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Abstract
Dynamic test generation is a form of dynamic program analysis
that attempts to compute test inputs to drive a program along
a specific program path. Directed Automated Random Testing,
or DART for short, blends dynamic test generation with model
checking techniques with the goal of systematically executing all
feasible program paths of a program while detecting various types
of errors using run-time checking tools (like Purify, for instance).
Unfortunately, systematically exploring all feasible program paths
does not scale to large, realistic programs.

This paper addresses this major limitation and proposes to per-
form dynamic test generation compositionally, by adapting known
techniques for interprocedural static analysis. Specifically, we in-
troduce a new algorithm, dubbed SMART for Systematic Modular
Automated Random Testing, that extends DART by testing func-
tions in isolation, encoding test results as function summaries ex-
pressed using input preconditions and output postconditions, and
then re-using those summaries when testing higher-level functions.
We show that, for a fixed reasoning capability, our compositional
approach to dynamic test generation (SMART) is both sound and
complete compared to monolithic dynamic test generation (DART).
In other words, SMART can perform dynamic test generation com-
positionally without any reduction in program path coverage. We
also show that, given a bound on the maximum number of feasible
paths in individual program functions, the number of program exe-
cutions explored by SMART is linear in that bound, while the num-
ber of program executions explored by DART can be exponential
in that bound. We present examples of C programs and preliminary
experimental results that illustrate and validate empirically these
properties.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Verification, Algorithms, Reliability

Keywords Software Testing, Automatic Test Generation, Pro-
gram Analysis, Scalability, Compositional Analysis, Program Ver-
ification
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1. Introduction
Given a program � , say a C program with a million lines of code,
with a set of input parameters � , wouldn’t it be nice to have a tool
that could automatically generate a set of input values that would
exercise, say, even only 50% of the code?

This problem is called the test generation problem, and has
been studied since the 70’s (e.g., [Kin76, Mye79]). Yet, effective
solutions and tools to address this problem have proven elusive for
the last 30 years. What happened?

There are several possible explanations to the current lack of
practically-usable, industrial-strength tools addressing this prob-
lem. First, the expensive sophisticated program-analysis techniques
required to tackle the problem, such as symbolic execution engines
and constraint solvers, have only become computationally afford-
able in recent years thanks to the increasing computational power
available on modern computers. Second, this steady increase in
computational power has in turn enabled recent progress in the en-
gineering of more practical software model checkers, more efficient
theorem provers, and, last but not least, more precise yet scalable
static analysis tools. Indeed, automatic code inspection tools based
on static program analysis are increasingly being used in the soft-
ware industry (e.g., [BPS00, HCXE02]).

Progress on practical test-generation tools based on automatic
program analysis has been arguably slow, until recently where
there has been a renewed interest for this problem (e.g., [BKM02,
BCH � 04, VPK04, CS05, GKS05, CE05]). Work in this area can
roughly be partitioned into two groups: static versus dynamic test
generation.

Static test generation (e.g., [Kin76]) consists of analyzing the
program � statically, by exclusively using symbolic execution
techniques to attempt to compute inputs to drive � along specific
execution paths or branches, without ever executing the program.
Unfortunately, the applicability of this approach is severely limited
when the program � contains statements whose behavior cannot
be predicted statically with symbolic execution.

Dynamic test generation (e.g., [Kor90]) consists of executing
the program � , typically starting with some random inputs, gath-
ering symbolic constraints on inputs along the execution, and then
using a constraint solver to infer variants of the previous inputs in
order to steer the next execution of the program towards a specific
program statement. This process is repeated until a given final state-
ment is reached or a specific program path is executed. As observed
in [GKS05] and explained in detail in the Section 2, given some
fixed symbolic execution and constraint solving capabilities, dy-
namic test generation generalizes static test generation, and can al-
leviate the inherent limitations of symbolic execution by using con-
crete values, available at runtime, to simplify symbolic expressions
that are beyond the scope of the given constraint solver. In practice,
dynamic test generation seems more effective than static test gen-



eration as it can sometimes easily handle programs for which static
test generation is totally helpless (see Section 2).

Directed Automated Random Testing [GKS05], or DART for
short, is a recent variant of dynamic test generation that blends
it with model checking techniques with the goal of systematically
executing all feasible program paths of a program while detecting
various types of errors using run-time checking tools (like Purify,
for instance). Unfortunately, systematically exploring all feasible
program paths does not scale to large, realistic programs.

This paper addresses this major limitation and proposes to per-
form dynamic test generation compositionally, by adapting known
techniques for interprocedural static analysis (e.g., [RHS95]) that
have been used to make static analysis scalable to very large pro-
grams (e.g., [BPS00, HCXE02, DLS02, CDW04]). Specifically, we
introduce a new algorithm, dubbed SMART for Systematic Modular
Automated Random Testing, that extends DART by testing func-
tions in isolation, encoding test results as function summaries ex-
pressed using input preconditions and output postconditions, and
then re-using those summaries when testing higher-level functions.
We show that, for a fixed reasoning capability, our compositional
approach to dynamic test generation (SMART) is both sound and
complete compared to monolithic dynamic test generation (DART).
In other words, SMART can perform dynamic test generation com-
positionally without any reduction in program path (and hence
branch) coverage. We also show that, given a bound on the max-
imum number of feasible paths in individual program functions,
the number of program executions explored by SMART is linear in
that bound, while the number of program executions explored by
DART can be exponential in that bound. We present examples of
C programs and preliminary experimental results that illustrate and
validate empirically these properties. To the best of our knowledge,
SMART is the first algorithm for compositional dynamic test gen-
eration. We claim that a SMART search is necessary to make the
“DART approach” scalable to large programs.

This paper is organized as follows. In Section 2, we compare in
detail the static and dynamic approaches to test generation. Then,
we recall the DART search algorithm of [GKS05] in Section 3.
We then introduce the SMART search algorithm and discusses
its correctness and complexity. Section 5 discusses examples of
programs and experimental results comparing the performance of
DART and SMART. We conclude with some additional remarks in
Section 6 and by discussing other related work in Section 7.

2. Background
2.1 Problem Definition

Consider a sequential, deterministic program � consisting of a set
of program statements � (assignments, tests, loops, etc.). Given an
input � , � computes a unique value ��� ��� ��� (also called output)
where ��� ��� denotes the execution of � induced by � . The problem
of test input generation is defined as follows.

DEFINITION 1 (Test Input Generation). Given a statement �
	��
of a program � , compute an input � such that the execution ��� ���
of � induced by � reaches statement � .

A variant of the previous definition is as follows.

DEFINITION 2 (Test Suite Generation). Given a program � with
a set � of statements, compute a set of inputs �
� such that, for all
statement � in � , there is an input � in � � such that the execution
��� ��� of � induced by � reaches statement � .

It is interesting to observe how effective random testing can
be in solving each of these two problems. Random testing simply
means choosing an input randomly. It is a simple and well-known

technique (e.g., [BM83]), which in practice can sometimes be re-
markably effective at finding software bugs [FM00].

PROPOSITION 1. If ��������� denotes the probability of reaching any
one statement in � with � random inputs, we have

��������������������� �"!����������#�
(where � denotes logical implication).

This proposition implies that random testing is in general more
likely to solve the second problem of test suite generation than the
first problem of test input generation.

Still, the power of random testing is limited to address the latter
problem.

PROPOSITION 2. If �%$'&(&� ����� denotes the probability of reaching all
the statements in � with � random inputs, we have

� � ��� � �)� $'&(&� ��� � �"*�� $'&(&� ��� � �
Intuitively, the larger the set � of statements, the less likely random
testing will be able to cover them all.

