
BELL TELEPHONE LABORATORIES
IN CO RPOR4TC0

THE INFORMATION CONIAINCO MCRCIN IS FOR

TM!! USC OF CMPLOVCCS OF =L?LL lELCPMONC
LASOnATORICS. INCO*--A7CO. ANO IS Nor
FOR ● uBLICATION

COVER SHEET

TITLE- Users’ Reference

CASE CHARGED- 39199

FOR TECHNICAL MEMORANDUM

to B

k’XLINGCAS)j- 39199 - 11”

k’lLiNG SUWJiKTS- Compilers
Languages
PDP-11

ABSTRACT

b is a computer language intended for

MM-72-1271-1

DATE- January 7, 1972

AUTHOR- K._Thompson
Ext 2394

recursive s primarily non-

numeric applications typified by system programming. B has a

small, unrestrictive syntax that is easy to compile. Because of

the unusual freedom of expression and a rich set of operators, B

programs are often quite compact.

I’hismanual contains a concise definition of the language, sample

programs, and instructions for using the PDP-11 version of B.

Text - 27’pages
References

< .

MM-72 -1271-I

DISTRISUTION
(REFER GE! 13 Q9-31

COMPLETE MEMORANDUM TO COMFII?TE IIEMORANOUM 10

CORRESPONOENCI? FILE5 -HO K IMOVQM 00UGLA$
MONTGOMERY. U L

OFFICIAL FILE COPV
IFORM 2-7770) - PLUS
ONE WHITE COPV FOR
EACH AOOITIONAL
FILING CASE
REFERENCE

OATE FILE COPY
(FORM E-1328)

13 REFERENCE COPIES

PATENT OIVIS1ON
IF MEMORANLNJM HAS
PATENT SIGNIFICANCE

127 SUP
1673
3416
5222
8234
CUPLGP

AHU, A V
AL MQu IST,4 L JR
N? IOAS, E J
ARt4FlRUST ER, MlSS M E
AVIRILL, R M JR

+BAKER, ti O
BARTLETT, HACIE S
MI. LLINGION, MISS H J
BIPEN, M17S IRWA d
BLEI!3EPG, G J
BODNAR, J J
LN4ENUF1, P J
t114UhN, G u
BRCU4N, W STANLEY
BUCK* I D
CAhACJAY, RULIO H
CAFTAN, J H
CHFN, STEPHEN
CLAY Tfl N,D P
CL INESMITH, C R
CLIHEN, HARVEV
CIPP, IJAVIO H
CORASICK, MISS M J
CkUf4E, LARRY L
01 5A LvO, J J
ljIMINIJ, L d

UULILFY, t4RS F H
EL fNBA4s, FRITs
ET RA, R H
FL FISCHEP, HE REIERT I
FIJOALE, JUSEPH V
FR4NK, r41ss a J
Fi4/Ih Z, ST EP14FN H

FQASER, A G
GIJLOSTEIN, A JAY
GRANOLE, J A JR
GRfJSSo ARTHUR G
liAMkl ING, R w

HA NKINS, R w
HA NSF N,MRS G J
H$h AS YMl W,041SS JON I
HOALST, BLAINE C
HU17SilN, i+ ILL14M H
10pQLIT], o o

JEtkKINS, MRS JIFNNIE L
KELLY, L J
KEKNIGHAN, BRIAN w

KLEIN, MISS R L
KOCII, GEURGE E
La CAVa, JOSEPH L
LA GGY, ll J
LA N71S, E H
LA RSEN, B O

Lu@w IG, J J
LuTZ, KENNETH J
Mb LHCIL, R E JR
M4LLON,14 E
MAPA NZANO, J F
MAZUREK, EDkiARO F
Mc GUI GA N, FR4NCIS

+ N4MED t3Y AIJTHuR

NORGAN, i P-”” -
MUGGLIN,M G
NIWZ,R O
OLSZEUSKI,EOWARO
OS SAUNA,.A F JR
PfRITSKY, NARTIN M
PE771T, MRS GEORGETTE
PIERSON, HAA40L0 L
PILLA, MICHAEL A
PINSON, FLLI07 N

+PPIM, R09ERT C

REHM, T C
RF INIG, H
RI DOLE BERGER,C O
R17ACC0, J E
ROPOSH, R C
SANDBURG, lRUIN M
SC HAEVITZQ ALAN V
SE ARS, U 1“
SHALSBOLT, O 81 CHA@0]1
SK VOER, MRS. CCIROTHEA El
TAGUE,3ERKLEV A
TEGETHoFF, R M
TR(IVER,14RS MARGARET M

