Proceedings of the 13th IFIP WG 6.1 International Symposium on
Protocol Specification, Testing, and Verification,
Liege, May 1993. North-Holland.

On the Verification of Temporal Properties
Patrice Godefroid®* and Gerard J. HolzmannP
aUniversité de Liege, Institut Montefiore B28, 4000 Liege Sart-Tilman, Belgium

PAT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

Abstract

We study and compare various algorithms that can be used for solving the model-checking
problem for linear-time temporal logic. We then propose a new algorithm that can be viewed as
the combination of two existing algorithms plus a new state representation technique introduced
in this paper. The new algorithm is simpler than the traditional algorithm of Tarjan to check
for maximal strongly connected components in a directed graph which is the classical algorithm
used in model-checking. It has the same time complexity as Tarjan’s algorithm, but requires
less memory. Our algorithm is also compatible with other important complexity management
techniques, such as bit-state hashing and state space caching.

Keyword Codes: D.1.3; D.2.4

Keywords: Concurrent Programming, Program Verification

1. Introduction

Techniques for verifying both safety and liveness properties with on-the-fly search algorithms
have been known for quite some time. The verification of safety properties relies only on a
search for reachable “bad states”. The verification of liveness properties, however, requires also
search for reachable “bad cycles”. Until recently, it was assumed that the validation of liveness
properties required the implementation of an algorithm for the detection of strongly connected
components in the reachability graph. Tarjan’s standard algorithm [1] can perform this work at
a cost that is linear in the size of the reachability graph, and is therefore implemented in almost
all verification systems that support liveness properties.

The construction of strongly connected components, however, is not compatible with a range
of validation techniques that can be used to reduce the memory requirements of on-the-fly
verification algorithms. Examples of such techniques are bit-state hashing techniques [2], which
can be found in most mainstream verification tools today.

In the last three years two new algorithms have been published that each solve one part of
this problem. In [3] an algorithm is proposed that avoids the detection of strongly connected
components by performing two nested depth-first searches. The algorithm can be used to check
for cycles that pass through at least one state marked as “accepting state”. In [4] this algo-

*The work of this author was done in part while visiting AT&T Bell Laboratories and was partially supported
by the European Community ESPRIT BRA project REACT (6021) and by the Belgian Incentive Program
“Information Technology” — Computer Science of the future, initiated by Belgian State — Prime Minister’s Service
— Science Policy Office. The scientific responsibility is assumed by the authors.

rithm was implemented to facilitate the detection of so-called “acceptance cycles” in PROMELA
validation models with the validator SPIN.

The second algorithm was first published in [4] and similarly avoids the detection of strongly
connected components by the definition of a two-state demon automaton, that controls two
separate searches, the standard search, and a truncated search for cycles, as will be explained
in more detail below. This second algorithm can be used to check for cycles that do not pass
through any states marked as “progress states”. In the context of SPIN, this is used for a fast
detection of so-called “non-progress cycles”, which are the dual of the “acceptance cycles” from
above.

Each of these two algorithms proved that in many cases it is simply not necessary to construct
complete maximal strongly connected components: it is almost always sufficient to show only
that they exist, and to produce a single traversal of a strongly connected component that
demonstrates its existence to a user. The cost of both algorithms in time and memory is still
strictly linear on the size of the reachability graph: it is never more than twice the cost of a
standard reachability analysis for each algorithm.

In this paper we discuss two additional improvements. First, we show how the algorithm
from [3] can be simplified by being combined with the one from [4]. Next, we show that the
resulting algorithm can be implemented with a much smaller space complexity than thought
possible, thanks to a new state representation technique. We show that instead of a doubling
of the memory requirements at worst, the algorithm requires no more than two extra bits of
memory for each state stored. Since most protocols of practical significance require at least tens
if not hundreds of bytes of memory per state stored, this does not alter the space requirements
in a significant way.

Despite its simplicity, the algorithm described here can completely solve the model-checking
problem, that is, it can be used to verify any temporal property, and, if required, it can do
so under any fairness assumption. This paper focuses on the verification of temporal logic
formulas, specifically the detection of acceptance cycles in Biichi automata, though the algorithm
we propose can be used also independently of model-checking, for the detection of acceptance
cycles in general.

In Section 2 and 3 we first give a formal framework for the verification of temporal properties
with reachability analyses. We discuss the algorithms from [3] and [4], and describe how they
can be combined. Section 4 continues with a discussion of the new general storage technique we
propose, which is named “hybrid storage”. Section 5 concludes the paper with a discussion of
related work and the conclusions.

