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Abstract

In this tutorial, I will review and discuss the current approaches to software
model checking. The presentation is intended to provide a representative, but not
exhaustive, overview of this active area of research. I will emphasize techniques
and ideas within my area of expertise. The tutorial consists of three parts.

Part I: The Dynamic Approach (Systematic Testing)

Part I presents the dynamic approach to software model checking. This approach,
pioneered in VeriSoft [6], consists of systematically exploring the state space of
a concurrent software system by driving its executions via a run-time scheduler.
Several technical innovations made this possible: the use of a run-time scheduler
to systematically drive process executions, a construct to simulate nondeter-
minism at run-time, and the use of partial-order reduction to make a search in
the state space of concurrent operating-system processes tractable even without
storing any intermediate states in memory. Many of these features have now been
adopted in other software model checkers (like Java PathFinder [17], CMC [16],
etc.).

In this part, I will present VeriSoft and the dynamic approach to software
model checking. I will also discuss applications, strengths and limitations, as well
as technology-transfer issues that arise when applying software model checking
in an industrial environment [8].

Part II: The Static Approach (Automatic Abstraction)

Part II presents the static approach to software model checking. This approach
consists of automatically extracting a model out of a software application by stat-
ically analyzing its code and abstracting away details, applying traditional model
checking to analyze this abstract model, and then mapping abstract counter-
examples back to the code or refining the abstraction (e.g., [1,15,4]). In this
part, I will start by reviewing the basic notions of software model checking via
abstraction, including a brief introduction to predicate abstraction.

I will then present recent work on three-valued abstractions [2], in which prop-
erties of a system are either true, false or unknown. Whereas traditional conser-
vative abstractions can only prove universal properties, model checking three-
valued abstractions (also called may/must abstractions [12]) can be used to both



prove and disprove any temporal-logic property. Also, verification results can be
more precise with generalized model checking [3], which checks whether there
exists a concretization of an abstraction satisfying a temporal-logic formula.
Generalized model checking generalizes both model checking (when the model is
complete) and satisfiability (when everything in the model is unknown), proba-
bly the two most studied problems related to temporal logic and verification. I
will discuss algorithms and complexity bounds for three-valued model checking
and generalized model-checking for various temporal logics [3,11]. Then, I will
discuss applications to program verification via automatic abstraction [10]. I will
show examples of programs and properties that can be verified by generalized
model checking but not with current abstraction-based verification tools [11]. I
will also present classes of temporal-logic formulas for which model checking is
guaranteed to always have the same precision as generalized model checking [9].
Finally, I will briefly discuss three-valued abstractions for reasoning about open
systems [7] and about games in general [5], as well as completeness issues (i.e.,
given an infinite-state program and a property, is there a finite-state abstraction
of that program that satisfies this property?).

Part ITI: Combining the Static and Dynamic Approaches

The dynamic (systematic testing) and static (automatic abstraction) approaches
to software model checking inherit the well-known advantages and limitations
of, respectively, dynamic and static program analysis, and are therefore comple-
mentary [13, 8].

Part IIT discusses some current work to improve on the two previous ap-
proaches by combining their strengths, namely the precision of dynamic anal-
ysis and the efficiency of static analysis. In particular, I will present such a
recent approach called Directed Automated Random Testing (DART) [14], which
fully automates software testing by combining three main techniques: (1) au-
tomated extraction of the interface of a program with its external environment
using lightweight static analysis; (2) automatic generation of a test driver for
this interface that performs random testing to simulate the most general en-
vironment the program can operate in; and (3) dynamic analysis of how the
program behaves under random testing and automatic generation of new test
inputs that direct the execution along alternative program paths. The main
strength of DART is that testing can be performed completely automatically
on any program that compiles — there is no need to write any test driver or
harness code. Since DART attempts to sweep through all the feasible execution
paths of a program using dynamic test generation techniques (Step 3), it can be
viewed as one way of combining static (interface extraction, symbolic execution)
and dynamic (testing, run-time checking) program analysis with model-checking
techniques (systematic state-space exploration).

In this part, I will present DART, compare static and dynamic test genera-
tion, and discuss applications and experimental results obtained on C program
benchmarks. I will also quickly present a new (yet unpublished) algorithm for



compositional dynamic test generation that is necessary to make the DART ap-
proach scalable to very large programs (hundreds of thousands of lines of code
and more). I will conclude by discussing possible directions for future research
in this area [13].
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