
Enhancing Degraded Document Images via Bitmap Clustering and
Averaging

John D. Hobby Tin Kam Ho

Bell Labs, Lucent Technologies Bell Labs, Lucent Technologies
Murray Hill, New Jersey 07974 Murray Hill, New Jersey 07974

Abstract
Proper display and accurate recognition of document im-

ages are often hampered by degradations caused by poor
scanning or transmission conditions. We propose a method
to enhance such degraded document images for better dis-
play quality and recognition accuracy. The essence of the
method is in finding and averaging bitmaps of the same sym-
bol that are scattered across a text page. Outline descriptions
of the symbols are then obtained that can be rendered at arbi-
trary resolution. The paper describes details of the algorithm
and an experiment to demonstrate its capabilities using fax
images.

1 Introduction
In document image processing one often encounters text

images of degraded quality that could have resulted from low
resolution scanning due to the demands of high-speed, large
volume processing or low-bandwidth transmission. De-
graded images are not only unpleasant to view on a display
device, but they also pose serious challenges to OCR devices
whose accuracies are well-known to depend critically on im-
age quality [12].

We attempt to improve the quality of degraded text im-
ages by image matching techniques. In essence, we find im-
ages of the same symbol occurring over a text page, compute
an average outline from the matched bitmaps, and replace all
occurrences of that symbol with it. The motivation is that
much of the random noise introduced in the scanning and
transmission processes can be canceled out with bitmap av-
eraging, so that the resultant images have smooth outlines
and much improved appearance.

Dividing the character images into clusters each contain-
ing only a single symbol, in a particular font and type size,
is a major difficulty. Moreover, few assumptions should be
made about the contents of the document. We assume only
that the symbol set used in the text is not too large. Finally,
to be useful in large-volume processing or fax transmission,
the algorithm should be reasonably fast.

Figure 1 shows our top level algorithm. Given an input
page as a binary image, we first perform skew detection and

page layout analysis up to character segmentation [1] [9].
The bitmaps of the segmented character images are then sent
to a clustering procedure, which produces an initial set of
clusters. Bitmap averaging, by smooth shading as in [5, 7],
is then applied to each of these clusters to obtain an out-
line character that represents the cluster. Individual character
bitmaps are then compared to the cluster average, and mis-
matches are rejected. The rejected images are compared to
other cluster averages to find possible matches. After this, all
cluster centers are compared against each other to find pos-
sible merges. Finally, the outline characters are rasterized
and inserted into the corresponding places in the text image.
This final rasterization can be at a higher resolution than the
original input.

���������	��
��������������
������
��� �"!$#%�&�(')*�(+�,�-�,�. / +

0(�1�2� �����$34��1�5���76����8�
9 ��. +7'��&�(')*�(+ ,��(:<;>=?- @&-�;",A�(@&�

B4�C��DE��FG��HI�?6J�������8�
K / @L�(- ;�=�/�M?,�-�. +7�(:N;(O 9 �P,��(@

QR�TS(UT��1�5���?6 ���8�
9 �&. +?'�;(O 9 �P,��(@$;(�(+ ,��(@&�

QR�?���1���?6������8�V0(DV�������
M?- ;A��,�/R,��"WX,�Y?- '��4.)*- ' �

0(�1F8���0(DE���I�

Z �� F8���0(DE�����

Figure 1: The top-level algorithm

In the following sections we describe the details of the
method, with emphasis on clustering and bitmap operations,
and an experiment with fax images to evaluate the results.
However, the applicability of the algorithm is not limited to
degradation caused by fax transmissions.

2 Clustering of Character Images
A procedure is needed to find images of the same char-

acter symbol that are scattered on a document page. The
images believed to be equivalent are to be averaged and re-
placed.

In addition to the symbol identity, the images must be
matched in point size and typeface. Incorrectly matched im-
ages of different fonts are especially undesirable when the
resultant page image is to be viewed by human eyes. This

poses a challenge to the matching algorithms: they have to be
robust enough to tolerate image noise, but they must also be
able to discriminate between minor size and shape variations
due to the input point size and typeface. Thus the matching
algorithms are more constrained than the shape recognition
algorithms used in conventional OCR or the clustering algo-
rithms used solely for improving recognition [8].