2. Verification of Temporal Properties

2.1. Representing Programs

We assume we are given a program P describing a system composed of several interacting
concurrent processes P;. Processes can communicate with each other in some way, for instance
via shared variables or communication channels. The only assumption about the program P is
that it describes a finite-state system. In other words, we assume that it is possible to compute
a finite-state automaton Ap (also often called a “labeled transition system”) representing the
joint behavior of all processes P;. Formally, Ap is a tuple Ap = (¥p,Sp,Ap,sop), where Xp
is an alphabet, Sp is a finite set of states, Ap C Sp X ¥p X Sp is a transition relation, and

Initially: t =1, 41 = F, yo = F

Py Py
lo: execute (noncritical section) mg: execute (noncritical section)
l: yp:=T my: oy =1
ly: if (y2 = F) then go to I7 my: if (y1 = F) then go to ms
Is: if (t = 1) then go to ma: if (t = 2) then go to mq
ly: = F my: Yy = F
Is: loop until (t=1) ms: loop until (¢ = 2)
lg: gotoly mg: go to my
Iz t:=2 (critical section) mz: t:=1 (critical section)
ls: y:=F mg: Yy = F
lg: gotoly mg: o to myg

Figure 1. Dekker’s algorithm

sop € Sp is the initial state. Ap can be computed by simulating all possible sequences of
actions the system can perform from its initial state. X p is the set of actions that are present
in the code of the program P, Sp is the set of states that the system can reach from its initial
state, and the transitions in Ap corresponds to transitions between states that the system can
perform while executing a single action. A computation of the program P is a sequence of states
0 = Sg,81,-.. such that there exists transitions (s;_1,a;,s;) € A, for all ¢ > 1. Thus states in o
are intermediate states reached during the execution of the sequence of actions ajag ... by the
system from its initial state.

Example 2.1 Consider the well-known Dekker algorithm [5] for mutual exclusion, reproduced
in Figure 1. There are two parallel processes Py and P,, a shared variable t, and two private
boolean variables y1 and yo. Fach private variable can be set only by the process owning it, but
may be examined by both. The variable yi in Py (y2 in P2) is set to T at l; to signal the intention
of Py to enter its critical section at l7;. Next Py tests at ly if Py has any interest in entering its
own critical section by checking if yo = T. If yo = F, Py proceeds immediately to its critical
section. Ifyo = T, there is a conflict. This conflict is resolved by using the value of variable t. If
t =2, then Py “withdraws” by setting y; to F and waits until its turn comes (t = 1). Ift =1, it
waits until Py “withdraws” and then enters its critical section at ;. While in the critical section,
it sets the variable t to 2, to indicate that next time a potential conflict should be resolved in
favor of Py, and it sets yy to F just before exiting the critical section. We assume that Py and
Py are running asynchronously on different processors with different speeds, and that read and
write instructions involving shared variables are evecuted as atomic operations. The automaton
Ap corresponding to this concurrent program has 101 reachable states and 202 transitions.

2.2. Specifying Temporal Properties

For representing temporal properties, we use linear-time propositional temporal logic [6].
Linear-time temporal logic can be used for specifying properties of infinite sequences of states.
Propositions in the logic correspond to boolean conditions on variables and process states of the

program. Formulas are constructed over propositions using the classical boolean connectives (-,
V, ...) and the temporal operators O (always), < (eventually), O (next) and &/ (until), whose
semantics is defined as usual [6]. Formulas are interpreted on infinite sequences sgsy8g ... of
states: given a particular infinite sequence of states, the formula is either satisfied or falsified by
this sequence. Informally, one has:

e Op holds in state s; if p holds in s; and in all successor states of s; in the sequence on
which the formula is interpreted;

e Op holds in s; if p holds in some successor state of s; or in s; itself;
e Op holds in s; if p holds at the next state;

e pUq holds in s; if ¢ ¢ holds in s; and if p holds in s; and in all successor states of s; until
the first state in which ¢ holds.

Example 2.2 Consider the formula O(p O <q). It expresses the property: “every state where
proposition p holds coincides with or is followed by a state where proposition ¢ holds”. All infinite
sequences of states that meet this requirement are said to “satisfy” this formula.

2.3. Verification Problem

The verification problem we consider is the following. Given a concurrent program P and a
linear-time temporal logic formula f, check that all infinite computations of P satisfy f. This
is known as the model-checking problem.

To solve this problem, the only fact we need about linear-time temporal logic is that, for
each formula f, it is possible to build a Biichi automaton Ay that accepts exactly the infinite
words satisfying the temporal formula f [7]. Formally, a Biichi automaton([8] is a tuple A =
(X,5,A,s0, F), where

e Y is an alphabet,

e 5 is a set of states,

e AC S x 3 xS is a transition relation,
o sy € 5 is the starting state, and

o I/ C S is aset of accepting states.

A Biichi automaton is thus an automaton as defined in Section 2.1 augmented with a set F of
accepting states. Biichi automata are used to define languages of w-words, i.e., functions from
the ordinal w to the alphabet X. Intuitively, a word is accepted by a Bichi automaton if the
automaton has an infinite execution that intersects set F infinitely often. Formally, we define a
computation o of A over an w-word w = ajas ... as an w-sequence o = Sq, 1, ... (i.e., a function
from w to S) where (s;_1,a;,s;) € A, for all i > 1. A computation ¢ = sg,s1,... is accepting
if there is some state in F’ that repeats infinitely often, i.e., for some state x € F there are
infinitely many ¢ € w such that s; = z. The w-word w is accepted by A if there is an accepting
computation of A over w.

