
11/3/71 DC (I)

NAME dc -- desk calculator

SYNOPSIS dc

DESCRIPTION dc is an arbitrary precision integer arithmetic package.
The overall structure of dc is a stacking (reverse Polish)
calculator. The following constructions are recognized by
the calculator:

number
The value of the number is pushed on the stack. If the
number starts with a zero, it is taken to be octal,
otherwise it is decimal.

+ - * / %
The top two values on the stack are added (±), subtracted

(—), multiplied (*), divided (*) or remaindered (%) The
two entries are popped off of the stack, the result is
pushed on the stack in their place.

sx
The top of the stack is popped and stored into a
register named x, where x may be any character.

lx
The value in register x is pushed on the
stack. The register x is not altered.

d
The top value on the stack is pushed on the
stack. Thus the top value is duplicated.

p
The top value on the stack is printed in decimal. The
top value remains unchanged.

f
All values on the stack are popped off and
printed in decimal.

r
All values on the stack are popped.

q
exit.

h
print brief synopsis of commands to dc.

new—line
space

 ignored.

An example to calculate the monthly, weekly and

11/3/71 DC (I)

hourly rates for a $10,000/year salary.
10000

100* (now in cents)
dsa (non—destructive store)
12/ (pennies per month)
1a52/ (pennies per week)
dl0* (deci—pennies per week)
375/ (pennies per hzur)
f (print all results)

(3) 512
(2) 19230
(1) 83333

FILES

SEE ALSO

DIAGNOSTICS ? (x) for unrecognized character x.

BUGS % doesn’t work correctly.

OWNER ken

11/3/71 DF (I)

NAME df -- disk free

SYNOPSIS df [filesystem]

DESCRIPTION prints out the number of free blocks available on a file
system. If the file system is unspecified, the free space
on /dev/rf0 and /dev/rk0 is printed.

FILES /dev/rf0, /dev/rk0

SEE ALSO check

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 DSW (I)

NAME dsw -- delete interactively

SYNOPSIS dsw [directory]

DESCRIPTION For each file in the given directory ("." if not specified)
dsw types its name. If y is typed, the file is deleted; if
"x", dsw exits; if anything else, the file is not removed.

FILES
SEE ALSO rm

DIAGNOSTICS “?”

BUGS The name dsw is a carryover from the ancient past. Its
etymology is amusing but the name is nonetheless ill—
advised.

OWNER dmr, ken

11/3/71 DTF (I)

NAME dtf -- DECtape format

SYNOPSIS /etc/dtf

DESCRIPTION dtf will write timing tracks, mark tracks and
block numbers on a virgin DECtape. The format is
DEC standard of 578 blocks of 256 words each.
The end zones are a little longer than standard DEC.

Before use, the tape to be formatted should be mounted on
drive 0. The ‘wall’ and ‘wtm’ switches should be enabled.
After the tape is formatted, the switches should be
disabled to prevent damage to subsequent tapes due to a
controller logic error.

FILES

SEE ALSO sdate

DIAGNOSTICS “?“ is typed for any error detected.

BUGS This program does physical I/O on drive 0. The processor
priority is set very high due to very stringent real time
requirements. This means that all time sharing activities
are suspended during the formatting (about 1.5 minutes) The
real time clock will also be slow.

OWNER ken

11/3/71 DU (I)

NAME du -- summarize disk usage

SYNOPSIS du [—s] [—a] [name...]

DESCRIPTION du gives the number of blocks contained in all
files and (recursively) directories within each
specified directory or file name. If name is missing, "."
is used.

The optional argument —s causes only the grand total to be
given. The optional argument —a causes an entry to be
generated for each file. Absence of either causes an entry
to be generated for each directory only.

A file which has two links to it is only counted once.
FILES /

SEE ALSO

DIAGNOSTICS

BUGS Files at the top level (not under —a option) are not
listed.

Removable file systems do not work correctly since i—
numbers may be repeated while the corresponding files are
distinct. Du should maintain an i—number list per root
directory encountered.

