” en “negatief ” van getallen: −1515×17 wordt aldus
geı̈nterpreteerd als “negatief maal positief ”. Het abstracte resultaat, “negatief ”, geeft
slechts partiële informatie over het werkelijke (concrete) resultaat — daartegenover
staat dat het op gemakkelijker wijze verkregen wordt.

In Hoofdstuk 4 wordt Abstracte Interpretatie opgezet voor het geval dat pro-
gramma’s gemodelleerd worden door transitiegrafen (in het bijzonder Kripke structu-
ren) en eigenschappen uitgedrukt worden in de temporele logica CTL∗ (“Computa-
tion Tree Logic”). In deze logica kan zowel het bestaan van een gedrag dat aan zekere
eigenschappen voldoet (existentiële eigenschap), worden uitgedrukt, alsook het feit dat
alle gedragingen van een programma aan een bepaalde eigenschap voldoen (univer-
sele eigenschap). Een notie van Abstracte Kripke structuur waarin twee transitierelaties
verenigd zijn, wordt gedefinieerd. Eén van de hoofdresultaten van het hoofdstuk is
dat CTL∗ zwak gepreserveerd wordt voor zulke Abstracte Kripke structuren. Hoe-
wel de negatie van eigenschappen kan worden gespecificeerd in CTL∗, hoeft zwakke
preservatie toch geen sterke te impliceren, omdat de universele en existentiële eigen-
schappen geı̈nterpreteerd worden over verschillende transitierelaties van het abstracte
model. Het kan dus het geval zijn dat noch eigenschap ϕ, noch de negatie ¬ϕ geldt.
Verder wordt getoond hoe Abstracte Kripke structuren geconstrueerd kunnen wor-
den door abstracte interpretatie van programma’s.

De geschiktheid van het abstracte model, d.w.z. hoeveel CTL∗-eigenschappen er
in gelden, wordt bepaald door de keuze van het abstracte domein (inclusief de inter-
pretaties van programma-operatoren daarover). Deze keus is aan de gebruiker van de
methode. De vraag die voor de hand ligt, is hoe een geschikt abstract domein bepaald
kan worden, gegeven een programma en een verzameling te checken eigenschappen.
De aanzet tot een antwoord wordt gegeven in Sectie 4.8, waar de notie van abstractie-
familie wordt gedefinieerd. Deze kan worden gezien als een abstract domein waarvan
de “fijnkorreligheid” kan worden aangepast via een parameter.
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Hoofdstuk 5 en 6 benaderen de vraag naar de vorm van een geschikt abstract
domein vanuit een meer theoretisch oogpunt, door uit te gaan van de eis van sterke
preservatie van CTL∗-eigenschappen. Waar de analyse van programma’s op incom-
plete methoden kan berusten en dus voldoende heeft aan zwak preserverende abstrac-
ties, vereist verificatie een ja/nee-antwoord en dus sterke preservatie. In Hoofdstuk 5
worden, uitgaande van een verzameling sterk te preserveren CTL∗-eigenschappen,
voldoende voorwaarden afgeleid waaronder een abstract model sterk preserverend is
met betrekking tot deze eigenschappen. Uit deze voorwaarden wordt een algoritme
afgeleid dat herhaald abstracte toestanden opsplitst, totdat een sterk preserverend
model is verkregen. Voor verschillende deelverzamelingen van CTL∗ worden derge-
lijke partitie-verfijningsalgoritmes ontwikkeld. De idee om zulke algoritmes te baseren
op een verzameling te preserveren formules is nieuw — we spreken in dit geval van
logische partitie-verfijning.

Er bestaan reeds partitie-verfijningsalgoritmes die de toestanden van een abstracte
transitiegraaf zodanig opdelen, dat uiteindelijk elke abstracte toestand met een equi-
valentieklasse van een zogenaamde “gedrags-equivalentie” (“behavioural equivalence”,
bijvoorbeeld bisimulatie of stotter-equivalentie) correspondeert. Ook deze gedrags-
partitie-verfijningsalgoritmes kunnen worden gebruikt om abstracte modellen te con-
strueren die sterk preserverend zijn, omdat bij elke van deze gedrags-equivalentie een
sublogica van CTL∗ “past”. Hoofdstuk 6 laat zien hoe deze bestaande algoritmes ge-
zien kunnen worden als invulling van een generiek algoritme, door het te parametri-
seren met de notie van een splitser. Deze wordt bepaald door de vorm van de definitie
van de corresponderende equivalentie. Er wordt een nieuwe sublogica gedefinieerd
die correpondeert met een notie van equivalentie die zwakker is dan bisimulatie of
stotter-equivalentie — en dus tot betere reductie leidt —, maar nog redelijk expres-
sief is. Het bijbehorende partitie-verfijningsalgoritme is weer een invulling van het
generieke algoritme.



Index

|=, 22
�, 36, 60, 77
v, 38
≡0, 22, 161
≡bis, 27, 149
≡dbs, 156
≡flat− , 169
≡flat∗ , 174
≡stut, 157
−≡→, 155
‖·‖Lit, 21

α‖·‖Lit, 61
αRC , 63

αRF , 65
α � , 67

αI, 61
αM , 66
ρ, 31
∀CTL, 20, 142
∀CTL−, 129
∀CTL∗, 19, 101
� , 59
CTL, 18, 20, 111
CTL∗, 7, 9, 18, 19, 58, 89–91, 101
∃CTL, 20
∃CTL∗, 19
bool , 168
comp, 125, 136
flat−CTL( � ), 170
flatCTL∗( � ), 168

� , 67
infstut≡, 157
init, 127
intp, 127
£, 22
Lit, 18
length, 21
Lµ, 18, 91, 101, 111
lfp, 16
µ-calculus, 9, 18, 91, 101, 109, 143,

