BELL TELEPHONE LABORATORIES
INCORPORATED

THE INFORMATION CONTAINED MEREIN IS FOR

THE USE OF EMPLOYEES OF BELL TELEPHONE

LABORATORIES. INCORPORATED. AND IS NOT
FOR PUBLICATION.

COVER SHEET FOR TECHNICAL MEMORANDUM

TITLE- Users’ Reference to B MM-72-1271-1
CASE CHARGED- 39199 DATE- January 7, 1972
FILING CASE-~ 39199 - 11 ' AUTHOR—- K,_Thompson
‘ Ext 2394
FILING SUBJECTS- Compilers
Languages -

PDP - 11

ABSTRACT

B is a computer language iqtended for recursive, primarily non-—
numeric applications typified by system programming. B has a

small, unrestrictive syntax that is easy to compile. Because of
the unusual freedom of expression and a rich set of operators, B

programs are often quite compact,

This manual contains a concise definition of the language, sample

programs, and instructions for using the PDP-11 version of B.

Text - 27 pages
References

BELL TELEPHONE LABORATORIES, INCe

COMPLETE MEMORANDUM TO

CORRESPONDENCE FILES ~-HO

OFFICIAL FILE COPY
(FORM E-7770) - PLUS
ONE WHITE COPY FOR
EACH ADDIT IONAL
FILING CASE
REFERENCED

DATE FILE COPY
(FORM E-1328)

13 REFERENCE COPIES

PATENT DIVISION
1F MEMORANOUM HAS
PATENT SIGNIFICANCE

127 - Sup
1673

3416

5222

8234
CUPLGP

AHUsA ¥V
ALMQUIST M L JR
ARIDASE J
ARMBRUSTER,MISS M &
AVERILL.R M IR
+BAKER,W O
BARTLETT,WADE S
BILLINGTON,MISS M J
BIREN,MRS JRMA ¢
BLEIBERGG J
BODNARJ J
BRENDFL 4P J
BRUWN,G W
BROWN, W STANLEY
BUCK,1 D
CANADAYRUDD H
CAFRAN,J H
CHEN,STEPHEN
CLAYTQON,D P
CLINESMITH,C R
COHENyHARVEY
CIPP,DAVID H
CURASICK MISS M J
CRUME,LARRY L

Ol SALVO.J J
DIMINO,L A

DUDLEY MRS £ H
ELENBAAS,FRITS
ETRAL,R H

. FLEISCHER,HERBERT [

FODALE, JUSEPH V
FRANKMISS 8 o
FRANZ STEPHFN H
FRASER+A G
GOLDSTEIN,A JAY
GRANDLE,J A JR
GRUSS.ARTHUR 6
HAMMING,R W
HANKINS,R w
HANSENyMRS G J
HAKASYMI W,1SS JONI
HOALST,BLAINE C
HUDSON ywiILLIAM H
IPPOLITIO O
JENKINS,MRS JENNIE L
KELLY L J
KERNIGHAN,BRIAN w
KLEINyMISS R L
KNCrtsGEORGE €

LA CAVA,JOSEPH L
LAGGYsW J
LANDISE W
LARSEN,8 O
LUDWIG,d J

LUTZ 4KEANETH J
MACHOL,R E JR
MALLON.R E
MARANZANQ,J F
MAZUREK+EDWARD F
MC GUIGAN,FRANCIS

+ NAMED B8Y AUTHUR

COMPLETE MEMORANOUM TQ

MC ILRQY.M DOUGLAS
MONTGOMERY 4 W L
MORGANyS P
MUGGLINM G
NIMTZ,R O

OL SZEWSKI y EOWARD
OSSANNASJ F JR
PERITSKY)MARTIN M
PETTIT,MRS GEORGETTE
PIERSONyHAROLD L
PILLAJMICHAEL A
PINSON,ELLIOT N
+PR IMyROBERT C
REHM,T C

RE INFGoH
RIDDLEBERGER.C O
RITACCOsJ E
ROPOSHR C
SANDBERGy IRWIN W
SCHAEVITZ,ALAN ¥
SEARSW T
SHADBOLT,D RICHARD 11
SNYDERyMRS DOROTHEA B
TAGUE, 3ERKLEY &
TEGETHOFF,R H
TROYER MRS MARGARET M
+TUKEY s JOUN W
TUTFLMAN,DAVID M
ULMERSR W

UNIONR F

WALSHyMRS MARTHA G
WEOEMEYERG H
WEXELBLAT, RICHARD L
WICHMAN W T
WILLSONJALAN N JF
WOLFERUBERY M
WCOD,WALTER W
YAMINGMRS E F

