Model Checking with Multi-Valued Logics

Glenn Bruns Patrice Godefroid

Bell Laboratories, Lucent Technologies

Multi-Valued Model Checking: Definition

• Kripke structure K where, in every state, every atomic proposition is mapped to an element of a lattice L.

- Multi-valued temporal logic:
 - Syntax: unchanged
 - Semantics: unchanged except \land is meet in L, \lor is join in L
 - Example: $\phi = p \wedge EX p$
- $[K \models \phi]$ ("model checking") returns a value in L.
 - Example: $[(K,s_0) \vDash p \land EX p] = (c \land (d \lor b)) = b$

Motivation: Applications

- Model Checking using 3-valued abstractions
 - Automatically abstract a program into a 3-valued model K
 - Check any temporal property ϕ on this model
 - If $[K \models \phi] = \frac{1}{2}$, refine the model and repeat the process
- Temporal-logic query checking
 - Given a "query" \$\u03c6\$ (ex: AG?), what is the set of strongest propositional formulas f (built from P) such that K ⊨ \$\u03c6[? \u03c6 f]
- Multi-viewpoints model checking
 - What properties do different experts agree on?
- All these problems reduce to "multi-valued model checking"

(1.0)

 $\{\sim p\}$

1

1/2 •

00

{false} a

 $\{p, \sim p\}$

{true]

 $\{ \}$

(1,1) o

(0,0)

(0,1)

{p}

 L_3

Two Approaches

- By reduction
 - Idea: reduction to several standard, 2-valued model-checking problems
 - Advantage: re-use of existing model checkers
 - New result: simple and general method for reduction
- Direct (automata-theoretic) approach
 - Idea: represent the formula by an EAA, and compute product with K
 - Advantage: works in a more "demand-driven" way
 - New result: maximum-value theorem for EAA and general automatatheoretic approach to multi-valued model checking

Lattices and Negation

- We consider finite (hence complete) distributive lattices.
 - Complete: $\forall X \subseteq L$: $\land \{X\}$ and $\lor \{X\}$ exist in L

- A *join-irreducible element* x of a distributive lattice L is an element that is not \perp and for which $(x = y \lor z) \Rightarrow (x = y \text{ or } x = z)$
- DeMorgan lattice: every $x \in L$ has a unique complement $\neg x$ such that $\neg \neg x = x$, DeMorgan's laws hold, and $(x \le y) \Rightarrow (\neg y \le \neg x)$

ICALP 2004

Reduction Method (Approach 1)

- Given K, $\phi \in \mu$ -calculus, and a finite distributive DeMorgan L:
 - Push \neg inwards (using DeMorgan laws) to get ϕ in positive normal form.
 - $\forall x \in L$, define K_x as K except that $\theta_x(s)(p) = \theta(s)(p) \ge x$
 - Let J(L) denote the (finite) set of join-irreducible elements of L.
 - Lemma 1: Given K over L, s in K, $x \in J(L)$: $(K_x,s) \vDash \phi \Leftrightarrow x \leq [(K,s) \vDash \phi]$

- Theorem 1: $[(K,s) \vDash \phi] = \lor \{x \in J(L) \mid (K_x,s) \vDash \phi\}$

- Theorem 2: Given a TL, multi-valued model checking $[(K,s) \models \phi]$ for TL has the same complexity in K and ϕ as traditional model checking for TL, and can be done in time O(|J(L)|).
- Notes:
 - Sometimes complexity in |J(L)| is better than linear...
 - These results can easily be extended to multi-valued transitions...

Comparison with Related Work

- Generalizes reduction methods for specific lattices
 - 3-valued model checking [BrunsGodefroid00]
 - Several other lattices [KonikowskaPenczek02]
- Simplifies other reduction method using join-irreducible elements
 [GurfinkelChechik03]
- Extends work on "many-valued modal logics" [Fitting92]
 - Reduction to standard Kripke structure vs. "multi-expert models"
 - Join-irreducible elements instead of "proper-prime filters"
 - Fixpoint modal logic vs. modal logic
 - Different treatment of negation (DeMorgan lattices vs. Heyting algebras)
- Different from work on "AC-lattices" [HuthPradhan02]

ICALP 2004

Extended Alternating Automata (Approach 2)

- Alternating Automaton $A=(\Sigma,S,s_0,\rho,F)$ with input alphabet Σ , transition function ρ , acceptance condition F
- Ex: $\rho(s_0,\sigma,2) = \sigma(p) \lor ((1,s_0) \land (r,s_0))$ and F={} (equivalent to AFp in CTL)
- Run: ∞ input tree T \rightarrow run tree R

- T is accepted by A (denoted $T \in L(A)$) if A has an accepting run R on T:
 - every ∞ branch of R satisfies F.