Although obviously �%$'&(&� ���+�-,.�/$'&(&0 ���+� if ��,21 , increasing
� does not necessarily increase � $'&(&� much in practice. For instance,
the 3547658 branch of the conditional statement “ 9
:<;>=@?A?CB#DFEG3H476
8
I#I#I ” has only one chance to be exercised out of J5K � if = is a 32-
bit integer program input that is randomly initialized. In practice,
this means that random testing has virtually no chance to exercise
the 3H47658 branch of that conditional statement. The limitations of
random testing are well-known (e.g., [OH96]).

In what follows, test generation will denote both problems un-
less otherwise specified.

2.2 Static Test Generation is Often Ineffective

The first approach to test generation was proposed about 30 years
ago [Kin76]. It consists of analyzing the program � statically, by
exclusively using symbolic execution techniques to try to compute
appropriate inputs � to drive � along specific execution paths or
branches, without ever executing the program.

More precisely, the idea is to symbolically explore the tree
of all computations a program exhibits when all possible value
assignments to input parameters are considered. For each control
path L , that is, a sequence of control locations of the program,
a path constraint M�N is constructed that characterizes the input
assignments for which the program executes along L . All the paths
can be enumerated by a search algorithm that explores all possible
branches at conditional statements. The paths L for which M�N is
satisfiable are feasible and are the only ones that can be executed
by the actual program. The solutions to M�N exactly characterize
the inputs that drive the program through L . Assuming that the
theorem prover used to check the satisfiability of all formulas M N
is sound and complete, this use of static analysis amounts to a kind
of symbolic testing.

Unfortunately, this approach does not work whenever the pro-
gram contains statements involving constraints outside the scope
of reasoning of the theorem prover, i.e., statements “that cannot be
reasoned about symbolically”. This limitation is illustrated by the
following example.

O7P 9RQ P
SFTAU'V@W 6�;X9'8@3Y=�Z[9R8@3�\CE�]
9
:^;>=_?A?�4�` T 4+;a\CEAE W 6H3 V@W 8.bFBdc eAe�6 WAW7P5WW 653 V@W 8YDfc eAe PRgh

Assume that the function 4�` T 4 cannot be reasoned about symbol-
ically. Formally, this means that it is in general impossible to gen-
erate two values for inputs = and \ that are guaranteed to satisfy
(or violate) the constraint =i?H?j4�` T 4�;>\CE . Note that, if 4�` T 4 is



a hash or cryptographic function, it has been mathematically de-
signed specifically so that such reasoning is impossible.

In this case, static test generation cannot generate test inputs
to drive the execution of this program through either branch of
the conditional statement in line 5: static test generation is totally
helpless for a program like this.

The practical implication of this simple observation is signifi-
cant: static test generation as proposed by King 30 years ago and
discussed in many papers since then (e.g., see [Mye79, Edv99,
BCH � 04, VPK04, XMSN05, CS05]) is doomed to perform poorly
whenever symbolic execution is not possible.

The above limitation would not be severe if conditional state-
ments beyond the scope of theorem provers, like =_?A? 4�` T 4+;a\CE ,
were rare in practice. Unfortunately, such statements are extremely
frequent in systems code written in programming languages like C
and C++. Indeed, those programs typically involve complex pro-
gram statements (pointer manipulations, arithmetic and bit-vector
operations, etc.), and many calls to operating-system and library
functions that are hard or impossible to reason about symbolically
with good enough precision.

2.3 Dynamic Test Generation is More Powerful

A second approach to test generation is dynamic test generation
(e.g., [Kor90, GMS00]): the program is executed concretely, pos-
sibly on a first input chosen at random, and symbolic constraints
are gathered along the execution. Then, a constraint solver is used
to infer variants of the first input, and the process is repeated until
a given statement is reached. This is the classic definition of “dy-
namic test generation” which addresses the test input generation
problem defined in Section 2.1, and has been studied extensively in
the testing research literature (e.g., [Kor90, GMS00]).

Recently, dynamic test generation has been adapted to also deal
with the other problem of test suite generation. DART [GKS05] and
subsequent related papers [SMA05, CE05, YST � 06] address this
second problem for the set � of all program statements. Starting
with a random input, a DART-instrumented program calculates
during each execution an input vector for the next execution. This
vector contains values that are the solution of symbolic constraints
gathered from predicates in branch statements during the previous
execution. The new input vector attempts to force the execution of
the program through a new path. By repeating this process, such a
directed search attempts to force the program to sweep through all
its feasible execution paths, in a style similar to systematic testing
and dynamic software model checking [God97].

A key observation from [GKS05] is that imprecision in symbolic
execution can be alleviated using concrete values and randomiza-
tion: whenever symbolic execution does not know how to handle a
program statement involving some input variables, one can always
simplify those constraints by using the concrete values of those in-
puts. Let us illustrate this important point with an example.

Consider again the example of the program P
SFTAURVAW 6 presented
in Section 2.2. Even though it is statically impossible to gener-
ate two values for inputs = and \ such that the constraint =i?A?
4�` T 4+;>\CE is satisfied (or violated), it is easy to generate, for a fixed
value of \ , a value of = that is equal to 4�` T 4�;>\CE since the latter is
known at runtime. By picking randomly and then fixing the value
of \ , we can, in the next run, set the value of the other input = either
to 4�` T 4+;a\CE or to something else in order to force the execution of
the then or else branches, respectively, of the test in the functionP
SFTHURV@W 6 . (DART does this automatically [GKS05].)

In summary, static test generation is totally helpless to generate
test inputs for the program P
SFTHURV@W 6 , while dynamic test generation
can easily drive the executions of that same program through all its
feasible program paths!

Dynamic test generation can be viewed as extending static test
generation with additional runtime information, and is thus more
general and powerful. Indeed, it can use the same symbolic execu-
tion engine and use concrete values to simplify constraints outside
the scope of the constraint solver. This is why we claim dynamic
test generation provides the only hope of one day providing effec-
tive, practical test generation tools that are applicable to real-life
software. And this is why we believe the topic addressed in this
paper is so central to reaching that goal for large software applica-
tions.

3. The DART Search Algorithm
In this section, we recall the DART search algorithm first intro-
duced in [GKS05], and later re-implemented in [SMA05] and (in-
dependently) in [CE05]. We present here a simplified version to
facilitate the exposition. The reader is referred to [GKS05] for ad-
ditional details.

Like other forms of dynamic test generation (e.g., [Kor90]),
DART consists of running the program � under test both con-
cretely, executing the actual program, and symbolically, calculat-
ing constraints on values at memory locations expressed in terms
of input parameters. These side-by-side executions require the pro-
gram � to be instrumented at the level of a RAM (Random Access
Memory) machine.

The memory
�

is a mapping from memory addresses 1 to,
say, 32-bit words. The notation � for mappings denotes updating;
for example,

����� � � ��� 1
	� �
� is the same map as
�

, ex-
cept that

��� � 1 � � � . We identify symbolic variables by their
addresses. Thus in an expression, 1 denotes either a memory ad-
dress or the symbolic variable identified by address 1 , depending
on the context. A symbolic expression, or just expression, � can be
of the form 1 , � (a constant), �@��� ��� � � � � (a dyadic term denoting
multiplication), ! ��� � � � � � � (a term denoting comparison), ����� � � (a
monadic term denoting negation), ��� � (a monadic term denoting
pointer dereference), etc. Thus, the symbolic variables of an ex-
pression � are the set of addresses 1 that occur in it. Expressions
have no side-effects.