+TUKEV, JWN k

TUTFL’44N,0AVID M
UL*ERt R M
UN IONt R F
IAALSH, WIS MARTHA G
ME L)EMEYER, G H
ME XFL8LAT, QICFlARD L
kil CHMAN, M T
MI LLSIJN, ALAN N JP
ktl LFE, RbEERT M
ucllo, wAL7ER Id
YAM IN, MRS E f
21 NNERQAN, L
ZISLIS, PAUL M

100 NAMES

COVER SHEET ONLV TO

CC! RR ESPONOENCE FILES -HO

5 COPIES
PLuS ONE CUPY FOR

EACH AODITIONAL
FILING SUBJECT

127
12 DIR
13 Olrt

AL CAL AY, OAVIO
AFMSTRONG,00UGLAS B
AR N07,1)ENNIS L
BAnURA, OENNIS C
BAUGH, C R
13 EHLER, MISS BONNIE L
BE YER, JEAN-OAV1O

*B IT7Rl Ch, NRS M E
BLINN, JAMES C
BLY, JOSEPH A
BUCHS8A,UM, S J
BUS INGER,P A
CAMPBELL, STEPHEN T
CA SPERS, MRS BARBARA F
ChAME!ERS, J M
CHRIST, C W JR
CUTLER, C CHAPIN
CUTLER, V H JR
IXUTSCW, OAV1O N
l-f!Y, J C
F141EOFIAN, ARTI+UR O
FRCIST, H BONNELL
(X RSHO, ALLEN
GIBB, KENNETH R
GIL LET TF, OEAN
GLASS .11
GO OONAN, DAVIO J
GUOOMAN, MI CH4EL L

COVER SHEETONLVTO

GRAHAMcR L
GRIFFITHt W G
HALL, ANDREW O JR
14AL L,141LTON S JR
HALL, W A
HAL1, M G
HARP!ON,4.E3N O
HARU7A, K
HAuSE, A O
HAVES, JEREMIAM F
HAvuAROtG P
HERsENHAN, C B
HIG14T, S L

IFFLANOt FREDERICK C
lRv INE,M M
JENSEN, P O
JOHNSON, STEPMEN C
KENNEDV, R08ER? A

KNOWI.70N*KENNETH
KNu@SEN,l)ONALO E
K(N4PFNER, R
KORNEGAVOR L
KREIDER, DANIEL M

LAYTON, RICHARO L
LESK, M E
LESK, MRS ANN 6
LIN, SHEN
::’ OERER, GO TTFRIEO M R
LYSKLAMA, HE[NZ
MADOEN, MRS D M
M4LCOLM, J A
MATHEIIS, MAX V
MC FOldEN, J4MES R
MC9GNALL),H S
MI LLER, ALAN H
MI LLER, S E
MITRA, O
MOLINELL[, JOHP4 J
MORGAN, IIENNIS J
HO? PIS, ROBER7
NINKE, wILL IAM H
NY STROM, HARRV C
PA TEL, C K N
PEPLINSK1,41SS C4Ri3L
PET ERSON*T G
P(lLLAK, HENRY O
RI CHMAN, P L
RI TC141E,0ENN1S M
R013EFTS, C S
QOSEhTHi L, CHAF’LES W
SCHRYE14,19 L
SCHURTER,W H
SNARE,R C
SOUTHERN, MISS MARTHA J
ST ILL FRMAN, R
STRINE, MISS A M
STURf4AN, JLlEL N
TEPFY, N E
T1411MPSON, K
TILLL)TSON, L C
TROT TER, EONARO T

VOLLARO, J R
kAGP!ER, BRuCE o
wAGNER, NRS MARTHd P
hHIPPLE, JOMN H
kRIGLFY, RANOALL O
YOUNG S, EOH4R0 A
YOUNG OJAMES A

96 NAMES

> CITEO AS REFFRENCE SOURCE

. .

@

Bell laboratories

SUBJECT: Users’ Reference to B - Case 39199-11 DATE: January 7, 1972
FROM: K._Thompson

MM-72-1 271-1

MEMORANDUM FOR FILE——

~oQ Introduction

B is a computer language directly descendant from BCPL [1,2]. B

1s running at Murray Hill on the DEC PDP-11 computer under the

UNIX-11 time sharing system [3,4]. B is good for recursive,

non-numeric, machine independent applications, such as system and

language work.

B, compared to BCPL, is syntactically rich in expressions and

syntactically poor in statements. A look at the examples in sec-
..-

tion 9 of this document will give a flavor of the language.

B was designed and implemented by D. M. Ritchie and the author.

2.(JSyntax

The syntactic notation in this manual is basically BNF with the

zollowing exceptions:

1. The metacharacters < and > are removed. Literals are

underlined to differentiate them from syntactic variables.

2. The metacharacter ~ is removed. Each syntactic alternative

is placed on a separate line.

3. The metacharacters { and } denote syntactic grouping. “;>

.