OWNER dmr

11/3/71 ED (I)

NAME ed -- editor

SYNOPSIS ed [name]

DESCRIPTION ed is the standard text editor. ed is based on QED
[reference] but is fully if succinctly described here.
Differences between ed and QED are also noted to simplify
the transition to the less powerful editor.

If the optional argument is given, simulates an e command
on the named file; that is to say, the file is read into
ed’s buffer so that it can be edited.

ed operates on a copy of any file it is editing; changes
made in the copy have no effect on the file until an
explicit write (w) command is given. The copy of the text
being edited resides in a temporary file called the buffer.
There is only one buffer.

Commands to ed have a simple and regular structure: zero or
more addresses followed by a single character command ,
possibly followed by parameters to the command. These
addresses specify one or more lines in the buffer. Every
command which requires addresses has default addresses, so
that the addresses can often be omitted.

In general only one command may appear on a line. Certain
commands allow the input of text. This text is placed in
the appropriate place in the buffer. While ed is accepting
text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected.
Input mode is left by typing a period (.) alone at the
beginning of a line.

ed supports a limited form of regular expression notation.
A regular expression is an expression which specifies a set
of strings of characters. A member of this set of strings
is said to be matched by the regular expression. The
regular expressions allowed by are constructed as follows:

1 . An ordinary character (not one of those
discussed below) is a regular expression
and matches that character.

2. A circumflex (^) at the beginning of a regular
expression matches the null character
at the beginning of a line.

11/3/71 ED(I)

3. A currency symbol ($) at the end of a regular
expression matches the null character
at the end of a line.

4. A period (.) matches any character but a new—line
character.

5. A regular expression followed by an asterisk (*)
matches any number of adjacent occurrences
(including zero) of the regular expression it
follows.

6. A string of characters enclosed in square brackets
([]) matches any character in the string but no
others. If, however, the first character of the
string is a circumflex (^) the regular expression
matches any character but new—line and the
characters in the string.

7. The concatenation of regular expressions is a
regular expression which matches the concatenation
of the strings matched by the components of the
regular expression.

8. The null regular expression standing alone is
equivalent to the last regular expression
encountered.

Regular expressions are used in addresses to specify lines
and in one command (s, see below) to specify a portion of a
line which is to be replaced.

If it is desired to use one of the regular expression
metacharacters as an ordinary character, that character may
be preceded by “\“. This also applies to the character
bounding the regular expression (often “/“) and to \
itself.

Addresses are constructed as follows. To understand
addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current
line is the last line affected by a command; however, the
exact effect on the current line by each command is
discussed under the description of the command.

1. The character "." addresses the current line.
2. The character “$“ addresses the last line of the

buffer.
3. A decimal number n addresses the nth line

of the buffer.

11/3/71 ED (I)

4. A regular expression enclosed in slashes "/“
addresses the first line found by searching toward
the end of the buffer and stopping at the first
line containing a string matching the regular
expression. If necessary the search wraps around to
the beginning of the buffer.

5. A regular expression enclosed in queries "?“
addresses the first line found by searching toward
the beginning of the buffer and stopping at the
first line found containing a string matching the
regular expression. If necessary the search wraps
around to the end of the buffer.

6. An address followed by a plus sign "+" or a minus
sign "—" followed by a decimal number specifies
that address plus (resp. minus) the indicated
number of lines. The plus sign may be omitted.

Commands may require zero, one, or two addresses. Commands
which require no addresses regard the presence of an
address as an error. Commands which require the presence of
one address all assume a default address (often ".") but if
given more than one address ignore any extras and use the
last given. Commands which require two addresses have
defaults in the case of zero or one address but use the
last two if more than two are given.

Addresses are separated from each other typically by a
comma (,). They may also be separated by a semicolon ";".
In this case the current line is set to the the previous
address before the next address is interpreted. This
feature is used to control the starting line for forward
and backward searches ("/", "?").

In the following list of ed commands, the default addresses
are shown in parentheses. The parentheses are not part of
the address, but are used to show that the given addresses
are the default.

