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Abstract

We introduce a simple model of the effect of temporal variation in
signal strength on active-set membership, for cellular phone systems that
use the soft-handoff algorithm of IS-95a. This model is based on a steady-
state calculation, and its applicability is confirmed by Monte Carlo studies.

1 Introduction

The CDMA cellular phone system standard uses the technique of soft handoff: a
phone call can be carried cooperatively by multiple base-station antennas. The
collection of such antennas at a given moment is called the active set of the
call. The decisions about which antennas in a local area should be in the active
set are based on continual monitoring of the radio link quality for each nearby
antenna. Plainly, antennas with strong signals should be in the active set, and
weak antennas should not.

The active-set-membership decision for a given antenna and a mobile (phone)
at a given time is complicated by the rapid and unpredictable pseudo-random
variation that the signal undergoes, largely due to the motion of the phone.
Such variation has multiple sources: change in mean strength due to changing
distance from the antenna, rapid variation due to constructive and destructive
interference of signals arriving via different paths to the phone (fast fading),
and slower variation due to obstructions (shadow fading). We will ignore fast
fading here since its effect is largely averaged out in measurements.

Because of these different causes of variation, the decision algorithm cannot
simply keep the strongest antennas at a given instant: it reduces performance
to bring antennas constantly in and out of the active set. On the other hand,
an antenna that has been left behind due to motion of the mobile should be
dropped from the set, since the overall link quality of the active-set antennas
should be as high as possible.

We will show that a simple steady-state model can account for a substantial
fraction of the effect of shadow fading and motion on soft handoff. This holds
in spite of the simplicity of the calculation, and the limited information used by
the model.
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2 The Decision Algorithm

The above considerations motivated the CDMA IS95a standard [TIA93]. This
standard gives an active-set decision algorithm that considers multiple thresh-
olds and observations over time: parameters ta and td are add and drop thresh-
olds for signal quality (pilot Ec/Io), and parameter τc specifies a time period.
The parameter ta will always be larger than td. The decision algorithm puts
antenna a in the active-set at a decision point if either

• the pilot Ec/Io for antenna a rises above ta, or

• antenna a was in the active set at the previous decision point, and the
pilot Ec/Io for a was above td at some time during the previous τc time
period.

Put another way, when the antenna is in the active set, and the Ec/Io falls
below td, a drop timer is started. The timer is reset to zero whenever the Ec/Io
rises above td. If the timer exceeds τc, the antenna is removed from the active
set.

This model is somewhat simplified, but it captures much of the relevant
effect.

3 Analysis

We can analyze the decision algorithm under simple assumptions about shadow
fading.

3.1 The signal quality time series

We will model the signal quality at the mobile as a discrete time series E(τ),
using a deterministic component D(τ) and a stochastic component F (τ) due to
shadow fading:

E(τ) = D(τ) + F (τ), τ = iτs, i = . . .− 2,−1, 0, 1, 2 . . . (1)
D(τ) = K1 −K2 log10(d(τ))
F (τ) ∼ N(0, σ2

F ), for each τ.

Here d(τ) is distance to the base station, expressed as a function of time τ ,
and K1 and K2 are constants. This is a standard model of the pilot signal
strength “Ec” [ZH96, ZH98, LM02, PVar]. The following discussion can be
viewed as regarding Ec, but a very similar model holds for Ec/Io, under the
common and justifiable assumption that the interference Io is approximately
log-normally distributed. Moreover, as discussed below, our results should be
relatively insensitive to such distinctions.

The auto-correlation function A(τ̂) of shadow fading is well approximated
as exponential in τ̂ [Gud91]. This suggests that F (τ) can be modeled as a first-
order auto-regressive (AR) time series, since such series have an exponential
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auto-correlation function. However, initially we will regard the fades at distinct
time steps τ, τ ′ as independent random variables.

3.2 A recurrence

With this model, we can now consider the combined effect of shadow fading
and the decision algorithm on the likelihood of active set membership for a
given antenna and a given mobile. We suppose that the mobile is traveling at
constant speed, so that the number of steps of the shadow fading time series
that occurs during τc is some integer k. Under the above assumptions, we can
readily formulate a recurrence for the probability P (τ) of being in the active set
at time τ . The coefficients of the recurrence will be based on the probability
Pd(τ) of being above td at time τ , and Pa(τ), the probability of being above ta
at time τ .