-2-

4. A syntactic group followed by numer~cal sub and super-

scripts denote repetition of the group as follows:

{Jm ,m,m+l,000

{..}; m,m+l,,...,n

~.~ Canonical Synta~.—— -

‘ihesyntax given in this section defines all the legal construc-

tions in B without specifying the association rules. These are

given later along with the semantic description of each construc-

tion.

program ::=

{definition}O

definition ::=

name {[{constant}&]}~ {ival {t ival}o]$;

name ({name {9 name}O}~) statement

ival ::=

constant

name

statement ::=

auto name {constant}: {, name {constant}~}O ; statement
-—

extrn name {, name}. ; statement
-—

name : statement

case constant : statement
-—

{ {statement}.]

if (rvalue) statement {else statement}~
—-

while (rvalue) statement
-— .

—.\

switch rvalue statement

. ●

-3-

goto-rvalue ;
-—-

return {(rvalue)}: ;
—- --

{rvalue}~ ;

rvalue ::=

(rvalue)

lvalue

constant

lvalue assign rvalue

inc-dec lvalue
.

lvalue inc-dec

unary rvalue

& lvalue

rvalue binary rvalue

rvalue ? rvalue : rvalue

rvalue ({rvalue {, rvalue}O }:)

assign ::=

= {binary}:
inc-dec ::=

++
--

--
.-

unary ::=

!

binary ::=

I
I

&

==
—-

,
. ,

-4-

!=

<

<=

>

> =

<<
—

>>
—

+

‘%

*

lvalue ::=

name

* rvalue

rvalue [rvalue]

constant ::=

{digit},

* {char}f’ ‘

“ {char}O “

name ::=

alpha {alpha-digit}:

alpha-digit ::=

alpha

digit

~.z Comments and Character Sets——.. .— - .—-
~:,-’,

#

-5-

Comments are delimited as in PL/I by /* and */.

In general, B requires tokens to be separated by blanks, comments

or newlines, however the compiler infers separators surrounding

any of the characters (){][]~;?: or surrounding any maximal se-

quence of the characters +-*/<>&~l.

The character set used in B is ANSCII.

The syntactic variable ‘alpha” is not defined. It represents the

characters A to Z, a to z, _, and backspace.

The syntactic variable “digit’ is not defined. It represents the

Characters 0, l? 2S ..O 9.

The syntactic variable ‘char’ is not defined. It is essentially

any character in the set plus the escape character ‘*’ followed

by another character to represent characters not easily

represented in the set. The following escape sequences are

currently defined:

*O null
*e end-of-file
*({
*) }
*t tab
** *
*“ ‘
“ ‘
*n new line

All keywords in the language are only recognized In lower case.

Keywords are reserved.

3.0 Rvalues and Lvalues--— ——

-6-

An rvalue $s a binary bit pattern of a fixed length. On the

PDP-11 it is 16 bits. Objects are rvalues of different kinds

such as integers, labels, vectors and functions”. The actual kind

of object represented is called the type of the rvalue.

A B expression can be evaluated to yield an rvalue, but its type

is undefined until the rvalue is used in scme context. It iS

then assumed to represent an object of the required type. For

example, in the following function call

(b?f:g[i])(1,x>l)

The expression (b?f:g[i]) is evaluated to yield an rvalue which

is interpreted to be of type’function. Whether f hd g[i] are in

fact functions is not checked. Similarly, b ig assumed to be of

type truth value, x to be type integer etc.

There is no check to-insure thatthere are’”notype’mismatches.

Similarly, there are .no~wantedj or unwanted, type conversions.

,

An lvalue is a bit pattern representing a storage location con-

taining an rvalue. An lvalue is a type in B. The unary operator

* can be used

*X

tiakuates the

to interpret an rvalue as an lvalue. Thus

expression x to yield an rvalue, which is then

interpreted as an lvalue. If it is then used in an rvalue con-

cext, the application of * yields the rvalue therein stored. The

operator * can be thought of as indirection.

The unary operator & can be used to interpret an lvalue as an

“--.,

rvalue. Thus .,

. .

-7-

&x

evaluates the expression x as an lvalue. The application of &

then yields the lvalue as an rvalue. ‘l’heoperator & can there-

fore ke thought of as the address function.

The names lvalue and rvalue come from the assignment statement

which requires an lvalue on the left and an rvalue on the right.

~.Q Expression Evaluation.——

Binding of ~pressions (lvalues and rvalues) is in the same order

as the sub-sections of this section except as noted. ‘IhUsex-

pressions referred to as operands of ‘+’ (section 4,4) are ex-

pressions defined in sections 4.1 to 4.3. The binding of opera-

tors at the same level (left to right, right to left) is speci-

fied in each sub-section.

4.1 Primaw--- Expressions

1,

2.

3.

4.

A name is an lvalue of one of three storage classes (au-

tomatic, external and internal).

