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Overview of Software Model CheckingOverview of Software Model Checking

• Part I: The Dynamic Approach (Systematic Testing)

– VeriSoft

• Part II: The Static Approach (Automatic Abstraction)

– SLAM and predicate abstraction, 3-valued model checking, generalized 
model checking

• Part III: Combining the Static and Dynamic Approaches

– DART, Compositional Dynamic Test Generation (SMART)

• Disclaimer: emphasis on what influenced the speaker, not an 
exhaustive survey

• Main references: see the bibliography of the abstract
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“Model Checking”“Model Checking”

• Model Checking (MC) = systematic state-space exploration = exhaustive testing

• “Model Checking”  = “check whether the system satisfies a temporal-logic formula”

– Example: G(p->Fq) is an LTL formula

• Simple yet effective technique for finding bugs in high-level hardware and software 
designs (examples: FormalCheck for Hardware, SPIN for Software, etc.)

• Once thoroughly checked, models can be compiled and used as the core of the 
implementation (examples: SDL, VFSM, etc.)

BA C

deadlock

Each component is modeled by a FSM.
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Model Checking of SoftwareModel Checking of Software

• Challenge: how to apply model checking to analyze software?

– “Real”  programming languages (e.g., C, C++, Java),

– “Real”  size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing
(Ver iSoft, JPF, CMC, Bogor ,…)

state-space exploration

state-space exploration

abstraction adaptation
(SLAM, Bandera, 
FeaVer , BLAST,…)
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Part I:Part I:

The Dynamic Approach (Systematic Testing)The Dynamic Approach (Systematic Testing)
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Dynamic Approach: Systematic Testing (Dynamic Approach: Systematic Testing (VeriSoftVeriSoft) ) 

• State Space = “product of (OS) processes” (Dynamic Semantics)

– Processes communicate by executing operations on com. objects.

– Operations on com. objects are visible, other operations are invisible.

– Only executions of visible operations may be blocking.

– The system is in a global state when the next operation of each process is 
visible.

– State Space = set of global states + transitions between these.

THEOREM: Deadlocks and assertion violations are 
preserved in the “state space” as defined above.

deadlock

s0
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VeriSoftVeriSoft
• Controls and observes the execution of concurrent processes of the system under test by 

intercepting system calls (communication, assertion violations, etc.).

• Systematically drives the system along all the paths (=scenarios) in its state space 
(=automatically generate, execute and evaluate many scenarios).

• From a given initial state, one can always guarantee a complete coverage of the state 
space up to some depth.

• Note: analyzes “closed systems”; requires test driver(s) possibly using “VS_toss(n)”.

VeriSoft

BA C

System Processes

deadlock

s0
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VeriSoft StateVeriSoft State--Space SearchSpace Search

• Automatically searches for:

– deadlocks,

– assertion violations,

– divergences (a process does not communicate with the rest of the system 
during more than x seconds),

– livelocks (a process is blocked during x successive transitions).

• A scenario (=path in state space) is reported for each error found.

• Scenarios can be replayed interactively using the VeriSoft 
simulator (driving existing debuggers).
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The VeriSoft SimulatorThe VeriSoft Simulator
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Originality of Originality of VeriSoftVeriSoft

• VeriSoft is the first systematic state-space exploration tool for 
concurrent systems composed of processes executing arbitrary 
code (e.g., C, C++,…) [POPL97].

• VeriSoft looks simple! Why wasn’ t this done before?

• Previously existing state-space exploration tools:
– restricted to the analysis of modelsof software systems;

– each state is represented by a unique identifier;

– visited states are saved in memory (hash-table, BDD,…).

• With programming languages, states are much more complex!

• Computing and storing a unique identifier for every state is 
unrealistic!
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“State“State--Less”  SearchLess”  Search

• Don’ t store visited states in memory: still terminates when state 
space is finite and acyclic… but terribly inefficient!

• Example: dining philosophers (toy example)

– For 4 philosophers, a state-less search explores 386,816 transitions, instead 
of 708: every transition is executed on average 546 times!
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• A state-less search in the state space of a concurrent system can 
be much more efficient when using “partial-order methods”.