The recurrence is obtained as follows. Let Y (τ) be the random variable that
is 1 when the antenna is in the active set at time τ , and 0 otherwise. Let X(τ)
denote the time elapsed since E(τ) > td; that is, E(τ) was above td at time
τ −X(τ), and hasn’t been above since that time. We have

P (τ) = E[Y (τ)] =
∑
j≥0

E[Y (τ) | X(τ) = j] · Prob{X(τ) = j}

=
∑

0≤j≤k

Prob{Y (τ) = 1 | X(τ) = j} · Prob{X(τ) = j},(2)

but
Prob{X(τ) = j} = Pd(τ − j)Qj(τ), (3)

where Qj(τ) is the probability of being below td at times τ − j + 1 . . . τ , so

Qj(τ) =
∏

τ−j+1≤τ ′≤τ

(1− Pd(τ ′)). (4)

Here the product is taken to be 1 if j = 0.

Prob{Y (τ) = 1 | X(τ) = j}
= Prob{E(τ − j) > ta | X(τ) = j}

+ Prob{td ≤ E(τ − j) < ta | X(τ) = j} · P (τ − j − 1)

=
Pa(τ − j)
Pd(τ − j)

+
(

1− Pa(τ − j)
Pd(τ − j)

)
P (τ − j − 1). (5)

Putting together (2), (3), and (5), we have

P (τ) =
∑

0≤j≤k

Prob{Y (τ) = 1 | X(τ) = j} · Prob{X(τ) = j}

=
∑

0≤j≤k

[
Pa(τ − j)
Pd(τ − j)

+
(

1− Pa(τ − j)
Pd(τ − j)

)
P (τ − j − 1)

]
Pd(τ − j)Qj(τ)

=
∑

0≤j≤k

[Pa(τ − j) + (Pd(τ − j)− Pa(τ − j))P (τ − j − 1)]Qj(τ), (6)
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where Qj(τ) is given in (4).

3.3 The steady-state probability

Suppose now the steady-state situation, where Pd(τ) has constant value Pd, and
Pa(τ) has constant value Pa. The steady-state value P of P (τ) must satisfy

P =
∑

0≤j≤k

[Pa + (Pd − Pa)P ]Qj

= [Pa + (Pd − Pa)P ]
∑

0≤j≤k

(1− Pd)j

= [Pa + (Pd − Pa)P ]
1− (1− Pd)k+1

1− (1− Pd)
= [Pa + (Pd − Pa)P ]Q/Pd,

where
Q ≡ 1− (1− Pd)k+1.

We have
PPd/Q = Pa + (Pd − Pa)P,

or
P (Pd/Q− (Pd − Pa)) = Pa,

or
P =

Pa

Pa + Pd(1/Q− 1)
=

1
1 + (1/Q− 1)Pd/Pa

, (7)

Observations. Note that, as they should, P → 1 as Q → 1, and Q → 1 as
k →∞ or as Pd → 1. Also, when k = 0, we have Q = Pd,

Pa ≤ P =
Pa

1− (Pd − Pa)
=

Pd

1 + 1−Pd

Pa
(Pd − Pa)

≤ Pd.

4 The Local Steady-State Approximation

We propose to use the steady-state probability as our active-set probability
estimate. That is, at a given location, we apply (7) to the local values of Pa

and Pd, and use the resulting value as an estimate of the probability of active
set membership at that location.

This local steady-state model requires only Pa, Pd, and k: whatever the
variations in signal strength and speed, their effect is seen only through changes
in these quantities. Moreover, when Pd and Pa remain constant, this estimate
is exact. Also, for example, a straight-line trip between points equi-distant
from the antenna would approximate the steady-state conditions, and hence
the approximation would be close.
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σF 5.5 dB
Ds 400 m
Dc 20 m
τc 4 s

Figure 1: Parameter settings holding for all experiments

Heuristically, the worst case for our approximation occurs when Pd changes
as rapidly as it can: that is, the steady-state assumption is as wrong as possible.
Another source of error can be values of Pd, Pa, and Q such that the active-set
Markov process takes a long time to reach steady-state probabilities. Roughly,
when is it very hard to get into the active set, but very easy to stay in, it can
take arbitrarily long to attain steady-state probabilities.

However, as our experimental studies will show, for a wide range of reason-
able combinations of parameter values, the steady-state approximation works
well.

4.1 Experimental Studies

To gain insight regarding the acceptability of the local steady-state approxi-
mation, we consider a mobile moving in a straight line from point s to point
f , with Pd values P s

d and P f
d at the endpoints. Suppose the intermediate Pd

values on the line are estimated by interpolating radio conditions according to
a power law with respect to distance, as in (1) above. How will the active set
probabilities for the mobile, determined by the active-set decision algorithm,
compare with the probabilities found by our steady-state formula, but using the
intermediate Pd and Pa values?