With the setup of the current experiment, there are about
1500-2000 character images on a typical page. Most conven-
tional hierarchical clustering algorithms run in O(� �) time.
This translates into about 3 minutes per page on an SGI Chal-
lenge XL machine with 150MHz MIPS R4400 processors.
This is too slow for most practical purposes, such as serving
in a back-end of a fax machine. Furthermore, for a collec-
tion of features measured on various scales and compared by
Euclidean distance, it is difficult to determine a meaningful
threshold on the distance to extract clusters from the resul-
tant hierarchy.

With these concerns, we employed a sequence of different
clustering techniques, each applied to a different set of shape
features derived from the character images. The motivation
is to progressively divide all characters on a page into groups
of decreasing sizes, and delay the uses of more expensive
techniques until later stages when the groups are sufficiently
small. The techniques used are organized into three stages.

2.1 Sorting by Global Measures
In the first stage, a global measure is used to describe a

character image, and all images on a page are sorted by the
value of this measure. The images are then separated into
groups when there is a sufficient gap in the sorted values.
The thresholds on the gaps are determined experimentally.
They are relative to the scanning resolution.

We applied the procedure in six passes each using a dif-
ferent image measure. The measures are: image size (sz),
sum of black pixels (sb), image width (wth), image height
(hgt), aspect ratio (asp), and black pixel density (sb/sz).
In each pass the images are sorted only within the groups
found from the previous pass. When the input group is large,
wide gaps between the sorted values may not exist. In such
cases, instead of dividing at gaps, the sorted images are di-
vided into evenly sized groups.

2.2 Merging Equivalent Images
In the second stage we use an algorithm that finds

the equivalence classes in a given group of images. The
equivalence relation (�) for two images

������� � is pre-
defined as follows. Let 	 ��
����������������������� � ��� , 	 �

� ���! "���������#���$ ���� � �%� , 	!&
'� (� !�����%���)�*(� !�"��� � ��� , �%� � � �
iff 	 �,+.-/�10�243 	 � +.- � 0�243 	 & +.- & � where

-�� � - � � and- & are preset thresholds.
The equivalence classes are found using Eardley’s

eclazz() algorithm [11, Section 8.6]. Eardley’s algorithm
forms an equivalence relation by computing the transitive
closure of the � relation. It takes 5 � � � � time, but this is

affordable at this stage because of smaller group sizes result-
ing from the previous stage.

2.3 Clustering with Shape Features
The third stage uses a conventional hierarchical cluster-

ing algorithm (complete-linkage) with integer-valued feature
vectors compared by Euclidean distance. We use five differ-
ent feature vectors borrowed from the literature in character
shape recognition. Each of these vectors is computed by a
corresponding feature extraction algorithm that takes a size-
normalized character image as input. Since most of the size
matching has been performed in the first and second stages,
here we can safely ignore the information loss due to size
normalization. We normalize each character image to 16 6 16
pixels while preserving the aspect ratio. The five sets of fea-
tures used are as follows.

1. histogram (hist): a concatenation of the vertical and
horizontal projection profiles taken on four half images
[4]. The vector has 7�896;:
 8�: integer components;
each in the range [0,8].

2. contour (cntr): distances from the bounding box to
the character’s outer contour [4]. The vector has 7%896
:
 8�: integer components; each in the range [0,16].

3. pixel correlation (pixcor): conjunctions and disjunc-
tions of neighboring pixels in various directions [3].
The feature vector has 268 binary components.

4. subsamples (subs): results of subsampling the nor-
malized image down to one-fourth of the normalized
size, and then repeating the process until the image is
reduced to one single pixel. In each pass the algorithm
replaces each 2x2 window by the sum of the pixel val-
ues in it. The vector has 85 integers in [0,256].