• POR algorithms dynamically prune the state space of a concurrent
system by eliminating unnecessary interleavings while preserving 
specific correctness properties (deadlocks, assertion violations,...).

• Two main core POR techniques:

– Persistent/stubborn sets (Valmari, Godefroid,…)

– Sleep sets (Godefroid,…)

PartialPartial--Order Reduction in Model CheckingOrder Reduction in Model Checking

[ Note: checking more elaborate properties require other extensions

– Ex: ample sets (Peled) are persistent sets satisfying additional 
conditions sufficient for LTL model checking

Not used here as VeriSoft only checks reachability properties ]
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• Intuitively, a set T of enabled transitions in s are persistent in s if 
whatever one does from s while remaining outside of T does not 
interact with T.

• Example:

• Limitation: need info on (static) system structure.
• VeriSoft only exploits info on next transitions and “system_file.VS”.

Persistent/Stubborn SetsPersistent/Stubborn Sets

Send(q1,m1)Send(q1,m1)

Send(q1,m2)Send(q1,m2)

Send(q2,m4)Send(q2,m4) z=z=RcvRcv(q1)(q1)

Send(q1,m6)Send(q1,m6)

stopstop

P3P3

x=x=RcvRcv(q2)(q2)

Send(q1,m3)Send(q1,m3)

stopstop

stopstop

P1P1 P2P2 {P1:Send(q1,m1)} is persistent in {P1:Send(q1,m1)} is persistent in ss

The most advanced algorithms forThe most advanced algorithms for
(statically) computing persistent sets(statically) computing persistent sets

are based on “stubborn sets” are based on “stubborn sets” 
[[ValmariValmari]]

Send(q2,m5)Send(q2,m5)

(q1 is empty in (q1 is empty in ss))
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Sleep SetsSleep Sets

• Sleep Sets exploit local independence (commutativity) among 
enabled transitions. One sleep set is associated with each state.

• Example:

• Limitation: alone, no state reduction.
• Sleep sets are easy to implement in VeriSoft since they only require 

information on next transitions.

Send(q1,x)Send(q1,x)

Send(q1,y)Send(q1,y)

P1P1 P2P2

Send(q2,z)Send(q2,z)

Send(q2,m)Send(q2,m)

P1:Send(q1,x)P1:Send(q1,x) P2:Send(q2,m)P2:Send(q2,m)

P1:Send(q2,z)P1:Send(q2,z) P2:Send(q1,y)P2:Send(q1,y)

Sleep={P1:Send(q1,x)}Sleep={P1:Send(q1,x)}

Transitions in SleepTransitions in Sleep
are not explored!are not explored!P1:Send(q1,x)P1:Send(q1,x)

P2:Send(q2,m)P2:Send(q2,m)
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• With POR algorithms, the pruned state space looks like a tree!

• Thus, no need to store intermediate states!

An Efficient StateAn Efficient State--Less SearchLess Search

t

t

t’

t’

t

t’

t t’

t’

(persistent sets)

(sleep sets)

•• Without POR algorithms, a stateWithout POR algorithms, a state--less search in the state spaceless search in the state space
of a concurrent system is of a concurrent system is untractableuntractable..
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VeriSoft VeriSoft -- SummarySummary

• Two key features distinguish VeriSoft from other model checkers

– Does not require the use of any specific modeling/programming language.

– Performs a state-less search.

• Use of partial-order reduction is key in presence of concurrency.

• In practice, the search is typically incomplete.

• From a given initial state, VeriSoft can always guarantee a 
complete coverage of the state space up to some depth.
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Users and ApplicationsUsers and Applications

• Development of research prototype started in 1996.

• VeriSoft 2.0 available outside Lucent since January 1999:

– 100’s of licenses in 25+ countries, in industry and academia

– Free download at http://www.bell-labs.com/projects/verisoft

• Examples of applications in Lucent:

– 4ESS HBM unit testing and debugging (telephone switch maintenance)

– WaveStar 40G R4 integration testing (optical network management)

– 7R/E PTS Feature Server unit and integration testing (voice/data signaling)

– CDMA Cell-Site Call Processing Library testing (wireless call processing)
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• CDMA Base Station Call-processing 
software library involves complex dynamic 
resource-allocation algorithms and handoffs 
scenarios (100,000’s lines of C/C++ code).