The program � manipulates the memory through statements
that are specially tailored abstractions of the machine instructions
actually executed. There is a set of numbers that denote instruction
addresses, that is, statement labels. If � is the address of a statement
(other than abort or halt), then ����� is guaranteed to also be an
address of a statement. The initial address is ��� . A statement can be
a conditional statement � of the form � �"���
���! �#" �	� � � � � (where� is an expression over symbolic variables and � � is a statement
label), an assignment statement $ of the form 1&%'� (where 1
is a memory address), abort, corresponding to a program error, or
halt, corresponding to normal termination.

The concrete semantics of the RAM machine instructions of �
is reflected in �'�)(+*-,.()/0� �21
�3�24#�5/0�@��� � � � , which evaluates expres-
sion � in context

�
and returns a 32-bit value for � . Addition-

ally, the function statement at( � , � ) specifies the next statement
to be executed. For an assignment statement, this function calcu-
lates, possibly involving address arithmetic, the address 1 of the
left-hand side, where the result is to be stored; in particular, indirect
addressing, e.g., stemming from pointers, is resolved at runtime to
a corresponding absolute address.1

A program � defines a sequence of input addresses 67 � , the
addresses of the input parameters of � . An input vector 6� , which

1 We do this to simplify the exposition; left-hand sides could be made
symbolic as well.



evaluate symbolic ( � , � , � ) =
match � :

case 1 : //the symbolic variable named 1
if ( 1 	 domain � ) then return � ( 1 )
else return

�
( 1 )

case op(param-list): //some operation
if (op(param-list) 	�� ) then

return op(param-list) //this constraint is in theory �
else // otherwise fall-back on concrete value

complete = 0
return evaluate concrete( � , � )

Figure 1. Symbolic evaluation

associates a value to each input parameter, defines the initial value
of 67 � and hence

�
.2

Let � be the set of conditional statements and � the set of
assignment statements in � . A program execution � is a finite3

sequence in ���
	
��� � �^�
����� ���H� abort � halt � . We prefer to view
� as being of the form � � �A���+�5�
� I#I#I ������� � � � , where ���+	�� � (for��!�� !�� � � ), � � 	�� (for ��!���!�� ), and � 	 ] abort

�
halt

h
.

The concrete semantics of � at the RAM machine level allows us to
define for each input vector 6� an execution sequence: the result of
executing � on 6� (the details of this semantics is not relevant for our
purposes). Let ���
	
���R� �%� be the set of such executions generated
by all possible 6� . By viewing each statement as a node, ���
	
���
� �%�
forms a tree, called the execution tree. Its assignment nodes have
one successor; its conditional nodes have one or two successors;
and its leaves are labeled abort or halt. The goal of DART is to
explore all paths in the execution tree ���
	
���R� �%� .

To simplify the following discussion, we assume that we are
given a theorem prover that decides a theory � (for instance, in-
cluding integer linear constraints, pointer constraints, array/string
constraints, bit-level operation constraints, etc.). This will allow us
to explain how we handle the transition from constraints within the
theory � to those that are outside.

DART maintains a symbolic memory � that maps memory ad-
dresses to expressions. Initially, � is a mapping that maps each
1 	 67 � to itself. Expressions are evaluated symbolically as de-
scribed in Figure 1. When an expression falls outside the theory
� , DART simply falls back on the concrete value of the expres-
sion, which is used as the result. In such a case, we also set a flag
complete to  , which we use to track completeness. With this eval-
uation strategy, symbolic variables of expressions in � are always
contained in 67 � .

To carry out a search through the execution tree, our instru-
mented program is run repeatedly. Each run (except the first) is
executed with the help of a record of the conditional statements
executed in the previous run. For each conditional, we record a
done value, which is 0 when only one branch of the conditional
has executed in prior runs (with the same history up to the branch
point) and is 1 otherwise. This information associated with each
conditional statement of the last execution path is stored in a list
variable called stack, kept in a file between executions. For � ,
 �!!��,"� stack � , stack � � � is thus the record corresponding to the
� � � th conditional executed.

More precisely, our test driver run DART is shown in Figure 2.
This driver combines random testing (the repeat loop) with directed

2 To simplify the presentation, we assume that #$ � is the same for all
executions of % .
3 We thus assume that all program executions terminate; in practice, this can
be enforced by limiting the number of execution steps.

run DART () =
complete = 1
repeat

stack = &(' ; 6� = [] ; directed = 1
while (directed) do

try (directed, stack, 6� ) =
instrumented program(stack, 6� )

catch any exception �
print “Bug found”
exit()

until complete

Figure 2. Test driver

instrumented program � stack
� 6��� =

// Random initialization of uninitialized input parameters in 67 �
for each input = with 6�.� =
� undefined do 6�.� =
� = random ���
Initialize memory

�
from 67 � and 6�

// Set up symbolic memory and prepare execution
� � � 1 	� 1)�
1 	 67 � �� = � � // Initial program counter in �
� =  // Number of conditionals executed
// Now invoke � intertwined with symbolic calculations
� = statement at( � , � )
while ( �+*	[] abort

�
halt

h
) do

match ( � )
case ( 1 % � ):
� = � + � 1 	� evaluate symbolic ��� � � � �����
� = evaluate concrete ��� � � ��

=
� � � 1 	���
� ; � = � � �

case ( � �����5� �2 �#" ��� � � � � ):,
= evaluate concrete ��� � � �� = evaluate symbolic ��� � � � ���

if
,

then
path constraint = path constraint -.& �/'� = � �

else
path constraint = path constraint -.& neg � �#�0'� = � � �

if ( � �1� stack � ) then stack = stack -2&
 3'
� = � � �

� =statement at( � , � ) // End of while loop
if ( � ==abort) then

raise an exception
else // � ==halt

return solve path constraint( � ,path constraint,stack)

Figure 3. Instrumented program

search (the while loop). If the instrumented program throws an ex-
ception, then a bug has been found. The completeness flag complete
holds unless a “bad” situation possibly leading to incompleteness
has occurred. Thus, if the directed search terminates—that is, if di-
rected of the inner loop no longer holds—then the outer loop also
terminates provided the completeness flag still holds. In this case,
DART terminates and safely reports that all feasible program paths
have been explored. But the completeness flag has been turned off
at some point, then the outer loop continues forever (modulo re-
source constraints not shown here).

The instrumented program itself is described in Figure 3 (where
- denotes list concatenation). It executes as the original program,



solve path constraint( � ,path constraint,stack) =� � ��� �
while (

� *  )
if (stack[

�
] = 0) then� ()/�� �!15���2/ 4�( ��� /2� � � = neg(� ( /�� �21
�f�2/ 4#( � � /5� � � �

if (� ()/�� �!15���2/ 4�( � �3/2�  � I'I#I � � � has a solution 6� � ) then
stack[

�
] = 1

return � � � stack �  I I � � � 6� � 6� � �
else

� � � � �
else

� � � � �
return �
 � � � // This directed search is over

Figure 4. Solve path constraint

but with interleaved gathering of symbolic constraints. At each con-
ditional statement, it also possible to check whether the current
execution path matches the one predicted at the end of the previ-
ous execution and represented in stack passed between runs. How
to do this is described in the function compare and update stack
of [GKS05], which is not recalled here.

When the original program halts, new input values are generated
in solve path constraint, shown in Figure 4, to attempt to force the
next run to execute the last4 unexplored branch of a conditional
along the stack. If such a branch exists and if the path constraint
that may lead to its execution has a solution 6� � , this solution is used
to update the mapping 6� to be used for the next run; values corre-
sponding to input parameters not involved in the path constraint are
preserved (this update is denoted 6� � 6� � ).

The main property of DART is stated in the following theorem,
which formulates (a) soundness (of error founds) and (b) a form of
completeness.