L1 MMERMAN, L
ZISLIS.PAUL M

100 NAMES

COVER SHEET OUNLY TO

CCRRESPONDENCE FILES -HOD

5 COPIES

PLUS ONE CUPY FOR
EACH 80D ITIONAL
FILING SUBJECT

127

12 DIR

13 _DIR
ALCALAY,DAVID

AR MSTRONG, DOUGLAS B
ARNDT(DENNIS L
BANURA,DENNIS C
BAUGH,C R
BEHLER,MISS BONNIE L
BEYER, JEAN=-DAVID
+BITTRICH)MRS M E

BL INNy JAMES C
BLY,JOSEPH A
BUCHSBAUM, S J
BUSINGER,P A
CAMPRELL STEPHEN T
CASPERS,MRS BARBARA E
CHAMBERS,J M
CHRIST,C W JR
CUTLER(C CHAPIN
CUTLER,V H JR
DEUTSCH,NAVID N
FCYed C

FRIEDMAN, ARTHUR D
FROST 4 BONNELL
GERSHO, ALLEN
GIBByKENNETH R
GILLETTE,DEAN
GLASS,D
GOODMAN,DAVID 4
GUGOMANMICHAEL L

DISTRISUTION
(REFER GEI 13,9=3)

COVER. SHEET ONLY TO

GRAHAMoR L
GRIFFITHyW G
HALL ¢ANDREW D JR
HALL,MILTON S JR
HALL W A
HALL W G
HARMON,LEIN D
HARUTA ¢ K
HAUSE.A D
HAYES » JEREMIAK F
HAYWARDG P
HERGENHANJC B
HIGHT,S L
IFFLAND,FREDERICK C
IRVINE M M
JENSEN,P O
JOHNSON, STEPHEN C
KENNEDYROBEART A
KNOWL TON¢KENNETH
KNUDSEN,DONALD 8
KCMPFNER,R
KORNEGAY R L
KREIDER)DANIEL M
LAYTON,RICHARD L
LESK.M €
LESK,MRS ANN €
LIN,SHEN
L'DERERVGOTTFRIED w R
LYCKLAMAHEINZ
MADDENJMRS D M
MALCOLMyJ A
MATHEWS, MAX V
MC FOWEN,JAMES R
MCICNALDYH S
MILLER,ALAN H
MILLER,S E
MITRA,D
MOLINELLI+JOHN 4
MORGAN, DENNIS J
MORPIS,ROBERT
NINKE,WILLEAM
NYSTROMy HARRY C
PATEL,C K N
PEPL INSKI4MISS CAROL
PETERSON,T G
POL LAKHENRY 0O
RICHMAN, P L
RITCHIE,DENNIS M
ROREERTS,C S
ROSENTHAL »CHAPLES W
SCHRYERN L-
SCHURTER W H
SNARE,R C
SOUTHERN,MISS MARTHA J
STILLERMAN R
STRINE,MISS A M
STURMAN,JUOEL N
TEPRY M E
THOMPSON,,K
TILLOTSON,L C
TROTTER,EDWARD T
VOLLAROsJ R
WAGNER yBRUCE D
WAGNER MRS MARTHA P
WHIPPLE,JOHMN H
WRIGLEY,RANDALL D
YOUNGS,EDWARD A
YOUNG, JAMES A

96 NAMES

> CITED AS REFERENCE SOURCE

M¥=72<1271~]

Bell Laboratories

SUBJECT: Users’ Reference to B - Case 39199-11 DATE: January 7, 1972
FROM: K._Thompson

MM-72-1271-1

MEMORANDUM FOR FILE

L —]

1.0 Introduction

B is a computer language directly descendant from BCPL [1,2]. B
is running at Murray Hill on the DEC PDP-11 computer under the
UNIX-11 time sharing system [3,4]. B is good for recursive,
non—numeric, machine independent applications, such as system and

language work.

B, compared to BCPL, is syntactically rich in expressions and
syntactically poor in statements. A look at the examples in sec-

tion 9 of this document will give a flavor of the language,

B was designed and implemented by D. M. Ritchie and the author.

2.0 Syntax
The syntactic notation in this manual is basically BNF with the
rollowing exceptions:
1. The metacharacters { and > are removed. Literals are
underlined to differentiate them from syntactic variables.,
2. The metacharacter | is removed. Each syntactic alternative
is placed on a separate line.

3. The metacharacters { and } denote syntactic grouping.

4, A syntactic group followed by numerical sub- and super-
scripts denote repetition of the group as follows:
{-o}m _m,m+1,...