• How to test reliably this software? VeriSoft

– Increased test coverage from O(10) to 
O(1,000,000) scenarios.

– Automatic regression testing for multiple 
cell-sites and releases (more than 1,500
VeriSoft runs in 2000-2001).

– Found several critical bugs…[ICSE2002]

Example of Industrial Application: CDMAExample of Industrial Application: CDMA

Automated Testing Interface

Hw Simulation Environment

CDMA
Call

Processing
Library

Rest of the
System…

Test driver

VeriSoft

Walsh code
checking

mobileMSC

CECell 1

CECell 2

CECell 3

CE
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Discussion: Strengths of VeriSoftDiscussion: Strengths of VeriSoft

• Used properly, very effective at finding bugs

– can quickly reveal behaviors virtually impossible to detect using 
conventional testing techniques (due to lack of controllability and
observability)

– compared with conventional model checkers, no need to model the 
application!

• Eliminates this time-consuming and error-prone step

• VeriSoft is WYSIWYG: great for reverse-engineering

• Versatile: language independence is a key strength in practice

• Scalable: applicable to very large systems, although incomplete

– the amount of nondeterminism visible to VeriSoft can be reduced at the 
cost of completeness and reproducibility (not limited by code size)
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Discussion: Limitations of VeriSoftDiscussion: Limitations of VeriSoft

• Requires test automation: 
– need to run and evaluate tests automatically (can be nontrivial)

– if test automation is already available, getting started is easy

• Need be integrated in testing/execution environment
– minimally, need to intercept VS_toss and VS_assert

– intercepting/handling communication system calls can be tricky...

• Requires test drivers/environment models (like most MC)

• Specifying properties: the more, the better… (like MC)
– Restricted to safety properties (ok in practice); use Purify!

• State explosion... (like MC)
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Discussion: ConclusionsDiscussion: Conclusions

• VeriSoft (like model checking) is not a panacea.

– Limited by the state-explosion problem,…

– Requires some training and effort (to write test drivers, properties, etc.).

– “Model Checking is a push-button technology” is a myth!

• Used properly, VeriSoft is very effective at finding bugs.

– Concurrent/reactive/real-time systems are hard to design, develop and test.

– Traditional testing is not adequate.

– “Model checking” (systematic testing) can rather easily expose new bugs.

• These bugs would otherwise be found by the customer!

• So the real question is “How much ($) do you care about bugs?”
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Part II:Part II:

The Static Approach (Automatic Abstraction)The Static Approach (Automatic Abstraction)



Page 23 June 2006MOVEP 2006

Model Checking of SoftwareModel Checking of Software

• Challenge: how to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing
(VeriSoft, JPF, CMC, Bogor,…)

state-space exploration

state-space exploration

abstraction adaptation
(SLAM, Bandera, 
FeaVer, BLAST,…)
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Static Approach: Automatic Abstraction (SLAM)Static Approach: Automatic Abstraction (SLAM)

Program P( ) {Program P( ) {
intint x = 1;x = 1;
x = h(x);x = h(x);
if (odd(x))if (odd(x))

abort(); // error!abort(); // error!
x = 0;x = 0;

}}

Predicate abstractionPredicate abstraction
p: “x is odd”p: “x is odd”

p=truep=true

p=p=⊥⊥

p=falsep=false

AA

abortabort

“Abstract-Check-Refine” Loop:

1. Abstract: generate a (may) abstraction via static program analysis
• Ex: predicate abstraction and boolean program 

2. Check: “model check” the abstraction

3. Refine: map abstract error traces back to code, or refine the abstraction 
(e.g., by adding predicates); goto 1

(may)(may)



Page 25 June 2006MOVEP 2006

Main Ideas and IssuesMain Ideas and Issues

1. Abstract: extract a “model” out of concrete program via static analysis
• Which programming languages are supported? ((subset of) C, Java, Ada, 

Domain-Specific Language?)
• Additional assumptions? (Pointers? Recursion? Concurrency?…)
• What is the target modeling language? ((C)(E)FSMs, PDAs,…)
• Can/must the abstraction process be guided by the user? How?

