
ICALP 2004 Page 1 July 2004

Model CheckingModel Checking
with Multiwith Multi--Valued LogicsValued Logics

Glenn Glenn Bruns Bruns Patrice GodefroidPatrice Godefroid

Bell Laboratories, Lucent TechnologiesBell Laboratories, Lucent Technologies

ICALP 2004 Page 2 July 2004

MultiMulti --Valued Model Checking: DefinitionValued Model Checking: Definition

• Kripkestructure K where, in every state, every atomic proposition
is mapped to an element of a lattice L.
– Example:

• Multi-valued temporal logic:
– Syntax: unchanged

– Semantics: unchanged except ∧ is meet in L, ∨ is join in L

– Example: φ = p ∧ EX p

• [K � φ] (“model checking”) returns a value in L.
– Example: [(K,s0) � p ∧ EX p] = (c ∧ (d ∨ b)) = b

s0
p = c

p = d p = b

ICALP 2004 Page 3 July 2004

• Model Checking using 3-valued abstractions
– Automatically abstract a program into a 3-valued model K

– Check any temporal property φ on this model

– If [K � φ] = ½, refine the model and repeat the process

• Temporal-logic query checking
– Given a “query” φ (ex: AG?), what is the set of

strongest propositional formulas f (built from P)

such that K � φ[? ← f]

• Multi-viewpoints model checking
– What properties do different experts agree on?

• All these problems reduce to “multi-valued model checking”

Motivation: ApplicationsMotivation: Applications

ICALP 2004 Page 4 July 2004

Two ApproachesTwo Approaches

• By reduction

– Idea: reduction to several standard, 2-valued model-checking problems

– Advantage: re-use of existing model checkers

– New result: simple and general method for reduction

• Direct (automata-theoretic) approach

– Idea: represent the formula by an EAA, and compute product with K

– Advantage: works in a more “demand-driven” way

– New result: maximum-value theorem for EAA and general automata-
theoretic approach to multi-valued model checking

ICALP 2004 Page 5 July 2004

Lattices and NegationLattices and Negation

• We consider finite (hence complete) distributive lattices.
– Complete: ∀ X ⊆ L: ∧{ X} and ∨{ X} exist in L

– Distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

• A join-irreducible element x of a distributive lattice L is an
element that is not ⊥ and for which (x = y ∨ z) ⇒ (x = y or x = z)

• DeMorgan lattice: every x ∈ L has a unique complement ¬x such
that ¬¬x = x, DeMorgan’s laws hold, and (x � y) ⇒ (¬y � ¬x)

ICALP 2004 Page 6 July 2004

Reduction Method (Approach 1)Reduction Method (Approach 1)

• Given K, φ ∈ µ-calculus, and a finite distributive DeMorgan L:
– Push ¬ inwards (using DeMorgan laws) to get φ in positive normal form.

– ∀ x ∈ L, define Kx as K except that θx(s)(p) = θ(s)(p) ≥ x

– Let J(L) denote the (finite) set of join-irreducible elements of L.

– Lemma 1: Given K over L, s in K, x ∈ J(L): (Kx,s) � φ ⇔ x
 [(K,s) � φ]

– Theorem 1: [(K,s) � φ] = ∨{ x ∈ J(L) | (Kx,s) � φ}

– Theorem 2: Given a TL, multi-valued model checking [(K,s) � φ] for TL
has the same complexity in K and φ as traditional model checking for TL,
and can be done in time O(|J(L)|).

• Notes:
– Sometimes complexity in |J(L)| is better than linear…

– These results can easily be extended to multi-valued transitions…

ICALP 2004 Page 7 July 2004

Comparison with Related WorkComparison with Related Work

• Generalizes reduction methods for specific lattices
– 3-valued model checking [BrunsGodefroid00]

– Several other lattices [KonikowskaPenczek02]

• Simplifies other reduction method using join-irreducible elements
– [GurfinkelChechik03]

• Extends work on “many-valued modal logics” [Fitting92]
– Reduction to standard Kripke structure vs. “multi-expert models”

– Join-irreducible elements instead of “proper-prime filters”

– Fixpoint modal logic vs. modal logic

– Different treatment of negation (DeMorgan lattices vs. Heyting algebras)

• Different from work on “AC-lattices” [HuthPradhan02]

ICALP 2004 Page 8 July 2004

• Alternating Automaton A=(Σ,S,s0,ρ,F)
with input alphabet Σ, transition
function ρ, acceptance condition F

• Ex: ρ(s0,σ,2)= σ(p) ∨ ((l,s0)∧(r,s0)) and
F={} (equivalent to AFp in CTL)

• Run: ∞ input tree T → run tree R

• T is accepted by A (denoted T∈ L(A))
if A has an accepting run R on T:

– every ∞ branch of R satisfies F.