{00}::‘ m,m+1,6se,0

2.1 Canonical Syntax

‘The syntax given in this section defines all the legal construc-
tions in B wiﬁhout specifying the association rules. These are
given later along with the semantic description of each construc-

tion.

program ::=
{definition}0
definition te=

name {[{constant}a]}8 {ival {, ival}o}é H

name ({name {, name}o}a) statement

ival s:=
constant
name

statement ::=

auto name {constant}a {, name {constant}é}O s statement

extrn name {, name}o ; statement

name : statement

case constant : statement

{ {statement}o }
if (rvalue) statement {else statement}é

while (rvalue) statement

switch rvalue statement

goto -rvalue ;

return {(rvalue)}5 ;

{rvalue}g ;

rvalue g:=

(rvalue)
lvalue
constant

lvalue agsign rvalue
inc-dec lvalue
lvalue inc-dec

unary rvalue

& lvalue

rvalue binary rvalue

rvalue ? rvalue : rvalue

rvalue ({rvalue {, rvaluelq

assign ::=

= {binary}é

inc-dec ::=

c
5
&

d
W

1 % lac |

lvalue ::=
name
* rvalue

rvalue [rvalue]
constant ::=)

{digit}1

’ {char}? !

" {char},
nam; =

alpha {alpha—digit}g
alpha-digit ::=

alpha

digit

4.2 Comments and Character Sets

Comments are delimited as in PL/I by /* and %/,

In general, B requires tokens to be separated by blanks, comments
or newlines, however the compiler infers separators surrounding
any of the characters (){}[],;?: or surrounding any maximal se-

quence of the characters +-#%/{)&!l.
The character set used in B is ANSCII.

The syntactic variable ‘alpha’ is not defined. It represents the

Characters A to Z, a to z, _, and backspace.

The syntactic variable ‘digit’ is not defined. It represents the

chatacters O, 1, 2, eee 9.

The syntactic variable ‘char’ is not defined. It is essentially
any character in the set plus the escape character ‘#*’ followed
by another character to represent characters not easily
—represented in the set. The following escape sequences are
currently Aefined:

*0 nuil

*e end-of-file
* {

*) '}

¥t tab

* % »

*l *

¥*n new line
All keywords in the language are only recognized in lower case.
Keywords are reserved.

3.0 Rvalues and Lvalues

An rvalue is a binary bit pattern of a fixed length. On the
PDP-11 it 18 16 bits., Objects are rvalues of different kinds
such as integers, labels, vectors and functions. The actual kind

of object represented is called the type of the rvalue.

A B expfession can be e§#lﬁated to field an rvalue, but its type
is undefined until the.rvalue is used in some éontext. It is
then assumed to represent an object of the required type, For
example, in the following function call

(b2:g[1])(1,01) |
The expression (b?f:g[i]) is evaluatéd to Qield an rvalue which
is 1ntérpreted to be of type function. Whether £ and g[i] are in
fact functions is not checked. Similarly, b is assumed to be of

type truth value, x to be type integer etc.

There is no check to insure that there are no' type: mismatches.

Similarly, there are no:wanted, or unwanted, type conversions.

An lvaiue is a bi£ pattérh repfesenting a étérage location con-
taining an rvalue., An lvalue is a type in B. The unary operator
* can be used‘to interpret an rvalue as an lvalue., Thus

*x
evaluates the expression x to yield an rvalue, which is then
interpreted as an lvalue, If it is then used in an rvalue con-
text, the application of * yields the rvalue therein stored. The

operator * can be thought of as indirection.

The unary operator & can be used to interpret an lvalue as an

rvalu_e « Thus

&x
evaluates the expression x as an lvalue. The application of &

then yields the lvalue as an rvalue. The operator & can there-

fore be thought of as the address function.

The names lvalue and rvalue come from the assignment statement

which requires an lvalue on the left and an rvalue on the right.

4.0 Expression Evaluation

Binding of expressions (lvalues and rvalues) is in the same order
as the sub-sections of this section except as noted. Thus ex-
pressions referred to as operands of ‘+’ (section 4.4) are ex-
pressions defined in sections 4.1 to 4.3. The binding of opera-
tors at the same level (left té right, right to left) is speci-

fied in each sub-section.

4.1 Primary Expressions

1. A name is an lvalue of one of three storage classes (au-
tomatic, external and internal).

2. A decimal constant is an rvalue. It consists of a digit
betweeh 1 and 9 followed by any number of digits between O
and 3. The value of the constant should not exceed the
maximum value that can be stored in an object.

3. An octal constant is the same as a decimal constant except
that it begins with a zero. It is then interpreted in base
8. Note that 09 (base 8) is legal and equal to 011.