THEOREM 1. [GKS05] Consider a program � as previously de-
fined. (a) If run DART prints out “Bug found” for � , then there is
some input to � that leads to an abort. (b) If run DART terminates
without printing “Bug found,” then there is no input that leads to
an abort statement in � , and all paths in ���
	
���
� �%� have been ex-
ercised. (c) Otherwise, run DART will run forever.

Proofs of (a) and (c) are immediate. The proof of (b) rests on the
assumption that any potential incompleteness in DART’s directed
search is (conservatively) detected and recorded by setting the flag
complete to  .

4. The SMART Search Algorithm
We now present an alternative search algorithm that does not com-
promise search completeness but is typically much more efficient
than the DART search algorithm. The general idea behind this new
search algorithm is to perform dynamic test generation composi-
tionally, by adapting (dualizing) known techniques for interproce-
dural static analysis to the context of automated dynamic test gener-
ation. Specifically, we introduce a new algorithm, dubbed SMART
for Systematic Modular Automated Random Testing, that tests func-
tions in isolation, collects testing results as function summaries ex-
pressed using preconditions on function inputs and postconditions
on function outputs, and then re-use those summaries when testing
higher-level functions.

We assume we are given a program � that consists of a set
of functions. If a function � is part of � , we write � 	 � . In

4 A depth-first search is used for exposition, but the next branch to be forced
could be selected using a different strategy, e.g., randomly or in a breadth-
first manner.

what follows, we use the generic term of function to denote any
part of a program � that we want to analyze in isolation and then
summarize its observed behaviors. Obviously, any other kinds of
program fragments such as program blocks or object methods could
be treated as “functions” for the purpose of this paper.

To simplify the presentation, we assume that the functions in �
do not perform recursive calls, i.e., that the call-flow graph of �
is acyclic. (It is conceptually easy to lift this restriction by using
dynamic programming techniques to compute function summaries;
this is standard in interprocedural static analysis and pushdown
system verification as described in [RHS95, ABE � 05], among
many others.) As previously stated, we also assume that all the
executions of � terminate. Note that both of these assumptions
do not prevent � from possibly having infinitely many executions
paths, as is the case if � contains a loop whose number of iterations
may depend on some unbounded input.

4.1 Definition of Summaries

For a given theory � of constraints, a function summary M	� for
a function � is defined as a formula of propositional logic whose
propositions are constraints expressed in � . In what follows, M �
will typically be defined as a disjunction of formulas M	
 of the
form M�
^� � � 4#��
 � � 1H�2/�
�� , where � 4#�

 is a conjunction of
constraints on the inputs of � while � 1H�2/ 
 is a conjunction of
constraints on the outputs of � . M�
 can be computed from the
path constraint corresponding to the execution path � as will be
described shortly. An input to a function � is any address (memory
location) that can be read by � in some of its execution, while an
output of � is any address that can be written by � in some of its
executions and later read by � after � returns.

Preconditions in function summaries are expressed in terms of
constraints on function inputs instead of program inputs in order to
avoid duplication of identical summaries in equivalent but different
calling contexts. For instance, in the following program

9R8@3Y9 T ��PAT 9
3�9 O 6�;X9R8@3Y=CE ]
9
:^;>=���D�E W 6H3 V@W 8 B cW 653 V@W 8YDfch

O7P 9RQi3 P�� ; 9R8@3_\�Z[9'8@3��CE ]
9R8A3Y`fZ S c
`�?Y9 T ��P@T 9
379 O 6�;>\FE�cS ?Y9 T ��P@T 9
379 O 6�;��FE�c
9
:^; `���� S E 3H4@658����������
���������h

the summary for the function 9 T �7P@T 9
3�9 O 6 could be � ��!  �4 �5/ � �R�#" � � !  �&4 �5/ �1 A� (if � includes linear arithmetic)
where 4#��/ denotes the value returned by the function. This sum-
mary is expressed in terms of the function input = , independently
of specific calling contexts which may map = to different program
inputs like \ and � in this example.5

Whenever a constraint on some input cannot be expressed
within � , no constraint is generated. For instance, consider the
following function $ :

5 Remember that symbolic variables are associated with program or func-
tion inputs, i.e., memory locations where inputs are being read from. When
syntactic program variables uniquely define where those inputs are stored,
like variables % , & and ' in the above example, we merely write “an input
% ” in the text to simplify the presentation.



B 9'8@3�$�;X9'8@3i=CEj]� 9R8@3i\�c� 9
: ;>=��jDFE W 6H3 V@W 8_D�c� \_?�47` T 4+;>=FE�c� 9
: ;>\i?A?2B'DHDFE W 6H3 V@W 8 B'D�c� 9
: ;>= �.B'DFE W 6H3 V@W 8 B c� W 6H3 VAW 8 � c� h

Assume that the constraint ;a4�` T 4�;>=CER?A?FB'DADFE corresponding to the
conditional statement of line 5 cannot be expressed in � . The
summary M 
 of the execution path � corresponding to taking all
the else branches at the three conditional statements in function $
is then � � � *  A�
	 � � ! �  A� ��� 4#��/��YJ .

A precondition � 4#� 
 of a summary is thus a propositional for-
mula built from propositions representing constraints expressible in
� on function inputs. A precondition defines an equivalence class
of concrete executions. All the concrete executions correspond-
ing to concrete inputs satisfying the same precondition are guar-
anteed to execute the same program path only provided that all the
constraints along that path are in � . Otherwise, concrete inputs
satisfying the same precondition are not guaranteed to follow the
same path. In the example above, if the path � that takes all the
else branches in function $ was explored with a random concrete
value, say, �G��� , another value satisfying the same precondition
� � �j*  H�
	 � ��! �/ A� � , say � ��� is not guaranteed to yield the
same program path, because of the presence of the unpredictable
conditional statement in line 5 (as � (F�
�����A� could very well be 100).
The execution of this conditional statement makes a DART search
incomplete (the flag complete is then set to  ).

Note that all the preconditions in a function summary are not
necessarily mutually exclusive: a given concrete state may sat-
isfy more than one precondition in a function summary when the
function contains conditional statements whose corresponding con-
straints are outside � .

4.2 Computing Summaries

Function summaries can be computed by successive iterations, one
path at a time. Starting with a random path, one dynamically tracks
which memory locations are being read by the function and which
are being written. Those locations correspond to the function inputs
and outputs, respectively.

When the execution of the function terminates (either on a
return statement or on a 4�`��
3 or ` S�P
W 3 statement), the DART-
computed path constraint for the current path � in the function
can be used to generate a precondition � 4 ��
 for that path. � 4#��

is obtained by simplifying the conjunction of branch conditions on
function inputs in the path constraint for � .

If the execution of the function terminates on a return state-
ment, a postcondition � 1H�5/�
 can be computed by taking the con-
junction of constraints associated with memory locations 1 	� 4
� /0�@��� � 6� � � � written during the execution of � during the last
execution � generated from a context (set of input values) 6� . Pre-
cisely, we have

� 1A�2/�
 �
�

0������ ������� � �"!# � 
%$
� 1 � evaluate symbolic � 1 � � � ��� �

Otherwise, if the function terminates on a 4�`��53 or ` S�P5W 3 state-
ment, we define � 1A�2/�
G� � ( * � � to record this in the summary for
possible later use in the calling context, as described in what fol-
lows.

A summary for the execution path � in � is then M 
 �
� � 4#�

Y� � 1H�2/�
+� . The process is repeated for successive DART-
exercised paths � in � , and the overall summary for � is defined

as

M � �'&



M�


By default, the above procedure can always be used to com-
pute function summaries path by path. But more advanced tech-
niques, such as automatically-inferred loop invariants, could also
be used. We will discuss this point further in Section 6. Note that� 4 �

 can always be approximated by � (+* ��� (the strongest pre-
condition) while � 1H�5/ 
 can always be approximated by / 4�, � (the
weakest postcondition) without compromising the correctness of
summaries, and that any technique for generating provably correct
weaker preconditions or stronger postconditions can be used to im-
prove precision.