A construction of a Biichi automaton A from a formula f can be found in [9] and in chapter
4 of [10]. This construction is exponential in the length of the formula, but this is usually not a
problem since the formulas to be checked are quite short and since the algorithm often behaves
much better than its upper bound.

pV-p —q

Figure 2. Biichi automaton corresponding to —=(0O(p D < q))

Example 2.3 Figure 2 shows a Biichi automaton that accepts exactly all the infinite words
satisfying the formula - f with f = O(p D < gq), i.e., all sequences of states that contain a state
where p holds and from which q never holds in the remainder of the sequence. Its initial state is
designated by the symbol >. It has one accepting state designated by a double circle.

The verification procedure is the following [7, 11]. We first build a finite-automaton on infinite
words for the negation of the formula f. The resulting automaton Ay = (¥-y, S-f, Aoy, So-f, Foy)
accepts all sequences of states that violate f. (Of course, if A_; is provided by the user, the
above construction can be skipped.) Then we compute the product automaton Ag = Ap X Ay
which is the Biichi automaton Ag = (¥, 5, A, s, F') defined by

o X =1X_y,
o S5=5pXxXS5.4,8= (30P750—-f)7

o ((s,w),a,(u,v)) € A when (s,t,u) € Ap,(w,a,v) € Ay and a evaluates to true in state
s of Ap,

o I'=5p x F.y.

This product automaton accepts all infinite computations of P that are accepted by the automa-
ton Ay, i.e., all computations that violate the formula f. Finally, we check if the automaton
Ag is empty, i.e., if it accepts any sequences. If Ag is empty, we have proven that all infinite
computations of P satisfy the formula f.

Example 2.4 Consider Dekker’s algorithm again. Let us verify that, if one of the two processes
(say Py) wants to enter its critical section, it eventually enters it. This property can be formalized
with the formula f = O((at 1) D <O(at l7)). A Bichi automaton Ay corresponding to - f is
presented in Figure 2, where p represents at 1y and ¢ represnts at l;. Maybe surprisingly, the
automaton Ag corresponding to the product of Dekker’s algorithm and A-y is nonempty, which
means that there exists at least one infinite computation of the program violating the property.
One such computation is the following: P; moves from ly to l; and next to ly; then P, moves
from mg up to ms and then loops for ever in ms. This infinite computation violates the formula
[given above since [y has been reached but l; is never reached.

Note that we verify properties of the infinite computations of P. These are defined by viewing
Ap as a restricted type of Biichi automaton in which the set of accepting states is the whole

Figure 3. Biichi automata corresponding to O < Py and O < P, respectively

set of states in Ap. Thus the verification procedure we are describing does not consider finite
computations of the program P. However, if one wants to take stopping computations (i.e.,
computations that leads to a terminating state where all processes of P are blocked) into account
during the verification, it is possible to transform these finite computations into infinite ones by
letting the terminating state repeat forever [12].

2.4. Specifying Fairness Assumptions

It is sometimes useful in verification to take into account specific assumptions about the
context in which a concurrent program is executed. If, for instance, concurrent processes are
executed on different processors, it is customary to assume that each such processor will always
make finite progress: if it has an enabled operation, it will eventually execute it. This “finite
progress” assumption was already expressed in, for instance, Dijkstra’s work in the late sixties [5].
More recently, the classic finite progress assumption is usually defined as a special case of a
larger class of so-called “fairness assumptions”. In this context finite progress is similar to
“weak fairness” [6, 13]. Other notions of fairness are used to formalize specific properties of,
for instance, process schedulers for concurrent systems. The main purpose of these assumptions
is to exclude computations that would not be allowed by the specific type of process scheduler
that is assumed. The fairness assumptions then act as filters, removing certain classes of infinite
behaviors that conflict with the assumptions made about scheduler behavior.

Example 2.5 Consider the previous example. We showed that the computation “P; moves from
lo to l1 and next to ly; then Py moves from mg up to ms and then loops for ever in ms” was
violating the property O((at ly) D <(at I7)). But, since we assumed that Py and P, are running
asynchronously on different processors with different speeds, the above computation, where P,
loops for ever in ms while Py never executes its next transition from ly, does not correspond
to an “actual” one. Indeed, in practice, P1 would eventually erecute its next transition since it
is running on another processor than P,. In order to only consider fair computations, we can
assume that a process which is not blocked will eventually execute a transition. Since Py and
Py can always execute a transition (including looping), this is equivalent to assuming that every

process always eventually executes a transition.

It is beyond the scope of this paper to discuss the various notions of fairness that have been
studied (see for instance [6, 13]). It has been shown that fairness assumptions can be modeled

by temporal logic formulas [12], or by Biichi automata [14].

Example 2.6 For the previous example, the assumption “every process always eventually ex-
ecutes a transition” can be formalized by the formula ‘OO Py A OO Py”, where P; denotes the
fact that the next transition of Ap that is taken in the computation is performed by process ¢ (P;
is a special kind of “state formula”; see [6]). Another possibility is to add in the program two
more processes corresponding to the two Bichi automata presented in Figure 3.

The verification procedure for a formula f remains very similar in presence of fairness assump-
tions. If fairness assumptions are modeled by a formula f’, the verification problem amounts
to checking that all infinite computations of the program P satisfy the formula f’ O f, which
can be done as presented in the previous section. If fairness assumptions are modeled by Biichi
automata Ay,;, that are synchronized with the program?, the product Ag = Ap x Agqir x Ay is
computed in a different way as defined in the previous section, since this time several automata
have nontrivial acceptance conditions (e.g., see chapter 4 of [10]), but the verification problem
is reduced again to checking the emptiness of Aq.

