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Abstract—We investigate models for uplink interference in We focus here mainly on voice, not data, but some parts of
wireless systems. Our models account for the effects of outageour modeling apply to certain kinds of circuit data services.
probabilities. Such an accounting requires a nonlinear, even Our basic setting is as follows (see for example Lee and

nonconvex model, since increasing interference at the receiving Mill o, | . . th & b tati
base station increases both mobile transmit poweand outage iller [2]). In a given region, there ar ase-station

probability, and this results in a complex interaction. Our system antennas (hereafter “sectors”), and a given seétowith
model always has at least one solution, a fixed point, and it 1 < k < K, receives total radio powaet;,, from mobiles in the

is provably unique under certain reasonable conditions. Our region and from thermal noise and external radio interference
main purpose is to model real wireless systems as accurately as

) e . ““sources. Based on the frame error rate, the sector determines
possible, and so we test our models on realistic scenarios using

data from a sophisticated simulator. Our algorithm for finding a a target SIR (signal-to-interference ratip) such that if the

fixed point works very well on such scenarios, and is guaranteed Signal power received from a mobile is at leasgtry, then
to find the fixed point when we can prove it is unique. A slightly the error rate for the mobile will be acceptably low. For each

simplified model reduces the main data structure for akK-sector mobilem in soft handoff with the sector, the sector determines
2 1
market to 16K bytes of memory. the received powes,,,, and sends @ower control bitto the
I. INTRODUCTION mobile, whose value depends on whethgr > ¢px5, and

hil ¢ bl ‘ I oh tells the mobile to increment or decrement its transmit power
While many factors can cause problems for a cell p Or?;1‘?;cordingly. The mobile looks at all such power control bits,

call, and many design goals must be balanced in designin f decrements its power if any of the bits suggest it. This

g
_ceII ph_one sys_tem, the power used b_y the_phone (the “mobil potocol keeps the mobile power near the smallest possible
is particularly important: this power is limited, and the less

. ; _ uch that some sector will receive it with adequate SIR.
is used, the longer the mobile battery will last and the smaller

it can be. Moreover, in a spread spectrum system, the signal
from each mobile can interfere with the signal from every
other mobile. This motivates the use of sophisticated power
control methods: by a variety of means, the system determines
how much power is needed by a mobile to carry its call, and
the mobile transmits using just that much power. Part of this
determination is done at the base stations interacting with the
mobile. The result is a complex dynamical system, as mobiles
move, signal losses vary, and calls begin and end.

We describe here a computational model of spread-spectrum
uplink power control. The model is used within Alcatel-
Lucent's Ocelot software for wireless optimization, which
handles for example CDMA2000 and UMTS voice and circujy
data services. With this application in mind, the model has

A typical test scenario with some of the sectors labeled by ikdex

several properties: Suppose each mobile is transmitting with powes,,,, and
« It models existing wireless systems: it is not a propos@ received at sectok with power s,,,/ Lk, where Ly, is
for a new power control system; the pathloss factor for the signal traveling framto k. Let

« It can be evaluated with reasonable speed; k(m) denote the sector that is currently determining the power

« It is a differentiable function of relevant parameters, anglansmitted bym, and.S;, denotes the set of mobiles such
the derivatives can be evaluated with reasonable speethat & = k(m). Then the power transmitted by € S; is
The first property implies that we cannot, for example, s = bil 1)
simply insist of the wireless system that no calls are dropped; m T Chk Sk,
such a requirement corresponds to the inclusion of an upgerd so for eaclt’, xp = nw + >, ZmESk Lim®rxi/Lim,
bound on mobile power as a constraint in an optimizatiomhererny is the power of the noise plus external interference
problem [1]. received by secta’. This equation is correct only under some



approximations and assumptions, but it suggests somethingofivenient computationally: with discontinuities, there may
the nature of the model that must be evaluated. Put anothet be a solution to the fixed point problem = F(x);
way, the vector of total radio powerssatisfies the fixed point with the smooth version, we are able to show that under

conditionz = n + Az, where some reasonable conditions, a fixed point solution exists. The
Lim®r solution of the fixed point problem is discussed in Section V.
Apry = Z T (2 Here is the outline for the rest of the paper: we begin
mesy, km in Section Il by explaining the smoothed sawtooth functions

