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Abstract— In this paper we study the problem of jointly
performing scheduling and congestion control in mobile ad-
hoc networks so that network queues remain bounded and
the resulting flow rates satisfy an associated network utility
maximization problem. In recent years a number of papers have
presented theoretical solutions to this problem that are based
on combining differential-backlog scheduling algorithms with
utility-based congestion control. However, this work typically
does not address a number of issues such as how signaling should
be performed and how the new algorithms interact with other
wireless protocols.

In this paper we address such issues. In particular:
• We define a specific network utility maximization problem

that we believe is appropriate for mobile adhoc networks.
• We describe awireless Greedy Primal Dual

(wGPD) algorithm for combined congestion control and
scheduling that aims to solve this problem.

• We show how the wGPD algorithm and its associated
signaling can be implemented in practice with minimal
disruption to existing wireless protocols.

• We show via OPNET simulation that wGPD significantly
outperforms standard protocols such as 802.11 operating in
conjunction with TCP.

This work was supported by the DARPA CBMANET program.

I. I NTRODUCTION

In this paper we consider the practical design of joint
congestion control and MAC/scheduling algorithms for mobile
ad-hoc networks. Consider a set of traffic flows within such
a network. The congestion control problem involves deciding
which packets should be injected into the flows in each time
step. The MAC/scheduling algorithms determine what is the
next packet to be transmitted by a wireless node and also
resolve contention between sets of interfering nodes.

We begin by discussing the background to our work, includ-
ing an overview of the more traditional separate approaches
to congestion control and scheduling, a discussion of the
more recent theoretical work that looks at these problems in
combination and a description of a number of issues that were
not directly addressed by this work but which are important to
any practical realization of these schemes. The aim of our work
is to define practical protocols for combined congestion control
and scheduling in mobile ad-hoc networks that try to satisfy

theoretical properties such as optimizing a suitably defined
notion of aggregate network utility.
A. Background

Much of the traditional literature on congestion control and
scheduling in communication networks has treated the two
problems separately. A large body of work on congestion
control was initiated by Kelly, Maulloo and Tan [15] who
showed that TCP-like algorithms for congestion control in
the Internet can be viewed as primal-dual algorithms for
solving an associated network utility maximization problem.
In particular, consider a set of flows passing through a set of
servers in a wireline network. Letce be the capacity of server
e and letSe be the set of flows passing through servere. In
addition, letxf be the current injection rate into flowf and
let Uf (·) be a utility function that represents the “benefit to
the system” achieved by a given flow rate. The Kelly et al.
work aims to solve the followingNetwork Utility Maximization
(NUM) problem,

max
∑

f

Uf (xf )

subject to
∑

f∈Se

xf ≤ ce.

It was shown in [15] that by adjusting the injection ratesxf

according to the extent to which constraints are violated, it is
possible to obtain rates that optimize the above problem. This
work has been extended in number of different ways. (See
e.g. [20], [21], [30], [18].) In particular, Chiang [9] presented
an extension for wireless networks in which injection rates
and transmitter power settings are chosen so that aggregate
utility is optimized subject to the injection rates lying inthe
capacity region of the network. For wireless networks this
capacity region is typically a complex region involving the
interference relationships between the nodes.

However, one property of the papers [15], [9] and related
work is that they do not directly address the scheduling of
the packets in the network. For example, in the Kelly et al.
NUM problem described above, the network is considered



to be underloaded as long as all of the capacity constraints
are satisfied. In particular there is no explicit consideration
of how the data is scheduled so that all packets reach their
destinations. This issue can be important. In [5] an example
was presented in which congestion control mechanisms similar
to those in [15] were used. However, due to adverse interac-
tions with the network schedulers, the injection rates did not
converge to the optimal solution of the NUM.

The problem of scheduling in multi-hop wireless networks
has also been extensively addressed in the literature. The
seminal work of Tassiulas and Ephremides [26], [27] analyzed
an algorithm (that we shall henceforth refer to asMax-Weight)
that always tries to move data from large queues to small
queues. They proved that for traffic flows with fixed injection
patterns, if there exists an algorithm that is able to schedule
all the data then the Max-Weight algorithm will do this.

As already mentioned, if the congestion control and schedul-
ing are performed in isolation then adverse effects can occur.
In recent years a number of papers [24], [11], [23], [18] have
addressed this issue by considering algorithms forjointly com-
bining congestion control and scheduling. In particular, each
of these algorithms defines a network control that determines
when packets are injected into flows and which packets are
transmitted by the nodes during each time interval. They aim
to do this so as to maximize an aggregate utility function,

∑

f

Uf (xf ).