As mentioned, it is generally illegal for more than one
command to appear on a line. However, any command may be
suffixed by “p” (for “print). In that case, the current
line is printed after the command is complete.

In any two—address command, it is illegal for the

11/3/71 ED (I)

first address to lie after the second address.
(.)a

<text>
.

The append command reads the given text and appends
it after the addressed line "."
is left on the last line input, if there were any,
otherwise at the addressed line. Address "0" is
legal for this command; text is placed at the
beginning of the buffer. (NOTE: the default address
differs from that of QED.)

(.,.c)
(text>

.

The change command deletes the addressed lines, then
accepts input text which replaces these lines. "."
is left at the last line input; if there were none,
it is left at the first line not changed.

(.,.)d
The delete command deletes the addressed lines from
the buffer. "." is left at the first line not
deleted.

e filename
The edit command causes the entire contents of the
buffer to be deleted. and then the named file to be
read in. "." is set to the last line of the buffer.
The number of characters read is typed.

(1 ,s)g/regular expression/command
In the global command, the first step is to mark
every line which matches the given regular
expression. Then for every such line, the given
command is executed with "." set to that line. The
repeated command cannot be a, g, i, or c.

(.)i
<text>

.

This command inserts given text before the addressed
line. "." is left at the last line input; if there
were none, at the addressed line. This command
differs from the a command only in the placement of
the text.

(.,.)l
The list command prints the addressed lines
in an unambiguous way. Non—printing

11/3/71 ED (I)

characters are over—struck as follows:
char prints
bs [overstruct - \]
tab [overstruct - >]
ret [overstruct - <]
SI [overstruct I -]
SO [overstruct O -]

All characters preceded by a prefix (ESC) character
are printed over—struck with without the prefix.
Long lines are folded with the sequence \newline.

(.,.p)
The print command prints the addressed lines. . is
left at the last line printed

q
The quit command causes ed to exit. No
automatic write of a file is done.

($)r filename
The read command reads in the given file after the
addressed line. If no file name is given, the file
last mentioned in e, r, or w commands is read.
Address "0" is legal for r and causes the file to
be read at the beginning of the buffer. If the read
is successful, the number of characters read is
typed."." is left at the last line of the file.

(.,.)s/regular expression/replacement/
The substitute command searches each addressed line for

an occurence of the specified regular expression.
On each line in which a match is found, the first
(and only first, compare QED) matched string is
replaced by the replacement specified. It is an
error for the substitution to fail on all addressed
lines. Any character other than space or new—line
may be used instead of "/" to delimit the regular
expression and the replacement. "." is left at the
last line substituted.

The ampersand "&" appearing in the replacement is
replaced by the regular expression that was
matched. The special meaning of "&" in this context
may be suppressed by preceding it by “\".

(1,$)w filename
The write command writes the addressed lines onto
the given file. If no file name is given, the file
last named in e, r, or w

11/3/71 ED (I)

commands is written. "." is unchanged. If the
command is successful, the number of characters
written is typed. The line number of the addressed
line is typed. . is unchanged by this command.

($)=
The line number of the addressed line is typed. "."
is unchanged by this command.

!UNIX command
The remainder of the line after the "!" is sent to
UNIX to be interpreted as a command. "."is
unchanged.

(newline>
A blank line alone is equivalent to ".+lp";
it is useful for stepping through text.

Ed can edit at most 1500 lines and the maximum size of a
line is 256 characters, The differences between ed and QED
are:

1. There is no \f character; input mode is left by
typing . alone on a line.

2. There is only one buffer and hence no stream
directive.

3. The commands are limited to:

a c d e g i l p q r s w = !

where e is new.

4. The only special characters in regular expressions
are:

* ^ $ [.

which have the usual meanings. However, "^" and "$"
are only effective if they are the first or last
character respectively of the regular expression.
Otherwise suppression of special meaning is done by
preceding the character by “\ , which is not
otherwise special.

5. In the substitute command, only the leftmost
occurrence of the matched regular
expression is substituted.

7. The a command has a different default address.

FILES /tmp/etma, etmb, ... temporary
/etc/msh is used to implement the "!" command.