Extended Alternating Automata (Approach 2)Extended Alternating Automata (Approach 2)

p=1

p=0 p=1

p=1p=1

T (ε, S0,1)

(r,S0,1)(l,S0,1)

(lr,S0,1)(ll,S0,1)

R2

(ε, S0,1)

R1

.

• Extended Alternating Automaton
[BrunsGodefroid01]: same as AA
except ρ is defined on L with ∧ and ∨

• Run: ∞ input tree T → run tree R
labeled with non-⊥ elements of L

• T is accepted by A with value v
(denoted T ∈ Lv(A)) if A has an
accepting v-run R on T:

– v labels the root node of R

– every ∞ branch of R satisfies F.

p=1

p=1/2 p=1

p=1p=0

T

(ε, S0,1/2)

(r,S0,1)(l,S0,1/2)

(ε, S0,1)

R1

R2

.

ICALP 2004 Page 9 July 2004

MaximumMaximum--value Theoremvalue Theorem

• Thm: Let A be a finite tree EAA over L, and let T be an infinite input tree.
Then the subset {v | T ∈ Lv(A)} of L has a maximum value Max(A,T).

• Note: nontrivial!

ICALP 2004 Page 10 July 2004

Proof IdeaProof Idea

• Define a lattice V of valuation trees ordered by the sub-tree
relation and � on L. Since L is complete, V is a complete lattice.

• Define a function F: V→V that computes the transition function ρ

• Runs correspond to fixpoints of F.

• Apply Knaster-Tarski’s theorem to F (order-preserving on V):
“ the join R of all runs (fixpoints of F) is a run (fixpoint of F).”

• Problem: R may not be accepting! (since the join of infinitely-
many finite paths may not be accepting…)

• Solution: provide a construction to eliminate all infinite non-
accepting paths in R while preserving the label of its root node…

ICALP 2004 Page 11 July 2004

Model Checking with EAAModel Checking with EAA

• Automata-theoretic approach to multi-valued model checking
(extends [KupfermanVardiWolper00]):
– Translate φ into a tree EAA Aφ such that [T � φ] = Max(Aφ,T)

(translation similar to the traditional one except for atomic propositions)

– Compute the product AK,φ of K and Aφ (a word EAA on 1-letter alphabet)

– Theorem: [K � φ] = Max(AK,φ)

– Computing Max(AK,φ) has the same complexity in |AK,φ| as checking
language emptiness in regular word AA on 1-letter alphabet,
and can be done in time O(|h(L)|).

– Example: if Buchi acceptance condition, quadratic time in |AK,φ|,
or even linear time in |AK,φ| if the EAA is also ‘weak’ (e.g., for CTL).

ICALP 2004 Page 12 July 2004

ExampleExample

• Consider the lattice L3

• Consider the formula φ = AF p (= µX.p ∨ �X)

• Aφ is a tree EAA on L3 with ρ(q0,σ,2)= σ(p) ∨ ((l,q0)∧(r,q0))
and F={ }

• Given K below, AK,φ is a word EAA on 1-letter alphabet { a} with
ρ((s0,q0),a,1) = 0 ∨ ((s1,q0) ∧ (s2,q0)), ρ((s1, q0),a,1) = 1/2 ∨ (s1,q0),
ρ((s2,q0),a,1) = 1 ∨ (s2,q0), and F={ }

• [K � φ] = Max(AK,φ) = 1/2

K An accepting ½-run

ICALP 2004 Page 13 July 2004

Summary and ConclusionsSummary and Conclusions

• Summary: two approaches to multi-valued model checking
– By reduction

• Advantage: re-use of existing model-checking tools
• New result: simple and general method based on join-irreducible elements for

finite distributive DeMorgan lattices and full µ-calculus

– Direct, automata-theoretic
• Advantage: more “on-the-fly”/demand-driven
• New result: maximum-value theorem for EAA and general automata-theoretic

approach for DeMorgan lattices and full µ-calculus

• Future work:
– Complementation of EAA…

– Detailed study of algorithms for computing Max(EAA)
(infinite games + lattice equations)…

– Other applications: quantitative games for resource optimization?