Our approach is based on the solution from the paper [24]
that was called the Greedy Primal-Dual algorithm (GPD).
In the version of GPD that we shall be considering, each
node maintains a set ofper-destinationqueues (PDQs). Then,
according to the results of [24], this algorithm provides a
control that solves the above optimization problem. However,
there were a number of issues raised by the scheme of [24]
that need to be addressed before it can be fully realized as a
scheme for the control of mobile ad-hoc networks.

• The GPD algorithm requires exchange of PDQ length
information between neighboring nodes. However, it does
not specify the exact method for this information ex-
change.

• The interactions between the congestion-control mecha-
nism of GPD and a reliability scheme (such as that pro-
vided by the TCP sequence-acknowledgment mechanism)
were not explored.

• The “pure” form of the GPD scheme addresses the
contention-resolution problem between interfering nodes
as a centralized problem. In order to implement GPD in
practice we must convert it to a form in which standard
distributed techniques for contention-resolution can be
applied.

The aim of our paper is to describe a practical version
of GPD that addresses these issues and can be applied to
wireless networks. We refer to the resulting scheme as the
wireless Greedy-Primal-Dual (wGPD) algorithm. We begin by
first defining the model of wireless ad-hoc networks that we

consider in this paper and then describing the theoretical GPD
algorithm in detail.
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Fig. 1. A mobile ad-hoc network with two flows. The PDQs at one node
are shown together with their associated sizes and urgency weights.

B. The Model

We consider a set of mobile nodes in an ad-hoc network.
(See Figure 1.) We focus on the simplest case in which each
node has a single radio and all communication is confined
to a common channel. (This is the situation that is most
often considered in studies of the standard 802.11 wireless
protocols.) We assume that there are a fixed set of flows in the
network. Each flow is classified as inelastic, elastic or semi-
elastic, depending on its ability to adapt to different available
bandwidths in the network. Inelastic flows (such as voice) have
a fixed bandwidth requirement whereas elastic flows (such
as web browsing or file transfers) can adapt to any level of
assigned bandwidth. We use the term semi-elastic to refer to
flows (such as streaming video with layered encoding) that
have a minimum rate requirement but can also adapt to a
higher bandwidth if it is available. Each elastic or semi-elastic
flow f has a concave utility functionUf (x) that represents
the “benefit to the system” that is obtained when flowf is
assigned bandwidthx. In our experimental results we shall
often use the utility functionUf (x) = log x. This choice of
function is motivated by the paper [3] which showed that (up to
some saturation point), human satisfaction with web browsing
is proportional to the logarithm of the assigned bandwidth.

We assume throughout this work that the bandwidth require-
ments for inelastic flows and semi-elastic flows are feasibleat
all times. If this is not the case then an admission control
scheme is required. The integration of wGPD with admission
control is a topic for future work. In addition, many inelastic
flows have end-to-end delay requirements. We assume that
these are supported by giving each inelastic flow a minimum
bandwidth requirement that is slightly higher than its injection
rate. Explicit incorporation of end-to-end delay bounds into
wGPD is left for future work.

Other simplifying assumptions that we make in this work
are that transmission powers are fixed and routes are specified
by some external protocol (e.g. OLSR or AODV). The exten-
sion of our approach to encompass power control and adaptive
routing is deferred to future work.



The capacity of the network is defined by theschedulable
region. This consists of the set of transmission rates that are
achievable without violating any of the system assumptions.
More formally, let L be the set of ordered tuples(i, j, rij)
that represent nodei transmitting to nodej at raterij . We
say that a subsetS ⊆ L is schedulable(or, is within the
schedulable region) at timet if for all (i, j, rij) ∈ S node i

can send data to nodej at raterij and these transmissions
occur simultaneously. (This naturally implies that any subset
of a schedulable set is also schedulable.) The capacity region
of the system is then defined to be the set of flow rates that
can be supported by the network by using only schedulable
subsets of transmissions at any given time and without traffic
queues in the network “blowing up” over time. Note that the
capacity region is typically not known to any element in the
system. Moreover it can change over time as nodes move.

With the above definitions in place, our goal becomes to
solve the following optimization problem at all times:

max
∑

f

Uf (xf )

subject to

minimum rate requirements are met for inelastic and
semielastic flows

injections rates lie in system capacity region.

C. Description of the GPD algorithm

We now describe the theoretical Greedy Primal-Dual algo-
rithm for combined congestion control and scheduling that was
introduced in [24] and was shown to solve the above optimiza-
tion problem. The focus of our paper is to demonstrate how
this algorithm can be transformed into practical algorithms
for wireless ad-hoc networks. We consider the GPD approach
in conjunction with the key data-structure that we refer to
as a per-destination queue (PDQ). (See Figure 1.) The per-
destination queue for destinationd at nodei, denotedQi

d,
stores all the packets at nodei that have addressd as their
destination. Letqi

d be the amount of data in this queue. Let
n(i, d) be the next hop for destination-d bound traffic after
it leaves nodei. Note that since we are focusing on unicast
flows in which routes are specified, this notion is well-defined.
Each PDQ has an associated concept of urgency weight. The
urgency weight for queueQi

d is denoted bywi
d and is defined

by wi
d = [qi

d−q
n(i,d)
d ]ri,n(i,d), i.e. the urgency weight is set to

be the difference of the PDQ size at the current node minus
the associated PDQ size at the downstream node, multiplied
by the channel rate between these nodes. (This urgency weight
is essentially the scheduling weight used by the Max-Weight
algorithm of Tassiulas-Ephremides [26], [27] and its definition
is why scheduling schemes that are based on it are often known
as differential backlog scheduling schemes.)