5. stroke direction distribution (dirdist): counts of
pixels labeled by the direction of the longest black run
they belong to [10]. The vector has 64 integer compo-
nents in the range [0,16].

2.4 Merging Singletons
There is no backtracking in each of the three preceding

clustering stages, so that once two images are separated into
different clusters, they remain so in each subsequent steps.
At the end of the third stage, a crude attempt is made to
merge any single images that do not belong to any exist-
ing cluster. This uses the same equivalence finding algo-
rithm as in the second stage, but the equivalence is defined on
the size-normalized images, and two images are considered
equivalent if their Hamming distance is less than a pre-set
threshold.

Table 1 details the outcomes of each clustering step for an
example page, and Figure 2 shows images of some clusters
extracted from this page.

Table 1: Results of clustering steps for a sample page.

avg # avg
procedure gps size procedure gps size
input 1 1555 equivalence 98 15.9
sort (sz) 22 70.7 cluster (hist) 119 13.1
sort (sb) 35 44.4 cluster (cntr) 223 7.0
sort (wth) 42 37.0 cluster (pixcor) 229 6.8
sort (hgt) 44 35.3 cluster (subs) 253 6.1
sort (asp) 50 31.1 cluster (dirdist) 295 5.3
sort (sb/sz) 50 31.1 merge singletons 287 5.4

Figure 2: Example clusters extracted from a 200 dpi text
page. Members of different clusters are separated by a black
square. There are font confusions and mismatched symbols.
Also, symbols in a cluster may not be well-segmented char-
acters.

3 Improving the Clustering
Once we have clustered the character images, we can use

bitmap averaging to generate a good set of outlines for each
cluster. We now improve the clustering via pairwise shape
comparisons involving these good outlines. The idea is to
ensure that every character image in a cluster matches the
outlines for that cluster and that the total number of clusters
is as small as possible. This leads to a three stage process:

1. Refine each cluster so that each character image in the
cluster matches the outlines for that cluster. This can
produce singleton clusters.

2. For each singleton cluster, try to find a non-singleton
cluster whose outlines it matches. Then merge the sin-
gletons into the selected clusters.

3. Merge pairs of clusters whose outlines match.

Sections 3.1, 3.3 and 3.4 each consider one stage of this pro-
cess, and Section 3.2 explains how to decide if a character
image matches a set of outlines.
3.1 Refining a Cluster so its Character Images

Match
Suppose we have a procedure for deciding whether a

character image matches a set of outlines, and we want to
use it on a cluster of character images such as those in Fig-
ure 3a. In this example, 31 n’s and 14 u’s from an upright
font got clustered with 3 n’s from a slanted font. Since most
of the images were n’s, bitmap averaging produces an “n”
shape as shown in Figure 3b. Now test all of the character
images against the average shape from Figure 3b. Of course
the matching procedure will not be perfect—in this example,
26 of the upright n’s are declared to match and everything
else does not match. Since the non-matching character im-
ages are mostly u’s, their average is a “u” shape as shown in
Figure 3d.

����� �����

����� � 	 �
Figure 3: (a) some of the 48 character images in the clus-
ter to be refined; (b) the average of these character images;
(c) some of the 22 character images that do not match; (d) the
average of the non-matching images. The character images
are from a ����� 6������ dpi fax page.

One could imagine many rounds of reaveraging rejected
character images, but this is seldom possible in practice.
Matching Figure 3d against the 22 responsible character im-
ages produces 11 rejects, but only one of these 11 rejects
matches their average bitmap. At this point, we just give
up and output the 11 character images as singleton clusters.
Hence the cluster of 48 n’s and u’s got split into a cluster of
26 n’s, a cluster of 11 u’s, and 11 singleton clusters. Algo-
rithm 1 summarizes this process.

Algorithm 1 How to refine a set 	 of character images so
each matches the average.

1. Apply bitmap averaging to the bitmaps in set 	 to yield
outlines
 , and let � be the number of bitmaps in 	 .

2. Find all bitmaps in 	 that match
 , then output them as
a new cluster and remove them from 	 . If the number
of bitmaps remaining in 	 is at most �� 2 � � � � ������ � � ,
go to Step 1.