Note thatA is a nonnegative matrix, that is, all its entries argnd their relationship to log-normal fading. Then Section IlI
nonnegative. Ify = 0, thenxz = Az, andz is an eigenvector gives a spline-based approximation that allows contributions
of the nonnegative matrid. for various locationsm to be combined and manipulated
The eigenvalues and eigenvectors of nonnegative matri&diciently, and Section IV presents a resource-saving refine-
are well-studied, as thé&erron-Frobeniustheory, and that ment. Next, Section V presents robust algorithms for finding
theory has been applied to the understanding of power contiged points and gives appropriate theorems. The results in
[3]. However, the presence of noise and external interferen&gction VI include discussions of the various models, and
implying > 0, means that such theory does not directly giviests on realistic scenarios (not just hexagonal grids). Finally,
the most detailed understanding of power control. Section VIl presents conclusions.
A further c_ompl|cat|or_1 is reverse-link o_utage: a call may Il. SMOOTHED SAWTOOTH FUNCTIONS
be dropped if the mobile cannot transmit the target power ) )
érarLiem as in (1); thus the power,, is not a linear function Consider a single term from the sum (2) as changed to

of =, but instead a sawtooth: at a certaipthreshold, it goes account for the dropping of calls due to reverse-link limi-
to zero. tations. If s is the maximum mobile uplink transmit power,
Another complication isoise rise limitation a sector may Multiplying the term by, if s, < 5, and 0 otherwise,

block calls if the total radio power it receives is above a pre-séere agains,, := wyLyn¢r for m < Sy, gives the
threshold. Such a limitation is discussed in Section V. sawtooth function that we need to smooth by considering the

A dynamic model of power control might maintain s£nsemble average of a dynamic set of mobiles and finding the

collection of active mobiles, adding some as calls arriye@ntribution to interference due to locatiam. The sawtooth-
and dropping others either as normal call termination, or §&sed interference contribution to sectdrfrom locationm
outages, the result of reverse-link failure. Simulation over tinfE2nsmitting to locatiork: could thus be expressed as

would then yield outage probabilities, average values for the 1 ift<1
x1, and so on. However, such a scheme would be too sIovi—%an(%n)? where Q™ (1) := .

Lo S k'm 0 otherwise,
for our optimization application, and also, not smooth enough.

We use instead a static framework: a (large) discrete setaofd the ratioy,, := s,,/$. Another way to describe this is as
locations is fixed, each of which has an estimated probability 3
of being the location of a transmitting mobile. The locations I

and probabilities are determined elsewhere, and are based on ] Wi _
input by the Ocelot user, from a variety of sources, and al¥§'ereG(y) is the sawtooth function

G(Ym)s

on estimates of forward-link coverage probability, and other G(Y) :=vQ (7). ©)
considerations. The locations could just be points on a regular
grid, but Ocelot provides many other options. Replace pathlosseby,, and Lim by Ly exp(Rim) and

We thereby model a dynamic set of mobiles simply as tHg'm exp(Fim), where random variablegy,, and iy, are
expectation of the mobile power generated at each locatidh(0; o). thatis, normally distributed with zero mean and stan-
With some abuse of notation, we index the locations with dard deviations. This implies replacingy,, by vin exp(Rm)
and have corresponding lossBg,,, power levelss,,, and so a5 well. Then the expected interference contribution for loca-
on. Since we are modeling probabilities and expectations ai#ff? 7 could be estimated as
not specific mobiles, the powey,, need not be a discontinuous 5
sawtooth function ofry, but instead can drop off smoothly, Lirm exp(Ryrm)
as an ensemble average. We might base this dropoff on a 5Ym B
log-normal probability distribution for shadow fading. Such  ~ mE [exp(Rim — Rirm)Q™ (Ym exp(Rim))] , (4)
a model is discussed in Section Il. However, for efficiencg

reasons, we use spline-based approximations to the mOl?TI“ ht be better modeled as a non-outage probability.

response, as discussed in Section Ill. This leads to a functio h iall I
F : RX — RK, which disregarding call dropping would tmay be thatfy,,, and R, are partially correlated, so we
‘ ' assume that there is songec [0,1] and N(0, o)-distributed

be F(z) = 1+ Az, but instead we have’(z)y = mw + 00 variablef... independent oft,, . o thatRe., —
>k Awi(zr), where Ay (xy) is a spline function of the (1-B)R ©BR and So
sector k interferencex;. This smooth replacement for the fm kims

sawtooth is not only more plausible as an estimate, but is  exp(Rgm, — Rirm) = exp(—ﬂ]%k/m)exp(ﬂka).