In the theoretical definition of the GPD algorithm time is
slotted. The scheduling component is as follows. In each time
slot we schedule the transmissions from the schedulable set
S ⊆ L that maximizes

∑

(i,d)∈S wi
d. The congestion control

component of GPD is also simple. We usexf to denote an
exponentially filtered average of the injection rate into flow
f . If flow f is an elastic flow with source and destination
nodessf anddf then in each time step it injects a packet if
and only if U ′

f (xf )− βq
sf

df
> 0, whereβ > 0 is some (small)

parameter andU ′

f (·) is the first derivative ofUf (·). In the case
that flow f is semi-elastic (and hence has a minimum rate
requirementRmin

f ) the congestion control component injects
a packet wheneverg(βKf ) + U ′(xf ) − βq

sf

df
> 0, where

g(·) is some (sharply) increasing function andKf is a token
counterthat keeps track of whether or not flowf is meeting its
minimum rate requirement. In particular,Kf receives tokens
at rateRmin

f at all times. Whenever a packet of size`p is
injected into flowf , Kf is decremented by an amount`p (but
is never allowed to drop to below zero). A similar scheme was
discussed in [4] for the provision of minimum rate guarantees
in cellular networks.

The main theoretical result of [24] is that asβ approaches
zero, the flow rates produced by the GPD algorithm approach
the optimal solution of the above optimization problem.

In the remainder of the paper we discuss some of the
implementation details that arise when implementing the GPD
algorithm in a real wireless system. We call the resulting
algorithm wGPD for wireless-GPD. We then present a number
of simulation results that compare the performance of wGPD
with the standard 802.11 protocols operating in conjunction
with TCP congestion control.

The main issues that need to be addressed when converting
the theoretical GPD algorithm into a practical wireless algo-
rithm are:

• The urgency weight calculation requires that each node
knows the PDQ sizes at its neighbors. We need a mech-
anism whereby the nodes exchange PDQ information
among themselves.

• The congestion control mechanism of GPD specifies how
the flows regulate their injections into the network in such
a way that the utility maximization problem is solved.
However, in standard congestion control protocols such
as TCP, the congestion control is combined with the
reliability mechanism in which packets that are lost or
time out are retransmitted. We require that the congestion
control algorithm of GPD works with a similar reliability
mechanism so that we can obtain end-to-end reliability
for flows.

• We need to perform the scheduling component of GPD
in a distributed fashion. In particular, we need to resolve
contention among the nodes in a distributed manner. This
is of course a problem for any decentralized wireless
system. However, we need to do this in such a way
that we maintain (to the extent possible) the optimality
properties of GPD.

Incremental design:One other feature that we would like
our wireless protocols to satisfy is that they reuse as many
features as possible from existing wireless protocols. There
are many protocols in existence for wireless networks that



are proven to be robust and we try to use as many of these
features as possible while still being consistent with the GPD
framework. For example, we are able to reuse the notions
of Request-to-Send/Clear-to-Send (RTS/CTS) and the backoff
mechanism from the 802.11 contention resolution protocols.
For the congestion control, we are able to reuse the sequencing
and acknowledgment mechanisms from TCP. However, we
stress that we do not reuse the congestion control algorithm
of TCP.

Scalability issues:Since we use the PDQ data structure,
each node has to potentially maintain a separate queue for
every possible destination in the network. We believe that this
is feasible for mobile ad-hoc networks of moderate size (say
up to∼ 100 nodes). In future work we plan to explore efficient
queue aggregation methods for larger networks which would
allow us to drastically reduce the number of queues while
preserving most of the benefits of the “pure” PDQ structure
studied in this paper.