3. Output each remaining bitmap in 	 as a singleton clus-
ter.

3.2 Matching a Bitmap against Outlines
What about the procedure for comparing a character im-

age to the outlines for a shape such as Figure 3b? We could
require the bitmap to match the result of rasterizing the out-
lines, but this is too restrictive. Therefore, we expand the
outlines, then rasterize and compare with original bitmap. It
is also possible to rasterize contracted versions of the out-
lines or to expand or contract the black areas in the bitmap.
For best results, we have to be prepared to combine all of
these ideas.

First consider rasterizing an expanded version of the out-
lines. If � is the region described by the outlines, we can try
rasterizing

�������
�������� � �"! � 0�243 �#! �$�&% � (1)

where � is a constant to be chosen later, ��� is the set of points
with � 0�� ��� ��� ��� � � ��� � , and � denotes the Minkowski sum.
Letting � be the region in Figure 3d causes (1) to look like
Figure 4a. Rasterizing this by darkening the pixels whose
centers are in (1) produces Figure 4b: the less restrictive
matching condition is that the black pixels must be a sub-
set of those in Figure 4b.

����� ����� ����� � 	 �
Figure 4: (a) The region � � � ��� � ; (b) the rasterization of
this region; (c) the region �
	�� ��� � ; (d) the rasterization of
this region.

In order to check for white pixels in the wrong place, we
need to rasterize contracted versions of the outlines. The
contraction operation for a region � is

��	��$�
 ������� � � ����� � �

where
� �� �

denotes the set complement. This shrinks black
areas, reducing Figure 3d to Figure 4c. Turning on pixels
whose centers lie inside produces the rasterization shown in
Figure 4d. We can now say that a bitmap matches Figure 3d
if pixels are black whenever they are black in Figure 4d and
white whenever they are white in Figure 4b.

To implement this test, we use the techniques of Guibas,
Ramshaw, and Stolfi [2] to compute outlines for � � � � and
��	 � � . In practice, it helps to add conditions involving
expanded and contracted version of the bitmap. This copes
with disappearing strokes such as the bottom of the “u” in
Figures 4c–d.
3.3 Matching Singletons with other Clusters

Since Algorithm 1 can produce a lot of singletons, it is
important to try to match them with existing clusters before
giving up and leaving them unmatched. This is a fairly sim-
ple matter of using the techniques of Section 3.2 to compare
the character bitmap for each singleton cluster to the aver-
aged outlines for each non-singleton cluster. There are a lot
of possibilities to consider, but most of them can be thrown
out quickly by just comparing the bounding box of the char-
acter bitmap to that of the outlines it is supposed to match.

If a character bitmap � does not match the outlines for
any possible cluster, we try again with slightly higher toler-
ances. The idea is that there probably is some cluster that �
is supposed to match, and we can locate a good candidate by
finding the “best” match for the higher tolerances.

What do we mean by “best” match? The matching pro-
cedure from Section 3.2 works by requiring pixels from one
bitmap to obey constraints based on another bitmap. When
there is a violation, counting the violating pixels provides a
quantitative measure of the degree of mismatch. Hence if

more than one cluster provides an adequate match for � , we
can choose the one that produced the fewest violating pixels
when compared using the smaller tolerances.

3.4 Merging Clusters whose Averaged
Outlines Match

Handling singleton clusters explained in Section 3.3 sub-
stantially reduces the number of clusters (from 710 to 385
for a typical 200dpi test page), but there is still a lot of room
for improvement. The reduced cluster count makes it more
practical to apply a quadratic algorithm based on a compar-
ison function that examines the averaged outlines for two
clusters and decides if they match. We again use Eardley’s
eclazz() algorithm [11].