TYm eXP(ka)Q_ (Wm eXP(ka))

‘tbbough the non-outage conditid®~ (v,, exp(Rkm)) = 1



If we use this in (4), use theAindependencelmnAande/m, whereb is a bias parameter to be chosen along withwe
and observe thaE[exp(—BRim) = Elexp(BRrm )], the must choosex andb so that
expected interference contribution becomes Go (by)

$m Ty ~v®@[—1In(y)/o — Bo] (7)
E |exp(Rgm — Ry N exp( Ry . . .
K'm [ P(Rim m)Q” (m exp( m))] as functions ofy. (Again, we assume for brevity that=0.)
5Ym - We can quantify the difference between the two functions
= E[-GRimE |e Ry, exp( Ry . . . . p
Lim [~ BRrm]E [exp(BRiim)Q (i exp(Rim))] by evaluating each side of (7) at,, valueso=3:00, ¢=2:97,
() o294 5300 and taking the RMS mean of the differ-
It is not hard to show that this is ences. For any given, it is easy to choosex and b so as
§ exp(B20?) to minimize this. For example, exhaustively trying multiples
T%nq’[— In(ym)/o — Bo]. (6) for 0.0001 fora and b gives the results in Table I. We have
'm
Here®(z) is the normal cumulative distribution function at TABLE |
the probability that aVv(0, 1) random variable is less than CHOOSING at AND b SO AS TO SATISFY(7)
Note that~,,®[— In(v,,)/o — Bo] is essentially a smoothed 1 ; -
H H H H e no error
version pf 3). Ip Fhe following dlscussm_n, we assum&. 0 00515 01758 114573l 000579053
for brevity, but it is not hard to generalize 1® > 0, which 0.2303 | 0457 1.76343| 0.00498369
our algorithms handle. 0.4606 | 0.9679 4.09981| 0.00748236
0.6909 | 1.5904 12.3288 0.00915151
[1l. SPLINE APPROXIMATIONS 0.9212 | 2.3385 50.1016| 0.0108936
. : . 1.1515 | 3.1548 239.085 0.0173641
The normal CDF needed for (6) is easily evaluated via the 13818 | 3.9875 114056 0.030776
error functionerf(), since2®(x) = 1+ erf(x/+/2). However, 1.6121 | 4.8184 5061.15 0.0540373
it would be awkward to handle sums of such interference 1.8424 | 5668  21703.5 0.0943915
2.0727 | 6.6114 141023| 0.165292

contributions for many different locations € Sy. Viewing
(6) as a function ofr;, rather thamy,, requires a substitution
Ym = Sm/§ = ¢rxrLim/§ that shifts thex;, values at which

(6) begins to fall to zero. Even if we were to scale them ngr_lrcr?ons ofo atﬂddﬁ' t00th soli d to be added up for all
that their initial slopes match, the functions (6) for differenlt €se smoothed Sawlooth Spiines need to be added up fora
locationsm would be as in Figure 2a. ocationsm served by sectot so as to obtain a functiod .,

for interference at sectdt’ due to mobiles owned by sector

k as a function ofz,, the interference at sectdr. In other
words, we need a spline-based generalization of (2). For each
m, wWe must choose a smoothed sawtooth spﬁﬂéfsn—m

so thata'™xy ~ ~,,. This gives

also defined and used an empirical formula givingndb as

o(baimxy,)

_ 5 G
Api(x) = -
k k( k) Z Lk/m bal""
Fig. 2. (a) Smoothed sawtooth functions for various locatiemsvhere *
ym/xy differs by factors ofa = 1.26; (b) the corresponding spline IV. USING SIMILARITY TO SAVE RESOURCES
approximations with dashed lines at the ends of spline segments.
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Since the path losd,,, can vary by more than a factor

Spline approximations such as those shown in Figure 9h1000 as the locatiom ranges overSy, the Ay, function
are much more convenient when taking smoothed sawtodiH! typically have dozens of spline segments. This seems like
functions for various locationsn, and adding them up in & lot of mformatlo_n to s_tore_and mampulate for each pair of
a manner analogous to (2). The splines are piecewise-cupRCtorsk’k, especially sinced. functions for a commork
polynomial functions chosen to have second-order continufy't differing &' tend to be related, as shown in Figure 3.
at the knots where one cubic polynomial segment joins the Since the knots are all aligned, it is easy to add up the the
next one. Placing the knots at powers of a parametensures SPline functionsd,.;. to obtain a master spline functiofy, (x)
that any linear combination of these spline functions will b1at can be thought of as an averagie,,, normalized to have
a piecewise cubic spline with the same knot spacing. unit initial slope. .