153
Pred , 120
Prop, 18
partit≡, 155
paths, 21, 150, 157
post R , p̃ost R , post •R , 14
preR , p̃reR , pre •R , 14
rel , 127
sim, 26
simn , 26, 133
simeq, 27
simeqn , 27, 133
split, 126
subform, 136

abstract, abstractness, 147, 150
Abstract Interpretation, 4, 30, 33
abstract states, 59
abstraction family, 93, 95
abstraction function, 31
abstraction relation, 40

215



216 I

abstraction theory, 30, 34
action system, 67, 90
adequate, adequacy, 49, 147
analysis, 4
approximant, 19, 121
approximation, 105
approximation order, 36, 101
approximation relation, see approxima-

tion order

base, 40
BDD, see binary decision diagram
behavioural equivalence, 25
binary decision diagram, 11, 28, 96,

109–111
bisimulation, 27, 117, 146, 149, 154
bottom (element), 15
BPRA, see partition refinement algo-

rithm, behavioural
branching bisimulation, 117, 154

characteristic predicate, 120
companion, 122, 125
complete partial order (cpo), 16
concretisation function, 31
concretisation relation, 40
consistent, consistency, 50, 122
continuous, 16

description relation, 31, 35
approximative, 36, 39

difunctional, 14, 50
dining mathematicians, 69, 82, 86, 138
distinguishing power, 25
downward-chain-limited, 15
downwards-closed, 15

embedding, 16
equivalence

behavioural, 117, 118, 136

logical, 25, 117, 118
expressive power, 25
extensive, 16

fine, fineness, 49, 147, 149
finitely branching, see image-finite
fixed point (fixpoint), 16

least, 16
formal methods, 2
formula

path, 18
state, 18

Galois connection, 17, 32, 42, 43, 93
Galois insertion, 18, 32, 43, 103, 106
Galois-connection framework, 44
Galois-insertion framework, 44, 60
game, 150, 173
greatest lower bound (glb), 15

image-finite, 14, 21, 158
initial state, 21

abstract, 61
interpretation, 5, 6

abstract, 7, 32, 68, 72, 79, 89,
96, 101

constrained, 69
free, 68

interpretation function, 21, 51
(concrete), 68
abstract, 51
non-standard, see abstract

Kripke structure, 22
Abstract, 59, 66

labelling function, 22
least upper bound (lub), 15
level, 20
literals, 18
lower bound, 15



I 217

maximal element, 15
minimal element, 15
model checking, 5, 27, 89, 127

symbolic, 11
monotonic, 16

next(-state) operator, 18, 152–155

optimal, optimality, 32, 38, 39, 83,
105

part, 21
partially ordered set (poset), 15
partition refinement, 116
partition refinement algorithm, 116,

142, 163, 178
behavioural, 142, 146
logical, 142

path, 21, 147
power construction, 44, 60
PRA, see partition refinement algorithm
pre-extensive, 16
pre-monotonic, 16
pre-reductive, 16
prefix, 21, 147
preservation, 33, 34, 100

strong, 7, 33, 35, 49, 62, 94, 116,
122

weak, 7, 35, 36, 101
principal filter, 15
principal ideal, 15
property

existential, 18, 62, 108
invariance, 4
liveness, 9, 18, 100, 108
safety, 4, 9, 18, 100, 108
universal, 9, 18, 62, 100, 108

proposition, 18
pseudo-simulation, 26, 77, 79, 103,

104

reactive, 2, 5, 58, 90, 100, 110, 112
reductive, 16
refinement, 92

domain driven, 116
property driven, 116

relation, 14

safe, safety, 31, 32, 35, 53, 76, 79, 95,
97

simulation, 26, 103, 106
simulation equivalence, 27, 133, 142
splitting algorithm, see partition refine-

ment algorithm
stuttering equivalence, 155, 157

divergence blind, 156
divergence sensitive, 157
flat, 169
flat star, 174

Stuttering Lemma, 161
suffix, 21

temporal logic, 18
top (element), 15
total, totality, 14, 120, 146
transition relation, 21

abstract, 62
computed, 69
constrained, 63, 104
free, 65

transition system, 21
mixed, 66

upper bound, 15
upward-chain-limited, 15
upwards-closed, 15

verification, 2





Curriculum Vitae

July 25, 1966 Born in Voorburg (ZH), The Netherlands.

1972–1977 Frans-ten-Boschschool, Lichtenvoorde (GLD).

1977–1978 School met den Bijbel, Hedel (GLD).

May 1984 Diploma gymnasium-β, Jeroen-Boschcollege, ’s-Hertogenbosch.

1984–1990 Eindhoven University of Technology. Computing Science.

Jan.–July 1989, Jan. & Feb. 1990, June & July 1990 Weizmann Institute of Sci-
ence, Rehovot, Israel. Traineeship and research on the topic of logic program-
ming, under supervision of prof.dr. E. Shapiro.

Aug. 1990 Master’s degree (cum laude) in computing science, Eindhoven University
of Technology, under supervision of dr. R.T. Gerth, M. Codish and dr. R.P.
Nederpelt. Title master’s thesis: “Abstract Interpretation of Concurrent Logic
Programs for Analysis of Variable Sharing”.

Dec. 1990–Feb. 1995 PhD, Eindhoven University of Technology, under supervi-
sion of dr. R.T. Gerth and prof.dr. J.C.M. Baeten.

Mar. 1995–Mar. 1996 Civil service, Utrecht University. Design and implementa-
tion of a toolset for the specification language µCRL, jointly with dr. J.F.
Groote.

current address:
faculty of Mathematics & Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

e-mail: �'&�� 
 � ��� �	� 
 ����
��"� 
��

219