11/3/71 ED (I)

SEE ALSO

DIAGNOSTICS ? for any error

BUGS ed is used as the shell for the editing system. It has the
editing system UID built in and if invoked under this UID
will give slightly different responses. This is a little
kludgy.

OWNER ken

11/3/71 FIND (I)

NAME find -- find file with given name

SYNOPSIS find name or number

DESCRIPTION find searches the entire file system hierarchy and gives
the path names of all files with the specified names or
(decimal) i—numbers.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER dmr

11/3/71 FOR (I)

NAME for -- fortran

SYNOPSIS for file

DESCRIPTION for is a nearly complete fortran compiler. file is the name
of a fortran source program to be compiled. The following
is a list of differences between for and ANSI standard
fortran:

1. arbitrary combination of types are allowed in
expressions. Not all combinations are expected to be
supported in runtime. All of the normal conversions
involving integer, real and double precision are
allowed.

FILES f.tmpl, 2 3 temporary
/etc/f1, 2 3 4 passes
/etc/xx runtime

SEE ALSO

DIAGNOSTICS Diagnostics are given by number. If the source code is
available, it is printed with an underline at the current
character pointer. A listing of error numbers is
available.

BUGS The following is a list of those features not yet
implemented: functions, arithmetic statement functions.
data statements, complex constants, hollerith constants,
continuation cards

OWNER dmr, ken

11/3/71 FORM (I)

NAME form -- form letter generator

SYNOPSIS form proto arg1 ...

DESCRIPTION form generates a form letter from a prototype letter, an
associative memory, arguments and in a special case, the
current date.

If form is invoked with the argument x, the following
files come into play:

x.f prototype input
x.r form letter output
x.am associative memory
form.am associative memory if x.am not found.

Basically, form is a copy process from the file x.f to the
file x.r. If an element of the -form \n (where n is a digit
from 1 to 9) is encountered, The nth argument is inserted
in its place, and that argument is then rescanned. If \0 is
encountered, the current date is inserted. If the desired
argument has not been given, a message of the form "\n:" is
typed. The response typed in then is used for that
argument.

If an element of the form [name] is encountered, the name
is looked up in the associative memory. If it is found,
the contents of the memory under this name replaces the
original element (again rescanned.) If the name is not
found, a message of the form "name: " is typed. The
response typed in is used for that element. If the
associative memory is writable, the response is entered in
the memory under the name. Thus the next search for that
name will succeed without interaction.

In both of the above cases, the response is typed in by
entering arbitrary text terminated by two new lines. Only
the first of the two new lines is passed with the text.
The process is instantly terminated if an end of file is
encountered anywhere except in the associative memory.

FILES x.f input file
x.r output file
x.am associative memory
form.am associative memory

SEE ALSO type

DIAGNOSTICS "settup error” when the appropriate files cannot be
located or created.

BUGS "settup" is misspelled.

11/3/71 FORM (I)

OWNER rhm, ken

11/3/71 HUP (I)

NAME hup -- hang up typewriter

SYNOPSIS hup

DESCRIPTION hup hangs up the phone on the typewriter which uses it.

FILES

SEE ALSO

DIAGNOSTICS

BUGS should not be used; sometimes causes the typewriter channel
to be lost.

OWNER dmr, ken

11/3/71 LBPPT (I)

NAME lbppt -- load binary paper tapes

SYNOPSIS lbppt output [input]

DESCRIPTION lbppt loads a paper tape in standard UNIX binary paper
tape format. It is used to bring files to a UNIX
installation. Currently there is a GECOS program to
prepare a GECOS file in binary paper tape format.

If the input file is specified, the character stream from
that input is expected to be in UNIX binary paper tape
format. If it is not present, /dev/ppt is assumed. The
input stream is interpreted, checksummed, and copied to the
output file.

FILES /dev/ppt

SEE ALSO dbppt, bppt format

DIAGNOSTICS "checksum"; "usage:"; "read error".