A decimal constant is an

between 1 and 9 followed

and 9. The value of the

rvalUe. It consists ot a digit

by any numker of digits between O

constant should not exceed the

maximum value that can be stored in an object.

An octal constant is the same as a decimal constant except

that it begins with a zero. It is then interpreted in base

8. Note that 09 (base 8) is legal and equal to 011.

A character constant is represented ky ‘ followed by one or

two characters (possibly escaped) followed ~ another ‘.

,
.

-8-

It has an rvalue equal to the value of the characters

packed and right adjusted.

5. A string is any number of characters between “ characters.

The characters are packed into adjacent objects (lvalues

sequential) and terminated with the character ‘*e’. The

rvalue of the string is the lvalue of the object containing

the first character. See section 8.0 for library functions

used to manipulate strings in a machine independent

fashion.

6. Any expression in () parentheses is a primary expression.

Parentheses are used to alter order of binding.

7. A vector is a primary expression followed by any expression

in [] brackets. The two expressions are evaluated to

rvalues, added and the result is used as an lvalue. The

primary expression can be thought of as a pointer to the

base of a vector, while the bracketed expression can be

thought of as the offset in the vector. Since E1[E2] is

identical to *(E1+E2), and addition is commutative, the

base of the vector and the offset in the vector can swap

positions.

8. A function is a primary expression followed by any number

of expressions in () parentheses separated by commas. The

expressions In parentheses are evaluated (in an unspecified

order) to rvalues and assigned to the function’s parame-

-’)

ters. The primary expression is evaluated to an rvalue

(assumed to be type function). The function is then

called. Each call is recursive at little cost in time or

. .

-9-

space.

Primary expressions are bound left to right.

4.Z Unary Operators ‘

1.

2.

3.

4.

5.

The rvalue (or indirection) prefix unary operator * is

described in section 3.0. Its operand is evaluated to

rvalue, and then used as an lvalue.

dress arithmetic may be performed.

The lvalue (or address) prefix unary

described in section 3.0. Note that

but *&x is only x if x is an lvalue.

In this manner, ad-

operator & is also

&*x is identically x,

The operand of the negate prefix umry operator - is inter-

preted as an integer rvalue. The result is an rvalue with

opposite sign.

The NOT prefix unary operator ! takes an integer rvalue

operand. The result is zero if the operand is non-zero.

The result is one if the operand is zero.

The increment ++ and decrement -- unary operators may be

used either in prefix or postfix form. Either form re-

quires an lvalue operand. The rvalue stored in the lvalue

is either incremented or decremented by one. The result is

the rvalue either before or after the operation depending

on postfix or prefix notation respectively. Thus if x

currently contains the rvalue 5, then ++x and x++ both

change x to 6. The value of ++x is 6 while x++ is 5.

Similarly, --x and x-- store 4 in X. The former has rvalue

result 4, the latter 5.

.

-1o-

Unazy operators are bound right to left. Thus -lx++ is bound

-(1(X++)).

~.~ Multiplicative Operators

‘lhemultiplicative binary operators *, /, and %, expect rvalue

integer operands. The result is also an integer.

1.

2.

3.

The operator * denotes multiplication.

The operator / denotes division. The result is correct if

the first operand is divisible by the second.

operands are positive, the result is truncated

Otherwise the rounding is undefined, but never

one.

If both

toward zero.

greater than

The operator % denotes modulo. If both operands are posi-

tive, the result is correct. It is undefined otherwise.

The multiplicative operators bind left to right.

4.4 Additive Operators- -—

The binary operators +

operators bind left to

and - are add and subtract. The additive

right.

~.~ Shift O~erators—-- —

Xhe binary operators << and >> are left and right shift respec-

tively. The left rvalue operand is taken as a bit pattern. The

right operand is taken as an integer shift count. The result is

the bit pattern shifted by the shift count. Vacated bits are

tilled with zeros. The result is undefined if the shift count

negative or larger than an object length. The shift operators

~ind left to right.

is

. .

-11-

~.~ Relational O~erators—.— .

The relational operators < (less than), <= (less than or equal

co), > (greater than), and >= (greater than or equal to) take

integer rvalue operands. The result is one if the operands are

Ln the given relation to one another. The result is zero other-

W1se.

~.~ Euuality Operators- -—-—

‘i’neequality operators == (equal to) and 1= (not equal to) per-

rorm similarly to the relation operators.

4.8--

The

the

AhJLl

~.j

The

AND operator & takes operands as bit patterns. The result is

bit pattern that is the bit-wise AND of the operands. The

operator binds and evaluates left to right.

~) operator

OR operator ~ performs exactly as AND, but the result is the

oit-wise inclusive OR of the operands. The OR operator also

Dinds and evaluates left to right.