D. Related work

As already mentioned, there has been a lot of prior work
that considers scheduling or congestion control in wireless
networks in isolation. Early work on scheduling includes the
well-known papers of Tassiulas and Ephremides [26], [27]
who showed that scheduling schemes based on queue sizes
can maintain queue stability for inelastic traffic wheneverthis
is feasible. (See also Awerbuch and Leighton [6].) More recent
research has looked at scheduling issues in single-hop cellular-
type networks. One difference between cellular networks and
ad-hoc networks is that the simpler nature of the topology
means that it is often easier to schedule according to detailed
channel feedback statistics. One area of interest has been
providing “Proportional Fair” bandwidth allocations for elastic
traffic among a set of mobile users. This corresponds to maxi-
mizing the aggregate logarithm of the assigned flow rates. An
algorithm for achieving this is known as “Proportional Fair”
and was first presented in [28]. Papers that derive theoretical
properties of the Proportional Fair algorithm include [25], [16],
[1]. An extension of Proportional Fair that applies to semi-
elastic traffic with minimum rate requirements was presented
in [4]. Other papers that discuss the provision of Quality-of-
Service in wireless data networks include [19].

The literature on the theoretical analysis of congestion con-
trol schemes is also large. As discussed earlier, Kelly, Maulloo
and Tan [15] initiated a body of work that analyzes congestion
control algorithms such as TCP from the perspective of primal-
dual algorithms that aim to solve an associated network utility
maximization problem. This work was extended in numerous
papers (e.g. [20], [21], [30], [18]). Specific extensions that
considered the capacity region of wireless networks include
[9]. One feature of much of this work is that the flows are
assumed to be permanently present in the network. More
recent papers (e.g. [10], [17] and references therein) lookat a
model in which flows with a finite amount of data to transmit
arrive in and depart from the system. In this case the aim
is to keep the number of active flows stochastically bounded

whenever possible. Another topic that has recently gained
increasing interest is methods for achieving optimal network
utility when network coding is permitted. (See e.g. [8].)

As we have already mentioned, most of the prior work on
network utility maximization does not explicitly take schedul-
ing dynamics into account. The goal was simply to calculate a
set of flow rates that lie in the capacity region without directly
worrying about how to schedule the data so as to achieve these
rates. As shown in [5] the fact that a set of rates is achievable
does not necessarily mean that they are actually achieved
if the wrong scheduling is used. This issue was addressed
by a set of recent papers [24], [11], [23], [18] that provide
methods for joint congestion control and scheduling with the
goal of optimizing aggregate network utility. The paper [24]
introduced the GPD algorithm that is the motivation for the
wGPD protocols that we present in this paper.

One problem with many of the theoretical scheduling al-
gorithms in wireless ad-hoc networks is that in their pure
form they require some central control to determine which
set of nodes should transmit at each time step. Recent work
has therefore looked at distributed schemes for resolving
contention among nodes so that we can remain close to
the boundaries of the capacity region and also take network
utilities into account. Algorithms of this type are presented in
[14], [29], [13]. In particular, the results of [13] will motivate
our techniques for contention resolution that we present in
Section IV.

II. OVERVIEW OF 802.11SCHEDULING

The wGPD algorithm will reuse as many components as
possible from the standard 802.11 protocol. For this reason
we briefly give an overview of how scheduling is performed
in 802.11.

In the most basic form of 802.11, each node has a single
FIFO queue. The next packet that a node transmits is always
the packet at the head of the FIFO queue. Contention between
interfering nodes is resolved in the following manner. Each
node has a value known as its current contention window.
Whenever a transmission needs to be made the node initiates
a backoff counter to a random value from within the contention
window. It then starts to decrement this backoff counter,
pausing it whenever the channel goes busy. When the counter
reaches zero the node transmits the packet. If the transmission
is unsuccessful the contention window is doubled and the
procedure is repeated.

One well-studied problem that can occur in ad-hoc net-
works is the “hidden node” problem in which we have two
transmissions that interfere at one of the intended receivers,
even though the two transmitters cannot hear each other.
This problem can be ameliorated by using a (Request-to-
Send/Clear-to-Send) handshake before each transmission.In
this case, before the main data transmission takes place, the
transmitting node first broadcasts a small RTS packet and then
the receiving node replies with a broadcast CTS packet. If any
other nodes hear this conversation they freeze their own access
attempts for the length of the transmission. This signaling



makes it much less likely that a hidden node will interfere
with the intended receiver. In addition any collisions thatdo
occur are more likely to involve small RTS/CTS packets than
large data packets.

We are now able to describe the wGPD algorithm in detail.
In Section III we discuss the maintenance of the PDQs and
in Section IV we describe the scheduling and contention
resolution protocol. In Section V we describe the signaling
that is required for the exchange of PDQ information and in
Section VI we present the congestion control protocol.

III. PDQ MAINTENANCE

The queuing structure of wGPD is the same as that for the
theoretical GPD algorithm described earlier. At each nodei

and for each destinationd there is aPer-Destination Queue
(PDQ) that we denote byQi

d. (See Figure I-A.) When data
with final destinationd arrives at nodei, it is placed into that
queue. When it is transmitted from the node it is removed
from the queue. We useqi

d to denote the size of this queue. We
also assume that each queue has an associatedurgency weight
wi

d. The urgency weights are the inputs to the scheduling
component of wGPD and are defined in exactly the same
manner as for the theoretical GPD algorithm, i.e.wi

d =

[qi
d − q

n(i,d)
d ]ri,n(i,d), wheren(i, d) is the next hop after node

i on the route to destinationd andri,n(i,d) is the channel rate
between nodei and noden(i, d). Note that the definition of
these weights requires signaling among neighboring nodes.We
discuss how this signaling is performed in Section V.

