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Abstract—In this paper we study the problem of jointly theoretical properties such as optimizing a suitably ddfine
performing scheduling and congestion control in mobile ad- notion of aggregate network utility.
hoc networks so that network queues remain bounded and A. Background
the resulting flow rates satisfy an associated network utility ™
maximization problem. In recent years a number of papers have  Much of the traditional literature on congestion controtian
presented theoretical solutions to this problem that are based scheduling in communication networks has treated the two

on combining differential-backlog scheduling algorithms with .
utility-based congestion control. However, this work typically problems separately. A large body of work on congestion

does not address a number of issues such as how signaling shoul®ontrol was initiated by Kelly, Maulloo and Tan [15] who
be performed and how the new algorithms interact with other showed that TCP-like algorithms for congestion control in

wireless protocols. _ _ the Internet can be viewed as primal-dual algorithms for
In this paper we address such issues. In particular: solving an associated network utility maximization prable
« We define a specific network utility maximization problem , paticular, consider a set of flows passing through a set of
that we believe is appropriate for mobile adhoc networks. . ireli twork. Let be th ity of
. We describe awireless Greedy Primal Dual servers in a wireline network. Let be the capacity of server
(WGPD) algorithm for combined congestion control and ¢ and letS. be the set of flows passing through servein
scheduling that aims to solve this problem. addition, letz; be the current injection rate into flow and

« We show how the wGPD algorithm and its associated |et /() be a utility function that represents the “benefit to
signaling can be implemented in practice with minimal the system” achieved by a given flow rate. The Kelly et al.

. S\IIZYUSF;H;)VC L?aegsptngWgﬁ]ej;tigft?hcsﬁlSV'vGPD significantly work aims to solve the followin§letwork Utility Maximization

outperforms standard protocols such as 802.11 operating in (NUM) problem,
conjunction with TCP.

max Z Ug(xy)
f

subject to
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I. INTRODUCTION

In this paper we consider the practical design of joint Z rpos Ce
congestion control and MAC/scheduling algorithms for nebi JeSe
ad-hoc networks. Consider a set of traffic flows within such was shown in [15] that by adjusting the injection rates
a network. The congestion control problem involves degjdiraccording to the extent to which constraints are violatew i
which packets should be injected into the flows in each timpossible to obtain rates that optimize the above problens Th
step. The MAC/scheduling algorithms determine what is thwork has been extended in number of different ways. (See
next packet to be transmitted by a wireless node and akg. [20], [21], [30], [18].) In particular, Chiang [9] prested
resolve contention between sets of interfering nodes. an extension for wireless networks in which injection rates
We begin by discussing the background to our work, incluénd transmitter power settings are chosen so that aggregate
ing an overview of the more traditional separate approachaflity is optimized subject to the injection rates lying tihe
to congestion control and scheduling, a discussion of tleapacity region of the network. For wireless networks this
more recent theoretical work that looks at these problemsdapacity region is typically a complex region involving the
combination and a description of a number of issues that wengerference relationships between the nodes.
not directly addressed by this work but which are importantt However, one property of the papers [15], [9] and related
any practical realization of these schemes. The aim of ouk wavork is that they do not directly address the scheduling of
is to define practical protocols for combined congestiortrabn the packets in the network. For example, in the Kelly et al.
and scheduling in mobile ad-hoc networks that try to satisNUM problem described above, the network is considered



to be underloaded as long as all of the capacity constraignsider in this paper and then describing the theoreti®d) G
are satisfied. In particular there is no explicit considerat algorithm in detail.
of how the data is scheduled so that all packets reach their
destinations. This issue can be important. In [5] an example Dest Addr | PDQ Size| Urgency 192.0.0.1
was presented in which congestion control mechanismsasimil 192004| 53 26 u .
to those in [15] were used. However, due to adverse interac- | 192006 12 B
tions with the network schedulers, the injection rates ditl n
converge to the optimal solution of the NUM.
The problem of scheduling in multi-hop wireless networks
has also been extensively addressed in the literature. The
seminal work of Tassiulas and Ephremides [26], [27] analyze
an algorithm (that we shall henceforth refer tohdax-Weigh}
that always tries to move data from large queues to small 192004
gueues. They proved that for traffic flows with fixed injection
patterns, if there exists an algorithm that is able to scleedurig. 1. A mobile ad-hoc network with two flows. The PDQs at oneleo
all the data then the Max-Weight algorithm will do this. are shown together with their associated sizes and urgermhts.
As already mentioned, if the congestion control and schedul
ing are performed in isolation then adverse effects canroccu
In recent years a number of papers [24], [11], [23], [18] ha/d- The Model
addressed this issue by considering algorithmgdioitly com- We consider a set of mobile nodes in an ad-hoc network.
bining congestion control and scheduling. In particulacte (See Figure 1.) We focus on the simplest case in which each
of these algorithms defines a network control that detersineode has a single radio and all communication is confined
when packets are injected into flows and which packets ate a common channel. (This is the situation that is most
transmitted by the nodes during each time interval. They ainften considered in studies of the standard 802.11 wireless
to do this so as to maximize an aggregate utility function, protocols.) We assume that there are a fixed set of flows in the
Z Up(ay) network. Each flow is classified as inelastic, elastic or §emi
ANt elastic, depending on its ability to adapt to different ke
! bandwidths in the network. Inelastic flows (such as voic&gha
Our approach is based on the solution from the paper [24]fixed bandwidth requirement whereas elastic flows (such
that was called the Greedy Primal-Dual algorithm (GPD}s web browsing or file transfers) can adapt to any level of
In the version of GPD that we shall be considering, eagssigned bandwidth. We use the term semi-elastic to refer to
node maintains a set @er-destinatioqueues (PDQs). Then, flows (such as streaming video with layered encoding) that
according to the results of [24], this algorithm provides Rave a minimum rate requirement but can also adapt to a
control that solves the above optimization problem. Howevéigher bandwidth if it is available. Each elastic or senaistic
there were a number of issues raised by the scheme of [%?N f has a concave tility functiod;(z) that represents
that need to be addressed before it can be fully realized ag,@ “penefit to the system” that is obtained when flgwis
scheme for the control of mobile ad-hoc networks. assigned bandwidth:. In our experimental results we shall