2. Model check the abstraction
• What properties can be checked? (Safety? Liveness?,…)
• How to model the environment? (Closed or open system ?…)
• Which model-checking algorithm? (New algos for PDAs, use SAT solvers…)
• Is the abstraction “conservative”? (I.e., is the static analysis “sound”?)

3. Map abstract counter-examples back to code, or refine the abstraction
• Behaviors violating the property may have been introduced during Step 1
• How to map scenarios leading to errors back to the code?
• When an error trace is spurious, how to refine the abstraction?
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Lots of Recent Work…Lots of Recent Work…

• Examples of tools:
– SLAM (Microsoft): see previous slides; now part of Microsoft Windows 

device-driver development toolkit

– Bandera (Kansas U.): Java to SPIN/SMV/* using user-guided abstraction 
mapping and slicing/abstract-interpretation/*

– FeaVer (Bell Labs): C to SPIN using user-specified abstraction mapping

– BLAST (Berkeley): similar to SLAM but “lazy abstraction refinement”

– Etc! (+ Tools for static analysis of concurrent programs, Ada, etc.)

• Examples of frameworks: (automatic abstraction refinement)
– [Graf,Saidi,…], [Clarke,Grumberg,Jha,…], [Ball,Rajamani,Podelski,…], 

[Dill,Das,…], [Khurshan,Namjoshi,…], [Dwyer,Pasareanu,Visser,…], 
[Bruns,Godefroid,Huth,Jagadeesan,Schmidt…], [Henzinger, Jhala, 
Majumdar,Sutre,…], and many more!
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Abstraction for Verification Abstraction for Verification andand FalsificationFalsification

Using 3-valued models and logics, Generalized Model Checking…

See other slides here: 

Slides.pdf
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Part III:Part III:

Combining the Static and Dynamic Combining the Static and Dynamic 
ApproachesApproaches
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Model Checking of Software: TodayModel Checking of Software: Today

Two complementary approaches to software model checking:

Modeling languages

Programming languages

Model checking
state-space exploration

state-space exploration

abstraction adaptation

Automatic Abstraction (static analysis):
•Idea: parse code to generate an abstract 
model  that can be analyzed using model 
checking
•No execution required but language 
dependent
•May produce spurious counterexamples 
(unsound bugs)
•Can prove correctness (complete) in theory 
(but not in practice…)

Systematic Testing (dynamic analysis):
•Idea: control the execution of multiple test-
drivers/processes by intercepting systems 
calls
•Language independent but requires 
execution
•Counterexamples arise from code (sound 
bugs)
•Provide a complete state-space coverage up 
to some depth only (typically incomplete)

Systematic testing
(VeriSoft, JPF, CMC, Bogor,…)

(SLAM, Bandera, 
FeaVer, BLAST,…)
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Model Checking of Model Checking of SofwareSofware: What Next?: What Next?

• General idea: combine static and dynamic analysis 

• Motivation: take the best of both approaches                   
(precision of dynamic analysis AND efficiency of static analysis)

• Example: DART (Directed Automated Random Testing)

– See [PLDI’2005] with  N. Klarlund and K. Sen (summer intern, UIUC)

– Can be viewed as extending the VeriSoft approach to data nondeterminism 
(see also [PLDI’98, Colby-Godefroid-Jagadeesan] for an earlier attempt)

– Uses static program analysis and symbolic execution techniques (including 
theorem proving) for systematic test-input generation and execution

– One way to combine static and dynamic analysis for SW model checking...
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DART = Directed Automated Random TestingDART = Directed Automated Random Testing

1. Automated extraction of program interface from source code

2. Generation of test driver for random testing through the interface

3. Dynamic test generation to direct executions along alternative 
program paths

Together: (1)+(2)+(3) = DART    

Any program (that compiles) can be run and tested automatically:

No need to write any test driver or harness code!