In all our studies, we have the following conditions, summarized in part in
Figure 1 also:

• τc = 4sec.

• The mobile is moving at a constant speed V .

• The distance Dc that determines the time step for the independent normal
shadow fading variables is 20 meters. That is, τs in (1) is 20m divided by
V . (Again, we are assuming the fades are independent random variables,
until we stop doing so, below.)

• The number k of discrete time steps in τc seconds is V τc/τs, rounded to
the nearest integer.

• The mobile begins at a distance Ds of 400m; this assumption affects the
procedure that interpolates the radio conditions between start and finish,
applying our model (1).

• The standard deviation σF of the shadow fading is 5.5dB.
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d 0.05

P f
d

0.7

Figure 2: Estimated active set probability as a function of speed.

• We consider trips that last T seconds, within a range of 12 to 24. Such a
span is shorter than most phone calls, but allows us a substantial averaging
of predictions.

• The recurrence is solved with a “warm up” where Pd = P s
d , of duration

4k, and k is the number of discrete time steps in τc, as above.

• Traffic travels equally in both directions; that is, we average the recur-
rence results with Pd changing from P s

d to P f
d , and then with the same

calculation, but with P s
d and P f

d swapped.

• The “error ratio” displayed is a ratio of the error of the steady-state es-
timate to an estimate based on using Pd alone. Here the “error” is the
absolute value of the difference from the value from the recurrence, and
we add 0.005 to the denominator to wash out large error ratios when both
errors are very small.

In Figure 2, we show the dependence of our estimates of active set proba-
bility as a function of speed, for some specific parameter values, as shown. The
“jagged” nature of the dependence shown by two of the curves is due to the
fact that k is rounded to an integer. Of the two curves based on steady-state
estimates, the smoother one is based on using the unrounded version of k.

Figure 3 shows the errors of the different estimators, as a function of speed.
Note that an estimate based on Pa is quite poor at high speeds, and rarely
better than one based on Pd.
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Figure 3: Errors of different estimates as a function of speed, e.g., � denotes
steady state.

Figure 4 shows the “Error ratio”, discussed above, as a function of speed,
under the same conditions as Figure 3.

Figures 5 and 6 show the error ratios as a function of speed, under the same
conditions as before, except that ta− td is 4dB in Figure 5 and 6dB in Figure 6.
These values of ta − td are rather large and unlikely in practice, but under such
conditions, the steady-state estimator can become less accurate.

The study in Figure 7 has conditions the same as for Figure 4, except that
we use a Monte Carlo calculation where a time series of independent Gaussians
is replaced by a first-order autoregressive (AR) series. The steps of the autore-
gressive series are done six times faster than the steps for the independent series,
and the multiplier for the AR series is chosen so that the correlation Ac between
the fades at 20m is either 0.1 or 0.36; that is, the combinations of conditions for
the figure include those two choices for the multiplier. With the value 0.36 ≈ 1/e

for the correlation at 20m, we have autocorrelation A(d̂) = exp(− d̂
20m ), so that

20m is the correlation distance.

5 Conclusions

We have seen that a simple local steady-state model of soft handoff can be
an accurate predictor of the effect of motion. While a common approach to
modeling of cellular systems involves the simulation of the motion of mobiles,
we have shown that it is possible to avoid such simulation, at least with respect
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Figure 4: Ratio of error of the steady-state estimate to an estimate based on
Pd.
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Figure 5: Ratio of error of the steady-state estimate to an estimate based on Pd

with ta − td = 4dB.
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Figure 6: Ratio of error of the steady-state estimate to an estimate based on Pd

with ta − td = 6dB.
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Figure 7: Ratio of error of the steady-state estimate to an estimate based on Pd

for a first-order autoregressive series.
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to the phenomenon under discussion. Can other effects of motion be modeled
without simulation?

It seems quite possible to obtain a computable formula for the steady-state
active-set probability under AR models of shadow fading. However, a more
complicated model would not seem to be needed, at the level of accuracy we are
looking for, and for the ranges of parameters that seem appropriate.

An effect that is not captured here is that the conditions for entering the ac-
tive set can change, depending on the active-set size; for IS-95b and CDMA2000,
the conditions for entering the active set can even depend on the antennas al-
ready in it. Such conditions require us to extend these calculations, but don’t
change the basic mapping from Pa, Pd, and k to the steady-state probability.
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