Example 2.7 Consider Dekker’s algorithm again and the formula (0O PLAOO Py) D

O((at ;) D O(at l7))”. The Biichi automaton Ay corresponding to this formula obtained from
the construction given in [9, 10] has 16 states and 92 transitions. The product automaton Ag
is empty, which means that the formula is satisfied by the program under the considered fairness
assumptions.

Note that assuming fairness is often ill-advised in formal verifications. If the fairness “fil-
ter” is too restrictive, erroneous computations might be eliminated and thus missed during the
verification. The result of the verification becomes conditional on the validity of the fairness
assumptions. If, for instance, the scheduler on a system is changed, the proof of correctness of an
application protocol that relied on the properties of that scheduler immediately becomes invalid.
A verification that does not rely on fairness assumptions is therefore always stronger than one
that does. In principle, furthermore, it is the obligation of the user to also prove formally that
the fairness assumptions made are indeed valid for a given scheduler. In practice, this can be
very hard, and it is often impossible.

We conclude, though, that the problem of proving that the program P satisfies the formula
f, with or without assuming some notion of fairness, can be reduced to the problem of checking
the emptiness of the Biichi automaton Ag. Note that computing Ag and checking its emptiness
can be done at the same time.

3. Checking Emptiness of Buchi Automata

3.1. Previous Work

To check if the Biichi automaton Ag is nonempty, one has to check if there exists a cycle in
A (viewed as a graph) that contains an accepting state and that is reachable from the initial
state sg. Note that it is not necessary to consider all possible cycles in Ag, it is sufficient to
check if Ag contains at least one maximal (nontrivial) strongly connected component that is
reachable from the initial state and that includes a state from set F.

2 Another similar possibility is to directly specify acceptance sets for the processes in the program, thus to define
the program as being a product of Biichi automata [14, 15].

Searching for maximal strongly connected components in Ag can be done with the Tarjan
algorithm [16, 1]. This algorithm is based on a depth-first search in Ag with additional com-
putations at each state of Ag that is encountered during the search. (See [1] for a complete
presentation of this algorithm.) The algorithm visits all n reachable states of A once, its time
complexity is linear in the size of Ag. It requires the storage of all reachable states in a ran-
domly accessed memory. Moreover, with each state, the value of a variable “DFNUMBER”,
which labels the reachable states in the order they are visited, must be stored as well. The
Tarjan algorithm also requires the use of an additional stack.

Since this algorithm requires access to explicit state information, such as the value of “DFNUM-
BER?”, to ensure its correctness, it is not compatible with techniques that do not guarantee the
preservation of this information, as the bit-state hashing techniques, for instance, which collapse
the representation of states into a single bit of memory [2]. Hence, given a fixed amount of
memory, the size of the problems that can be analyzed with Tarjan’s algorithm is unavoidably
smaller than the size of the problems that can be handled with bit-state hashing techniques.

This observation triggered the development of an algorithm for checking Biichi automata
emptiness [3] which is compatible with the bit-state hashing method. In [3], checking emptiness
of Biichi automata is reduced to a set of reachability problems. This is justified by the fact that
a Biichi automaton is nonempty iff it has some state z € F that is reachable from the initial
state and reachable from itself.

The algorithm in [3] consists of two successive depth-first searches (DFS’s). The purpose of
the first DFS is to determine the accepting states of F’ that are reachable from sg, and to order
them according to last visit (i.e., in postorder) as z1, ...,z (z1 is the first backtracked reachable
accepting state and z is the last such state). These accepting states are entered into a FIFO
queue. The aim of the second DFS is to check if any of the accepting states in the queue is
accessible from itself. The second DFS starts on x;. If 2y is reached during the search, a cycle
that passes through z; has been detected and an error (i.e., a violation of the property being
checked) is reported. Else another search is then initiated from z2, and so on until all k¥ accepting
states have been checked. Due to the postorder ordering, it is possible to show that the states
visited during the ith search need not to be revisited during the following jth searches, z < j.
Consequently, the k searches can be performed by using only one single hash table to store the
states that have been visited. In other words, all searches from the z; € F together correspond
at most to one unique second DFS in Ag.

In the worst case, this algorithm visits all reachable states of Ag twice: once in each DFS. Its
time complexity is still linear in the size of Ag. It requires the storage of all n reachable states
in a randomly accessed memory. In case of error, the states in the stack of the second search
corresponds to a “bad” cycle through an accepting state x;. However, a counter-example, with
the complete error path starting from the initial state, can not be produced. It is then necessary
to perform a third search to find a path starting from the initial state and leading to the state
x;.

In [3], a second version of this algorithm is also presented. This algorithm does away with
the additional queue by using instead a second stack and a second hash table. The basic idea
behind it is to perform the above two DFS’s in an interleaved way, rather than sequentially.
Each time an accepting state is “backtracked” in the first search, the first DF'S is suspended and
the second DFS explores whether the accepting state is reachable from itself. If this is not the
case, the algorithm resumes the first search to look for other accepting states, etc. This second
version requires twice as much space as the first one. Its advantage is, however, that if an error

is detected, a complete counter-example can immediately be extracted from the two stacks.

