
PLDI’2005 Page 1 June 2005

DART:DART:
Directed Automated Random TestingDirected Automated Random Testing

Patrice Patrice GodefroidGodefroid Nils Klarlund Koushik SenNils Klarlund Koushik Sen
Bell Labs Bell Labs Bell Labs UIUCBell Labs UIUC

PLDI’2005 Page 2 June 2005

MotivationMotivation

• Software testing: “usually accounts for 50% of software development cost”

– “Software failures cost $60 billion annually in the US alone”
[Source: “The economic impacts of inadequate infrastructure for software testing” , NIST, May 2002]

• Unit testing: applies to individual software components

– Goal: “white-box” testing for corner cases, 100% code coverage

– Unit testing is usually done by developers (not testers)

• Problem: in practice, unit testing is rarely done properly

– Testing in isolation with manually-written test harness/driver code is too expensive,
testing infrastructure for system testing is inadequate

– Developers are busy, (“black-box”) testing will be done later by testers…

– Bottom-line: many bugs that should have been caught during unit testing remain
undetected until field deployment (corner cases where severe reliability bugs hide)

• Idea: help automate unit testing by eliminating/reducing the need for writing
manually test driver and harness code → DART

PLDI’2005 Page 3 June 2005

DART: Directed Automated Random TestingDART: Directed Automated Random Testing

1. Automated extraction of program interface from source code

2. Generation of test driver for random testing through the interface

3. Dynamic test generation to direct executions along alternative
program paths

• Together: (1)+(2)+(3) = DART

• DART can detect program crashes and assertion violations.

• Any program that compiles can be run and tested this way:

No need to write any test driver or harness code!

• (Pre- and post-conditions can be added to generated test-driver)

PLDI’2005 Page 4 June 2005

Example (C code)Example (C code)

int double(int x) {

return 2 * x;

}

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

(1) Interface extraction:
• parameters of toplevel function
• external variables
• return values of external functions

main(){

int tmp1 = randomInt();

int tmp2 = randomInt();

test_me(tmp1,tmp2);

}

(2) Generation of test driver for random testing:

Closed (self-executable) program that can be run

Problem: probability of reaching abort() is extremely low!

PLDI’2005 Page 5 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

x = 36, y = 99x = 36, y = 99
create symboliccreate symbolic
variables x, y variables x, y

PLDI’2005 Page 6 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

x = 36, y = 99,x = 36, y = 99,
z = 72z = 72

z = 2 * xz = 2 * x

PLDI’2005 Page 7 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

x = 36, y = 99,x = 36, y = 99,
z = 72z = 72

z = 2 * xz = 2 * x

2 * x != y2 * x != y

Solve: 2 * x == ySolve: 2 * x == y

Solution: x = 1, y = 2Solution: x = 1, y = 2

PLDI’2005 Page 8 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

x = 1, y = 2x = 1, y = 2
create symboliccreate symbolic
variables x, y variables x, y

PLDI’2005 Page 9 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

x = 1, y = 2, z = 2x = 1, y = 2, z = 2 z = 2 * xz = 2 * x

PLDI’2005 Page 10 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

x = 1, y = 2, z = 2x = 1, y = 2, z = 2 z = 2 * xz = 2 * x 2 * x == y2 * x == y

PLDI’2005 Page 11 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

2 * x == y2 * x == y

x = 1, y = 2, z = 2x = 1, y = 2, z = 2 z = 2 * xz = 2 * x

y != x + 10y != x + 10

Solve: (2 * x == y) Solve: (2 * x == y) ∧ ∧ (y == x +10)(y == x +10)

Solution: x = 10, y = 20Solution: x = 10, y = 20

PLDI’2005 Page 12 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y != x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

x = 10, y = 20x = 10, y = 20
create symboliccreate symbolic
variables x, y variables x, y

PLDI’2005 Page 13 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

x = 10, y = 20, z = 20x = 10, y = 20, z = 20 z = 2 * xz = 2 * x

PLDI’2005 Page 14 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

x = 10, y = 20, z = 20x = 10, y = 20, z = 20 z = 2 * xz = 2 * x 2 * x == y2 * x == y

