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Multi-Vaued Model Checking: Definition

o Kripke structure K where, in every state, every atomic proposition
IS mapped to an element of alattice L.

— Example S 2
p=cC
@‘ C d
»( ) b
p=d p=b

o Multi-valued temporal logic:

— Syntax: unchanged
— Semantics: unchanged except A ismeetinL, VisjoininL

i

— Example: p=p AEXp

o [KE @ (*model checking”) returnsavaluein L.
— Example: [(K,s) FPAEXPp]|=(cA(dVDb)=Db
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Motivation: Applications

e Modd Checking using 3-valued abstractions
— Automatically abstract a program into a 3-valued model K

— Check any temporal property ¢ on this model
— If [K E @ =%, refine the model and repeat the process .

p~-ph

e Temporal-logic query checking
— Givena“query” @(ex: AG?), what is the set of

Py 1~P}

strongest propositional formulasf (built from P) firuet
such that K £ ¢[? « f] v
(L1
o Multi-viewpoints model checking (O,l)<>m
— What properties do different experts agree on? 00

Laa

 All these problems reduce to “multi-valued model checking”
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Two Approaches

e By reduction
— ldea: reduction to several standard, 2-valued model-checking problems
— Advantage: re-use of existing model checkers
— New result: ssimple and general method for reduction

 Direct (automata-theoretic) approach
— ldea: represent the formula by an EAA, and compute product with K

— Advantage: worksin amore “demand-driven” way

— New result: maximum-value theorem for EAA and general automata-
theoretic approach to multi-valued model checking
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L attices and Negation

* We consider finite (hence complete) distributive lattices.
— Complete: V X C L: A{X} and V{ X} existinL
— Digtributivee x A(yVZ)=(XAY) V(XA 2)

2

1 o 1 (1,1)
true E s i
1 12 ¢ (0.1) (1.0)
B
false E

o 0 (0,0)

Ly Ls Lz Loz a

« A join-irreducible element x of adistributive lattice L isan
element that isnot 1L and for which(x=yV z) = (x=yorx=2)

 DeMorgan lattice: every x € L has a unique complement —x such
that ——x = X, DeMorgan’slaws hold, and (X <y) = (-y < —X)
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Reduction Method (Approach 1)

o GivenK, ¢ € p-calculus, and afinite distributive DeMorgan L:
— Push — inwards (using DeMorgan laws) to get @ in positive normal form.
— VxeL,defineK, asK except that 8,(s)(p) = 6(s)(p) > X
— Let J(L) denote the (finite) set of join-irreducible elements of L.
— Lemmal: GivenK over L,sinK,x € JL): (K,,9 Fo< x <[(K,s) F @]
— Theorem 1: [(K,s) F @ = V{x € JL) | (K,,9) F @}

— Theorem 2: Given a TL, multi-valued model checking [(K,s) F ¢] for TL

has the same complexity in K and ¢ as traditional model checking for TL,
and can be done in time O(|J(L)]).

 Notes:
— Sometimes complexity in [JL)| is better than linear...
— Theseresults can easily be extended to multi-valued transitions...
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Comparison with Related Work

o Generalizes reduction methods for specific lattices
— 3-valued model checking [BrunsGodefroid00]
— Severd other lattices [KonikowskaPenczek02]

Simplifies other reduction method using join-irreducible elements
— [Gurfinkel Chechik03]

Extends work on “many-valued modal logics’ [Fitting92]
— Reduction to standard Kripke structure vs. “multi-expert models’
— Join-irreducible elements instead of “proper-prime filters’
— Fixpoint modal logic vs. modal logic
— Different treatment of negation (DeMorgan lattices vs. Heyting algebras)

Different from work on “AC-lattices’ [HuthPradhan02]
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Extended Alternating Automata (A pproach 2)