3.2. Algorithm

In this section, we build upon the work of [3] and present another version of this algorithm.
Our version does not require a second stack and a second hash table. The basic idea behind
the simplification is to use an algorithm presented in [4] which solves a different though related
problem: the detection of non-progress cycles. A non-progress cycle is a cycle that does not
contain any states marked as “progress-states”. The algorithm from [4] inspects two distinct
state spaces, the regular one and a second one where transitions from progress states are disabled.
It switches from one state space to the other by means of a two-state “demon” which is added to
the system. The state of the demon process always determines in which state space the search
currently operates. Below, we combine the ideas from [3] and [4] to obtain a new algorithm for
checking emptiness of Biichi automata.

Let us add a two-state demon process to the system being verified, as in [4]:

magic = (magic = 1
Figure 4. Demon machine

The state of this demon process defines in which “mode” the search operates. The initial
state of the demon process is dy, with variable magic equal to 0. The second, and final, state
of the demon is d; with magic equal to 1. We assume that the demon process can switch from
its initial state to its final state only when the system is in an accepting state and only after all
other enabled transitions have been explored. Once it has switched, the demon process can not

go back.

The effect is that when magic is zero, a normal depth-first search is performed, corresponding
to the first DFS of above. When magic is one, the second phase of the search is entered, with
a check if an accepting state z is reachable from itself.

A description of the new algorithm is given in Figure 5. It consists of a simple modification of
a classical depth-first search. If the lines number 11 and from 18 to 25 are removed, the code of a
classical DFS remains. One bit magic is added to the representation of each state of Ag to store
the current state of the demon process. s.magic denotes the value of magic in state s. Initially,
sp.magic = 0 and the search is performed as usual (the value of magic remains 0). When an
accepting state s € F is backtracked (line 18), then the transition of the demon process becomes
enabled and is executed: magic is set to 1 (line 19) and a second search is initiated (line 20) to
determine if the accepting state, whose description is stored in an additional variable z (line 21),
is reachable from itself. If this is the case, this is detected in line 11 and an error is reported.

The correctness proof of the algorithm is similar to the ones presented in [3] and [4].

1 Initialize: Stack is empty; H is empty; so.magic = 05 £ = none;
2 Search() {

3 enter sy in H;

4 push (so) onto Stack;

5 DFS();

6)

7 DFS() {

8 s = top(Stack);

9 for all ¢ enabled in s do {

10 s’ = succ(s) after t; /* execution of ¢t */

11 if s'.magic = 1 Az = s’ then halt and return “Error”;
12 if 8’ is NOT already in H then {

13 enter s’ in H;

14 push (s') onto Stack;

15 DFS();

16 }

17 }

18 if s.magic = 0A s € F then {

19 s’ = s with magic = 1; /* execution of Demon */
20 if s’ is NOT already in H then {

21 T = 83

22 enter s’ in H;

23 push (s') onto Stack;

24 DFS();

25 }

26 }

27 pop s from Stack

28 }

Figure 5. “Magic” Search

Theorem 3.1 If there exists in Ag at least one strongly connected component containing at
least one accepting state, the above algorithm will report an error.

Proof: Consider the first accepting state z of a strongly connected component (SCC) that is entered
into the magic = 1 part of the state space. This state 2 becomes the root of a new search subtree. Since
x 1s reachable from itself, it is part of its own reachable subtree and will be detected on line 11. Indeed,
paths leading from z back to z in this subtree can not be truncated because all intermediate states along
these paths have not been visited yet, and are thus not present in H. Let us prove this by contradiction.
Assume there is such an intermediate state s that has been visited with magic = 1 before x. s must have
been reached from another accepting state z’, that has been backtracked before z in the first DFS. Since
z and s belong to the same SCC and since s is reachable from z’, z is also reachable from z’. Since z
is backtracked after z’ in the first DFS though z is reachable from z’, this implies that all paths from
z' to (we know there exists at least one) intersect the stack with which state z’ is reached during the
first DFS. Since there is a path from z’ to a state of the stack,i.e., closing a cycle on the stack, there is a
path from z’ to itself, and thus 2’ is an accepting state of a SCC. This contradicts the assumption that

x 18 the very first such state.

The two successive or nested searches of the previous section are now combined and performed
using one single stack and one single hash table thanks to the demon process. The algorithm is
quite straightforward to implement. Moreover, if an error is detected, the states in the current
stack correspond to a complete infinite computation violating the property being checked and
can be exhibited to the user immediately as a counter-example. The time complexity remains
unchanged: it is linear in the size of Ag. One additional bit corresponding to the value of magic
has to be stored in the hash table with each reachable state, which slightly increases the memory
requirements. In practice, this overhead is negligable due to the fact that the number of bits
necessary to store one state is usually much larger than one bit (often hundreds or thousands of
bits are necessary to represent uniquely each state).

In the worst case, however, the algorithm will still store all n reachable states of Ag with the
two different possible values of magic. This is twice as much as the number of states that needs
to be stored with Tarjan’s algorithm, or with the first version of the algorithm from [3] (it is the
same as for the second version). In the next section, we show how it is possible to overcome this
problem by using a new technique for representing states, called the hybrid storage technique.