« The GPD algorithm requires exchange of PDQ lengibften use the utility functiorl/(z) = logz. This choice of
information between neighboring nodes. However, it doggnction is motivated by the paper [3] which showed that @p t
not specify the exact method for this information exsome saturation point), human satisfaction with web browsi
change. is proportional to the logarithm of the assigned bandwidth.

« The interactions between the congestion-control mecha-we assume throughout this work that the bandwidth require-
nism of GPD and a reliability scheme (such as that prenents for inelastic flows and semi-elastic flows are feasible
vided by the TCP sequence-acknowledgment mechanisal) times. If this is not the case then an admission control
were not explored. scheme is required. The integration of WGPD with admission

« The “pure” form of the GPD scheme addresses thgntrol is a topic for future work. In addition, many inelast
contention-resolution problem between interfering nodéi®ws have end-to-end delay requirements. We assume that
as a centralized problem. In order to implement GPD ifhese are supported by giving each inelastic flow a minimum
practice we must convert it to a form in which standargandwidth requirement that is slightly higher than its dtien
distributed techniques for contention-resolution can hate. Explicit incorporation of end-to-end delay boundsin
applied. WGPD is left for future work.

The aim of our paper is to describe a practical version Other simplifying assumptions that we make in this work
of GPD that addresses these issues and can be appliecGrtothat transmission powers are fixed and routes are sjpecifie
wireless networks. We refer to the resulting scheme as thg some external protocol (e.g. OLSR or AODV). The exten-
wireless Greedy-Primal-Dual (wGPD) algorithm. We begin bgion of our approach to encompass power control and adaptive
first defining the model of wireless ad-hoc networks that weuting is deferred to future work.
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The capacity of the network is defined by teehedulable component of GPD is also simple. We use to denote an
region This consists of the set of transmission rates that aegponentially filtered average of the injection rate intonflo
achievable without violating any of the system assumptiong. If flow f is an elastic flow with source and destination
More formally, let L be the set of ordered tupl€s, j,;;) nodess; andd; then in each time step it injects a packet if
that represent node transmitting to nodej at rater;;. We and only if U} (zy) —ﬁqéﬁ > 0, wheres > 0 is some (small)
say that a subsef C L is schedulable(or, is within the parameter and’}(-) is the first derivative ot/;(-). In the case
schedulable region) at timeif for all (4,4,7;;) € S nodei that flow f is semi-elastic (and hence has a minimum rate
can send data to nodgat rater;; and these transmissionsrequirementR?“’”) the congestion control component injects
occur simultaneously. (This naturally implies that anysetb a packet whenevey(3K;) + U'(zf) — ﬁqi‘; > 0, where
of a schedulable set is also schedulable.) The capacitpiregj(.) is some (sharply) increasing function ahd is atoken
of the system is then defined to be the set of flow rates th&junterthat keeps track of whether or not flofvis meeting its
can be supported by the network by using only schedulabiginimum rate requirement. In particulak; receives tokens
subsets of transmissions at any given time and withoutdraffit rate R7** at all times. Whenever a packet of sizg is
queues in the network “blowing up” over time. Note that thgjected into flowf, K is decremented by an amouft (but
capacity region is typically not known to any element in thg never allowed to drop to below zero). A similar scheme was
system. Moreover it can change over time as nodes move.discussed in [4] for the provision of minimum rate guarastee

With the above definitions in place, our goal becomes tg cellular networks.
solve the following optimization problem at all times: The main theoretical result of [24] is that @sapproaches

max Z Uy(zy) zero, the flow ratgs produced by the GPD glgorithm approach
7 the optimal solution of the above optimization problem.
subject to . In the rerlnamder.of the paper we.d|scuss some of the
implementation details that arise when implementing th®GP
algorithm in a real wireless system. We call the resulting
algorithm wGPD for wireless-GPD. We then present a number
of simulation results that compare the performance of wGPD

minimum rate requirements are met for inelastic and
semielastic flows

injections rates lie in system capacity region.