(4

4., A character constant is represented by followed by one or

’

two characters (possibly escaped) followed by another ‘.

6.

8.

It has an rvalue equal to the value of the characters
packed and right adjusted.

A sﬁring is any number of characters between " characters.
The characters are packed into adjacent objects (lvalues
sequential) and terminated with the character ‘¥%e’. The
rvalue of the string is the lvalue of the object containing
the first character. See section 8.0 for library functions
used to manipulate strings in a machine independent
fashion.,

Any expression in () parentheses is a primary expression.
Parentheses are'used tovaltér order of binding.

A vector is a primary expression followed by any expression
in [] brackets. The two expressions are evaluated to
rvalues, added and the result is used as an lvalue. The
primary expression can be thought of as a pointef to the
base of a vector, while the bracketed expression can be
thought of as the offset in the vector. Since E1[E2] is
identical to #(E1+E2), and addition is commutative, ﬁhe
bagse of the véctor and the offset in the vector can swap
positions.

A function is a primary expression followed by any number
of expressions in () parentheses separated by commas. The
expressions in parentheses are evaluated (iﬁ an unspecified
order) to rvalues and assigned to the function’s parame-
ters. The primary expression is evaluated to an rvalue
(assumed to be type function). The function is then

called. Each call is recursive at little cost in time or

space,

Primary expressions are bound left to right.

4.2 Unary Operators

1.

The rvalue (or indirection) prefix unary operator ¥ is
described in section 3.0. 1Its operand is evaluated to
rvalue, and then used as an lvalue, In this manner, ad-
dress arithmetic may be performed.

The lvalue (or address) prefix unary operator & is also
described in section 3.0. Note that &*x is identically x,
but ¥*&x is only x if x is an lv&lue.

The operand of the negéte prefix unary operator - is inter-
preted as an integer rvalue. The result is an rvalue with
opposite sign.

The NOT prefix unary operator | takes an integer rvalue
operand. The result is zero if the operand is non-zero.
The result is one if the operand is zero.

The increment ++ and decrement -— unary operators may be
used either in prefix or postfix form. Either form re-
quires an lvalue operand. The rvalue stored in the lvalue
is either incremented or decremented by one. The result is
the rvalue either before or after the operation depending
on postfix or prefix notation respectively. Thus if x
currently contains the rvalue 5, then ++x and x++ both
change x to 6. The value of ++x is 6 while x++ is 5,
Similarly, -—-x and x-- store 4 in x. The former has rvalue

result 4, the latter 5.

Unary operators are bound right to left, Thus -Ix++ is bound
-(1(x++)).

4.3 Multiplicative Operators
The multiplicative binary operators *, /, and %, expect rvalue
lnteger operands. The result is also an integer.

1. The operator * dénotes multiplicaiion.

2. The operator / dehotes division. The result is correct if
the first operand is divisible by the second. If both
operands are positive, the result is truncated toward zero,
Otherwise the rounding is undefined, but never greater than
one. 7

3. The operator ¥ denotes modulo. If both operands are posi-

tive, the result is correct. It is undefined otherwise.
The multiplicative operators bind left to right.

4.4 Additive Operators
The binary operators + and - are add and subtract. The additive

operators bind left to right.

4.5 Shift QOperators

The binary operators << and >) are left and right shift respec-
tively. The left rvalue operand is taken as a bit pattern. The
right operand is taken as an integer shift count. The result is
the bit pattern shifted by the shift count. Vacated bits are
Lilled with zeros. The result is undefined if the shift count is
negative or larger than an object length. The shift operators

pind left to right.

4.6 Relational Operators

The relational operators < (less than), <= (less than or equal
to), > (greater than), and >= (greater than or equal to) take
integer rvalue operands. The result is one if the operands are

in the given relation to one another. The result is zero other-

wise.

4.7 Equality Operators

Tne equality operators == (equal to) and != (not equal to) per-

rorm similarly to the relation operators.

4.8 AND operator
The AND operator & takes operands as bit patterns. The result is
the bit pattern that is the bit-wise AND of the operands. The

AND operator binds and evaluates left to right,

4.9 OR operator
The OR operator | performs exactly as AND, but the result is the
pit-wise inclusive OR of the operands. The OR operator also

pinds and evaluates left to right.

4.10 Conditional Expression

. Yhree rvalue expressions separated by ? and : form a conditional
expression, TheAfirst expression (to the left of the ?) is
evaluated. If the result is non-zero, the second expression is
evaluated and the third ignored. If the value is zero, the
second expression is ignored and the third is evaluated. The

result is either the evaluation of the second or third expres-—

sion,

Binding is fight to left. Thus a?bic?d:e is a?b:(c?d:e).