Suppose
 and
�� are the outlines to be compared and let�
 and
�
 � be the corresponding point sets. (Just the outlines,

not their interiors). We can say that
 and
 � match to within
� � if each vertex of
 is within euclidean distance � � of a
point in

�
 � and each vertex of
 � is within distance � � a
point in

�
 .
If there are � vertices in
 and � vertices in
�� , the

“match to within � � ” test could involve � � evaluations of
the distance between a point and a line segment, but careful
pruning based on bounding boxes gives a substantial speed-
up.

If
 matches
 � and
 � matches
 � � , Eardley’s algorithm
assumes that
 matches
�� � or at least it is safe to cluster

 and
 � � together. The “match to within � � ” test is not
fully compatible with this idea, but it seems to work well in
practice as long as � � is less than one pixel unit.

Alternatively, the outlines for each cluster can be raster-
ized and re-clustered using the shape feature vectors as be-
fore, but with much tighter distance thresholds when groups
are extracted from the cluster hierarchy. The most useful
shape features in this step include the contours, the his-
tograms, and stroke direction distribution.

4 Results
We implemented the complete algorithm in a mixture of C

and C
� �

and tested it on 28 fine mode fax pages (� � � 6������
dpi) and 20 standard mode fax pages (����� 6 7 ��� dpi). The
test pages were photocopied once before faxing, and then the
receiving fax machine captured the image electronically.

The running times averaged about 50 seconds per page
on a 200Mhz SGI Challenge L using one of the eight Mips
R4400 processors. Approximately 22% of the time was
spend in the initial clustering, 61% was spent improving the
clusters (Sections 3.1–3.3), and 17% was spent in final merg-
ing process (Section 3.4).

4.1 Evaluating the Clustering Process
It is important to classify the character images into as few

clusters as possible, since this is how the algorithm achieves
its benefits. Yet it is even more important to avoid clustering
incompatible character images since this leads to “mistakes”
in the output; e.g., averaging 34 n’s with 14 u’s produces an

“n” shape that would erroneously be used to represent the
14 u’s. We refer to such erroneous character images as mis-
spellings or font-substitution errors depending on the type of
incompatibility. Using an “n” shape to represent a “u” is a
misspelling. An example of a font-substitution error would
be representing an italic “n” by an image constructed primar-
ily from roman n’s.

In order to evaluate misspellings and font-substitution er-
rors, the test pages were matched with ground truth as ex-
plained in [6]. Thus each object that page layout analysis
identified as a character was labeled with one or more (font
name, character identity) pairs or was labeled as junk or as
containing a partial character. Some of the images labeled as
junk actually involved text material such as header lines gen-
erated by the fax machine. For this reason, no misspellings
were charged for including junk images in the clusters of
character images.

Table 2 describes the test pages and gives statistics about
the characters to be averaged. The reason for the large num-
bers of partial characters in the ����� 6 7 ��� dpi data (second
half of the table) is that page layout analysis could not cope
with the tendency of thin horizontal strokes to drop out.

Document Average number of characters
Id Font Pages True � � � ��

cmr 10 5 1715 76 11 79 1515�
Times 10 6 2371 71 26 140 2032�

cmr 12 5 1272 67 12 11 1235�
cmr 10 4 1879 70 31 73 1699�
cmr 11 4 1643 83 70 69 1427	
cmr 11 4 1453 194 39 58 1165��

cmr 10 4 1698 73 231 53 1448�

Times 10 4 2243 67 95 75 2021�

cmr 12 3 1511 65 403 8 1303�

cmr 10 1 2138 63 400 49 1827�

cmr 11 4 1643 112 396 53 1327	

cmr 11 4 1453 76 288 49 1203

Table 2: Statistics about the test pages and the character im-
ages extracted by page layout analysis. Documents
 – � are
����� 6 � ��� dpi faxes, and documents
�� – � � are � � � 617 ���
dpi faxes. The “True” column lists the average characters
per page from the ground truth and columns

�
, , � , � ,

list the junk, partial, merged, and normal characters among
what page layout analysis identified as characters.