Given the call-flow graph (*) of a program � (which we have
previously assumed to be acyclic) and a topological sort of the
functions in ( ) computed starting from the top-level function of
the program, unction summaries can then be computed in either a
bottom-up or top-down strategy.

With a bottom-up strategy, one starts testing functions at the
deepest level, one computes summaries for those, and then moves
up the topological sort to functions one-level up while re-using
the summaries for the functions below (as described in the next
subsection). This process is repeated up to the top-level function of
the program.

While the bottom-up strategy is conceptually the easiest to un-
derstand, it suffers from two major limitations that make its imple-
mentation problematic in the context of compositional dynamic test
generation.

First, testing lower-level functions in isolation for all possible
contexts (i.e., for all possible input values) is likely to trigger un-
realistic behaviors that may not happen in the specific contexts
in which the function can actually be called by higher-level pro-
gram functions; this analysis can be prohibitively expensive and
will likely generate an unnecessarily large number of spurious sum-
maries that will never be used subsequently. Thus, too many sum-
maries are computed.

Second, because of the inherent limitation of symbolic execu-
tion to reason about constraints outside of the given theory � , sum-
maries computed in bottom-up fashion may be incomplete in pres-
ence of statements involving constraints outside of � . For instance,
in the case pf function $ presented in Section 4.1, analyzing $ in
isolation using DART techniques will probably not be able to ex-
ercise the then branch of the conditional statement on line 5, i.e.,
to randomly find a value of � such that 47` T 4+;>=FE�?A? B'DAD . How-
ever, in its actual calling contexts within the program � , it is very
well possible that the function $ is often called with values for �
that satisfy this constraint. In this case, too few summaries are pre-
computed, and it is necessary to compute later in the search a sum-
mary for the case where 4�` T 4+;>=CE�?A?2B'DAD is satisfied.

To avoid these two limitations, we recommend and adopt a top-
down strategy for computing summaries on a demand-driven basis.
A complete algorithm for doing this is described next.

4.3 Algorithm

A top-down SMART search algorithm is presented in Figures 5,
6 and 7. The pseudo-code shown in those figures is similar to
the one presented earlier in Figures 2, 3 and 4, respectively, with
the exception of the new additional lines marked by (*). Indeed,
SMART strictly generalizes DART and reduces to it in the case of
programs consisting of a single function.

A SMART search performs dynamic test generation composi-
tionally, using function summaries as defined in the previous sec-
tions. Those summaries are dynamically computed in a top-down
manner following a topological sort of the call-flow graph ( ) of
� .



run SMART () =
complete = 1
(*) summary � � � 	��� ��� 	 � � // Set of summaries
repeat

stack = &(' ; 6� = [] ; directed = 1
(*) context stack � & � � �  A�0' // Stack of contexts
while (directed) do

try (directed, stack, 6� ) =
SMART instrumented program(stack, 6� )

catch any exception �
print “Bug found”
exit()

until complete

Figure 5. SMART test driver

Starting from the top-level function, one executes the program
(initially on some random inputs) until one reaches a first func-
tion � whose execution terminates on a return or 4�`��
3 statement.
One then backtracks inside � as much as possible using DART,
computing summaries for that function and each of those DART-
triggered executions. When this search (backtracking) in � is over,
one then resumes the original execution where � was called, this
time treating � essentially as a black-box, i.e., without analyzing it
and re-using its previously computed summary instead. The search
proceeds similarly, with the next backtracking point being in some
lower-level function, if any, called after � returns, or in the function� that called � otherwise, or some other higher-level function that
called � if the search in � is itself over.

This strategy differs from the bottom-up strategy sketched in the
previous subsection since an initial calling context is determined by
an initial top-down traversal and the order in which backtracking
points are considered is different. This search order is also differ-
ent from DART’s search order. For instance, following a first execu-
tion where � calls � and then � returns, the first backtracking point
considered by SMART will typically be in � (if � contains a condi-
tional statement, etc.), while the first backtracking point considered
by DART will be at the last conditional statement executed before
this first run terminates (assuming a depth-first DART’s search or-
der), and will typically be after the first call to � returns (if the
execution that follows contains a conditional statement, etc.).

Our algorithm starts by executing the procedure run SMART
described in Figure 5. The only differences with the procedure
run DART of Figure 2 is the initialization of a set of summaries
and of a context stack, which is used to record the sequence of
calling contexts for which summaries still need to be computed for
the current execution, and is also used to resume execution in a
previously visited calling context.

The main functionality of SMART is presented in Figure 6.
The key difference with DART is that function calls and re-
turns are now instrumented to trigger and organize the compu-
tation of function summaries. Whenever a function � is called,
SMART instrumented program checks whether a summary for �
is already available for the current calling context. This is done
by checking whether the current concrete function input assign-
ment satisfies one of the preconditions currently recorded in the
summary for � .

If so, this summary is added to the current path constraint, and
the execution proceeds by turning backtracking off in � and any
function below it in the call-flow graph of � . The latter is done
through the use of a boolean flag backtracking. Backtracking is
resumed later in the current execution path when � returns: this
is done in the else branch of the conditional statement included

SMART instrumented program � stack
� 6�7� =

// Random initialization of uninitialized input parameters in 67 �
for each input = with 6�.� =
� undefined do 6�.� =
� = random ���
Initialize memory

�
from 67 � and 6�

// Set up symbolic memory and prepare execution
� � � 1 	� 1)�
1 	 67 �!�� = � � // Initial program counter in �
� =  // Number of conditionals executed
(*) backtracking = 1 // By default, backtrack at all branch points
// Now invoke � intertwined with symbolic calculations
� = statement at( � , � )
while ( �+*	[] abort

�
halt

h
) do

match ( � )
case ( 1 % � ):
� = � + � 1 	� evaluate symbolic ��� � � � �����
� = evaluate concrete ��� � � ��

=
� � � 1 	���
� ; � = � � �

case ( � �����
� �2 �#" �	� � � � � ):,
= evaluate concrete ��� � � �� = evaluate symbolic ��� � � � ���

(*) if backtracking then
if
,

then
path constraint = path constraint -2& �/'� = � �

else
path constraint = path constraint -2& neg � �#�0'� = � � �

if ( ���1� stack � ) then stack = stack -2&
 3'
� = � � �

(*) case ( � � ��
 
 
 ): // call of function �
if backtracking then

if ( 6��	 summary ��� � ) then
// We have a summary for � in context 6�
path constraint = path constraint -2& summary ��� �0'
// Execute � without backtracking until it returns
backtracking = 0
if ( ���1� stack � ) then stack = stack -.& �/'
� = � � �

else
// Proceed to compute a summary for � in context 6�
Push ��� � 6� � �F� onto context stack� = � � �

(*) case ( � ��� � ��� � " ): // return of function �
if backtracking then

// Stop the search in �
// Generate summary for the current path
add to summary( � ,path constraint)
return SMART solve path constr( � ,path constraint,stack)

else
if (Top(context stack) = ��� � � � ) then

backtracking = 1
// Extend the set of inputs by the return values of ��

=
� � � 1 	� 1)�
1 	 � 1A�2/#� summary ��� � ���� = � � �

� =statement at( � , � ) // End of while loop
if ( � ==abort) then

raise an exception
else // � ==halt

(*) if backtracking then
��� � � ��� Top(context stack)
add to summary( � ,path constraint)

return SMART solve path constr( � ,path constraint,stack)

Figure 6. SMART instrumented program



SMART solve path constr( � ,path constraint,stack) =� � ��� �
(*) ��� � 6� � � �A� � Top(context stack)
while (

� * � � )
if (stack[

�
] = 0) then� ()/�� �!15���2/ 4�( ��� /2� � � = neg(� ( /�� �21
�f�2/ 4#( � � /5� � � �

if (� ()/�� �!15���2/ 4�( � �3/2�  � I'I#I � � � has a solution 6� � ) then
stack[

�
] = 1

return � � � stack �  I I � � � 6� � 6� � �
else

� � � � �
else

� � � � �
(*) if ( � � !  ) then

Pop ��� � 6� � � � � from context stack
return � � � stack �  I I �
� � � �'��� � 6�7�

return �
 � � � // This directed search is over

Figure 7. SMART solve path constr

in the
� � � � � " case, where the set of inputs (in the function calling

� ) is also extended with the set of return values appearing in the
set � 1A�2/#� summary ��� � � of postconditions included in the summary
summary ��� � currently available for � .