C. Description of the GPD algorithm

We now describe the theoretical Greedy Primal-Dual alggﬁ
rithm for combined congestion control and scheduling thad w
introduced in [24] and was shown to solve the above optimiza-
tion problem. The focus of our paper is to demonstrate howe
this algorithm can be transformed into practical algorishm
for wireless ad-hoc networks. We consider the GPD approach
in conjunction with the key data-structure that we refer to
as a per-destination queue (PDQ). (See Figure 1.) The pers
destination queue for destinatioh at nodei, denotedQ,
stores all the packets at nodehat have addresg as their
destination. Lets’, be the amount of data in this queue. Let
n(i,d) be the next hop for destinatiah-bound traffic after
it leaves node. Note that since we are focusing on unicast
flows in which routes are specified, this notion is well-dedine
Each PDQ has an associated concept of urgency weight. The
urgency weight for queu@?, is denoted byw’, and is defined
by w, = ¢}, — qZ(l’d)]m,n(i,d), i.e. the urgency weight is set to
be the difference of the PDQ size at the current node minus®
the associated PDQ size at the downstream node, multiplied
by the channel rate between these nodes. (This urgency weigh
is essentially the scheduling weight used by the Max-Weight
algorithm of Tassiulas-Ephremides [26], [27] and its d¢ifoni
is why scheduling schemes that are based on it are often known
as differential backlog scheduling schemes.)

In the theoretical definition of the GPD algorithm time is
slotted. The scheduling component is as follows. In eacle timur

with the standard 802.11 protocols operating in conjumctio
with TCP congestion control.

The main issues that need to be addressed when converting
e theoretical GPD algorithm into a practical wirelessoalg
rithm are:

The urgency weight calculation requires that each node
knows the PDQ sizes at its neighbors. We need a mech-
anism whereby the nodes exchange PDQ information
among themselves.

The congestion control mechanism of GPD specifies how
the flows regulate their injections into the network in such
a way that the utility maximization problem is solved.
However, in standard congestion control protocols such
as TCP, the congestion control is combined with the
reliability mechanism in which packets that are lost or
time out are retransmitted. We require that the congestion
control algorithm of GPD works with a similar reliability
mechanism so that we can obtain end-to-end reliability
for flows.

We need to perform the scheduling component of GPD
in a distributed fashion. In particular, we need to resolve
contention among the nodes in a distributed manner. This
is of course a problem for any decentralized wireless
system. However, we need to do this in such a way
that we maintain (to the extent possible) the optimality
properties of GPD.

Incremental designOne other feature that we would like
wireless protocols to satisfy is that they reuse as many

slot we schedule the transmissions from the schedulable f&&ftures as possible from existing wireless protocols.r@he