4.11 Assignment Operators

'nere are 16 assignment operators in B. All have the form

lvalue op rvalue
The assignment operator = merely evaluates the rvalue and sﬁores
the result in the lvalﬁe. The assignmeﬁt operators =}, =&, ===,
=l=, =¢, =¢=, =>, =D=, =K, =X, =+, =-, =%, =%, and =/ perform a
pinary operation (see sections 4.3 to 4.9) between the rvalue
stored in the assignment’é lvalue and the assignment’s rvalue.
The result is then stored in the lvalue. The expression x=%10 is
identical to x=x#10. Note that this is not x= *10, The result
of an éssignment is the rvalue, Assignments bin& right to left,
thus x=y=0 assigns zero to y, then x, and returns the rvalue

zero,

5.0 Statements
Statements define program execution. Each statement is executed
by the computer in sequence. There are, of course, statements to

conditionally or unconditionally alter normal sequencing.

2.1 Compound Statement
A sequence of statements in {} braces is syntactically a single
statement. This mechanism is provided so that where a single

statement is expected, any number of statements can be placed.

5.2 Conditional Statement

A conditional statement has two forms. The first:

if(rvalue) statement,

evaluates the rvalue and executes statement, if the rvalue is

1
non-zero. If the rvalue is zero, statement1 is skipped. The
second form:

if(rvalue) statement, else statement,
is defined as follows in terms of the first form:

if(x=(rvalue)) st—atement1 1£(1x) statement2
Thus, only one of the two statements is executed, depending on
the value of rvalue.‘ In the above example, x is not a real vari-

able, but just a demonstration aid.

5.3 While Statement
The while statement has tﬁe form:
while(rvalue) statement
The execution is described in terms of the conditional and goto
statements as follows:
x: if(rvalue) { statement goto x; }
Thus the statement is executed repeatedly while the rvalue is

non—-zero. Again, x is a demonstration aid,

2.4 Switch Statement
The switch statement'is the most complicated statement in B. The
switch has the form:
switch rvalue statement1
Virtually always, statement, above is a compound statement. Each
Statement in statement, may be preceded by a case as follows:
case constant;

buring execution, the rvalue is evaluated and compared to each

Ccase constant in undefined order. If a case constant is equal to

- 14 -

the evaluated rvalue, control is passed to the statement follow-
ing the case. 1If the rvalue matches none of the cases,

statement1 is skipped.

5.5 Goto Statement
The‘goto statement is as follows:
goto rvalue ; i
The rvalue is expected to be of type label, Control is then
passed to the corresponding label. Goto’s cannot be executed to

labels outside the currently executing function level,

5.6 Return Statement
The return statement is uéed in a function to return control to
the caller of a function. The first form simply returns control.
return 3
The second form returns an rvalue for the execution of the func-
éion.
return (rvalue) ;

The caller of the function need not use the returned rvalue.

Any rvalue followed by a semicolon is a statement, The two most

common rvalue statements are assignment and function call.

5.8 Null Statement

A semicolon is a null statement causing no execution. It is used
mainly tO carry a label after the last executable statement in a
compound statement., It sometimes‘haé use to supply a null body

to a while statement.

- 15 =

6.0 Declarations

Declarations in B specify storage class of variables. Such de-
clarations also, in some circumstances, specify initialization.
There are three storage classes in B. Automatic storage is allo-
cated for each function invocation. External storage is allocat-
‘ed before execution and is available to .any and all functions.
Internal storage is local to a function and is available only to
that function, but is available to all invocations of that func-

tion.

6.1 External Declaration

The external declaration has the form:

extrn hame, , name, ... 3
The external declaration specifies that each of tﬁe named vari-
ables is of the external storage class., The declaration must
occur before the first use of each of the variables. Each of the

variables must also be externally defined.

6.2 Automatic Declaration

The automatic declaration also constitutes a definition:

auto name, {ConStant}g 4 hame, {constant}é ces 3
In absence of the constant, the automatic declaration defines the
variable to be of class automatic., At the same time, storage is
allocated for the variable. When an automatic declaration is
Iollowed by a constant, the automatic variable is also initial~
ized to the base of an automatic vector of the size of the con-
stant. The actual subscripts used to reference the vector range

Lrom zero to the value of the constant less one,

- 16 -

63 ;nte;na;_necla;ation

The fir?t reference to a variable not declared as external or
automatic constitutes an internal declaration, All internal
variables not defined as labels are flagged as undefined within a