IV. SCHEDULING AND CONTENTION

RESOLUTION

As we have just described, the scheduling and contention
resolution decisions are based on the urgency weights asso-
ciated with the PDQs. In wGPD the scheduling decisions are
made in two stages. First, there is an intra-node scheduling
procedure in which each node decides which packet it will
transmit whenever it is next allowed to make a transmission.
Next, there is the contention resolution (or inter-node) schedul-
ing phase in which transmissions that interfere compete among
themselves to determine who should transmit next.

The intra-node scheduling phase is extremely simple. When-
ever a node has completed a transmission it determines the
PDQ Qi

d for which wi
d is maximum (and is positive). It then

removes a packet from that PDQ and joins in a contention
resolution competition that aims to determine which among
a competing set of transmissions should next be allowed to
transmit.

For inter-node scheduling, it is clear from the definition of
the ideal algorithm in Section I-C that its exact implementation
would require the solution of a max-weight independent set
problem which is not only NP-hard but also hard to approx-
imate. Our inter-node contention resolution protocol is based
on the following heuristic. Each node determines the urgency
weights of all transmissions with which it will potentially
interfere. If it has the maximum urgency weight among those
transmissions then it decides to transmit. This heuristic is very

natual in itself, and is also motivated, in particular, by the
random-access based schemes proposed in [12], [13]. The RC-
MAC scheme [12] applies to wireless LAN settings (where all
transmissions interfere with each other), and essentiallytries to
ensure that only the node(s) with the highest urgency weight(s)
attempt channel access, thus reducing overall contention.The
paper [13] adresses general topology networks; our heuristic
can be viewed as the limiting case of the scheme proposed
in [13], if we replace urgency weightswi

d, as defined in
this paper, withf(wi

d), wheref(·) is a “steeply” increasing
function.

We implement the priorities via a simple modification to the
802.11 contention resolution protocol defined in Section II.
This modification is based on the urgency weights and is
defined as follows. If a node believes that it has the largest
urgency weight in its interfering neighborhood (based on
all the urgency weight information it has received), it starts
with a small initial value for the contention window (e.g. 32
“slots”), otherwise it starts with a much larger initial value
for the contention window (e.g. 128 “slots”). This has the
consequence that any node that has the largest urgency weight
in its interfering neighborhood is significantly more likely to
access the channel during the contention resolution process.

V. SIGNALING

We now describe how the queue states and the urgency
weights are exchanged between neighboring nodes. We pro-
pose two alternative methods for doing this, depending on
whether or not the Request-to-Send/Clear-to-Send (RTS/CTS)
protocol is used. The main reason that RTS/CTS is not always
used is that for small packets it adds a certain amount of
overhead. Moreover, some of the hidden node problems that
RTS/CTS was designed to address can also be prevented via an
enhanced carrier sensing mechanism in which nodes can hear
interference at a range greater than their transmission range.

A. RTS/CTS case

192.0.0.3

192.0.0.2

192.0.0.4

192.0.0.5

192.0.0.7

192.0.0.1

192.0.0.6

Max urgency weight in 1−hop nbrhood of 192.0.0.1 
Max urgency weight at 192.0.0.1

PDQ info for 192.0.0.1

RTS

Fig. 2. An RTS transmission showing the attached PDQ and urgency weight
information.

The main result of the RTS/CTS process is that nodes that
are two-hop neighbors of each other do not interfere. Hence,
if we are to regulate the contention process via the urgency
weights, we need urgency weight information to propagate to
two-hop neighbors. In addition, we need queue information to
propagate to one-hop neighbors so that the nodes can calculate
the urgency weights. The RTS/CTS packets offer an elegant
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Fig. 3. The corresponding CTS transmission.

way to do this. First, when sending an RTS, the node adds a
field that lists its PDQ sizes. It also includes the value of the
maximum urgency weight among its queues and an estimate
of the maximum urgency in its one-hop neighborhood, which
is obtained by the procedure described below. Each node also
does this when sending a CTS packet. When a nodej receives
this information from a neighbori it runs through all its PDQs
and for each destinationd it looks to see if nodei is the
next hop on its path to destinationd. If it is, then it sets
w

j
d = [qj

d − qi
d]rji, whererji is the current transmission rate

between nodej and nodei. (This rate depends on the transmit
power of nodej and the channel conditions and interference
between nodej and nodei.) Further, it updates its estimates of
the maximum urgency in its 1-hop and 2-hop neighborhoods,
denoted byT j andV j , respectively, as follows:

T̂ j = max
{

T̂ j , wi
}

V̂ j = max
{

V̂ j , T̂ i
}

,

based on the urgency weight information,wi andT̂ i, contained
in node i’s transmission. It is clear that̂V j provides a good
estimate of nodej’s 2-hop max urgency ,V j , as long as the
urgency weights do not change drastically over one round of
transmissions. Nodej then useŝV j to decide on its backoff
window as described in Section IV.