DART detects program crashes, assertion violations, etc.

unit

(2) + (3)

(1)
unit
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Example (C code)Example (C code)

int double(int x) { 

return 2 * x; 

}

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

(1) Interface extraction:
• parameters of top-level function
• external variables
• return values of external functions

main(){

int tmp1 = randomInt();

int tmp2 = randomInt();

test_me(tmp1,tmp2);

}

(2) Generation of test driver for random testing:

Closed (self-executable) program that can be run

Problem: probability of reaching abort() is extremely low!
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

x = 36, y = 99x = 36, y = 99
create symboliccreate symbolic
variables x, y variables x, y 
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

x = 36, y = 99,x = 36, y = 99,
z = 72z = 72

z = 2 * xz = 2 * x
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

x = 36, y = 99,x = 36, y = 99,
z = 72z = 72

z = 2 * xz = 2 * x

2 * x != y2 * x != y

Solve: 2 * x == ySolve: 2 * x == y

Solution: x = 1, y = 2Solution: x = 1, y = 2
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

x = 1, y = 2x = 1, y = 2
create symboliccreate symbolic
variables x, y variables x, y 
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

x = 1, y = 2, z = 2x = 1, y = 2, z = 2 z = 2 * xz = 2 * x
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

x = 1, y = 2, z = 2x = 1, y = 2, z = 2 z = 2 * xz = 2 * x 2 * x == y2 * x == y



Page 39 June 2006MOVEP 2006

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

2 * x == y2 * x == y

x = 1, y = 2, z = 2x = 1, y = 2, z = 2 z = 2 * xz = 2 * x

y != x + 10y != x + 10

Solve: (2 * x == y) Solve: (2 * x == y) ∧ ∧ (y == x +10)(y == x +10)

Solution: x = 10, y = 20Solution: x = 10, y = 20
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

x = 10, y = 20x = 10, y = 20
create symboliccreate symbolic
variables x, y variables x, y 
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

x = 10, y = 20, z = 20x = 10, y = 20, z = 20 z = 2 * xz = 2 * x
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

x = 10, y = 20, z = 20x = 10, y = 20, z = 20 z = 2 * xz = 2 * x 2 * x == y2 * x == y
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DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete 
Execution

Symbolic 
Execution

Path 
Constraint

create symboliccreate symbolic
variables x, y variables x, y 

2 * x == y2 * x == y

y == x +10y == x +10z = 2 * xz = 2 * xx = 10, y = 20, z = 20x = 10, y = 20, z = 20

Program Error
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Directed Search: SummaryDirected Search: Summary

• Dynamic test generation to direct executions along alternative 
program paths

– collect symbolic constraints at branch points (whenever possible)

– negate one constraint at a branch point to take other branch (say b)

– call constraint solver with new path constraint to generate new test inputs

– next execution driven by these new test inputs to take alternative branch b

– check with dynamic instrumentation that branch b is indeed taken

• Repeat this process until all execution paths are covered

– May never terminate!

• Significantly improves code coverage vs. pure random testing
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Novelty: Use of Concrete Values in Symbolic ExecutionNovelty: Use of Concrete Values in Symbolic Execution

void foo(int x,int y){

int z = x*x*x; /* could be z = h(x) */

if (y == z) {

abort(); /* error */

}

}

• Assume we can reason about linear 
constraints only

• Initially x = 3 and y = 7 (randomly 
generated)

• Concrete z = 27, but symbolic z = x*x*x

– Cannot handle symbolic value of z!

– Stuck? 
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Novelty: Use of Concrete Values in Symbolic ExecutionNovelty: Use of Concrete Values in Symbolic Execution

void foo(int x,int y){

int z = x*x*x; /* could be z = h(x) */

if (y == z) {

abort(); /* error */

}

}

• Assume we can reason about linear 
constraints only

• Initially x = 3 and y = 7 (randomly 
generated)

• Concrete z = 27, but symbolic z = x*x*x

– Cannot handle symbolic value of z!

– Stuck? 

– NO!     Use concrete value z = 27
and proceed…

• Take else branch with constraint y != 27

• Solve y == 27 to take then branch

• Execute next run with x = 3 and y = 27

• DART finds the error!