Iunction. Labels are defined and initialized as follows:

name 3
1.0 External Definitions

A complete B program consists of a series of external defini-
tions. Execution is started by the hidden sequence

main(); exit();
Thus, it is expected that one of the external definitions is a

function definition of main, (Exit is a predefined library func-

tion., See section 8.0)

7.1 Simple Definition

The simple external definition allocates an external object and

optionally initializes it:
name {ival , ival "'}0 3

1f the external object is defined with no ;nitialization, it is

initialized with zero. A single initialization with a constant

initializes the extrnal with the value of the constant. Initial-

1zation with a name initializes the external to the address of

that name. Many such initializations may be accessed as a vector

pased at &name,

1.2 Vector Definitions

An external vector definition has the following form:

17
name { {constant}é 1 {ival , ival ...}o 3
The name is initialized with the lvalue of the base of an exter-
nal vector. If the vector size is missing, zero is assumed. In
either case, the vector is initialized with the list of initial
valueé. Each initial value is either a constant or a name., A
constant initial value initializes the vector element to the
value of the constant. The name initializes the element to the
address of the name. The actu;l size of the vector is the max-

imum of the given size and the number of initial values.

- 7.3 Function Definitions
Function definitions have ﬁhe following form:

' name (arguments) statement
The name is initialized to the rvalue of the function. The argu-
ments consist of a list of names separated by commas. Each name
defines an automatic lvalue that is assigned the rvalue of the
corresponding function call actual parameters. The statement
(often compound) defines the execution of the function when in-

voked.,

8.0 Library Functions

There is a library of B functions maintained in the file
/etc/libb.a. The following is a list of those functions current-
ly in the library. See section 11 of [4] for complete descrip-
tions of the functions marked with an #*,

¢ = char(string, i);
The i-th character of the string is returned,

error = chdir(string);
The path name represented by the string becomes the current

- 418 =

directbry. A negative number returned indicates an error.

(*)

error = chmod(string, mode);
The file specified by the string has its mode changed to

the mode argument. A negative number returned indicates an
error. (%)

error = chown(string, owner); '
The file specified by the string has its owner changed to
the owner argument. A negative number returned indicates
an error. (*)

error = close(file);

The open file specified by the file argument is closed. A
negative number returned indicates an error, (%)

file = creat(string, mode);
The file specified by the string is either truncated or
created in the mode specified depending on its prior exis-
tance. 1In both cases, the file is opened for writing and a
file descriptor is returned., A negative number returned
indicates an error., (%)

ctime(time, date); '
The system time (60-ths of a second) represented in the
two-word vector time is converted to a 16-character date in
the 8-word vector date. The converted date has the follow-
ing format: "Mmm dd hh:mm:ss”.

execl(string, arg0, argl, ..., 0);
The current process is replaced by the execution of the
file specified by string. The arg-i strings are passed as

arguments, A return indicates an error. (%)

execv(string, argv, count);
The current process is replaced by the execution of the
file specified by string. The vector of strings of length
count ar? passed as arguments, A return indicates an er-
ror. (%

exit();
The current process is terminated., (%)

error = fork();
The current process splits into two., The child process -is
returned a zero. The parent process is returned the pro-
cess ID of the child. A negative number returned indicates
an error. (*)

error = fstat(file, status);
The i-node of the open file designated by file is put in
the 20-word vector status. A negative number returned

indicates an error. (*)

char = getchar();
The next character form the standard input file is re-
turned. The character ‘#e’ is returned for an end-of-file,

id = getuid();
The user-1ID of the current process is returned. (%)

error = gtty(file, ttystat); 4 :
The teletype modes of the open file designated by file is

returned in the 3-word vector ttystat. A negative number
returned indicates an error. (*X

lchar(string, i, char);
The character char is stored in the i-th character of the
string.

error = link(string1, string2);
The pathname specified by string2 is created such that it
is a link to the existing file specified by stringi. A
negative number returned indicates an error. (%)

‘error = mkdir(string, mode); '
The directory specified by the string is made to exist with
the specified access mode. A negative number returned
indicates an error., (#%)

file = open(string, mode);
The file specified by the string is opened for reading if
mode is zero, for writing if mode is not zero. The open
file designator is returned. A negative number returned
indicates an error. (¥*)

printf(format, arg1l, ...);
See section 9.3 below.

printn(number, base);
See section 9.1 below.

putchar(char);
The character char is written on the standard output file.

nread = read(file, buffer, count);
Count bytes are read into the vector buffer from the open
file designated by rfile. The actual number of bytes read
are returned. A negative number returned indicates an
error. (%)

error = seek{file, offset, pointer);
The I/0 pointer on the open file designated by file is set
to the value of the designated pointer plus the offset. A
pointer of zero designates the beginning of the file, A