4.10 Conditional Expression- — -.--——— .

‘L’hreervalue expressions separated by ? and : form a conditional

expression. The first expression (to the left of the ?) is

evaluated. If the result is non-zero, the second expression is

evaluated and the third ignored. If the value is zero, the

second expression is ignored and the third is evaluated. The

result is either the evaluation of the second or third expres-

sion.

...

-12-

.

Binding is right to left. Thus a?b:c?d:e is a?b:(c?d:e).

~.fi Assignment ODerators-— -

‘l’hereare 16 assignment

lvalue op rvalue

‘i’heassignment operator

operators in B. All have the form

= merely evaluates the rvalue and stores

tne result in the lvalue. The assignment operators =!, =&, ===,

= !=, =<, =<=, =>, =>=, =<<, =>>, =+, =-, =%, =*, and =/ perform a

Qinary operation (see sections 4.3 to 4.9) between the rvalue

stored in the assignment’s lvalue and the assignment’s rvalue.

The result is then stored in the lvalue. The expression x=*1O is

identical to x=x*1O. Note that this is not x= *1O. The result

of an assignment is the rvalue. Assignments bind right to left,

thus x=y=O assigns zero to y, then x, and returns the rvalue

zero.

5.0 Statements--

Statements define program execution. Each statement is executed

by the computer in sequence. There are, of course, statements to

conditionally or unconditionally alter normal sequencing.

3.1 COMDOUnd Statement--- -—-—..

A sequence of statements in {] braces is syntactically a single

statement. This mechanism is provided so that where a single

statement is expected, any number of statements can be placed.

~.~ Conditional Statement-——-.—

A conditional statement has

if(rval’ue) statement,

two forms. The first:

. .

-13-

evaluates the rvalue and executes statement, if the rvalue is

non-zero. If the rvalue is zero, Statementl is Skipped. The

second form:

if(rvalue) statement-- , Qgg statement 2

is defined as follows in terms of the first form:

~~(x=(rvalue)) statement, ~(!x) statement
2

‘thus,only one of the two statements is executed, depending on

t-ht? value Of rvake. In the above example, x is not a real vari-

able, but just a demonstration aid.

5.3 While Statement-- ——

‘Thewhile statement has the form:

while(rvalue) statement

The execution is described in terms of the conditional and goto

statements as follows:

x: if(rvalue) { statement qoto x;]

Thus the statement is executed repeatedly while the rvalue is

non-zero. Again, x is a demonstration aid.

3.4 Switch Statement- -— -—.

The switch statement is the most

switch has the form:

switch rvalue statement
1

complicated statement in B. The

Virtually always, statement , above is a compouti statement. Each

statement in statement 1 may be preceded by a case as follows:

case constant~

I.)uringexecution, the rvalue is evaluated and compared to each

case constant in undefined order. If a case constant is equal to

.

-14-

the evaluated

ing the case.

statement, is

rvalue,

If the

skipped.

control is passed to the statement follow-

rvalue matches none of the cases,

~.~ Goto Statement

‘thegoto statement is as follows:

.uSq rvalue ~

‘l’hervalue is expected to be of type label. Control is then

passed to the corresponding label. Goto’s cannot be executed to

Labels outside the currently executing function level.

S.Q Return Statement

The return statement is used in a function to return control to

the caller of a function. The first form simply returns control.

~~n ~

The second form returns an rvalue for the execution of the func-

tion.

return I rvalue J &

The caller of the function need not use the returned rvalue.

3.7 Rvalue Statement- - — -——.-

Any rvalue followed by a semicolon is a statement. The two most

common rvalue statements are assignment and function call.

2.E NuI1 Statement-— ——-

A semicolon is a null statement causing no execution. It is used

mainly to carry a label after the last executable statement in a

compound statement. It sometimes has use to supply a null body “’””~

to a while statement.

T.

-15-

5.Q Declarations

Declarations in B specify storage class

clarations also, in some circumstances,

There are

cated for

ed before

three storage

each function

execution and

of variables. Such de-

specify initialization.

classes in B. Automatic storage is allo-

invocation. External storage is allocat-

is available to.any and all functions.

Internal storage is local to a function and is available only to

that function, but is available to all invocations of that func-

tion.

~.1 External Declaration..—Z —

The external declaration has the form:

extrn name, ~ name2 ... &-—

The external declaration specifies that each of the named vari-

ables is of the external storage class. The declaration must

occur before the first use of each of the variables. Each of the

variables must also be externally defined.

Q.~ Automatic Declaration-- --—..

The automatic declaration also constitutes a definition:

auto name, {constant}! ~ nanle2 {constant]! ... A-—-

In absence of the constant, the automatic declaration defines the

variable to be of class automatic. At the same time, storage is

allocated for the variable. When an automatic declaration is

iollowed by a constant, the automatic variable is also initial-

ized to the base of an automatic vector of the size of the con-

stant. The actual subscripts used to reference the vector range

from zero to the value of the constant less one.