If no summary is available for the current calling context, this
calling context is saved by pushing it onto the context stack, and
the algorithm will compute a summary for it by continuing the
search deeper in the called function � . When backtracking is on
and the inner-most function terminates either on a return statement
or a 4�`��
3 statement, add to summary( � ,path constraint) computes
a summary for � and the last path executed as discussed in Sec-
tion 4.2. Note that a function summary for � includes in itself sum-
maries of lower-level functions possibly called by � itself.

After computing a summary for the current function and ex-
ecution path, SMART solve path constr, presented in Figure 7, is
called to determine where the algorithm should backtrack next. The
only difference with the similar procedure used in DART is that
when backtracking in a specific function � and calling context 6�
is over, the search resumes in the last calling context saved in the
context stack.

4.4 Correctness

The correctness of the SMART search algorithm is defined with
respect to the DART search algorithm, thus independently of a spe-
cific theory � representing the reasoning capability of symbolic
execution. Specifically, we can prove that, for any program � con-
taining exclusively statements whose corresponding constraints are
in a given decidable theory � (i.e., for which the flag complete al-
ways remains 1), the SMART search algorithm provides exactly
the same program path coverage as the DART search algorithm.
Thus, for those programs � , every feasible path that is exercised
by DART is also explored, albeit compositionally, by SMART; and
conversely, every compositional execution considered by SMART
is guaranteed to correspond to a concrete full execution path. For-
mally, we have the following.

THEOREM 2. (Relative Soundness and Completeness) Given any
program � and theory � , run SMART terminates without printing
“Bug found” if and only if run DART terminates without printing
“Bug found”.

Proof: (Sketch) The termination of either run SMART or run DART
without printing “Bug found” implies that the flag complete re-
mains equal to 1 throughout the search (otherwise the search does
not terminate). This in turn implies that all the program statements

in � generate constraints that are within the scope of the theory �
used by both search algorithms.

Let
� � � � denote the maximum depth of an execution path � .

Thus,
� � �-� is always less or equal than the depth of the (acyclic)

call-flow graph (*) of program � . The proof is by induction on
� � �-� . The base case for executions paths � such that

� � �-� � � is
immediate since the SMART search algorithm then reduces to the
DART search algorithm. The inductive case for executions paths
� such that

� � �-�/� � is proved by showing that every symbolic
execution performed by the DART search algorithm is simulated
by a symbolic execution of the SMART search algorithm, and vice
versa, given that whenever a lower-function � is called, we know
by applying the inductive hypothesis to the part of � inside � that
any symbolic execution performed by DART is represented by a
SMART summary, and vice versa.

Even in the case of programs � containing exclusively state-
ments whose corresponding constraints are all within the scope of
the given decidable theory � (i.e., for which the flag complete al-
ways remains 1), it is in general not possible to guarantee that

run SMART terminates by printing “Bug found” if and only
if run DART terminates by printing “Bug found”.

Indeed, if the number of execution paths is infinite, the different
search order used by SMART and DART does not guarantee that
both searches will eventually find the same ` S�P5W 3 . If there are mul-
tiple ` S�P5W 3 s, both searches could also find first different ` S�P5W 3 s.
However, when the set � � 	 �
�
� �%� of execution paths of � is finite,
then both searches are guaranteed to find an ` S�P5W 3 if there is a
reachable one. Moreover, by computing summaries for runs ending
in an ` S�P
W 3 statement as for runs ending in a 4�`��53 statement, all
` S�P5W 3 s can be then be found by both searches.

For programs � containing statements whose corresponding
constraints are beyond the scope of the given decidable theory � ,
a search in its feasible program paths is in general incomplete.
The SMART and DART searches may then behave differently
because their search order vary, and calls to the function random()
to initialize undefined inputs may return different values, hence
exercising the code randomly differently.

Nevertheless, a corollary of the previous theorem is that the
SMART search algorithm is functionally equivalent to DART, in
the sense that it still satisfies the conditions identified in Theo-
rem 1 characterizing the correctness of the DART search algo-
rithm (and of its various implementations [GKS05, CE05, SMA05,
YST � 06]). Formally, we can prove the following.

THEOREM 3. Consider a program � as previously defined. (a) If
run SMART prints out “Bug found” for � , then there is some input
to � that leads to an abort. (b) If run SMART terminates without
printing “Bug found,” then there is no input that leads to an abort
statement in � , and all paths in ���
	
���R� �%� have been covered (but
not necessarily all explicitly exercised). (c) Otherwise, run SMART
will run forever.

Proof of (a) and (c) are immediate, while (b) follows directly from
Theorem 2.

In summary, SMART is functionally equivalent to DART and,
typically, whatever test inputs DART can generate, SMART can
too, although possibly much more efficiently. How much more
efficient (hence scalable) can SMART be compared to DART? This
question is addressed next.

4.5 Complexity

Let
,

be a bound on the maximum number of distinct execution
paths that can be contained in any function � of the program � . If a
function � does not contain any loop, such a bound is guaranteed to



exist, although it can be exponential in the number of statements in
the code describing � . If � contains loops whose number of itera-
tions may depend on an unbounded input, the number of execution
paths in � could be infinite, and such a bound

,
may not exist.

Note that, in practice, a bound
,

can always be trivially enforced by
simply limiting the number of execution paths explored in a func-
tion, i.e., by limiting the size of summaries; this heuristics has been
shown to work well in the context of interprocedural static analysis
(e.g., see [BPS00]).

Given such a bound
,
, it is easy to see that the number of execu-

tion paths considered by a SMART search (while the flag directed
is kept to 1) will be at most � , , where � is the number of functions
� in � , and is therefore linear in � , . In contrast, the number of exe-
cution paths considered by a DART search (while the flag directed
is kept to 1) can be exponential in � , , as DART does not exploit
program hierarchy and treats a program as a single, “flat” function.
This reduction in the number of explored paths from exponential
to polynomial in

,
is also observed with compositional verification

algorithms for hierarchical finite-state machines [AY98].
Although SMART can avoid systematically exploring all the

possibly exponentially many feasible program paths in � , it does
require the use of formulas M � representing function summaries
which can be of size linear in

,
, and the use of theorem proving

techniques to check satisfiability of those formulas, with decision
procedures which can, in the worst case, be exponential in the size
of those formulas, i.e., exponential in

,
. However, while DART

can be viewed as always trying to systematically explore all pos-
sible execution paths, i.e., all possible disjuncts in M#� ��� 
 M 
 ,
SMART will try to check the satisfiability of M � in conjunction
with additional constraints generated from a calling context of � ,
and hence try to find just one way to satisfy the resulting formula
using a logic constraint solver. This key point is illustrated by an
example in the next section.