S C L that maximizesy_; ;. wy. The congestion control are

many protocols in existence for wireless networks that



are proven to be robust and we try to use as many of theskenever possible. Another topic that has recently gained
features as possible while still being consistent with theDG increasing interest is methods for achieving optimal netwo
framework. For example, we are able to reuse the notionslity when network coding is permitted. (See e.g. [8].)
of Request-to-Send/Clear-to-Send (RTS/CTS) and the flacko As we have already mentioned, most of the prior work on
mechanism from the 802.11 contention resolution protocolsetwork utility maximization does not explicitly take scha-
For the congestion control, we are able to reuse the sequendng dynamics into account. The goal was simply to calculate a
and acknowledgment mechanisms from TCP. However, wet of flow rates that lie in the capacity region without dilyec
stress that we do not reuse the congestion control algorithworrying about how to schedule the data so as to achieve these
of TCP. rates. As shown in [5] the fact that a set of rates is achievabl
Scalability issues:Since we use the PDQ data structurejoes not necessarily mean that they are actually achieved
each node has to potentially maintain a separate queue ifothe wrong scheduling is used. This issue was addressed
every possible destination in the network. We believe thiat t by a set of recent papers [24], [11], [23], [18] that provide
is feasible for mobile ad-hoc networks of moderate size (sayethods for joint congestion control and scheduling witha th
up to~ 100 nodes). In future work we plan to explore efficiengoal of optimizing aggregate network utility. The paper][24
gueue aggregation methods for larger networks which woulitroduced the GPD algorithm that is the motivation for the
allow us to drastically reduce the number of queues whileGPD protocols that we present in this paper.
preserving most of the benefits of the “pure” PDQ structure One problem with many of the theoretical scheduling al-
studied in this paper. gorithms in wireless ad-hoc networks is that in their pure
form they require some central control to determine which
D. Related work set of nodes should transmit at each time step. Recent work
As already mentioned, there has been a lot of prior wotkas therefore looked at distributed schemes for resolving
that considers scheduling or congestion control in witelesontention among nodes so that we can remain close to
networks in isolation. Early work on scheduling includes ththe boundaries of the capacity region and also take network
well-known papers of Tassiulas and Ephremides [26], [2lilities into account. Algorithms of this type are presahin
who showed that scheduling schemes based on queue sj2d$, [29], [13]. In particular, the results of [13] will miviate
can maintain queue stability for inelastic traffic whenetfeés our techniques for contention resolution that we present in
is feasible. (See also Awerbuch and Leighton [6].) More méceSection 1V.
research has looked at scheduling issues in single-hagdarell
type networks. One difference between cellular networld an
ad-hoc networks is that the simpler nature of the topology The wGPD algorithm will reuse as many components as
means that it is often easier to schedule according to ddtaipossible from the standard 802.11 protocol. For this reason
channel feedback statistics. One area of interest has baenbriefly give an overview of how scheduling is performed
providing “Proportional Fair” bandwidth allocations fdastic in 802.11.
traffic among a set of mobile users. This corresponds to maxi-In the most basic form of 802.11, each node has a single
mizing the aggregate logarithm of the assigned flow rates. AtFO queue. The next packet that a node transmits is always
algorithm for achieving this is known as “Proportional Fairthe packet at the head of the FIFO queue. Contention between
and was first presented in [28]. Papers that derive theatetimterfering nodes is resolved in the following manner. Each
properties of the Proportional Fair algorithm include [d8F], node has a value known as its current contention window.
[1]. An extension of Proportional Fair that applies to semMhenever a transmission needs to be made the node initiates
elastic traffic with minimum rate requirements was presgnta backoff counter to a random value from within the contentio
in [4]. Other papers that discuss the provision of Quality-owindow. It then starts to decrement this backoff counter,
Service in wireless data networks include [19]. pausing it whenever the channel goes busy. When the counter
The literature on the theoretical analysis of congestiam coreaches zero the node transmits the packet. If the trariomiss
trol schemes is also large. As discussed earlier, Kelly,Idau is unsuccessful the contention window is doubled and the
and Tan [15] initiated a body of work that analyzes congestigrocedure is repeated.
control algorithms such as TCP from the perspective of drima One well-studied problem that can occur in ad-hoc net-
dual algorithms that aim to solve an associated networkyutil works is the “hidden node” problem in which we have two
maximization problem. This work was extended in humerodsansmissions that interfere at one of the intended rerzive
papers (e.g. [20], [21], [30], [18]). Specific extensionatth even though the two transmitters cannot hear each other.
considered the capacity region of wireless networks ireludhis problem can be ameliorated by using a (Request-to-
[9]. One feature of much of this work is that the flows ar&end/Clear-to-Send) handshake before each transmidsion.
assumed to be permanently present in the network. Mdfres case, before the main data transmission takes plage, th
recent papers (e.g. [10], [17] and references therein) &gk transmitting node first broadcasts a small RTS packet and the
model in which flows with a finite amount of data to transmithe receiving node replies with a broadcast CTS packet.yf an
arrive in and depart from the system. In this case the aiother nodes hear this conversation they freeze their owesacc
is to keep the number of active flows stochastically boundettempts for the length of the transmission. This signaling

II. OVERVIEW OF 802.11SCHEDULING



makes it much less likely that a hidden node will interferaatual in itself, and is also motivated, in particular, by th
with the intended receiver. In addition any collisions tdat random-access based schemes proposed in [12], [13]. The RC-
occur are more likely to involve small RTS/CTS packets thaddAC scheme [12] applies to wireless LAN settings (where all
large data packets. transmissions interfere with each other), and essentiddly to

We are now able to describe the wGPD algorithm in deta#nsure that only the node(s) with the highest urgency wesyht
In Section Il we discuss the maintenance of the PDQs aattempt channel access, thus reducing overall conteriios.
in Section IV we describe the scheduling and contentigraper [13] adresses general topology networks; our heurist
resolution protocol. In Section V we describe the signalingan be viewed as the limiting case of the scheme proposed
that is required for the exchange of PDQ information and in [13], if we replace urgency weighta, as defined in
Section VI we present the congestion control protocol. this paper, withf(w’), where f(-) is a “steeply” increasing
function.