PLDI’2005 Page 15 June 2005

DART Step (3): Directed SearchDART Step (3): Directed Search
main(){

int t1 = randomInt();

int t2 = randomInt();

test_me(t1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, int y) {

int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

}

}

Concrete
Execution

Symbolic
Execution

Path
Constraint

create symboliccreate symbolic
variables x, y variables x, y

2 * x == y2 * x == y

y == x +10y == x +10z = 2 * xz = 2 * xx = 10, y = 20, z = 20x = 10, y = 20, z = 20

Program Error

PLDI’2005 Page 16 June 2005

Directed Search: SummaryDirected Search: Summary

• Dynamic test generation to direct executions along alternative
program paths

– collect symbolic constraints at branch points (whenever possible)

– negate one constraint at a branch point to take other branch (say b)

– call constraint solver with new path constraint to generate new test inputs

– next execution driven by these new test inputs to take alternative branch b

– check with dynamic instrumentation that branch b is indeed taken

• Repeat this process until all execution paths are covered

– May never terminate!

• Significantly improves code coverage vs. pure random testing

PLDI’2005 Page 17 June 2005

Novelty: Simultaneous Concrete & Symbolic ExecutionsNovelty: Simultaneous Concrete & Symbolic Executions

void foo(int x,int y){

int z = x*x*x; /* could be z = h(x) */

if (z == y) {

abort(); /* error */

}

}

• Assume we can reason about linear
constraints only

• Initially x = 3 and y = 7 (randomly
generated)

• Concrete z = 27, but symbolic z = x*x*x

– Cannot handle symbolic value of z!

– Stuck?

PLDI’2005 Page 18 June 2005

Novelty: Simultaneous Concrete & Symbolic ExecutionsNovelty: Simultaneous Concrete & Symbolic Executions

void foo(int x,int y){

int z = x*x*x; /* could be z = h(x) */

if (z == y) {

abort(); /* error */

}

}

• Assume we can reason about linear
constraints only

• Initially x = 3 and y = 7 (randomly
generated)

• Concrete z = 27, but symbolic z = x*x*x

– Cannot handle symbolic value of z!

– Stuck?

– NO! Use concrete value z = 27
and proceed…

• Take else branch with constraint 27 != y

• Solve 27 = y to take then branch

• Execute next run with x = 3 and y = 27

• DART finds the error!

Replace symbolic expression
by concrete value when

symbolic expression becomes
unmanageable (e.g. non-linear)

NOTE: whenever symbolic execution is
stuck, static analysisbecomes imprecise!

PLDI’2005 Page 19 June 2005

Comparison with Static AnalysisComparison with Static Analysis

1 foobar(int x, int y){

2 if (x*x*x > 0){

3 if (x>0 && y==10){

4 abort(); /* error */

5 }

6 } else {

7 if (x>0 && y==20){

8 abort(); /* error */

9 }

10 }

11 }

• Symbolic execution is stuck at line 2…

• Static analysis tools will conclude that
both aborts may be reachable

– “Sound” tools will report both, and thus
one false alarm

– “Unsound” tools will report “no bug
found” , and miss a bug

• Static-analysis-based test generation
techniques are also helpless here…

• In contrast, DART finds the only error
(line 4) with high probability

• Unlike static analysis, all bugs reported
by DART are guaranteed to be sound

PLDI’2005 Page 20 June 2005

Other Advantages of Dynamic AnalysisOther Advantages of Dynamic Analysis

1 struct foo { int i; char c; }

2

3 bar (struct foo *a) {

4 if (a->c == 0) {

5 *((char *)a + sizeof(int)) = 1;

6 if (a->c != 0) {

7 abort();

8 }

9 }

10 }

• Dealing with dynamic data is easier
with concrete executions

• Due to limitations of alias analysis,
static analysis tools cannot determine
whether “a->c” has been rewritten

– “the abort may be reachable”

• In contrast, DART finds the error
easily (by solving the linear constraint
a->c == 0)

• In summary, all bugs reported by
DART are guaranteed to be sound!