4. Hybrid Storage

4.1. Storage Techniques

During the search in Ag performed by the new algorithm, all states visited are stored in
memory. The exploration is performed “on-the-fly”, i.e., without storing the transitions that
are taken. In this section, we study various techniques for storing the n reachable states of Ag.

Assume the states of Ag have names from a name space U. |U| corresponds to the product of
the number of all possible values for all individual process states, all local and global variables,
and all message channels contents. Since |U| is the number of possible names for a state, at
least log |U| bits are necessary to represent each of these states unambiguously. Hence storing
n reachable states requires at least

l\/jEA’/[classic = nlog |U|

bits of memory. This is the classical storage technique used in conventional reachability analysis
algorithms.

We now consider an alternative to this storage technique, which we will call a linear storage
technique. Define a one-to-one correspondence between the elements of the name space U and
the elements of an array A of bits, whose size must therefore be at least |U/]. Initially, all bits of
A are set to 0. If the ¢th state in U is encountered during the exploration of Ag, the ith bit in
A is set to 1. With this storage technique, the memory M E Mj;,cqr required by the state space
exploration algorithm is

ﬂ/fEﬂ/[h'neaT = |U|

and is independent of the number n of reachable states.

For a particular U, one can determine the critical “density” d..;; for which both storage
methods require the same amount of memory by stating M EM .j4ssic = M EMpineqr:

1

n
dcri = T = T
"0 log U]

Consequently, if n > |U|/log|U]|, the linear storage discipline is preferable, else a classical
storage requires less memory. In other words, the linear storage technique is only suitable for
“high density” state spaces. Most protocol state spaces are usually far below the critical density
for which linear storage pays off. Indeed, |U]| is typically many order of magnitude larger than
the number n of reachable states in Ag. Moreover, the name space |U| is usually so large that
the linear storage technique would require an astronomic amount of memory. Typically a few
hundred bytes are necessary to store one state; thus |U| can be much greater than 2°00 bits,
much more than available on today’s computers. The applicability of the linear storage discipline
remains therefore very limited.

4.2. Hybrid Storage

We now discuss a storage technique that is a combination of classical and linear storage, and
which is therefore called hybrid storage.

We assume each state of Ag can be unambiguously identified by a pattern of precisely log |U|
bits. We divide the representation of each state s into two parts s; and s, of length, respectively,
log |U1| and log|Us|. One has log |U| = log|Uy| 4 log |Us|. Each state s of Ag corresponds thus
to one unique pair (s1,s2). Call s; the head of s and sy the tail of s. Next let us collect states
that have the same head into packets. States in a same packet have the same head and only
differ by their tail. During the exploration of Ag, let us store packets of states in memory, rather
than states as with the classical storage technique. Each packet consists of the head s; of length
log |U1|, which characterizes it, plus a bit-array of length |Us| to store the tails of the states of
that packet that have already been visited during the search.

With this hybrid storage technique, packets of (log |Uy|) + |Usz| bits are stored to memorize the
states of A that have already been visited, instead of states of log |U| bits (i.e., log |U1|+log|Us|)
with the classical storage method. The overhead is |Uz| —log |Uz| bits per packet stored. On the
other hand, the number of packets that have to be stored during the search can be smaller than
the number of states. Indeed, two different states of Ag that have the same head s, and thus
that only differ by their tail sy and s}, respectively, are represented in only one single packet:
the first log |Uy]| bits of the packet contain the name of s; while the bit corresponding to s, and
the bit corresponding to s, amongst the |Us| last bits will be set to 1.

The overall amount of memory M E M} p,;q required with this storage technique is
ﬂf[Eﬂ/[hbed = (n - m)(log |U1| + |U2|)

where m is the number of head matchings during the search, i.e., the number of states which
have the same head as another state previously encountered during the search.

For a particular U, and a given partition U;—U;, one can determine the critical propor-
tion mq;:/n of head matchings from which the hybrid storage technique pays off by stating
MEM q5sic = M EMpyp,;q. One obtains:

Merit (U2 — log UQ)

n (10g|U|—10gU2-|—U2)

If m > mep;, then hybrid storage requires less memory than the classical storage and is thus
preferable. Clearly, the hybrid storage method is useful when the number m of head matchings
is important.

Example 4.1 Assumelog |U| = 1000 and |Uy| = 2. Then m.ri/n = 1/1001. Therefore, if more

than one state among 1001 states has the same head of length 999 as another state previously
encountered during the search, then hybrid storage is preferable to the classical storage.

4.3. Application to the Verification of Temporal Properties

The application of the hybrid storage method we have in mind is the storage of states of Ag
explored by the algorithm that has been presented in Section 3.2. Since Ag is a product of
automata, we can divide them into two groups Ag; and Agg such that Ag = Ag1 X Agz, and
use hybrid storage with this partition. Automata that likely have the highest density of coverage
can be grouped in Agg, i.e., the “tail” using linear storage.