-16-

Q.s ~nternal Declaration

The first reference to a variable not declared as external or

automatic constitutes an internal declaration, All internal

variables not defined as labels are flagged as undefined within a

zunctiono Labels are defined and initialized as follows:

name &

~oQ Hxternal Q~nLti ons

A complete B program consists of a ser~es of external defini-

tions. Execution is started by the hidden sequence

maino; exito;

‘1’bus,it is expected that one of the external definitions is a

function definition of main. (Exit is a predefine library func-

tion. See section 8.0)

~.~ SimDle Definition

The s~mple external definition allocates an external object and

optionally initializes it:

name {ival ~ ival ...}o~

If the external obJect is defined with no initialization, it is

Lnitialxzed with zero. A single initialization with a constant

Initializes the extrnal with the value of the constant. Initial-

ization with a name initializes the external to the address of

chat name. L14anysuch initializations may be accessed as a vector

Dased at &name.

““>

7.2 Vector Definitions.- -— -

An external vector definition has the following form:

. .

-17-

name ~ {constant}: 1 {ival ~ }ival ... ~i

The name is initialized with the lvalue of the base of an exter-

nal vector. If the vector size is missing, zero is assumed. In

either case, the vector is initialized with the list of initial

values. Each initial value is either a constant or a name. A

constant initial value initializes the vector element to the

value of the constant. The name initializes the element to the

address of the name. The actual size

imum of the given size and the number

7.3 Function Definitions--—— .

of the vector is the

of initial values.

mal-

function definitions have the following form:

name ~ arguments J statement

The name is initialized to the rvalue of the function. The argu-

ments consist of a list of names separated by commas. Each name

defines an automatic lvalue that is assigned the rvalue of the

corresponding function call actual parameters. The statement

(otten compound) defines the execution of the function when in-

voked.

8.0 Library Functions---

I’here is a library of B functions maintained in the file

/etc/libb. a. The following is a list of those functions current-

iy in the library. See section II of [4] for complete descrip-

tions of the functions marked with an *.

c = char(string, i);
The i-th character of the string is returned.

error = chdir(string) ;
The path name represented by the string becomes the current

-18-

A negative number returned indicates an error.~;fectory.

error = chmod(string, mode);
The file specified by the string has its mode changed to
the mode argument. A negative number returned indicates an
error. (*)

error = chown(string, owner);
The file specified by the string has its owner changed to
the owner argument. A negative number returned indicates
an error. (*)

error = close(file) ;
The open file specified by the file argument is closed. A
negative number returned indicates an error. (*)

file = creat(string, mode);
The file specified by the string is either truncated or
created in the mode specified depending on its prior exis-
tance. In both cases, the file is opened for writing and a
file descriptor is returned. A negative number returned
indicates an error. (*)

Ctlme(tlme, date); ,

The system time (60-ths of a second) represented in the
two-word vector time is converted to a 16-character date in
the 8-word v~ctor date. The,,converted date has the follow-
ing format: Mmm dd hh:mm:ss .

execl(string, argO, argl$.Oss o);
The current process is replaced by the execution of the
file specified by string. The arg-i strings are passed as
arguments. A return indicates an error. (*)

execv(string, argv, count);
The current process is replaced by the execution of the
file specified by string. The vector of strings of length
count are passed as arguments. A return indicates an er-
ror. (*)

exit();
The current process is terminated. (*)

error = fork();
The current process splits into two. The child process is
returned a zero. The parent process is returned the pro-
cess ID of the child. A negative number returned indicates
an error. (*)

“’)

error = fstat(file, status);
The i-node of the open file designated by file is put in
the 20-word vector status. A negative number returned

-19-

indicates an error. (*)

char = getchar();
The next character form the standard input file is re-
turned. The character ‘*e’ is returned for an end-of-file.

id = getuido; o
The user-lD of the current process is returned. (*)

error = gtty(file, ttystat);
The teletype modes of the open file designated by file is
returned in the 3-word vector tt stat. A negative number .
returned indicates an error. (*Y

ichar(string, i, char);
The character char is stored in the i-th character of the
string.

error = link(stringl, string2);
The pathname specified by string2 is created such that it
is a link to the existing file specified by stringl . A
negative number returned indicates an error. (*)

error = mkdir(string, mode);
The directory specified by the string is made to exist with
the specified access mode. A negative number returned
indicates an error. (*)

file = open(string, mode);
The file specified by the string is opened for reading if
mode is zero, for writing if mode is not zero. The open
file designator is returned. A negative number returned
indicates an error. (*)

printf(format, argl, ...).
See section 9.3 below.

printn(number, base);
See section 9.1 below.

putchar(char) ;
The character char is written on the standard output file.

nread = read(file, buffer, count);
Count bytes are read into the vector buffer from the open
file designated by file. The actual number of bytes read
are returned. A negative number returned indicates an
error. (*)

error = Seek(filet offset, pointer);
The I/C)pointer on the open file designated by file is set
to the value of the designated pointer plus the offset. A
pointer of zero designates the beginning of the file. A

.