We implement the priorities via a simple modification to the

The queuing structure of wGPD is the same as that for t862.11 contention resolution protocol defined in Sectian |
theoretical GPD algorithm described earlier. At each nodeThis modification is based on the urgency weights and is
and for each destinatiod there is aPer-Destination Queue defined as follows. If a node believes that it has the largest
(PDQ) that we denote by’. (See Figure I-A.) When data urgency weight in its interfering neighborhood (based on
with final destinationd arrives at node, it is placed into that all the urgency weight information it has received), it &tar
queue. When it is transmitted from the node it is removeglith a small initial value for the contention window (e.g. 32
from the queue. We usg, to denote the size of this queue. We'slots”), otherwise it starts with a much larger initial val
also assume that each queue has an associgjedcy weight for the contention window (e.g. 128 “slots”). This has the
w’. The urgency weights are the inputs to the schedulim@nsequence that any node that has the largest urgencytweigh
component of wGPD and are defined in exactly the sanmeits interfering neighborhood is significantly more liketo
manner as for the theoretical GPD algorithm, e}, = access the channel during the contention resolution psoces
g4 — qg(l’d)]ri’n(i’d), wheren(i, d) is the next hop after node
i on the route to destinatiod andr; ,,(; 4) is the channel rate )
between node and noden(i, d). Note that the definition of W& now describe how the queue states and the urgency
these weights requires signaling among neighboring natles. weights are exchanged between neighboring nodes. We pro-

I11. PDQ MAINTENANCE

V. SIGNALING

discuss how this signaling is performed in Section V. pose two alternative methods for doing this, depending on
whether or not the Request-to-Send/Clear-to-Send (RTS)CT

IV. SCHEDULING AND CONTENTION protocol is used. The main reason that RTS/CTS is not always

RESOLUTION used is that for small packets it adds a certain amount of

As we have just described, the scheduling and contenti@erhead. Moreover, some of the hidden node problems that
resolution decisions are based on the urgency weights as3¢S/CTS was designed to address can also be prevented via an
ciated with the PDQs. In WGPD the scheduling decisions ag@hanced carrier sensing mechanism in which nodes can hear
made in two stages. First, there is an intra-node scheduliigerference at a range greater than their transmissiageran
proced_ure in whlch_ e_ach node decides which packet_lt WN RTS/CTS case
transmit whenever it is next allowed to make a transmission.
Next, there is the contention resolution (or inter-noddestul-
ing phase in which transmissions that interfere competengmo
themselves to determine who should transmit next. o ey woigt t 102001

The intra-node scheduling phase is extremely simple. When- E -
ever a node has completed a transmission it determines the E// \

PDQ Q7 for which w} is maximum (and is positive). It then _e i

removes a packet from that PDQ and joins in a contention

resolution competition that aims to determine which among E E E

a competing set of transmissions should next be allowed to

transmit, Fig. 2. An RTS transmission showing the attached PDQ and oygeright

For inter-node scheduling, it is clear from the definition ohformation.
the ideal algorithm in Section I-C that its exact impleménta
would require the solution of a max-weight independent setThe main result of the RTS/CTS process is that nodes that
problem which is not only NP-hard but also hard to approxare two-hop neighbors of each other do not interfere. Hence,
imate. Our inter-node contention resolution protocol isdah if we are to regulate the contention process via the urgency
on the following heuristic. Each node determines the urgenweights, we need urgency weight information to propagate to
weights of all transmissions with which it will potentially two-hop neighbors. In addition, we need queue information t
interfere. If it has the maximum urgency weight among thog®opagate to one-hop neighbors so that the nodes can delcula
transmissions then it decides to transmit. This heuristicery the urgency weights. The RTS/CTS packets offer an elegant

RTS

PDQ info for 192.0.0.1
Max urgency weight at 192.0.0.1

192.0.0.1




cTs

—PoQuio a0 protocol and ensures that all data is eventually deliveced t
gy o -op o o1 1920 the destination. We remark that the entire notion of trartspo
E layer congestion control only makes sense for elastic ¢rédfi
semi-elastic traffic) since for inelastic traffic we are extpe to
inject all the data that arrives. Hence we assume that we have
a utility function for each traffic flow for which congestion
control is being applied.
Unreliable version: In the unreliable version of the
congestion control protocol, we decide whether or not tednj
a packet whenever it arrives from the application layer. The
decision is made as follows. For each flgfvwe maintain
way to do this. First, when sending an RTS, the node add$ average rate; that is an exponentially-filtered average of
field that lists its PDQ sizes. It also includes the value ef tifhe amount of data admitted to the flow. The time constant
maximum urgency weight among its queues and an estim&®é this filter is some small parametg i.e. z is multiplied
of the maximum urgency in its one-hop neighborhood, whidpy & factorl — 5 in each time step and is increased B,
is obtained by the procedure described below. Each node aiienever a packet of sizg is injected into flowy.
does this when sending a CTS packet. When a nageeives ~ Suppose that flowf has sources; and destinationd;.
this information from a neighbarit runs through all its PDQs Decisions regarding whether to inject a packet into flgw
and for each destinatiod it looks to see if nodei is the areé made by, and are based on the utility function for flow
next hop on its path to destinatioh If it is, then it sets J/ and the size of the PDQZj. In particular, for elastic flows
w) = [q), — qi]r;i, Wherer;; is the current transmission ratea packet is injected as long @8 () — ;! > 0, where
between nodg and node. (This rate depends on the transmit/;(-) is the first derivative ol (-). In other words, a packet
power of nodej and the channel conditions and interferencis injected as long as the incremental benefit of the injactio
between nodé and node.) Further, it updates its estimates ofs more than a scaled version of the PDQ size at the source
the maximum urgency in its 1-hop and 2-hop neighborhood®yde.