5. Example and Case Study
5.1 A Simple Example

Consider the function � P@U `53A6 whose code is as follows:

B eHe � P@U `53@6.9R8@QA6H= P :i:79 W�T 3 U 4�` W ` U 3@6 W U
eHei9R8i8 V ���Ab53A6 W�� 9R87`53@6HQ T 3 W 9'8 $ T� 9'8@3'� P@U `53@6�; U 4�` W��AT Z 9R8@3 U E�]� 9R8@3.9
?AD�c� � � 4F9 �56 ; T � 9����a? U E ]� 9
:^; T � 9��Y?H?�DFE W 6H3 V@W 82b�B c� 9
	�	fc� h

� W 6H3 VAW 8 9�c
B'D h

Given a string T of maximum size � (i.e, T � 8 � is always zero), there
are at most J
� possible distinct execution paths for that function if U
is non-zero (and at most � if U is zero). Those paths are & line5:else ' ,
& line5:then; line6:then ' , & line5:then; line6:else; line5:else ' , etc. In
short, the set of all JR� possible execution paths can be denoted
by the regular expression: & (line5:then; line6:else) � (line5:else �
(line5:then; line6:then)) ' for  !�� !.� � � �R� .

There are � � � possible return values, namely -1 (for the �
paths of the form & (line5:then; line6:else) � (line5:then; line6:then) '
for  �! � !�� � ���R� ), and  � � � I'I#I � � � � �R� , each returned by
the path & (line5:then; line6:else) � line5:else ' where � is equal to the
return value.

Now, consider the function 3 P�� which calls the function � P@U `53A6 :

BAB O7P 9
Qi3 P�� ; U 4�` W�� 9R8 �AV 3FE�]
eAei` TAT'V
� 6Y9R8 �AV 329 T 8 V ���Ab
3@6 W�� 9'8�`53@6HQ

B � 9R8@3���c
B �
B � �_? � PAU `53@6�; 9R8 �AV 3�Z�� `�� E c
B � 9
: ;��_?H?ibFBHE W 6H3 V@W 82bFB c eAej6 WHW7P5W2UHP QA6
B � 9
: ;X9R8 �AV 3 ����	CB ���a?������ E W 653 V@W 8 B c eAe TRV�UAU 6 TAT
B � W 6H3 V@W 8.D�c eAe�:7`A9 � V@W 6
B � h

In the function 3 P
� , there are 3 possible execution paths: & line15:then ' ,
& line15:else; line16:then ' and & line15:else; line16:else ' .

Following the call to � P@U `53@6 , the outcome of the test at line 15
is completely determined by the return value from function � P@U `53@6
stored in � . In contrast, the test at line 16 constraints the next
element 9R8 �AV 3 ����	CB � in the string 9R8 �AV 3 and its outcome depends
on the value stored at that address. That input value could either
be equal to ����� or not, except for 9R8 �AV 3 ����� which we assumed
to be zero. Therefore, for the whole program � composed of the
two functions 3 P�� and � P@U `53@6 , there are �
� � � possible execution
paths: � executions terminate after the then branch of line 15, �
executions terminate after the then branch of line 16, and � ���
executions terminate in line 17. Thus, the number of feasible paths
in � is (roughly) the product of the number of paths in its functions� P@U `53A6 and 3 P�� .

A DART search attempts to systematically explore all possi-
ble execution paths and would thus perform �
� � � runs for this
program. In contrast, a SMART search will systematically explore
all possible execution paths of the function � P@U `53@6 and 3 P�� sepa-
rately. Precisely, a SMART search computing function summaries
as described in Section 4.2 would compute JR� path summaries for
function � P@U `53@6 , whose function summary M � would then be of
the form

M � � ���
�  ��� � � 4#�5/+�  A�
" � ���
�  ���� �'�
	 ���
�  �� �  A��� 4#��/+� � �'�
" � ���
�  ���� �'�
	 ���
�  �����  A� 	[���
� �!��� �'��� 4#�5/+���R�
�5/ � I

Then, the SMART search would explore the feasibility of the 3
paths of the function 3 P
� using M � to summarize function � P@U `
3@6 .
For this example, SMART would then perform JR� ��� runs, i.e.,
the sum of the number of paths in its functions � P@U `
3@6 and 3 P�� .

Observe how the address ��	CB is defined relative to � and that
its absolute value “does not matter” (as long as � � ���� � ) when
proving the satisfiability of the constraint generated from the test
9R8 �AV 3 ����	CB ����?������ and of its negation. This is captured by the
SMART algorithm, which will not attempt to try all possible ways
to satisfy/violate these constraints (as DART would), but will only
find one way to satisfy those.

This observation explains intuitively the significant speed-up
that SMART can provide when compared to DART, while still
providing the same path coverage, hence guaranteeing the same
branch coverage as well (100% branch coverage is achieved in this
example).

5.2 Case Study

We have developed an implementation of the SMART search al-
gorithm for the C programming language, extending the DART
implementation described in [GKS05]. We report in this section
some preliminary experiments with a subset of a challenging ex-
ample of program, which actually motivated the development of
SMART in the first place. This example is oSIP, an open-source
implementation of the increasingly popular protocol SIP. SIP,
which stands for Session Initiation Protocol, is a protocol for
call-establishment of multi-media sessions over IP networks (in-
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cluding “Voice over IP”). oSIP is a C library freely available at
4@3A3 � � eAe ����� ��$H8 V � P5W $@e THP :A3 � ` W 6@e P7T 9 � e P@T 9 � �a4@3 � � . It consists
of about 30,000 lines of C code. Two typical applications are SIP
clients (such as softphones to make calls over the internet from a
PC) and servers (to route internet calls). SIP messages are transmit-
ted as ASCII strings and a large part of the oSIP code is dedicated
to parsing SIP messages.

When running the DART implementation described in [GKS05]
on the oSIP parser as a whole, very low branch coverage is ob-
tained: about 1%. (Extending the theory � used in that implemen-
tation to also reason about pointer in/equalities [SMA05] or bit-
level operations [YST � 06] would not help here as the input is sim-
ply a (non-null) pointer to a packet whose content is unknown.)
An examination of the branch coverage achieved and of the code
which is never exercised reveals that this poor coverage is due to
inability of this DART implementation to reason about strings. By
extending the decision procedure � to include a simple theory of
arrays and by instrumenting properly standard string-manipulation
functions like T 3 W7U
� \ , T 3 W�U � � , etc., branch coverage can then be
extended to about 30% after about 12 hours of DART search. Af-
ter this, the DART search is stuck again around 30%, for another
reason: the search is now “lost in space”. Indeed, an execution
profile of the DART search reveals that most of the backtracking
performed is concentrated in a few low-level functions called over
and over again by the oSIP parser. An example of such a function
is P@T 9 � U � W7T
� ` U 6f; U 4�` W �AT E , which essentially removes blank
spaces (and also other characters such as � � 3 � , � � W � , � � 8 � , etc.)
at the beginning of a string T . Such a function introduces an enor-
mous amount of execution paths: whenever it is called, the size of
the search space is multiplied by almost the number of its feasible
execution paths, in a way similar to what is observed in the simple
example discussed in 5.1.

Figure 8 presents the number of runs needed by DART and
SMART to fully explore all the feasible program paths in a subset
of the oSIP parser code containing the function P@T 9 � U � W�T � ` U 6
mentioned above. Experiments were performed for several, small
packet sizes. Runtime is linear in the number of runs for those
experiments. As is clear from Figure 8, SMART can fully cover all
the feasible program paths of this example much more efficiently
than DART. In fact, for this example, the SMART search is optimal
in the sense that its number of runs (and runtime) grows in a linear
way with the size of the input packet.