-20-

pointer of one designates the current 1/0 pointer. A
pointer of two designates the end of the file. A negative
number returned indicates an error. (*)

error = setuid(id);
The user-IL) of the current process is set to id. A nega-
tive number returned indicates an error. (*)

error = stat(string, status);
The i-node of the file specified by the string is put in
the 20-word vector status. A negative number returned
indicates an error. (*)

error = stty(file, ttystat);
The teletype modes of the open file designated by file is
set from the 3-word vector ttystat. A negative number
returned indicates an error. (i+)

time(timev);
The current system time is returned in the 2-word vector
timev. (*)

error = unlink(string) ;
The link specified by the string is removed. A negative
number returned indicates an error. (*)

error = wait();
The current process is suspended until one of its child
processes terminates. At that time, the child’s process-ID
is returned. A negative number returned indicates an er-
ror. (*)

nwrite = write(file, buffer, count);
Count bytes are written out of the vector buffer on the
open file designated by file. The actual number of bytes
writqen are returned. A negative number returned indicates
an error. (*)

Besides the functions available from the library, there is a

predefine external vector named argv included with every pro-

gram. The size of argv is argv~O]+l. The elements

argv [1]...argv[argv[O]] are the parameter strings as passed by

t“hesystem in

in II of [4])

~.~ Exam~les

the execution of the current process. (See shell

.

-21-

The examples appear exactly as given to B.

9.1--

/* The following function will print a non-negative number, n, to
the base b, where 2<=b<=10, This routine uses the fact that
in the ANSCII character set, the digits O to 9 have sequential
code values. */

printn(n,b) {
extrn putchar;
auto a;

if(a=n/b) /* assignment, not test for equality */
printn(a, b); /* recursive */

putchar(n%b + O’);
}

/* The following program will calculate the constant e-2 to about
4000 decimal digits, and print it 50 characters to the line in
groups of 5 characters. The method is simple output conver-
sion of the expansion

1 +1
m m+ ““” = ““’”””

where the bases of the digits are 2, 3, 4, ... */

maino {
extrn putchar, n, v;
auto i, c, CO1, a;

= Col = o;
~hile(i<n)

v[i++] s 1;

while(col<2*n) {
a s n+l ;

~h~l~(~<~j {
c =+ v[i]*lo;
v[i++] = c%a;
c =/ a--;

1

$utchar(c+’O’);
if(l(++col%5))

putchar(col%50?’ ‘:‘*n’);
1
putchar(’*n*n ‘);

}

V[2000] ;
n 2000;

-22-

/* The following function is a general formatting, printing, and
conversion subroutine. The first argument is a format string.
Character sequences,of the form ‘%x’ are interpreted and cause
conversion of type x’ of the next argument, other character
sequences are printed verbatim. Thus

printf(’’delta is %d*n”, delta);

will convert the variable delta to decimal (%d) and print the “
string with the converted form of delta in place of %d. The
conversions %d-decimal, %o-octal, *s-string and %c-character
are allowed.

This program calls upon the function ‘printn’. (see section
9.1) */

printf(fmt, x1 ,x2,x3,x4,x5,x6,x7,x8,x9) {
extrn printn, char, putchar;
auto adx, x~ Cs is j;

i= O; /* fmt index */
adx = &xl; /* argument pointer */

loop:
while((c=char(tmt,i++)) != ‘x’) {

if(c == ‘*e’)
return;

1
putchar(c);

x= *adx++;
switch C = char(fmt,i++) {

case ‘d’: /* decimal */
case ‘o’: /* octal */

if(x < O) {
x= -x;
putchar(’-’);

}
printn(x, c==’o’?8:1O);
goto loop;

case ‘c’: /* char */
putchar(x);
goto loop;

case ‘s’: /* string */

~h~l~~(c=char(x, j++)) != ‘*e’)
putchar(c);

goto loop;
}
putchar(‘%’);

‘“>

-23-

i--;
adx--;
goto loop;

1

Q.(J Usaqe

Currently on UNIX, there is no B command. The B compiler phases

must be executed piecemeal. The first phase turns a B source

program into an intermediate language.

/etc/bc source interm

The next phase turns the intermediate language into assembler

source, at which time the intermediate language can be removed.

/etc/bainterm asource
rm interm

The next phase assembles the assembler source into the object

tile a.out. After this the a.out file can be renamed and the

assembler source file can be removed.

as asource
mv a.out object
rm asource

The last phase loads the various object files with the necessary

ii”braries in the desired order.

ld object /etc/brtl -lb /etc/bilib /etc/brt2

Now a.out contains the completely lmund and loaded program and

can “beexecuted.

a ●ut

A canned sequence of shell commands exists invoked as follows:

sh /usr/b/rc x

It will compile, convert, assemble and load the file x.b into the

executable file a.out.