- 20 -

pointer of one designates the current I/0 pointer. A
pointer of two designates the end of the file. A negative
number returned indicates an error. (*)

error = setuid(id);

The user-ID of the current process is set to id. A nega-
tive number returned indicates an error. (%)

error = stat(string, status);
The i-node of the file specified by the string is put in

the 20-word vector status. A negative number returned
indicates an error. (%)

error = stty(file, ttystat);
The teletype modes of the open file designated by file is
set from the 3-word vector ttystat., A negative number
returned indicates an error. (*)

time(timev);

The current system time is returned in the 2-word vector
timev. (*)

error = unlink(string);

The link specified by the string is removed., A negative
number returned indicates an error. (%)

error = wait();
The current process is suspended until one of its child
processes terminates, At that time, the child’s process-ID
is returned. A negative number returned indicates an er-

ror. . (%)
nwrite = write(file, buffer, count);

Count bytes are written out of the vector buffer on the

open file designated by file. The actual number of bytes

written are returned, A negative number returned indicates

an error. (*)
Besides the functions available from the library, there is a
predefined external vector named argv included with every pro-
gram, The size of argv is argv{0]+1. The elements
argv[1]...arg§[argv[0]] are the parameter strings as passed by
the system in the execution of the current process. (See shell

in II of (4])

2.0 Examples

The examples appear exactly as given to B.
2.1

/* The Iollowing function will print a non-negative number, n, to
the base b, where 2{=b{=10. This routine uses the fact that
in the ANSCII character set, the digits 0 to 9 have sequential

- code values, #/

printn(n,b) {
extrn putchar;
auto a;

if(a=n/b) /¥ assignment, not test for equality */
printn(a, b); /¥ recursive %/
putchar(n¥b + ‘0°);

2.2

/* The following program will calculate the constant e-2 to about
4000 decimal digits, and print it 50 characters to the line in
groups of 5 characters. The method is simple output conver-
sion of the expansion

1

1 =
2! +§T+ ”2 00 - .111...
where the bases of the digits are 2, 3, 4, ... */

main() {
extrn putchar, n, v;
auto i, ¢, col, aj;

i = col = 0;
while(i<n)
vii++] = 13

while(col2%#n) {
a = n+1;
c =1 = 0
while(i<n} {
=+ V[i]*10;
v[ii++] = c¥%a;
c =/ a=-—;

putchar(c+°0’);
if(1(++col%5))
putchar(col%¥50?° ‘:"#*n’);

}
) putchar(’#*n*n’);
v[2000] ;

n 2000;

2.3
/*

- 22 -

The following function is a general formatting, printing, and
conversion subroutine. The first argument is a format string.
Character sequences of the form ‘%x’ are interpreted and cause
conversion of type ‘x° of the next argument, other character
sequences are printed verbatim. Thus

printf(“delta is %d*n", delta);

will convert the variable delta to decimal (%d) and print the
string with the converted form of delta in place of %d. The
conversions %d-decimal, %o-octal, ¥s-string and %c-character
are allowed.

Tnis program calls upon the function ‘printn’. (see section
9.1) %/

printf(fmt, x1,x2,x3,x4,x5,x6,x7,x8,x9) {

extrn printn, char, putchar;
auto adx, x, c, i, J; '

i =0; /* fmt index */
adx = &x1; /* argument pointer */
loop:

while((c=char(fmt,i++)) 1= ‘%°) {
if(c == ‘#e’

return;
putchar(c);

X = *adx++;
switch ¢ = char(fmt,i++) {

case ‘d’: /% decimal */
case ‘0’: /* octal #/
if(x < 0) {
X = =X;3
putchar(’~‘);

printn(x, c=='0°?8:10);
goto loop;

case ‘c’: /* char %/
putchar(x);
goto loop;
case ‘s’: /% string */
J = 03
while((c=char(x, j++)) l= "%#e’)
putchar(c);
goto loop;

putchar(‘%’);

i-=;
adx-——; :
goto loop;

10.0 Usage
Currently on UNIX, there is no B command. The B compiler phases
must be executed piecemeal. The first phase turns a B source
program into an intermediate language.

/etc/bec source interm
The next phase turns the intermediate language into assembler
source, at which time the intermediate language can be removed.