We have found a spline with four knots, leading to a linear The resource-saving idea is to stakemaster spline func-
system of ten equations in ten unknowns, to be an effectif@ns andK* simple transformations instead df* spline
approximation. Call such a spline approximatiég (z); it is ~functions. We use

normalized to have an initial slope of one. Ap(x) Tk
The complete set of normalized smoothed sawtooth splines Th'kL ( z > ®)
is _ _
Go(batx) 7 in place of Ay (), wherer;;, and7, are chosen based on
bt ’ A}, (0) and A,/ (z) for some fixedz that can be thought of




2.5 — 3 SinceU is homeomorphic to a closed ball and the continu-

2 9 | 17 ous functionF' maps the whole positive orthant (a superset of
1'“;’ ] ][5 12 U) into U, the Brouwer fixed point theorem guarantees that
0.5 — g 1= | there is at least one fixed point= F(z).

0 — I — 0— N |8 It would also be desirable to guarantee a unique fixed point

and provide an algorithm that finds it efficiently. A popular
9 0.1 9'2 0.3040.5 001 _0'2 0.30.40.5 approach used by Yates [4] and others is to let the algorithm be
various Ag 11 (pW) xy contribution (pW)

Picard iteration, where repeatedly— F'(z), and also to give
conditions under which Picard iteration provably converges to
Fig. 3. (a)Ay, functions fork = 11 and variousk’; (b) the corresponding a unique fixed point. For example, if we Can exhibit a real
functions based on raw unsmoothed sawteeth. The test data are from Ik¥NbErs< < 1 and a vector nornf-||, under which

scenario shown in Figure 1.
[1F(z) = F)l, <rllz—yl, foralz,ycU, (9)

vs. 211(nW) vs. z11(nW)

as an a priori guess at a typical interference level. This wdfen the fixed point is unique and Picard iteration converges
there are just two values to keep track of for ed¢h pair [TOm any starting point ir/. Nuzman [5] has shown that this
while we consider various locations. After finding these YP€ Of argument can be applied to a class of non-monotonic

9K values and thél master spline functiond,, we can set functions that unfortunately does not contain ,
In order to have an algorithm that is as reliable as possible,

e = A (0) and T = log(Ak’k@){(Tk_’kf)) we certainly need guaranteed convergence if (9) holds. We can
log(A(2)/) do this by producing a sequence of iteratés, 2(2), z(®) ..,
for each pai’k. (In practice, one must impose also a positivéhere each
lower bound onr/;, to avoid0° in (8). i i i i
Kk (8)) [26+D — P D)|| < wfl2® - FE®)||  (10)

V. FINDING A FIXED POINT for. the standard Euclid Picard iterati d 9
The last three sections have described different versions %ﬁ‘ € standar uclidean norm. Picard iteration under (9)

a function that gives the (expected) interference receivedacthieves this if a few iterations, each of which reduces
; g pe |r39‘c — F(z)||, by the factorx suffice to reduce|z — F(z)||
sectork’ from mobiles whose primary sectorfis In whatever by that factor
way each such functionly,(zy) is defined, the result is an | ' ) I . .
) . . Another way to find a fixed point is to use Newton iteration
estimaten,: + >, Awi(zi) of the interference received at ) ;
Py . = to look for a zero ofF(x) — «. Such an iteration does not
sectork’. This could also be written as a vectpr- F'(xy)1, require (9) and is known to converge quadratically if the initial
where F(z,) is a K x K matrix with F(xg)px = Arr(zk), 9 ged y

: N o' is sufficiently close to a solution of'(xz) — x = 0. This
j‘{}? 1;573}(6 {)(y v;z:;c))r_ofnailr 33?(331Dterflemi%%etr?eerefﬁzzu\?fcior suggests a hybrid algorithm that uses an intelligent starting

thus obeys the conditiom = F(z). In other words, it is a point, does Newton iterations, but switches to Picard iterations

. ) . if necessary to obey (10).
fixed point of the mappingd-. : . . )

When the sector-to-sector interference function is linear, 1) USe binary search to find a pointon the line between
a sum of sawtooth, or smoothed via log-normal fading, the 7 @ndu where the nlumberl of n%gatlvelcomponents In
corresponding fixed-point problem is easy, unsolvable, or % — F(z) is betweens K — 3 and K + EH
impractically slow. It remains to consider finding fixed points 2) Compute a Newton stez = (Jr(z)—1) " (F(z)—x)
for the last two versions, with spline-based functions, and with ~ @nd find the maximum such thatz — AAz € U. Here
the more compact spline-based scheme of Section IV. Jr(x) is the Jacobian of". o

Before discussing methods of solution of such general fixed3) L€ty =z, eo = [l — F(z)|| and exit ifeo is tiny. Then
point problems, we consider the implementation of a model of I A < 0.8, do Picard iterations and go to Step 2 as soon

noise-rise limitsfor power control. Here sectdr tries to keep as|z — F(z)]| < reo. _ _

ax < pmi, for somep > 1, by blocking calls if necessary. 4) LetA = max(A, 1+ 107%) and A = min(1, A). While