Table 3 shows the number of clusters obtainable and how
many errors occur. Some misspellings were deemed “minor”
because the characters involved are essentially identical; e.g.,
period versus centered dot “

”, comma versus baseline single

quote, “l” and the digit “1” in the Times Roman.
Table 3 shows that the misspellings can be controlled by

setting the tolerance small enough, but it is difficult to elim-
inate the font-substitution errors. Further work is needed to
see how the matching functions in Sections 3.2 and 3.4 can
be made more sensitive to this. The ����� 6 7 � � dpi test pages
(lower sections of the table) show that tighter tolerances are
needed in this case, and the actual number of clusters is fur-
ther from the ideal value.

The ideal cluster counts in the table are estimates based

Errors No. clusters Differentials
Id ��� 	 � 	�� �

Ideal Act. More Less
A 0.55 1.8 1.0 91 219 261 73 31
B 0.55 8.5 1.2 6 239 294 73 18
C 0.55 0.2 0.0 1 127 172 49 4
E 0.55 0.5 0.2 23 227 279 72 20
G 0.55 0.5 0.0 57 292 353 101 40
S 0.55 0.0 0.2 17 268 268 50 50
A 0.3 1.8 0.0 74 243 378 153 18
B 0.3 9.0 0.0 8 273 408 148 13
C 0.3 0.2 0.0 0 130 268 141 3
E 0.3 0.0 0.8 15 253 409 167 11
G 0.3 0.5 0.0 38 304 495 216 25
S 0.3 0.0 0.0 12 298 374 117 41�

0.45 1.0 1.5 54 302 524 253 31�

0.45 0.5 20.0 10 280 526 273 27�

0.45 0.0 1.7 0 256 483 238 11�

0.45 0.0 0.0 28 299 645 367 21�

0.45 1.2 2.8 35 434 722 322 34	

0.45 0.0 1.5 15 360 567 236 29�

0.4 0.8 3.2 5 291 697 430 24

Table 3: Misspellings, font-substitution errors and number
of clusters per page for alternative values of � . The “ � � ”
column lists harmful misspellings per page; the “ � � ” col-
umn lists other misspellings; the “ � ” column lists font-
substitution errors; the “Ideal” column gives an estimate of
the ideal number of clusters; the “Actual” column counts
the clusters produced by our algorithm; and the “more” and
“fewer” columns estimate the number of extra clusters due
to inability to match everything that should be matched and
the number by which errors mistakenly reduced the cluster
count.

on the ground truth for those character images not listed
as “junk”, “partial”, or “merged.” Other characters were
grouped as in the actual clusters. The columns labeled “dif-
ferentials” are estimates based on the number of clusters that
result from using the ground truth to refine the actual clusters
so as to eliminate all the misspellings and font-substitution
errors. The “More” column is the amount by which this ex-
ceeds the “Ideal” cluster count. It tells how much the cluster
count could have been reduced by better clustering. This
is a fairly small fraction of the ideal cluster count for the
����� 6�� � � dpi pages, but it gets a little larger if we go to
����� 6 7 ��� dpi or tighten the tolerances to get rid of all the
spelling errors. By listing most of the problems with more
than one � value, the table gives an idea of the trade off be-
tween the goals of reducing the cluster count and avoiding
errors.

4.2 Image Quality
Figure 5 illustrates the image quality before and after us-

ing the algorithm to scale a ����� 6 � ��� dpi fax image to 600
dpi, and Figure 6 gives a similar comparison for a ����� 6 7 � �
dpi fax. In many ways, the images are dramatically im-
proved. Most of the characters in Figure 5b look like they
came from a slightly blurry 600 dpi image, and this is true
to a lesser extent in Figure 6b. Certain characters such as the
“fi” ligature and the capital “S” in Figure 5 do not show as
much improvement because it was hard to find other char-
acter bitmaps with which to average them. This problem

is somewhat more serious in Figure 6b where many of the
characters broke up, leaving partial characters that are not
well suited to bitmap averaging. (The uneven baselines in
the output image are an artifact caused by imprecise skew
correction during page layout analysis).