BUGS

OWNER ken

11/3/71 LD (I)

NAME ld -- link editor

SYNOPSIS ld [—usaol] name1]

DESCRIPTION ld combines several object programs into one; resolves
external references; and searches libraries. In the
simplest case the names of several object programs are
given, and ld combines them, producing an object module
which can be either executed or become the input for a
further ld run.

The argument routines are concatenated in the order
specified. The entry point of the output is the beginning
of the first routine.

If any argument is a library, it is searched, and only
those routines defining an unresolved external reference
are loaded. If any routine loaded from a library refers to
an undefined symbol which does not become defined by the
end of the library, the library is searched again. Thus the
order of libraries primarily affects the efficiency of
loading, not what routines get loaded.

ld understands several flag arguments which are written
preceded by a "—"

—s "squash" the output, that is, remove the symbol
table and relocation bits to save space (but impair
the usefulness of the debugger). This information
can also be removed by strip.

—u take the following argument as a symbol and enter it
as undefined in the symbol table. This is useful for
loading wholly from a library, since initially the
symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

—o set the origin of the load to the octal number which
is given as the next argument. This option affects
only the definition of relocatable external symbols.
See DMR before using.

—l This option is an abbreviation for a library
name. "-l" alone stands for "/etc/liba.a", which is
the standard system library for assembly language
programs. "-lx" stands for /etc/libx.a where x is
any character. There are libraries for Fortran
(x=”f”) and B (x=”b”).

11/3/71 LD (I)

—a means absolute” (load at origin absolute
0) but it doesn’t work.

The output of ld is left on a.out . This file is executable
only if no errors occurred during the load.

FILES /etc/libx.a, for various x;
/etc/ltma, ltmb, ... (temporary)
a.out (output file)

SEE ALSO as, strip, ar (maintains libraries)

DIAGNOSTICS "can't create temp file”—— unwritable directory
or someone else is using ld in the same directory.

"can't open temp file" -- maybe someone has deleted it out
from under you.

"file not found" -- bad argument

"bad format" -- bad argument

"relocation error" -- bad argument (relocation bits
corrupted)

"bad relocation" -- user error: a relocatable
reference to an external symbol that turns out to be
absolute.

“multiply defined" -- same symbol defined twice in same
load

"un" -- stands for undefined symbol

"symbol not found" —— loader bug

BUGS Option "-a" doesn't work at all; option "-o" doesn't work
right.

OWNER dmr

11/3/71 LN (I)

NAME ln -- make a link

SYNOPSIS ln name1[name2]

DESCRIPTION ln creates a link to an existing file name1. If name2 is
given, the link has that name; otherwise it is placed in
the current directory and its name is the last component
of name1.

It is forbidden to link to a directory or to link across
file systems.

FILES

SEE ALSO rm, to unlink

DIAGNOSTICS "?"

BUGS There is nothing particularly wrong with ln, but links
don’t work right with respect to the backup system: one
copy is backed up for each link, and (more serious) in
case of a file system reload both copies are restored and
the information that a link was involved is lost.

OWNER ken, dmr

11/3/71 LS (I)

NAME ls -- list contents of directory

SYNOPSIS ls [-ltasd] name1 ...

DESCRIPTION ls lists the contents of one or more directories under
control of several options:

1 list in long format, giving i—number, mode, owner,
size in bytes, and time of last modification for
each file. (see stat for format of the mode)

t sort by time modified (latest first) instead of by
name, as is normal

a list all entries; usually those beginning with "."
are suppressed

s give size in blocks for each entry

d if argument is a directory, list only its
name, not its contents (mostly used with
—l to get status on directory)

If no argument is given, "." is listed. If an argument is
not a directory, its name is given.

FILES /etc/uids to get user ID’s for ls —l

SEE ALSO stat

DIAGNOSTICS "name nonexistent"; "name unreadable"; "name unstatable".

BUGS In ls -l, when a user cannot be found in /etc/uids, the
user number printed instead of a name is incorrect. It is
correct in stat.

OWNER dmr, ken

11/3/71 MAIL (I)

NAME mail -- send mail to another user

SYNOPSIS mail [letter person ...]