A first possibility is to take Ag; = Ap X A~y and use the two-states demon process Agemon as
Agg. Then, instead of representing the current state of the demon process by 1 bit magic with
the classical storage and taking the risk of storing 2n states of (log |U]|) + 1 bits, it is possible to
store only n packets of (log U') + 2 bits, the two last bits indicating if the state of Agq has been
visited with magic = 0, with magic = 1, or with both values of magic.

Example 4.2 Consider the previous example again: assume that the system being checked by
the algorithm of Section 3.2 is such that a state of Ap X A-y requires 125 bytes, 1000 bits, to
be represented. The memory overhead due to the storage of the state of the demon process is
limited to 2 bits per reachable state in Ap x A—y. For this example, if more than 1 in 1001 states
is visited in both search modes (the expected case), the hybrid storage requires less memory than
the classical one. If all n reachable states are visited in both search modes (which will happen,
for instance, if Ag corresponds to a strongly connected graph and contains at least one accepting
state), then the overall memory requirement when using hybrid storage is n(1000+ 2) bits instead
of 2n(1000 4 1) bits when using classical storage.

Another possibility is to include A~y in Agy with Agepmon. Thus one has Agy = Ap and
Agy = Ay X Agermon. If some additional automata Ay,;, are used, they can also be included in
Aga.

We have experimented these possibilities with the examples presented in Section 2. Let Ap
be the state-graph corresponding to Dekker’s algorithm, let A be the Biichi automaton shown
in Figure 2 and A_(y5y) be the Biichi automaton corresponding to the negation of the formula
“OOPANOOPy) D O((at) D O(at I7))”. Table 1 compares the memory requirements of the
algorithm presented in Section 3.2 when it is used with a classical storage and when it is used
with the hybrid storage technique. # states (# packets) is the number of stored states (resp.
packets) during the search, while |state| (|packet|) is the size of one state (resp. packet) given
in bytes (B) and bits (b). Memory is the memory required by the algorithm to store the states
reached during the verification of the corresponding property. Sizes |...| have been rounded to
integer numbers of bytes (20B42b becomes 21B), as an actual implementation requires, before
being multiplied by # ... to obtain the value of Memory. The first row gives the memory
requirements of a simple exploration of Ap alone, i.e., without being combined with a property.
The second row corresponds to the verification of the formula f. With classical storage, two bits
have to be added to the representation of each state of Ap: one bit to represent the state of Ay
(which has two states; see Figure 2) and one (magic) bit to represent the state of the demon.
In the third case, since A_ 15y contains 16 states, 4 bits plus one for the demon are added
with classical storage. One clearly sees in Table 1 that the hybrid storage technique requires
less memory than the classical storage technique.

Partition Classical Storage Hybrid Storage
Ag1 Aga # states |state] Memory | # packets |packet|] Memory
Ap 101 20B 2020B 101 20B 2020B
Ap Ao X Ademon 243 20B+2b 5103B 101 20B+4b 2121B
Ap A.(pro5) X Ademon 670 20B+5b 14070B 101 20B+32b 2424B
Table 1

Comparison between classical and hybrid storage

In summary, the hybrid storage method can be of great practical interest when some of the
components in the product of automata are susceptible to be reached with several different states
for a single state of the rest of the components, as it is often the case for the demon process
and as it might also be the case for the automaton A_; corresponding to the negation of the
property being verified (especially when this property does not really constraint the behaviors
of the program Ap).

Note that the hybrid storage method is quite different from, and orthogonal to, other tech-
niques like the state compression schemes used in [17]. These techniques can easily be combined
to increase the reduction still further.

5. Comparison With Other Work and Conclusions

We have presented an algorithm for checking the emptiness of Biichi automata with the
following features:

e The algorithm can solve the model-checking problem for linear-time temporal logic, i.e., it
can be used for the verification of any temporal property under any fairness assumption.

e Using the hybrid storage technique, its memory requirements are close to that of a con-
ventional state space exploration of the program alone, i.e., without being combined with
a property.

e The algorithm is compatible with techniques that can be used to increase the scope of au-
tomated validation, as bit-state hashing and state space caching techniques (e.g., see [18]).

o If the program does not satisfy the property being checked, a complete counter-example
can be produced to the user, which explains why the program violates the property. This
is required to understand what the error in the program (or in the property) is and to
correct it.

e Last but not least, the algorithm is straightforward to implement: it is a minor modification
of a standard depth-first search.

Previously existing algorithms do not have all the interesting properties mentioned above. As
we recalled in Section 3, Tarjans’s algorithm requires the storage of the value of the variable
DFNUMBER with each reached states. This requires more than two bits per state, the precise
overhead of our algorithm which therefore requires less memory. Moreover, Tarjan’s algorithm is
not compatible with bit-state hashing techniques, and is more complicated. Although “simplic-
ity” is a subjective notion, it should be easy to convince oneself of the difference in complexity
of the standard Tarjan algorithm (see [1]) and the algorithm presented here.

The algorithms given in [3] requires either several successive searches (first version; cf. Sec-
tion 3.1), or a doubled amount of memory (second version), while our algorithm solves both
problems by using simultaneously a demon process and a hybrid storage technique. More-
over, the hybrid storage technique makes the so-called “automata-theoretic approach to model-
checking” [11] yet more attractive by tackling the problem that Ap x Ay can be much bigger
than Ap alone, since it can reduce its memory requirements to approximately the ones of simple
reachability analysis.