�����

� � �
Figure 5: A portion of a ����� 6 � ��� dpi fax image before and
after using the algorithm to scale it to 600dpi.

4.3 Improved Optical Character Recognition
We tested OCR accuracy using Adobe Acrobat Capture

Version 1.0. Our algorithm offers two opportunities for im-
proved OCR accuracy: better image quality as shown in Fig-
ures 5 and 6, and grouping of character images into clusters
that are believed to share a common symbol identity. Tak-
ing full advantage of these opportunities is challenging be-
cause commercial OCR engines have not been designed to
use such information. High quality images from character
bitmap averaging are interspersed with inferior images for
characters that could not be averaged. If the page image is
scaled up to allow accurate representation of the results of
bitmap averaging, there is no way to tell the OCR engine
that some glyphs are just magnified low-resolution images,
even though we know which glyphs these are. In addition,
some of the images from bitmap averaging can contain seg-
mentation errors. For instance, one test page contained 9
occurrences of “ar,” none of which could be segmented into
two characters. Averaging these 9 images together produces
a good-looking “ar,” except that the characters run together.
If rendered at high resolution, the result is an unusual seg-
mentation problem that OCR engines find particularly diffi-
cult.

For these reasons, the OCR results summarized in Table 4
used output from the algorithm rendered at � � � 6 ����� dpi.
Instead of using the algorithm to scale up to 600 dpi as shown
in Figures 5 and 6, the � � �,6�� � � fax pages were not scaled
up and the � � � 6 7 ��� pages were scaled only as necessary to
correct the non-square aspect ratio that Acrobat Capture was
not prepared to handle.

The percentages in Table 4 are based on the ratio of string
edit distance to number of ground truth characters. The

�����

� � �
Figure 6: A portion of a ����� 6 7 ��� dpi fax image before and
after using the algorithm to scale it to 600dpi.

OCR error rate % improve-
Id input output after voting ment
A 7.2 6.6 5.9 18
B 4.4 4.8 3.9 11
C 1.8 2.0 1.7 6
E 3.7 2.8 2.3 38
G 13.5 12.0 11.0 19
S 14.1 13.8 11.7 17
A’ 17.3 10.7 13.9 38
B’ 12.2 8.3 7.7 37
C’ 11.0 6.9 6.9 37
E’ 20.7 11.1 11.0 47
G’ 26.2 19.4 19.3 26
S’ 31.5 21.8 20.7 34

Table 4: OCR error percentage rates for each of the test doc-
uments for input page images, for output pages rendered at
200dpi, and for the output pages after trying to use the ma-
jority vote technique to improve the results. The last column
gives the reduction in error rate with the best strategy. All
results are for Adobe Acrobat Capture 1.0.

string edit distance might be slightly overstated because of
the way we used the Unix diff command to compute it. The
error rates are high because of the low resolution, especially
for the ����� 6�7 � � dpi pages used in the bottom half of Ta-
ble 4. Another reason for the high error rates is the inability
to handle mathematical symbols on the test pages. (There
were no displayed formulas).

The “after voting” column shows the result of trying to
take advantage of the grouping of character images into clus-
ters that are believed to share a common symbol identity.
Even though all members of such a cluster are generated
from the same outline, differences in context and differences
in phase relative to the pixel grid can easily lead to differ-
ing OCR results. Correcting for this should be a fairly sim-
ple computation involving taking a majority vote among the
OCR results for each cluster of character images and correct-
ing the OCR results that do not agree with the majority.

It was quite difficult to do this in practice because OCR
engines such as Acrobat Capture do not provide an easy way
of associating the OCR output with the corresponding im-
ages. Acrobat Capture can produce PDF files that give

� ���

coordinates for each character, but the
�

coordinates do not
always match those of the corresponding character images.
We created a program that attempts to match the PDF files to
the character images, but the effort was only partly success-
ful. For this reason, the “after voting” numbers for the 200
dpi pages (top half of Table 4) probably do not live up to their
potential and the “after voting” numbers for the � ���9617 � �
dpi test pages do not reliably show any improvement.