DESCRIPTION mail without an argument searches for a file called
mailbox, prints it if present, asks if it should be saved.
If the answer is y , the mail is renamed mail, otherwise
it is deleted. The answer to the above question may be
supplied in the letter argument.

When followed by the names of a letter and one or more
people, the letter is appended to each person’s mailbox.
Each letter is preceded by the sender’s name and a
postmark.

A person is either the name of an entry in the directory
/usr, in which case the mail is sent to
/usr/person/mailbox, or the path name of a directory, in
which case mailbox in that directory is used.

When a user logs in he is informed of the presence of
mail.

FILES /etc/uids to map the sender’s numerical user ID to name;
mail and mailbox in various directories.

SEE ALSO init

DIAGNOSTICS "Who are you?" if the user cannot be identified for some
reason (a bug). "Cannot send to user" if mailbox cannot be
opened.

BUGS

OWNER ken

11/3/71 MESG (I)

NAME mesg -- permit or deny messages

SYNOPSIS mesg [n][y]

DESCRIPTION mesg n forbids messages via write by revoking non—user
write permission on the user’s typewriter. mesg y
reinstates permission. mesg with no argument reverses the
current permission. In all cases the previous state is
reported.

FILES /dev/ttyn

SEE ALSO write

DIAGNOSTICS "?" if the standard input file is not a typewriter

BUGS

OWNER dmr, ken

11/3/71 MKDIR (I)

NAME mkdir -- make a directory

SYNOPSIS mkdir dirname

DESCRIPTION mkdir creates directory dirname. The standard entries
"."and ".." are made automatically.

FILES

SEE ALSO mkdir to remove directories

DIAGNOSTICS "?"

BUGS No permissions are checked. The system's user ID, not that
of the creator of the directory, becomes the owner of the
directory.

OWNER ken, dmr

11/3/71 MKFS (I)

NAME mkfs -- make file system

SYNOPSIS /etc/mkfs t
/etc/mkfs r

DESCRIPTION mkfs initializes either a DECtape (argument “t”) or an
RK03 disk pack (argument "r”) so that it contains an empty
file system. mkfs or its equivalent must be used before a
tape or pack can be mounted as a file system.

In both cases the super—block, i—list, and free list are
initialized and a root directory containing entries for
"." and ".." are created. For RK03’s the number of
available blocks is 4872, for tapes 578.

This program is kept in /etc to avoid inadvertant use and
consequent destruction of information.

DIAGNOSTICS "Arg count", "Unknown argument", "Open error".

SEE ALSO

DIAGNOSTICS "Arg count", "Unknown argument", "Open error".

BUGS

OWNER ken, dmr

11/3/71 MOUNT (I)

NAME mount -- mount file system

SYNOPSIS mount special dir

DESCRIPTION mount announces to the system that a removable file system
has been mounted on the device corresponding to special
file special. Directory dir (which must exist already)
becomes the name of the root of the newly mounted file
system.

FILES

SEE ALSO umount

DIAGNOSTICS "?", if the special file is already in use, cannot be
read, or if dir does not exist.

BUGS Should be usable only by the super—user.

OWNER ken, dmr

11/3/71 MV (I)

NAME mv -- move or rename a file

SYNOPSIS my name1 name2 ...

DESCRIPTION mv changes the name of name by linking to it under the
name name2 and then unlinking name1. Several pairs of
arguments may be given. If the new name is a directory,
the file is moved to that directory under its old name.
Directories may only be moved within the same parent
directory (just renamed).

FILES

SEE ALSO

DIAGNOSTICS "?a? -- incorrect argument count
"d" -- attempt to move a directory
"s" -- moving file to itself
"l"-- link error; old file doesn’t exist or can’t write

new directory
"u" -- can’t unlink old name

BUGS If mv succeeds in removing the target file, but then in
unable to link back to the old file, the result is ?l and
the removal of the target file. This is common with
demountable file systems and should be circumvented. Also
in such cases, mv should copy if it can.

OWNER ken, dmr