• But DART may not terminate…

PLDI’2005 Page 21 June 2005

DART for C: Implementation DetailsDART for C: Implementation Details

prgmprgm.c.c dart

test_driver.c

prgm_instrumented.c

dart.c

Constraint solver(s)
(e.g., lp_solve.so)

prgm.exe
C compiler

CIL (Berkeley)

• Error found
• Complete coverage
• Run forever…

3 possible outcomes:

(OCaml, C)

PLDI’2005 Page 22 June 2005

Experiments: NS Authentication ProtocolExperiments: NS Authentication Protocol

• Tested a C implementation of a security protocol (Needham-
Schroeder) with a known attack

– About 400 lines of C code; experiments on a Linux 800Mz P-III machine

– DART takes less than 2 seconds (664 runs) to discover a (partial) attack,
with an unconstrained (possibilistic) intruder model

– DART takes 18 minutes (328,459 runs) to discover a (full) attack, with a
realistic (Dolev-Yao) intruder model

– DART found a new bug in this C implementation of Lowe’s fix to the NS
protocol (after 22 minutes of search; bug confirmed by the code’s author)

• In contrast, a systematic state-space search of this program
composed with a concurrent nondeterministic intruder model
using VeriSoft (a sw model checker) does not find the attack

PLDI’2005 Page 23 June 2005

A Larger Application: A Larger Application: oSIPoSIP

• Open Source SIP library (Session Initiation Protocol)

– 30,000 lines of C code (version 2.0.9), 600 externally visible functions

• Results:

– DART crashed 65% of the externally visible functions within 1000 runs

– Most of these due to missing(?) NULL-checks for pointers…

– Analysis of results for oSIP parser revealed a simple attack to crash it!
oSIP version 2.0.9 (August 2004)

Int osip_message_parse (osip_message_t * sip,
const char *buf)

{ […]

char *tmp;

tmp = alloca (strlen (buf) + 2);

osip_strncpy (tmp, buf, strlen (buf));

osip_util_replace_all_lws (tmp);

[etc.]

oSIP version 2.2.0 (December 2004)

Int osip_message_parse (osip_message_t * sip,
const char *buf, size_t length)

{ […]

char *tmp;

tmp = osip_malloc (length + 2);

if (tmp==NULL) { [… print error msg and return –1;] }

osip_strncpy (tmp, buf, length);

osip_util_replace_all_lws (tmp);

[etc.]

Attack: send a packet of size 2.5 MB (cygwin) with no 0 or “|” character

alloca fails and returns NULL

crash!

PLDI’2005 Page 24 June 2005

Related WorkRelated Work

• Static analysis and automatic test generation based on static analysis:
limited by symbolic execution technology (see above)

• Random testing (fuzz tools, etc.): poor coverage

• Dynamic test generation (Korel, Gupta-Mathur-Soffa, etc.)

– Attempt to exercise a specific program

– DART attempts to cover all executable program paths instead (like MC)

– Also, DART handles function calls, unknown functions, exploits simultaneous
concrete and symbolic executions, is sometimes complete (verification) and has
run-time checks to detect incompleteness

– DART is implemented for C and has been applied to large examples

• New: extension to deal with symbolic pointers [Sen et al., to appear in FSE’05]

• New: independent closely related work [Cadar-Engler, to appear in SPIN’05]

PLDI’2005 Page 25 June 2005

ConclusionConclusion

• DART = Directed Automated Random Testing

• Key strength/originality:

– No manually-generated test driver required (fully automated)
• As automated as static analysis but with higher precision

• Starting point for testing process

– No false alarms but may not terminate

– Smarter than pure random testing (with directed search)

– Can work around limitations of symbolic execution technology
• Symbolic execution is an adjunct to concrete execution

• Randomization helps where automated reasoning is difficult

– Overall, complementary to static analysis…