- Extended Alternating Automaton [BrunsGodefroid01]: same as AA except ρ is defined on L with \land and \lor
- Run: ∞ input tree T \rightarrow run tree R labeled with non- \perp elements of L

- T is accepted by A with value v (denoted $T \in L_v(A)$) if A has an accepting v-run R on T:
 - v labels the root node of R
 - every ∞ branch of R satisfies F.

Maximum-value Theorem

• Thm: Let A be a finite tree EAA over L, and let T be an infinite input tree. Then the subset $\{v \mid T \in L_v(A)\}$ of L has a maximum value Max(A,T).

Proof Idea

- Define a lattice V of valuation trees ordered by the sub-tree relation and \leq on L. Since L is complete, V is a complete lattice.
- Define a function F: V \rightarrow V that computes the transition function ρ
- Runs correspond to fixpoints of F.
- Apply Knaster-Tarski's theorem to F (order-preserving on V): "the join R of all runs (fixpoints of F) is a run (fixpoint of F)."
- Problem: R may not be accepting! (since the join of infinitelymany finite paths may not be accepting...)
- Solution: provide a construction to eliminate all infinite nonaccepting paths in R while preserving the label of its root node...

Model Checking with EAA

- Automata-theoretic approach to multi-valued model checking (extends [KupfermanVardiWolper00]):
 - Translate ϕ into a tree EAA A_{ϕ} such that $[T \vDash \phi] = Max(A_{\phi}, T)$ (translation similar to the traditional one except for atomic propositions)
 - Compute the product $A_{K,\phi}$ of K and A_{ϕ} (a word EAA on 1-letter alphabet)
 - Theorem: $[K \vDash \phi] = Max(A_{K,\phi})$
 - Computing $Max(A_{K,\phi})$ has the same complexity in $|A_{K,\phi}|$ as checking language emptiness in regular word AA on 1-letter alphabet, and can be done in time O(|h(L)|).
 - Example: if Buchi acceptance condition, quadratic time in $|A_{K,\phi}|$, or even linear time in $|A_{K,\phi}|$ if the EAA is also 'weak' (e.g., for CTL).

Example

- Consider the lattice L₃
 Consider the formula φ = AF p (= μX.p ∨ □X)
 A_φ is a tree EAA on L₃ with ρ(q₀,σ,2)= σ(p) ∨ ((1,q₀)∧(r,q₀))
 and F={}
- Given K below, $A_{K,\phi}$ is a word EAA on 1-letter alphabet {a} with $\rho((s_0,q_0),a,1) = 0 \lor ((s_1,q_0) \land (s_2,q_0)), \quad \rho((s_1,q_0),a,1) = 1/2 \lor (s_1,q_0), \\ \rho((s_2,q_0),a,1) = 1 \lor (s_2,q_0), \quad \text{and } F=$ {}

•
$$[K \vDash \phi] = Max(A_{K,\phi}) = 1/2$$

Summary and Conclusions

- Summary: two approaches to multi-valued model checking
 - By reduction
 - Advantage: re-use of existing model-checking tools
 - New result: simple and general method based on join-irreducible elements for finite distributive DeMorgan lattices and full µ-calculus
 - Direct, automata-theoretic
 - Advantage: more "on-the-fly"/demand-driven
 - New result: maximum-value theorem for EAA and general automata-theoretic approach for DeMorgan lattices and full μ -calculus
- Future work:
 - Complementation of EAA...
 - Detailed study of algorithms for computing Max(EAA) (infinite games + lattice equations)...
 - Other applications: quantitative games for resource optimization?