In [19], an algorithm is given for verifying a property expressed by a deterministic Biichi
automaton without computing strongly connected components. Our algorithm is more general
since it can deal with nondeterministic Biichi automata as well as with deterministic ones. (For
instance, the algorithm of [19] could not be used to verify the property modeled by the Biichi
automaton of Figure 2.)

Finally, several algorithms (based on Tarjan’s algorithm) have been proposed to solve the
model-checking problem with some precise pre-defined fairness assumptions [12]. Instead of
requiring a pre-defined notion of fairness, our algorithm can adapt to arbitrary fairness assump-
tions and is much simpler.

The algorithm presented in Section 3.2 has been implemented in the SPIN protocol valida-
tion tool in mid 1992 (though as yet without the hybrid storage method), replacing an earlier
algorithm based on [3]. Noncommercial users can obtain the SPIN system via anonymous ftp
from research.att.com from the /netlib/spin directory.

The importance of the development of efficient algorithms for the verification of temporal logic
formulas will need little justification. As an example of the growing importance of this field,
we can mention the recently completed pilot verification project at AT&T, which was named
NewCoRe. One of the main goals of the NewCoRe project was to demonstrate the feasibility
of formal verification based on temporal logic in an industrial environment. Over a period of
two years (April 1990 to April 1992) a team of 4 people worked on the formal verification of
the ISDN/ISUP code for the generic 5ESS? telephone switches, in parallel with a “mainstream”
team of 20 to 25 people that was developing a conventional design. The verification team
modeled high level requirements into hundreds of temporal logic formulas, and performed a
total of 10,000 formal validations (at a sustained rate of over 400 automated validations per
month). The main tool used in these validations was a new version of the validation tool
SDLVALID [20], extended with algorithms for proving liveness properties that are similar to the
ones discussed in this paper. As a result of this effort, the NewCoRe team was able to trap and
prevent hundreds of sometimes quite subtle high level design errors, clearly demonstrating that
temporal logic verification is not only feasible, even for fairly large-scale industrial applications,
but also extremely effective.

Acknowledgements

We wish to thank Pascal Gribomont, Doron Peled, Didier Pirottin, Pierre Wolper and anony-
mous referees for helpful comments on this paper.

REFERENCES

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

I5ESS is a registered trademark of AT&T.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Algorithms. Addison Wesley, Reading, 1974.

G. J. Holzmann. An improved protocol reachability analysis technique. Software, Practice and
FEzperience, 18(2):137-161, 1988.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms for the
verification of temporal properties. In Proc. 2nd Workshop on Computer Aided Verification, volume
531 of Lecture Notes in Computer Science, pages 233-242, Rutgers, June 1990.

G. J. Holzmann. Destgn and Validation of Computer Protocols. Prentice Hall, 1991.

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming Languages.
Academic Press, New York, 1968.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, Berlin, January 1992.

P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In Proc. 2/th
IEEE Sympostum on Foundations of Computer Science, pages 185-194, Tucson, 1983.

J.R. Buchi. On a decision method in restricted second order arithmetic. In Proc. Internat. Congr.
Logic, Method and Philos. Sci. 1960, pages 1-12, Stanford, 1962. Stanford University Press.

P. Wolper. On the relation of programs and computations to models of temporal logic. In B. Ban-
iegbal, H. Barringer, and A. Pnueli, editors, Proc. Temporal Logic in Specification, volume 398 of
Lecture Notes in Computer Science, pages 75-123, 1989.

André Thayse and et al. From Modal Logic to Deductive Databases: Introducing a Logic Based
Approach to Artificial Intelligence. Wiley, 1989.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proc. Symp. on Logic in Computer Science, pages 322-331, Cambridge, June 1986.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear
specification. In Proceedings of the Twelfth ACM Symposium on Principles of Programming Lan-
guages, pages 97-107, New Orleans, January 1985.

N. Francez. Fairness. Springer-Verlag, 1986.

S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness properties to coupled finite-state
machines. ACM Transactions on Programming Languages and Systems, 12(2):303-339, 1990.

P. Godefroid and P. Wolper. A partial approach to model checking. In Proceedings of the 6th IEEE
Symposium on Logic in Computer Science, pages 406-415, Amsterdam, July 1991.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2):146-160,
1972.

G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strategies for reach-
ability analysis. In Proc. 12th IFIP WG 6.1 International Symposium on Protocol Specification,
Testing, and Verification, Lake Buena Vista, Florida, June 1992. North-Holland.

P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In Proc. 4th Workshop
on Computer Arded Verification, Montreal, June 1992. Lecture Notes in Computer Science, Springer-
Verlag.

C.Jard and Th. Jeron. Bounded-memory algorithms for verification on-the-fly. In Proc. 3rd Workshop
on Computer Aided Verification, volume 575 of Lecture Notes in Computer Science, Aalborg, July
1991.

G. J. Holzmann and J. Patti. Validating sdl specifications: An experiment. In Proc. 9th IFIP WG 6.1
International Symposium on Protocol Specification, Testing, and Verification. North-Holland, 1989.