The simplest way to model this is just to compaBewith |z = F(z)|| > eo for 2 = y — Az, iterate A —

a function that limits theékth component to at mog,, but max(A/2, 2% — A). _ o _

it would be more accurate to replatein 5 + F(z)1 witha  °) If [z = F(2)| > rep, do Picard iterations until

vector h(z) whosekth component is a probability that sector ~ [1© — F/(#)[| < reo. Then go to Step 2

k decides not to block a call due to noise rise concerns. For eachi, theith iteration of Steps 2-5 advances frar
By any of these definitionsF' is a smooth function that to z(+1) while trying to ensure that the condition of (10) is

maps the positive orthant into a rectilinear region satisfied. The testing of values less than one, if one Newton

step is not feasible or does not help, ibree searchalong the
Newton step direction.

where the upper boungdy is readily derived. Thus we have If a Newton step is significantly out of bounds or makes so
points , andn that are opposite corners 0. little progress thaty > ||l — F(x)|| > kep, the algorithm

U={zeR" |m <ap < i},



resorts to Picard iterations. An excessive number of suc
iterations in Steps 3 or 5 should be treated as a failure
indication.

VI.

A version of the algorithm has been tested extensively
as part of Alcatel-Lucent's Ocelot software, but it is not
practical to rerun it on more than a few test scenarios as
shown in Table Il. We will not consider defining the function

RESULTS

TABLE IV

rI]-QELATNE DIFFERENCES(||z — y|| /(||z]| + ||y]|) BETWEEN SOLUTION
VECTORSZ AND y FOR EACH PAIR OF DIFFERENTF DEFINITIONS.

Ax+nvs. Ax+nvs. F§lllvs.
Fsll F§Iv Fs§Iv
H57 0.012 0.012 0.0019
M39 0.29 0.29 0.013
M39h — — 0.029
M60 0.090 0.090 0.0036
M115 — — 0.0065

TABLE I
THE TEST SCENARIOS

Label | K | Explanation

H57 57 | Hex pattern with 3 sectors per base station
M39 39 | Metro area with populatior: 500 thousand
M3%9h | 39 | M39 with 14 times the traffic near Sector 7
M60 60 | Metro area with populationz 700 thousand
M115 | 115 | Metro area with populatiorz 2 million

F : RE — RK based on unsmoothed sawtooth function
because fixed point iteration did not converge for any of t
scenarios in Table II. (It continually jumps back and forthy

across a particular discontinuity.) This leavé&r) = n+ Az,

and also the spline based functions, with and without resour

saving transformations, which we shall refer to/agV and
Fslll. Except as stated below, thegefunctions do not include
the noise rise limitation.

TABLE Il
SAMPLE RESULTS WITH POWERS IN PICOWATTSALL 7 = 17.3pW, AND
“5 4+ 1P” MEANING A PICARD ITERATION WAS NEEDED.

Only the M39h scenario (a portion of which was shown
in Figure 1) had anyz; values large enough to trigger
reasonable noise rise limits. Qualitatively similar results were
obtained from the simple composition &f with a function
that smoothly limits each componentag;, and from theh(z)
scheme. Whem is set so both schemes redueeby roughly
a factor of 2, other sectors are only modestly affected; e.g., the

oise rise schemes redugg from 31.60pW to 28.11pW and
’iG.SSpW, respectively. The main difference is that tt{e)
cheme makes it hard to find a fixed point unless there is a
lot of smoothing in theh(x) function. In fact, Newton steps
2nd Picard iterations can both fail.

VII. CONCLUSIONS

We have given realistic models for uplink power control for
voice and circuit data services under a variety of technologies.
Like our previous work [6], [7], [8], it is motivated by practical
optimization of wireless systems. The use of averages and
fading probabilities smooths out discontinuities that could
otherwise prevent the model from having a solution. Although

averagery, max Newton | - jncorporating outage probability leads to a nonlinear system
n+Az  F§lll F§IV | n+Az  F§lll F§IV | steps .
H57 [ 198 194 194 202 197 197 a for which we cannot guarantee convergence, we have ensured
M39 | 355 237 235 99.6 31.0 306 4 that F' and its Jacobian are easy to evaluate, and the hybrid
M3%h | — 251 251 — 141 131 | 5+ 1P | algorithm for finding the fixed point has proved to be very
M60 | 231 216 216| 604 356 36.1 4 iable i "
M115 | — 213 212 | — 352 339 | 5ore | Ellable In practce.
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