B. Non RTS/CTS case

There are some cases in which RTS/CTS is not appropriate
to use. In particular, for small packets the amount of overhead
required by RTS/CTS can be excessive. In this case contention
resolution takes place with respect to the data packets only:
all the information which would be included into a RTS is
included into the data packet itself, and the MAC layer ACK
packets carry the information that would otherwise be placed
in the CTS packets.

VI. CONGESTIONCONTROL

In this section we outline the methods by which we
implement the transport-layer congestion control component
of wGPD. In particular, we show how decisions regarding
whether or not to inject a packet can be made by examining
the size of the PDQ at the source node. We define two types
of congestion control, an “unreliable version” that fits within
the standard UDP protocol and can be used for flows that can
tolerate loss, and a “reliable version” that fits within the TCP

protocol and ensures that all data is eventually delivered to
the destination. We remark that the entire notion of transport-
layer congestion control only makes sense for elastic traffic (or
semi-elastic traffic) since for inelastic traffic we are expected to
inject all the data that arrives. Hence we assume that we have
a utility function for each traffic flow for which congestion
control is being applied.

Unreliable version: In the unreliable version of the
congestion control protocol, we decide whether or not to inject
a packet whenever it arrives from the application layer. The
decision is made as follows. For each flowf we maintain
an average ratexf that is an exponentially-filtered average of
the amount of data admitted to the flow. The time constant
for this filter is some small parameterβ, i.e. xf is multiplied
by a factor1 − β in each time step and is increased byβ`p

whenever a packet of sizèp is injected into flowf .
Suppose that flowf has sourcesf and destinationdf .

Decisions regarding whether to inject a packet into flowf

are made bysf , and are based on the utility function for flow
f and the size of the PDQQsf

df
. In particular, for elastic flows

a packet is injected as long asU ′(xf ) − βq
sf

df
> 0, where

U ′

f (·) is the first derivative ofUf (·). In other words, a packet
is injected as long as the incremental benefit of the injection
is more than a scaled version of the PDQ size at the source
node.

If flow f is semi-elastic (and hence has a minimum rate
requirementRmin

f ) we use the same modification that was
described for the theoretical GPD algorithm in Section I-C.In
this case, a packet is injected as long asg(βKf ) + U ′(xf )−
βq

sf

df
> 0, whereg(·) is some (sharply) increasing function

(e.g.ex) andKf is a token counterthat keeps track of whether
or not flow f is meeting its minimum rate requirement. In
particular, Kf receives tokens at rateRmin

f at all times.
Whenever a packet of sizèp is injected into flowf , Kf is
decremented by an amount`p (but is never allowed to drop
below zero).

Reliable version:In the reliable version of the protocol,
we need sequence numbers and acknowledgments in order to
keep track of which bytes are received at the destination. In
keeping with the philosophy of making the minimal number
of changes to existing protocols, we incorporate the wGPD
congestion control protocol within an implementation of TCP
which allows us to reuse the TCP sequence number / acknowl-
edgment mechanism. We make two fundamental changes to
the TCP congestion control mechanism however. First, we set
the TCP congestion window so that it is always equal to the
maximum received window size. In this way we essentially
disable the effect of the congestion window. Second, whenever
TCP makes a decision regarding whether or not to send
additional data, instead of using the the TCP congestion
window we use the wGPD criterion, namely whether or not
U ′(xf ) − βq

sf

d > 0 (or g(Kf )U ′(xf ) − βq
sf

df
≥ 0).

We reuse a number of other components from TCP, in
particular the timeout and retransmission mechanism. When-
ever TCP suffers a timeout and needs to retransmit, we place
the data that has timed out in a retransmission queue. The



decision regarding when to inject such data again relies on
the wGPD criterion. However, the fact that the timeouts and
retransmissions operate in essentially the same way as in
TCP means that we can reuse many of the enhancements
to TCP that are known in the literature, such as Selective
Acknowledgment (SACK) [22].

VII. S IMULATIONS

In this section we use OPNET simulation to compare the
performance of wGPD with standard protocols such as the
802.11 MAC and the TCP congestion control algorithm. Our
results show that:

• The wGPD protocols produce flow rates that are a good
solution to the utility maximization problem defined in
Section I-B. In particular, the flow rates are close to the
optimal rates even in the case that the nodes are mobile.