. .

-24-

~2.Q Imdementatlon q~d Debuq~inq

A B program is implemented as a reverse Polish threaded “code

interpreter: The object code consists of a series of addresses of

interpreter subroutines. Machine register 3 is dedicated as the

interpreter program counter. Machine register 4 is dedicated as

tne interpreter display pointer. The display pointer points to

tne base of the current stack frame. The first word of each

stack frame is a pointer to the previous stack frame (prior

display pointer.) The second word in each frame is is the saved

interpreter program counter (return point of the call creating

the frame.) Automatic variables start at the third word of each

frame. Machine register 5 is dedicated as the interpreter stack

pointer. The machine stack pointer plays no role in the in-

terpretation. An example source code segment, object code and

interpreter subroutines follow:

stack

va:

x:

c:

automatic s external + 100.;

va; 4 / lvalue

x; ●xternal / rvalue
c; 100. / rvalue
bl2 / binary
bl / binary
● **

mov (r3)+,r0

of first automatic on

of external on stack
of constant on stack
operator #12 (+)
operator #1 (=)

add r4,rO / dp+offset of automatic
asr rO / lvalues are word addresses
mov r0,(r5)+
jmp *(r3)+ / linkage between subroutines

mov *(r3)+,(r5)+
jmp *(r3)+

mov (r3)+,(r5)+

. .

-25-

jxnp *(r3)+

b12:
add -(r5),-2(r5)
jmp *(r3)+

D1:
mov -(r5),r0
mov -(r5),rl
asl rl
mov rO,(rl)
mov r0,(r5)+
jmp *(r3)+

‘l-he above code as compared to

executed equivalent gives the

/ rvalue
/ lvalue
/ now byte address
/ actual ’assignment
/ = returns an rvalue

the obvious 3 instruction directly

approximate 5:1 speed and 2:1 space

penalties one pays in using B.

The salient features for debugging are then:

1.

2.

3.

4.

Machine r4 is the display pointer and can be used to trace

function calls and determine automatic variable values at

each call.

Machine r3 is the current program counter and can be used

to determine the current point of execution.

All externals are globals with their variable names pre-

fixed by ‘.’. Thus the debugger [4] can be used directly

to give values of external variables.

All data lvalues are word addresses and therefore not

directly examinable by the debugger. (See 8 request in I

of [4])

13.0 hasties.-—

This section describes the ‘glitches’ found in all languages, but

rarely reported. #’

1. Tne compiler makes sense of certain expressions with

-26-

operators in ambiguous cases (e.g. a+++b) but not others

even in unambiguous cases (e.g. a+++++b).

2. The B assembler /etc/ba does not correctly handle all pos-

S:lblecombinations of intermediate language. The symptom

is undefined symbols in the assembly of the output from

/etc/ba. This is rare.

3. I’heB interpreter /etc/bilib is really a library of thread-

ed code segmentso The following code segments have not yet

‘beenwritten:

bl03 =&
bl04 ===
bl05 =1=
bl06 =<=
b107 =<
bl10 :;=
bill
b120 =/

4. Initialization of external variables with addresses of oth-

er externals is not possible due to a loader deficiency.

5 , Since externals are implemented as globals with names pre-

ceeded by ‘.’, the external names ‘byte’ , ‘endif’, ‘even’

and ‘globl’ conflict with assembler pseodooperations and

should be avoided.

aoQ Diagnostics

tiiaynostics

source line

source line

consist of two letters, an optional name, and a

number. Due to the free format of the source, the

number might be high. The following is a list of the

diagnostics.

error name ~eaninq

$) -- {} imbalance

.

-27-

()
*/

i]
>C
>e
>i
>s
ex
iv
rd
Sx
un
xx

--
--
--
--
--
-.
--
--
--

name
keyword
name
--

Ml-l 271-KT-pdp

Attached
References

() imbalance
)U */ imbalance
[] imbalance
case table overflow (fatal)
expression stack overflow (fatal)
label table overflow (fatal)
symbol table overflow (fatal)
expression syntax
rvalue where lvalue expected
name redeclaration ,
statement syntax
undefined name
external syntax

K. Thompson

-28-

References

1. Richards, M.” The BCP~ Reference Manual. Multics repository
MO099.

2. Canaday, R.H. and Ritchie, D.M. Bell Laboratories BCPL.
MM 69-1371/1373-7/12.

—-

J. Ritchie, D.M. The UNIX ~ime Sharinq Svstem. MM 71-1273-4.—— —

4. Thompson, K. and Ritchie, D.M. UNIX Programmer’s Manual.
Available by arrangement.

..—