* Alternating Automaton A=(2,S,s,,p.F) o Extended Alternating Automaton

with input aphabet Z, transition [BrunsGodefroid01]: same as AA
function p, acceptance condition F except p isdefined on L with A and Vv
¢ EXip(s,0,2=0(p) V ((ILs)A(r,s)) and  « Run:ocoinputtreeT — runtreeR
F={} (equivalentto AFpinCTL) labeled with non-_L. elements of L
14
* Run: coinputtree T — runtree R T o=1 R1 i
, Sl
T RL R2 N R
=1 € S,1) (€, S 1) p=1/2 p=1 (€, S,1/2)
N\ SN NN
/|o=o\4 /p-l\ (%) (s,1)  p=0 p=1 (15:2/2) (1,8,1)
=1 =1 ISy IrSy

e T isaccepted by A with valuev
_ (denoted T € L (A)) if A hasan
T isaccepted by A (denoted Te L(A)) accepting v-runRon T:

If A has an accepting run R c_>n T — v labels the root node of R
— every oo branch of R satisfies F. — every oo branch of R satisfies F.
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Maximum-value Theorem

« Thm: Let A beafinitetree EAA over L, and let T be an infinite input tree.
Thenthesubset {v | T € L,(A)} of L hasamaximum value Max(A,T).

 Note nontrivial!

ICALP 2004
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Proof |dea

 Definealattice V of valuation trees ordered by the sub-tree
relation and < on L. Since L iscomplete, V isacomplete | attice.

e Defineafunction F: V—V that computes the transition function p
* Runs correspond to fixpoints of F.

o Apply Knaster-Tarski’stheorem to F (order-preserving on V):
“thejoin R of all runs (fixpoints of F) isarun (fixpoint of F).”

* Problem: R may not be accepting! (since the join of infinitely-
many finite paths may not be accepting...)

o Solution: provide a construction to eliminate all infinite non-
accepting paths in R while preserving the label of its root node...
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Model Checking with EAA

o Automata-theoretic approach to multi-valued model checking
(extends [KupfermanV ardiWol per00]):

— Trandate @into atree EAA A suchthat [T F @] = Max(A,,T)
(trandation similar to the traditional one except for atomic propositions)

— Compute the product A, , of K and A (aword EAA on 1-letter alphabet)
— Theorem: [K F @] = Max(A )

— Computing Max(A ,) has the same complexity in |A, | as checking
language emptiness in regular word AA on 1-letter alphabet,
and can be done in time O(Jh(L)]).

— Example: if Buchi acceptance condition, quadratic timein [A, |,
or evenlinear timein |A, | if the EAA isaso ‘weak’ (e.g., for CTL).
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Example

» Consider thelattice L, Ly
o Consider theformulagp=AFp (=uX.pV OX) 12 &
« Aj,isatree EAA on L, with p(g,0,2)=a(p) V ((I,d0)A(r,dp)) oo

and F={} L)

* GivenK below, Ay jisaword EAA on 1-letter alphabet {a} with

P((S0,0p)»a1) =0V ((sp,0p) A (S00):  P((S, do)al) = L2V (s,qy),
P((S»00).21) =1V (S,,qy), and F={}

. [Kl=cp]=Max(A ‘p)=1/2
An accepting Y2-run €. (5g. gy). 1/2)

p 142 ,/ \ =
Q Oﬁ [1,(51,'21,]): 1/2) 1.(55. g0, 1

ICALP 2004 Page 12 July 2004



Summary and Conclusions

e Summary: two approaches to multi-valued model checking

— By reduction
» Advantage: re-use of existing model-checking tools

* New result: ssmple and general method based on join-irreducible elements for
finite distributive DeMorgan lattices and full p-calculus

— Direct, automata-theoretic
« Advantage: more “on-the-fly” /demand-driven

* New result: maximum-value theorem for EAA and general automata-theoretic
approach for DeMorgan lattices and full p-calculus

e Futurework:
— Complementation of EAA...

— Detailed study of algorithms for computing Max(EAA)
(infinite games + lattice equations)...

— Other applications. quantitative games for resource optimization?
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