192.0.0.4 E

Fig. 3. The corresponding CTS transmission.

denoted byT” and V7, respectively, as follows: If flow f is semi-elastic (and hence has a minimum rate
. i requirementR?m) we use the same modification that was
T’ = max {T‘j’ w } described for the theoretical GPD algorithm in Section KC.
o o . L ; o
Vi — max {VJ,TZ} 7 th|§fcase, a packet |s.|njected as Iongg@st) +U (x5) .
ﬁqdf > 0, whereg(-) is some (sharply) increasing function

contained (€:9-¢”) and Ky is atoken countethat keeps track of whether

in nodei’s transmission. It is clear that? provides a good © Mot flow f is meeting its minimum rate requirement. In
estimate of nodg’s 2-hop max urgency V7, as long as the particular, K receives t_okens. a}t ratéif’”” at all t|me_s.
urgency weights do not change drastically over one round Yf€never a packet of siz, is injected into flowf, K is
transmissions. Nodg then uses7 to decide on its backoff décremented by an amoufy (but is never allowed to drop

based on the urgency weight informatiasf,and7™,

window as described in Section IV. below z_ero). ) ) )
Reliable version:In the reliable version of the protocol,
B. Non RTS/CTS case we need sequence numbers and acknowledgments in order to

There are some cases in which RTS/CTS is not appropri&®ep track of which bytes are received at the destination. In
to use. In particular, for small packets the amount of ovaethekeeping with the philosophy of making the minimal number
required by RTS/CTS can be excessive. In this case content® changes to existing protocols, we incorporate the wGPD
resolution takes place with respect to the data packets orfiphgestion control protocol within an implementation of 'C
all the information which would be included into a RTS igvhich allows us to reuse the TCP sequence number / acknowl-
included into the data packet itself, and the MAC layer ACtedgment mechanism. We make two fundamental changes to
packets carry the information that would otherwise be mlacéhe TCP congestion control mechanism however. First, we set

in the CTS packets. the TCP congestion window so that it is always equal to the
maximum received window size. In this way we essentially
VI. CONGESTIONCONTROL disable the effect of the congestion window. Second, whemev

In this section we outline the methods by which w&CP makes a decision regarding whether or not to send
implement the transport-layer congestion control compbneadditional data, instead of using the the TCP congestion
of wGPD. In particular, we show how decisions regardingindow we use the wGPD criterion, namely whether or not
whether or not to inject a packet can be made by examinigg(z;) — ﬂqu >0 (or g(Kp)U'(xf) — 6q2; > 0).
the size of the PDQ at the source node. We define two typesNe reuse a number of other components from TCP, in
of congestion control, an “unreliable version” that fits hift particular the timeout and retransmission mechanism. When-
the standard UDP protocol and can be used for flows that carer TCP suffers a timeout and needs to retransmit, we place

tolerate loss, and a “reliable version” that fits within th€l the data that has timed out in a retransmission queue. The



decision regarding when to inject such data again relies on LT T e
the wGPD criterion. However, the fact that the timeouts and o
retransmissions operate in essentially the same way as in
TCP means that we can reuse many of the enhancements
to TCP that are known in the literature, such as Selective £ ol
Acknowledgment (SACK) [22].

ghput (bytes/s)

Throt

VIl. SIMULATIONS

In this section we use OPNET simulation to compare the N ww e w
performance of wGPD with standard protocols such as the
802.11 MAC and the TCP Congestion Contr0| algorithm. Our Fig. 5. The flow rates allocated by wGPD in Experiment 1.
results show that:

« The wGPD protocols produce flow rates that are a good~ i T o e ——
solution to the utility maximization problem defined in ]
Section I-B. In particular, the flow rates are close to the
optimal rates even in the case that the nodes are mobile, |

« For inelastic flows, the wGPD algorithm is able to smooth
out bursts of traffic. This keeps queues stable and Mini-u.,
mizes packet loss.

o The standard 802.11 protocols, since they do not take °;
queue lengths or the user utilities into account, do not
have any of the above properties. In particular, they preig. 6. The flow rates allocated by 802.11+TCP in Experimen(L&ft)
duce flow rates that do not match the optimum solution &hort flows. (Right) Long flow.
the network utility maximization problem. (In addition,
the flow rates tend to oscillate more than the flow rates
produced by wGPD.) Moreover, even for inelastic traffid}eighboring nodes cannot transmit or receive simultarigous

there are situations where the 802.11 protocols do r@tly one transmission can take place at a time. Since the
keep the queues bounded, even when this is feasible. utility functions are logarithmic each flow consumes the sam