Replace symbolic expression
by concrete value when 

symbolic expression becomes 
unmanageable (e.g. non-linear)

NOTE: whenever symbolic execution is 
stuck, static analysis becomes imprecise!
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Comparison with Static AnalysisComparison with Static Analysis

1  foobar(int x, int y){

2    if (x*x*x > 0){ 

3       if (x>0 && y==10){

4           abort(); /* error */

5       }

6    } else {

7       if (x>0 && y==20){

8           abort(); /* error */

9       }

10   }

11 }

• Symbolic execution is stuck at line 2…

• Static analysis tools will conclude that  
both aborts may be reachable

– “Sound” tools will report both, and 
thus one false alarm

– “Unsound” tools will report “no 
bug found”, and miss a bug

• Static-analysis-based test generation 
techniques are helpless here !!!

• In contrast, DART finds the only error 
(line 4) with high probability              
(but cannot prove line 8 is unreachable)

• Unlike static analysis, all bugs reported 
by DART are guaranteed to be sound
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Other Advantages of Dynamic AnalysisOther Advantages of Dynamic Analysis

1 struct foo { int i; char c; }

2

3 bar (struct foo *a) {

4     if (a->c == 0) {

5         *((char *)a + sizeof(int)) = 1;

6         if (a->c != 0) {

7             abort();

8         }

9     }

10 }

• Dealing with dynamic data is easier 
with concrete executions

• Due to limitations of alias analysis, 
static analysis tools cannot determine 
whether “a->c” has been rewritten

– “the abort may be reachable”

• In contrast, DART finds the error 
easily (by solving the linear constraint 
a->c == 0)

• In summary, all bugs reported by 
DART are guaranteed to be sound!

• But DART may not terminate…
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DART for C: Implementation DetailsDART for C: Implementation Details

prgmprgm.c.c dart

test_driver.c

prgm_instrumented.c

dart.c

Constraint solver(s)
(e.g., lp_solve.so)

prgm.exe
C compiler

CIL (Berkeley)

• Error found
• Complete coverage
• Run forever…

3 possible outcomes:

(OCaml, C)
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Some Experimental ResultsSome Experimental Results

Experimental results with a DART prototype for C are very encouraging:

• Benchmark: Needham-Schroeder authentication protocol 
(400 lines of C code with a known attack)
– DART takes about 1 min (9,926 runs) to discover the known attack (1GHz P-III)

– Previous tools (like VeriSoft, BLAST, static analyzers,…) do not find the attack
• VeriSoft does not find the attack in 24 hours of search (albeit with a different, concurrent 

and nondeterministic, Dolev-Yao intruder model)
• BLAST reports a spurious error after 6 minutes of search (due to imprecision of current 

alias-analysis used), or hangs with “interpolant” optimization turned on (after a call to 
Simplify with a formula containing 40,000+ variables and 68,000+ clauses)

• oSIP (Open Source SIP library; 30,000 lines of C code) 
– DART found a way to crash 65% of the 600 externally visible functions                 

in the oSIP API within 1,000 runs per function

– Analysis revealed a new attack to crash the oSIP parser                                         
(by remotely send it a single particular message!)
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Related WorkRelated Work

• Static analysis and automatic test generation based on static analysis: 
limited by symbolic execution technology (see previous discussion)

• Random testing (fuzz tools, etc.): poor coverage

• Dynamic test generation (Korel, Gupta-Mathur-Soffa, etc.)

– Attempt to exercise a specific program path

– DART attempts to cover all executable program paths instead (like model checking)

– Also, DART has been implemented for C and applied to large examples          
(handles full C, function calls, unknown functions, exploits simultaneous concrete 
and symbolic executions, has run-time checks to detect incompleteness,…)

• Independent, closely related work on directed search [Cadar-Engler, SPIN’05]

• The DART approach (idea, formalization, tool architecture) is independent of 
specific constraint types or solvers; those params define DART implementations

– Ex: DART implementation with pointer in-/equality constraints [Sen et al., FSE’05]

– Ex: DART implementation with bit-level symbolic execution [Engler et al., S&P’06]
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New Results: Introducing SMART (to appear)New Results: Introducing SMART (to appear)