6. Discussion
6.1 On Using Branch Coverage to Limit the Search

Another way to limit the “path explosion” problem in a DART
search is simply to allow backtracking only at branches of condi-
tional statements that have never been executed so far. If � denotes
the number of conditional statements in a program � , the num-
ber of execution paths (runs) explored by such a “branch-coverage-
driven” DART search is trivially bounded by J�� , i.e., is linear in
the program size.

The drawback of this naive solution is obviously that full feasi-
ble path coverage is no longer guaranteed, even for programs con-
taining only statements with constraints in � . This, in turn, typi-
cally reduces overall branch coverage itself, and thus chances of
finding bugs. Indeed, each branch is attempted to be executed in
a typically much smaller number of contexts (program paths), and
some branches may fail to be exercised in those particular few con-
texts.

This point is illustrated with the following example.

O7P 9RQi: PAP ; 9R8@3_=�Z[9'8@3i\CE ]
9R8A3i=��@9 T � �@6 W7P Z \��@9 T ���@6 W7P c

B 9
:^;>=@?A?HDFE 3H47658i=��@9 T ���@6 W7P ? Bdc� 6 � T 6j=��@9 T ���@6 W7P ?iDfc�� 9
:^;>\@?A?HDFE 3H47658i\��@9 T ���@6 W7P ? Bdc� 6 � T 6_]� \��A9 T � �@6 W7P ?�D�c� 9
:<;>=��@9 T � �@6 W7P Ej3547658.` S7P5W 3�; E c� h
� h

If � and � are 32-bits integer inputs, the very first run of this pro-
gram using random values for inputs � and � will likely have non-
zero values for both � and � , and hence will take the else branches
of all three tests. This first run is denoted by & line1:else; line4:else;
line7:else ' . The last test on line 7 will not be backtracked as it
does not involve an input. Thus, the next test to be backtracked
will be the test on line 4, and the second run will force � to be
zero to take the then branch of that test. The second run is thus: &
line1:else; line4:then ' . The next backtracking point will be at the
test on line 1, and the next run will force � to be zero to explore the
then branch of that test. Assuming � is still zero, the third run is thus
& line1:then; line4:then ' where the then branch on line 4 is taken.
With a “branch-coverage-driven” DART search, no backtracking
will take place in line 4 after the third run since both branches on
line 4 have already been covered. Thus, the fourth possible execu-
tion path & line1:then; line4:else; line7:then ' will not be exercised.
This means that the then branch of line 7 wil never been explored
and the abort statement will be missed.

In summary, using branch coverage to guide backtracking is a
simple technique for limiting “path explosion” but at the price of
often making the search incomplete.

In contrast, SMART reduces the computational complexity of
DART without sacrificing full path coverage and hence provably
without reducing branch coverage.

6.2 Better Summaries with Loop Invariants

In the presence of loops, loop invariants could be used to generate
more general and compact function summaries than those gener-
ated by the path-by-path procedure for computing summaries pre-
sented in Section 4.2.



For instance, consider again the function � P@U `53@6 shown in
Section 5.1. Instead of the function summary

M � � ���
�  �� � � � 4 �5/��  H�
" � ���
�  ����� �#� 	 ���)�  ���  A�+� 4#�5/�� � �R�
" � ���
�  ����� �#� 	 ���)�  ����  A�
	 ���
� �2� � �#� � 4 �5/�� �'�
�5/ � I

a more compact and general function summary is M � �
� ��� �+*  � �
� � ��� � 	 ��� � ,�� � ���
� � ���� �'� 	 ���
� � ����  A� � ��� 4#�5/+� �a�

" � ��� ��*  � �
� � � �  	[��� � , � � �
� � ���� �#� � � 4 �5/+� � �'�
Indeed, the latter is independent of any maximum size � for the
string T .

While inferring loop invariants is known to be a hard problem
in general, it might be possible to design good heuristics to infer
such invariants for frequent patterns of loops commonly used in
specific types of programs, such as scanning an input packet for
a specific value in a protocol implementation. Concrete values
known at runtime could also be used in this context to facilitate the
detection of “partial” loop invariants, i.e., simplified loop invariants
that are valid only when some input variables are fixed.

7. Conclusion
DART [GKS05], and closely related work (e.g., [SMA05, CE05,
YST � 06]), is a promising new approach to automatically generate
tests from program analysis. Actually, DART can be viewed [GK05]
as one way of combining static (interface extraction, symbolic ex-
ecution) and dynamic (testing, run-time checking) program anal-
ysis with model-checking techniques (systematic state-space ex-
ploration) in order to address one of the main limitations of pre-
vious dynamic, concrete-execution-based software model check-
ers (such as VeriSoft [God97], JavaPathFinder [VHBP00] and
CMC [MPC � 02], among others), namely their inability to auto-
matically deal with input data nondeterminism.

But DART suffers from two major limitations. First, its effec-
tiveness critically depends on the symbolic reasoning capability �
available. Whenever symbolic execution is not possible, concrete
values can be used to simplify constraints and carry on with a sim-
plified, partial symbolic execution as explained in Section 2. Ran-
domization can also help by suggesting concrete values whenever
automated reasoning is impossible or difficult. Still, it is currently
unknown whether dynamic test generation is really that superior to
static test generation, that is, how often using concrete values and
randomization helps in practice. More experiments with different
examples of applications are needed to determine this.

Second, DART suffers from the “path explosion” problem: sys-
tematically exploring all feasible program paths is typically pro-
hibitively expensive for large programs. This paper addresses this
second limitation in a drastic way, by performing dynamic test gen-
eration compositionally and eliminating path explosion due to in-
terprocedural program paths (i.e., paths across function boundaries)
without sacrificing overall path or branch coverage.

Our approach adapts known techniques for interprocedural
static analysis to the context of dynamic test generation. It is worth
noting that implementations of interprocedural static analysis are
typically both incomplete (may miss bugs) and unsound (may gen-
erate false alarms) with respect to falsification [GK05]. In contrast,
our compositional dynamic test generation is performed in such
a way to preserve the soundness of bugs [God05]: any error path
found is guaranteed to be sound – no “false alarm” is ever reported
by DART or SMART, by design, as every compositional symbolic
execution is grounded into some concrete execution. The only kind
of imprecision in our approach is incompleteness with respect to
falsification: we may miss bugs.

The idea of compositional dynamic test generation was al-
ready suggested in [GK05]; the motivation of the present paper
is to investigate this idea in detail. Other recent related work in-
cludes [CG06], which proposes and evaluates several heuristics
based on light-weight static analysis of function interfaces to par-
tition large software applications into groups of functions, called
units. Those units can then be tested in isolation without generating
too many false alarms caused by unrealistic inputs being injected
at interfaces between units. In contrast with the present work, no
summarization of unit testing, nor any global analysis is ever per-
formed in [CG06]. Both types of techniques can actually be viewed
as complementary. We refer the reader to [GKS05] for a detailed
discussion of other automated test generation techniques and tools,
and to [GK05] for a discussion of other possible DART extensions.

In closing, we believe it is an exciting time to be doing research
in program analysis: although most of the basic ideas behind pro-
gram analysis and automatic test generation have often been pub-
lished decades ago, the computational power available on modern
computers makes the implementation and engineering of these old
ideas feasible (or not so far-fetched) for the first time. As tremen-
dous progress has been made during the last 10 years in the engi-
neering of practically-usable automated code inspection tools using
static analysis, we believe a big challenge and opportunity for the
next 10 years is to automate software testing (as much as possible)
using advances in program analysis, like those described in this pa-
per, and taking advantage of those powerful computers.
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