We perform our experiments using the OPNET simulatiofﬁ‘_"‘Ction of network resources under the optimgl ratg atioca
e the long flow involves three hops this implies that the

program. We assume that all packets are of size 1024bytes X . .
we use a channel rate of 1Mbps. Although this is lower thajgndwidth assigned to the long flow should be one-third of

many current 802.11 systems, a small rate allows us to 48§ Pandwidth assigned to each of the short flows. A plot
the effects of saturation with lower injection rates anddeen©f the application level throughputs under wGPD is shown
the simulations run more quickly. We have verified that at'q Figure 5. We see that under wGPD the rate allocated to

qualitative level, all our results are unchanged as we move'fi€ 1ong flow is close to this optimal allocation. A close
higher bit rates. examination of the plot shows that the long flow receives

slightly more than one-third of the bandwidth assigned ® th

A. Elastic traffic long flows. The reason for this discrepancy is that for finite

We begin with a simulation in which all flows are elasticvalues of the parametet used in the congestion control, the
This means that each flow has a logarithmic utility functioRxponentially filtered values; constantly oscillate and so we
that always rewards an additional increase in bandwidth. Al§ not converge to the exact optimum. Aspproaches zero,
mentioned in Section I-B, the logarithm function for applithe rate allocations match the optimum allocations more and
cations such as web browsing is motivated by experimedt@re closely. However, we may not want to do this in practice
performed with human subjects [3]. since smaller values of lead to larger PDQ sizes.

The rate allocations under 802.11+TCP are significantly
worse. On the left sie of Figure 6 we show the rates allocated
to the short flows. We see that these rates are much less stable

g3

150000 [
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> than the rates under wGPD. More seriously, the rate alldcate
to the long flow (as shown on the right side of Figure 6) is zero
Fig. 4. The simple linear array used in Experiment 1. except for occasional small bursts. Hence, under a logmaidth

utility model, the aggregate utility will be extremely poor

Experiment 1:Our first topology is depicted in Figure 4.The reason this happens is that in the 802.11 random access

We have a simple linear array consisting of four nodes eacbntrol, each node always has equal opportunity to transmit
separated by the interference radius. There is one flow theten it has data. Therefore, in order for a packet to comiglete

passes through all three hops from left to right. There amaverse a long path, it has to win multiple random access
three other flows that each pass through one hop only. Siremenpetitions. It is difficult for the long flow to do this at a



80000

" long flow —

high rate.
1) Experiment 2:0ur next topology is depicted in Figure 7. .|
We once again have a long flow that passes through a three-hep| $ oo ]
linear array. We also have two one-hop flows that pass stiart @fe| | — 1
outside the interference range of the long flow and then movee| £ oot ]
inwards at time 60s so that all flows are mutually interfering | | ]
(The node movement is depicted with dotted lines.) The rate’“““:’i N °° ‘ LN j\M ]
allocations under wGPD are depicted in Figure 8. We remark °© = «© © 2 o = o R
that before the short flows move, their rate allocation sdiéisr _ _
in the sense that the transmission rate is equal to the rat{'rgotr?'ﬂ szh‘?g:gm)rffﬁgi:g’ﬁted by 802.11+TCP in Experimen(.2ft)
which data arrives from the application layer. We see that af
the short flows move, the rate allocations quickly converge t

the new optimal values. In contrast, under 802.11+TCPr aftéan adjust their source rate. We present a situation where th
the short flows move at time 60s the short flows exhibit larggheduling component of wGPD is able to carry all of the
oscillations (see Figure 9) and the long flow typically reesi injected traffic whereas the 802.11 scheduling mechanisens a
an extremely small rate allocation (with sporadic spikes). unable to do so.

Experiment 3: This experiment is designed to highlight
i i the contrast between the inherent instability of the 802.11
scheduling protocols and the better stability propertiés o
3 3 wGPD. The example is motivated by an instability example for
the FIFO scheduling protocol that was first presented in [2].
We use the topology shown in Figure 10. The traffic injections

occur in two phases. We assume that at the the beginning of
the example we have a small burst of packets arriving at node

70000 [

i % i % 0. We can think of these packets as coming from a flow (that
E = = ,E we call flow 0) that has node 6 as its destination and that has

A A already stopped injecting. In phase | we have two new flows,
1 1 one from node 0 to node 11 and one from node 6 to node
12. Then in phase Il these two flows cease and we have two
additional flows that start injecting packets, one from n@de
to node 11, and one from node 5 to node 13.
: : The key feature of this example is that due to the interfer-
: : ence between the flows, the initial burst of packets that vie ha
E E at the start of the example gets propagated and amplifiedt unde
the standard 802.11 scheduling protocols. This is becadde e
burst of data is concentrated. When the data arrives at node 6,
Fig. 7. The simple linear array used in Experiment 2. all of the bursts collide and cause a large buildup of datakwhi
leads to significant packet loss. In contrast, the “baclqunes
mechanism of the wGPD scheduler (which comes from the
fact that packets are never transmitted from a small PDQ to a
large PDQ) means that GPD is able to smooth out bursts of
packets so that no packet loss occurs.