/etc/ba interm asource
rm interm

The next phase assembles the assembler source into the object
file a,out., After this the a.out file can be renamed and the
assemblér source file can be removed.
as asource
mv a.,out object
rm asource
The last phase loads the various object files with the necessary
lipraries in the desired order.
14 object /eﬁc/brt1 -1lb /etc/bilib /etc/brt2
Now a,out contains the completely bound and loaded program and
can be executed.
a.out
A canned sequence of shell commands exists iﬁvoked as follows:
sh /usr/b/rc x |
It will compile, convert, assemble and load the file x.b into the

executable file a,out,

- 24 -

12.0 Implementation and Debugging

A B program is implemented as a reverse Polish threaded code
interpreter: The object code consists of a series of addresses of
interpreter subroutines., Machine register 3 is dedicated as the
interpreter program counter. Machine register 4 is dedicated as
the interpreter display pointer. The display pointer points to
the base of the current stack frame. The first word of each
stack frame is a pointer to the previous stack frame (érior
display pointer.) The second word in each frame is is the saved
interpreter program counter (return point of the call creating
the frame,) Automatic variables start at the third word of each
Irame., Machine register 5 is dedicated as the interpreter stack
pointer, The machine stack pointer plays no role in the in-
terpretation, An example source code segmént, object code and
interpreter subroutines follow:

automatic = external + 100.;

va; 4 / lvalue of first automatic on
stack
X; .external / rvalue of external on stack
c; 100, / rvalue of constant on stack
b12 / binary operator #12 (+)
b1 / binary operator #1 (=)
va: ’
mov (r3)+,r0
add r4,ro0 / dpt+offset of automatic
asr ro / lvalues are word addresses
mov ro,(rs5)+
Jmp *¥(r3)+ / linkage between subroutines
X3
mov ¥(r3)+,(r5)+
jmp ¥(r3)+
c:

mov (r3)+,(r5)+

Jmp #(r3)+

b12;:
add -(rs),-2(r5)
Jmp *(r3)+

o3 BH
mov -(r5),r0 / rvalue
mov -(r5),r1 / lvalue
asl ri A / now byte address
mov ro,(r1) / actual ‘assignment
mov ro,(r5)+ / = returns an rvalue
jmp *(r3)+ '

The above code as compared to the obvious 3 instruction directly
executed equivalent gives the approximate 5:1 speed and 2:1 space

penalties one pays in using B.

The salient features for debugging are then:

1. Machine r4 is the display pointer and can be used to trace
function calls and determine automatic variable values at
each call. |

2. Machine r3 is the current prégram counter and can be used
to.determine the current point of execution,

3. All externals are globals with their variable names pre-
fixed by ‘.’. Thus the debugger [4] can be used directly
to give values of external variables.

4. All data lvalues are word addresses and therefore not
directly examinable by the debugger. (See ' request in I

of (4])

13.0 Nasties
This section describes the ‘glitches’ found in all languages, but
rarely reported. w

1. The compiler makes sense of certain expressions with

- 26 -

operators in ambiguous cases (e.g. a+++b) but not others
even in unambiguous cases (e.g. a+++++b),

2. The B assembler /etc/ba does not correctly handle all pos-—
gsitble combinations of intermediate langu?ge. The symptom
is undefined symbols in the assembly of the ocutput from
/etc/ba. This is rare.

3. The B interpreter /etc/bilib is really a library of thread-
ed code segments. The following code segments have not yet

been written:

1]
44

b103
b104
b105
b106
b107
b110
b111
b120

\V;//\/\-‘ll

4. Initialization of external variables with addresses of oth-
er externals is not possible due to a loader deficiency.

5. Since externals are implemented as globals with names pre-
ceeded by °.’, the external names ‘byte’, ‘endif’, ‘even’
and ’globl; conflict with assembler pseodooperations and

should be avoided.

14.(Diagnostics

viagynostics consist of two letters, an optional name, and a
source line number. Due to the free format of the source, the

source line number might be high., The following is a list of the

diagnostics.
error name meaning

$) - {} imbalance

*/ -—
g o -

’C . -

de -

>i -

>s -

ex -

iv -

rd name

sx keyword
un- name

XX -

MH-1271-KT-pdp

Attached
References

- 27 -

() imbalance

/* */ imbalance

(] imbalance

case table overflow (fatal)
expression stack overflow (fatal)
label table overflow (fatal)
symbol table overflow (fatal)
expression syntax

rvalue where lvalue expected
name redeclaration

statement syntax

undefined name

external syntax

K. Thompson

(B

- 28 -

References

1. Richards, M. The BCPL Reference Manual. Multics repository
MOO099,

2. Canaday, R.H. and Ritchie, D.M. Bell Laboratories BCPL.
MM 69-1371/1373-7/12.

3. Ritchie, D.M. The UNIX Time Sharing System. MM 71-1273-4.

4, Thompson, K. and Ritchie, D.M. UNIX Programmer’s Manual.
Available by arrangement.