5 Conclusions
We have described a method to enhance the quality of

degraded text images and applied it to faxes. The resultant
images are generally improved in display appearance, and
substantial reduction in OCR errors is achieved using a com-
monly available OCR software.

The clustering results are important side products of the
procedure and they have other potential uses that remain to
be explored. For instance, if subpixel shifting in character
positions can be ignored, all members of a cluster could have
the same rasterization and the recognition procedure need
only process it once. Using a single representative for each
cluster could greatly improve image compression [13]. If a
language model can be assumed, the identity of a symbol can
be determined using context analysis without very accurate
image-based recognition output.

In our experiments we performed all processing one page
at a time. Better results could probably be achieved if the al-
gorithm were modified to take in multiple pages of the same
document from the same source. After a sufficient number of
pages are processed, the clusters could be stable enough that
character bitmaps from subsequent pages will need only to
be matched to established cluster centers. This will be partic-
ularly attractive in large-volume scanning of a single source,
such as books, or multiple issues of the same journal, in a
digital library application.

Potential improvements in run time remain to be inves-
tigated. Many of the steps could be parallelized, and our
tests on 8 and 12 processor SGI machines would have bene-
fited. The smooth-shading technique for bitmap averaging is
much more compute intensive than the alternatives discussed
in [7], and this trade-off should be investigated.

6 Acknowledgements
We thank Henry Baird for interesting discussions and

help in interfacing with the page reader. Ken Church also
provided significant input. Dar-Shyang Lee’s help in captur-
ing the fax images, and Sean Quinlan’s help in interfacing
with the OCR software, are also much appreciated.

References
[1] H. S. Baird. Anatomy of a versatile page reader. Pro-

ceedings of the IEEE, 80(7):1059–1065, July 1992.
Special Issue on OCR.

[2] L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic frame-
work for computational geometry. In Proc. of the 24th

Annual Symp. on Foundations of Computer Science,
pages 100–111, 1983.

[3] T. K. Ho. Random decision forests. In Proceed-
ings of the 3rd International Conference on Document
Analysis and Recognition, pages 278–282, Montreal,
Canada, Aug. 1995.

[4] T. K. Ho and H. S. Baird. Perfect metrics. In Pro-
ceedings of the Second International Conference on
Document Analysis and Recognition, pages 593–597,
Tsukuba Science City, Japan, Oct. 1993.

[5] J. D. Hobby. Polygonal approximations that mini-
mize the number of inflections. In Proceedings of the
Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 93–102, Jan. 1993.

[6] J. D. Hobby. Matching document images with ground
truth. In ICDAR’97: Fourth International Conference
on Document Analysis and Recogntion, 1997.

[7] J. D. Hobby and H. S. Baird. Degraded character image
restoration. In Proceedings of the Fifth Annual Sympo-
sium on Document Analysis and Image Retrieval, pages
233–245, 1996.

[8] T. Hong and J. J. Hull. Improving ocr performance with
word image equivalence. In Proceedings of the Fourth
Annual Symposium on Document Analysis and Image
Retrieval, pages 177–189, 1995.

[9] D. J. Ittner and H. S. Baird. Language-free layout anal-
ysis. In Proceedings of the Second International Con-
ference on Document Analysis and Recognition, pages
336–340, Tsukuba Science City, Japan, Oct. 1993.

[10] S. Mori, K. Yamamoto, and M. Yasuda. Research on
machine recognition of handprinted characters. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-6(4):386–405, July 1984.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C, The Art of Scientific
Computing. Cambridge University Press, second edi-
tion, 1992.

[12] S. V. Rice, J. Kanai, and T. A. Nartker. An evaluation of
OCR accuracy. In Information Science Research Insti-
tute, 1993 Annual Research Report, pages 9–20. Uni-
versity of Nevada, Las Vegas, 1993.

[13] Q. Zhang and J. M. Danskin. Bitmap reconstruction for
document image compression. In International Sym-
posium on Voice, Video, and Data Communications,
1996.