• For inelastic flows, the wGPD algorithm is able to smooth
out bursts of traffic. This keeps queues stable and mini-
mizes packet loss.

• The standard 802.11 protocols, since they do not take
queue lengths or the user utilities into account, do not
have any of the above properties. In particular, they pro-
duce flow rates that do not match the optimum solution of
the network utility maximization problem. (In addition,
the flow rates tend to oscillate more than the flow rates
produced by wGPD.) Moreover, even for inelastic traffic,
there are situations where the 802.11 protocols do not
keep the queues bounded, even when this is feasible.

We perform our experiments using the OPNET simulation
program. We assume that all packets are of size 1024bytes and
we use a channel rate of 1Mbps. Although this is lower than
many current 802.11 systems, a small rate allows us to see
the effects of saturation with lower injection rates and hence
the simulations run more quickly. We have verified that at a
qualitative level, all our results are unchanged as we move to
higher bit rates.

A. Elastic traffic

We begin with a simulation in which all flows are elastic.
This means that each flow has a logarithmic utility function
that always rewards an additional increase in bandwidth. As
mentioned in Section I-B, the logarithm function for appli-
cations such as web browsing is motivated by experiments
performed with human subjects [3].

Fig. 4. The simple linear array used in Experiment 1.

Experiment 1:Our first topology is depicted in Figure 4.
We have a simple linear array consisting of four nodes each
separated by the interference radius. There is one flow that
passes through all three hops from left to right. There are
three other flows that each pass through one hop only. Since
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Fig. 5. The flow rates allocated by wGPD in Experiment 1.
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Fig. 6. The flow rates allocated by 802.11+TCP in Experiment 1.(Left)
Short flows. (Right) Long flow.

neighboring nodes cannot transmit or receive simultaneously,
only one transmission can take place at a time. Since the
utility functions are logarithmic each flow consumes the same
fraction of network resources under the optimal rate allocation.
Since the long flow involves three hops this implies that the
bandwidth assigned to the long flow should be one-third of
the bandwidth assigned to each of the short flows. A plot
of the application level throughputs under wGPD is shown
in Figure 5. We see that under wGPD the rate allocated to
the long flow is close to this optimal allocation. A close
examination of the plot shows that the long flow receives
slightly more than one-third of the bandwidth assigned to the
long flows. The reason for this discrepancy is that for finite
values of the parameterβ used in the congestion control, the
exponentially filtered valuesxf constantly oscillate and so we
do not converge to the exact optimum. Asβ approaches zero,
the rate allocations match the optimum allocations more and
more closely. However, we may not want to do this in practice
since smaller values ofβ lead to larger PDQ sizes.

The rate allocations under 802.11+TCP are significantly
worse. On the left sie of Figure 6 we show the rates allocated
to the short flows. We see that these rates are much less stable
than the rates under wGPD. More seriously, the rate allocated
to the long flow (as shown on the right side of Figure 6) is zero
except for occasional small bursts. Hence, under a logarithmic
utility model, the aggregate utility will be extremely poor.
The reason this happens is that in the 802.11 random access
control, each node always has equal opportunity to transmit
when it has data. Therefore, in order for a packet to completely
traverse a long path, it has to win multiple random access
competitions. It is difficult for the long flow to do this at a



high rate.
1) Experiment 2:Our next topology is depicted in Figure 7.

We once again have a long flow that passes through a three-hop
linear array. We also have two one-hop flows that pass start off
outside the interference range of the long flow and then move
inwards at time 60s so that all flows are mutually interfering.
(The node movement is depicted with dotted lines.) The rate
allocations under wGPD are depicted in Figure 8. We remark
that before the short flows move, their rate allocation saturates
in the sense that the transmission rate is equal to the rate at
which data arrives from the application layer. We see that after
the short flows move, the rate allocations quickly converge to
the new optimal values. In contrast, under 802.11+TCP, after
the short flows move at time 60s the short flows exhibit large
oscillations (see Figure 9) and the long flow typically receives
an extremely small rate allocation (with sporadic spikes).

Fig. 7. The simple linear array used in Experiment 2.
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Fig. 8. The flow rates allocated by wGPD in Experiment 2.

B. Inelastic traffic

In this section we compare the performance of wGPD versus
standard protocols in the case that traffic is inelastic, i.e. the
sources do not have any congestion control mechanism that
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Fig. 9. The flow rates allocated by 802.11+TCP in Experiment 2.(Left)
Short flows. (Right) Long flow.

can adjust their source rate. We present a situation where the
scheduling component of wGPD is able to carry all of the
injected traffic whereas the 802.11 scheduling mechanisms are
unable to do so.