The see this, we plot the queue process at nodes 0,1,2 and 6
(where most of the interesting behavior occurs) in Figure 11
We see that for standard 802.11 the buffer at node 6 reaches
its limit which leads to significant packet loss. In contrdke

AR I I gueues under the wGPD protocol remain significantly smaller
PEr e and hence no packet loss occurs.
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60000 -
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10000 | |

C. Semi-elastic traffic

In this section we present a simple experiment whose aim is
) . to show that the wGPD algorithm is able to support minimum
B. Inelastic traffic rate guarantees for semi-elastic traffic. In contrast, thedard
In this section we compare the performance of WGPD vers862.11+TCP algorithm is oblivious to any such guarantees
standard protocols in the case that traffic is inelastic,the and hence does not always meet them, even when all of the
sources do not have any congestion control mechanism thahimum requirements are feasible.

Fig. 8. The flow rates allocated by wGPD in Experiment 2.
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12 Fig. 13. Plot of queuesizes vs time for 70 node multicast erpent. (Left)
wGPD. (Right) 802.11.

Fig. 10. The topology used in Experiment 3.
E. Other benefits of wGPD

We conclude this section by mentioning two other benefits
of wGPD over standard protocols. First TCP typically does
not reduce its sending rate until buffer overflows. This &ad
to large buffer occupancies that in wireless networks can
lead to excessive packet delays. This effect was noticed by
Chakravory et al. in [7]. In contrast, the wGPD protocolsctea
R N T obde bl ) directly to buffer occupancy at the source node of a flow. This

enables wGPD to keep buffer occupancies smaller.
Fig. 11. The buffer process in Experiment 3. (Left) wGPD. (R)gstandard  Another benefit occurs when a link breaks. Consider a link
protocols. break at the end of a linear array. With standard 802.11,
packets will continue to be sent to the node next to the
broken link. This will cause that node’s buffer to grow large

Experiment 4: Experiment 4 uses an extremely simplend potentially drop packets. The backpressure mecharfism o
topology with three single-hop flows eacch of which has @GPD will spread the load among multiple queues, thereby
common source. One of the flows (flow 0) has a minimum raggducing the probability of packet drops. For this reason we

guarantee of 40kbytes/s. The standard protocols are obtivi pelieve that wGPD has potential uses in “Disruption Toleran
of this requirement and hence allocate rate equally amoag Wetworks” (DTNs).

flows. Figure 12 shows that the wGPD is able to raise the rate

150

Throughput (bytesls)
Throughput (bytesls)

of this flow so that its minimum rate requirement is met. VIIl. CONCLUSIONS ANDFUTURE WORK
In this paper we described the wGPD protocol for combined
45000 congestion control and scheduling in wireless ad-hoc nddsvo

40000 - < and compared its performance with the standard 802.11+TCP
25000 - ( ] protocols via simulation.
w000 One immediate question is how applicable any new conges-
tion control scheme is since TCP is so widely used in today’s
systems. This is one of the reasons why in this work we have
focused on mobile ad-hoc networks. Although a largescale
replacement of TCP would be essentially impossible in tday
internet, we believe that some mobile ad-hoc networks (e.g.
military networks) are sufficiently self-contained that e r

placement of both the scheduling protocols and the corggesti

T
!

25000

T
!

20000

T
!
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O e e e e control algori.thrns may be feasible. In addition, the faatth
Time spectrum is limited in many ad-hoc networks means that they
would benefit most from the performance gains of wGPD.
Fig. 12. The flow rates allocated by wGPD in Experiment 4. There are a number of possible directions for extending

WGPD. In particular, we are currently looking at numerous

) extensions including support for multicast traffic, powada

D. Multicast rate control. We are also integrating wGPD with algorithos f

All of the experiments described up to now have been fadmission control and routing. The theoretical GPD albanit
topologies of modest size carrying unicast traffic. In FigilB can be extended to handle routing in a very natural way,
we show the queue dynamics for a 70 node network carryingmely each packet is always forwarded to the neighbor with
multicast traffic. We see that for this experiment wGPD keeplse smallest PDQ for a destination. However, this can lead
the queue sizes small whereas 802.11 creates clear iitgabil to situations where different packets from a flow can follow



different paths, thereby leading to out-of-order packevalrat
the destination. We are therefore examining methods tliroug

which PDQ information can be used to create more persist%
routes.
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