• Problem: Executing all feasible program paths does not scale!
– Number of paths can be exponential (even if loop-free) or infinite (loops)

– E.g., in oSIP, branch coverage stuck around 30% due to path explosion…

• Idea: compositional dynamic test generation (SMART algorithm)
– Like interprocedural static analysis: use summaries of individual functions

– If f() calls g(),  analyze/test g() separately,  summarize the results,  and     
use g()’s summaries when testing f()

• summaries may now include information about concrete values
• g()’s outputs are treated as symbolic inputs to f()

– Strategies for computing summaries:
• bottom-up: easier to implement but many unused summaries
• top-down: compute summaries on a demand-driven basis

SMART = “Systematic Modular Automated Random Testing”
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SMART = Modular DARTSMART = Modular DART

Theorem: SMART provides same path coverage as DART
• Same “local path” reachability, branch coverage, assertion violations,…

1  // locate index of first character c in s
2 int locate(char *s, int c) { 
3 int i=0;
4
5    while (s[i] != c) {
6      if (s[i] == 0) return -1;
7      i++;
8    }
9    return i;
10 }
11  void top(char *input) {  
12 int z;
13
14    z = locate(input,'a');
15    if (z == -1) return -1;         // error
16    if (input[z+1] != ':') return 1; // success
17    return 0;                       // failure
18  }

• Assume input (and s) are null-terminated and
of maximum length n

• locate() has at most 2n execution paths
Ex of summaries:
(s[0] == c) => ret = 0
(s[0] != c) & (s[0] == 0) => ret = -1
(s[0] != c) & (s[0] != 0) & (s[1] == c) => ret = 1
etc.

• top() has at most 3 execution paths
• P={top(),locate()} has at most 3n execution paths
• DART search algorithm explores 3n paths
• SMART search algorithm explores 2n+2paths

Sum vs. product:  linear vs. exponential!
(Similar to HSM/PDS verification…)

• Claim: SMART search is necessary to make the 
“DART approach” scalable!
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Extensions (see [IFM’2005])Extensions (see [IFM’2005])

• Faster constraint solvers

– Ex: DART on NS with conjunctions only (1) or with disjunctions (2)

• More constraint types and decision procedures

– for pointers, arrays, strings, bit-vectors, etc. (default: random testing)

• Concurrency

– Scheduling nondeterminism is orthogonal to input data nondeterminism

– Use partial-order reduction for concurrency (multi-threaded/process)
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Future Work: Longer Term (see [IFM’2005])Future Work: Longer Term (see [IFM’2005])

• Combining further static and dynamic software model checking

– Ex: use program slicing to focus dynamic search towards specific code

– Ex: use DART as a subroutine to test path feasibility inside static analyzer

• Specifying preconditions (and postconditions)

– Either using tool-friendly annotations (logic) or input-filtering code

– How to interpret code as precisely as if specified directly in logic?           
We need “constraint inference” capabilities…

2  int locate(char *s, int c) { 
3 int i=0;
4
5    while (s[i] != c) {
6      if (s[i] == 0) return -1;
7      i++;
8    }
9    return i;
10 }

From
(s[0] == c) => ret = 0
(s[0] != c) & (s[0] == 0) => ret = -1
(s[0] != c) & (s[0] != 0) & (s[1] == c) => ret = 1
etc.

To
∃ i : s[i] == c & ( ∀ j<i: (s[j] != c) & (s[j] != 0) ) => ret=i     

etc.
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ConclusionsConclusions

• Past: two complementary approaches to software model checking

– Dynamic Approach: Systematic Testing (Ex: VeriSoft)

– Static Approach: Automatic Abstraction (Ex: SLAM)

• Future: combine both approaches (Ex: DART)

– DART = Directed Automated Random Testing

– No manually-generated test driver required (fully automated)
• As automated as static analysis but with higher precision
• Starting point for testing process

– No false alarms but may not terminate

– Smarter than pure random testing (with directed search)

– Can work around limitations of symbolic execution technology
• Symbolic execution is an adjunct to concrete execution
• Randomization helps where automated reasoning is difficult

• Still plenty of work to do before “software model checking for the masses” !