Experiment 3: This experiment is designed to highlight
the contrast between the inherent instability of the 802.11
scheduling protocols and the better stability properties of
wGPD. The example is motivated by an instability example for
the FIFO scheduling protocol that was first presented in [2].
We use the topology shown in Figure 10. The traffic injections
occur in two phases. We assume that at the the beginning of
the example we have a small burst of packets arriving at node
0. We can think of these packets as coming from a flow (that
we call flow 0) that has node 6 as its destination and that has
already stopped injecting. In phase I we have two new flows,
one from node 0 to node 11 and one from node 6 to node
12. Then in phase II these two flows cease and we have two
additional flows that start injecting packets, one from node2
to node 11, and one from node 5 to node 13.

The key feature of this example is that due to the interfer-
ence between the flows, the initial burst of packets that we had
at the start of the example gets propagated and amplified under
the standard 802.11 scheduling protocols. This is because each
burst of data is concentrated. When the data arrives at node 6,
all of the bursts collide and cause a large buildup of data which
leads to significant packet loss. In contrast, the “backpressure”
mechanism of the wGPD scheduler (which comes from the
fact that packets are never transmitted from a small PDQ to a
large PDQ) means that GPD is able to smooth out bursts of
packets so that no packet loss occurs.

The see this, we plot the queue process at nodes 0,1,2 and 6
(where most of the interesting behavior occurs) in Figure 11.
We see that for standard 802.11 the buffer at node 6 reaches
its limit which leads to significant packet loss. In contrast, the
queues under the wGPD protocol remain significantly smaller
and hence no packet loss occurs.

C. Semi-elastic traffic

In this section we present a simple experiment whose aim is
to show that the wGPD algorithm is able to support minimum
rate guarantees for semi-elastic traffic. In contrast, the standard
802.11+TCP algorithm is oblivious to any such guarantees
and hence does not always meet them, even when all of the
minimum requirements are feasible.
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Fig. 10. The topology used in Experiment 3.
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Fig. 11. The buffer process in Experiment 3. (Left) wGPD. (Right) Standard
protocols.

Experiment 4: Experiment 4 uses an extremely simple
topology with three single-hop flows eacch of which has a
common source. One of the flows (flow 0) has a minimum rate
guarantee of 40kbytes/s. The standard protocols are oblivious
of this requirement and hence allocate rate equally among the
flows. Figure 12 shows that the wGPD is able to raise the rate
of this flow so that its minimum rate requirement is met.
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Fig. 12. The flow rates allocated by wGPD in Experiment 4.

D. Multicast

All of the experiments described up to now have been for
topologies of modest size carrying unicast traffic. In Figure 13
we show the queue dynamics for a 70 node network carrying
multicast traffic. We see that for this experiment wGPD keeps
the queue sizes small whereas 802.11 creates clear instabilities.

Fig. 13. Plot of queuesizes vs time for 70 node multicast experiment. (Left)
wGPD. (Right) 802.11.

E. Other benefits of wGPD

We conclude this section by mentioning two other benefits
of wGPD over standard protocols. First TCP typically does
not reduce its sending rate until buffer overflows. This leads
to large buffer occupancies that in wireless networks can
lead to excessive packet delays. This effect was noticed by
Chakravory et al. in [7]. In contrast, the wGPD protocols react
directly to buffer occupancy at the source node of a flow. This
enables wGPD to keep buffer occupancies smaller.

Another benefit occurs when a link breaks. Consider a link
break at the end of a linear array. With standard 802.11,
packets will continue to be sent to the node next to the
broken link. This will cause that node’s buffer to grow large
and potentially drop packets. The backpressure mechanism of
wGPD will spread the load among multiple queues, thereby
reducing the probability of packet drops. For this reason we
believe that wGPD has potential uses in “Disruption Tolerant
Networks” (DTNs).

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we described the wGPD protocol for combined
congestion control and scheduling in wireless ad-hoc networks
and compared its performance with the standard 802.11+TCP
protocols via simulation.

One immediate question is how applicable any new conges-
tion control scheme is since TCP is so widely used in today’s
systems. This is one of the reasons why in this work we have
focused on mobile ad-hoc networks. Although a largescale
replacement of TCP would be essentially impossible in today’s
internet, we believe that some mobile ad-hoc networks (e.g.
military networks) are sufficiently self-contained that a re-
placement of both the scheduling protocols and the congestion
control algorithms may be feasible. In addition, the fact that
spectrum is limited in many ad-hoc networks means that they
would benefit most from the performance gains of wGPD.

There are a number of possible directions for extending
wGPD. In particular, we are currently looking at numerous
extensions including support for multicast traffic, power and
rate control. We are also integrating wGPD with algorithms for
admission control and routing. The theoretical GPD algorithm
can be extended to handle routing in a very natural way,
namely each packet is always forwarded to the neighbor with
the smallest PDQ for a destination. However, this can lead
to situations where different packets from a flow can follow



different paths, thereby leading to out-of-order packet arrival at
the destination. We are therefore examining methods through
which PDQ information can be used to create more persistent
routes.
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