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Abstract— We investigate models for uplink interference in
wireless systems. Our models account for the effects of outage
probabilities. Such an accounting requires a nonlinear, even
nonconvex model, since increasing interference at the receiving
base station increases both mobile transmit powerand outage
probability, and this results in a complex interaction. Our system
model always has at least one solution, a fixed point, and it
is provably unique under certain reasonable conditions. Our
main purpose is to model real wireless systems as accurately as
possible, and so we test our models on realistic scenarios using
data from a sophisticated simulator. Our algorithm for finding a
fixed point works very well on such scenarios, and is guaranteed
to find the fixed point when we can prove it is unique. A slightly
simplified model reduces the main data structure for aK-sector
market to 16K2 bytes of memory.

I. I NTRODUCTION

While many factors can cause problems for a cell phone
call, and many design goals must be balanced in designing a
cell phone system, the power used by the phone (the “mobile”)
is particularly important: this power is limited, and the less it
is used, the longer the mobile battery will last and the smaller
it can be. Moreover, in a spread spectrum system, the signal
from each mobile can interfere with the signal from every
other mobile. This motivates the use of sophisticated power
control methods: by a variety of means, the system determines
how much power is needed by a mobile to carry its call, and
the mobile transmits using just that much power. Part of this
determination is done at the base stations interacting with the
mobile. The result is a complex dynamical system, as mobiles
move, signal losses vary, and calls begin and end.

We describe here a computational model of spread-spectrum
uplink power control. The model is used within Alcatel-
Lucent’s Ocelot software for wireless optimization, which
handles for example CDMA2000 and UMTS voice and circuit
data services. With this application in mind, the model has
several properties:

• It models existing wireless systems: it is not a proposal
for a new power control system;

• It can be evaluated with reasonable speed;
• It is a differentiable function of relevant parameters, and

the derivatives can be evaluated with reasonable speed.

The first property implies that we cannot, for example,
simply insist of the wireless system that no calls are dropped;
such a requirement corresponds to the inclusion of an upper
bound on mobile power as a constraint in an optimization
problem [1].

We focus here mainly on voice, not data, but some parts of
our modeling apply to certain kinds of circuit data services.

Our basic setting is as follows (see for example Lee and
Miller [2]). In a given region, there areK base-station
antennas (hereafter “sectors”), and a given sectork, with
1 ≤ k ≤ K, receives total radio powerxk, from mobiles in the
region and from thermal noise and external radio interference
sources. Based on the frame error rate, the sector determines
a target SIR (signal-to-interference ratio)φk such that if the
signal power received from a mobile is at leastφkxk, then
the error rate for the mobile will be acceptably low. For each
mobilem in soft handoff with the sector, the sector determines
the received powersm, and sends apower control bitto the
mobile, whose value depends on whethersm > φkxk, and
tells the mobile to increment or decrement its transmit power
accordingly. The mobile looks at all such power control bits,
and decrements its power if any of the bits suggest it. This
protocol keeps the mobile power near the smallest possible
such that some sector will receive it with adequate SIR.
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Fig. 1. A typical test scenario with some of the sectors labeled by indexk.

Suppose each mobilem is transmitting with powersm, and
is received at sectork with power sm/Lkm, whereLkm is
the pathloss factor for the signal traveling fromm to k. Let
k(m) denote the sector that is currently determining the power
transmitted bym, andSk denotes the set of mobilesm such
that k = k(m). Then the power transmitted bym ∈ Sk is

sm := φkxkLkm, (1)

and so for eachk′, xk′ = ηk′ +
∑
k

∑
m∈Sk Lkmφkxk/Lk′m,

whereηk′ is the power of the noise plus external interference
received by sectork′. This equation is correct only under some



approximations and assumptions, but it suggests something of
the nature of the model that must be evaluated. Put another
way, the vector of total radio powersx satisfies the fixed point
conditionx = η +Ax, where

Ak′k :=
∑
m∈Sk

Lkmφk
Lk′m

. (2)

Note thatA is a nonnegative matrix, that is, all its entries are
nonnegative. Ifη = 0, thenx = Ax, andx is an eigenvector
of the nonnegative matrixA.

The eigenvalues and eigenvectors of nonnegative matrices
are well-studied, as thePerron-Frobeniustheory, and that
theory has been applied to the understanding of power control
[3]. However, the presence of noise and external interference,
implying η > 0, means that such theory does not directly give
the most detailed understanding of power control.

A further complication is reverse-link outage: a call may
be dropped if the mobile cannot transmit the target power
φkxkLkm as in (1); thus the powersm is not a linear function
of xk, but instead a sawtooth: at a certainxk threshold, it goes
to zero.

Another complication isnoise rise limitation: a sector may
block calls if the total radio power it receives is above a pre-set
threshold. Such a limitation is discussed in Section V.

A dynamic model of power control might maintain a
collection of active mobiles, adding some as calls arrive
and dropping others either as normal call termination, or as
outages, the result of reverse-link failure. Simulation over time
would then yield outage probabilities, average values for the
xk, and so on. However, such a scheme would be too slow
for our optimization application, and also, not smooth enough.
We use instead a static framework: a (large) discrete set of
locations is fixed, each of which has an estimated probability
of being the location of a transmitting mobile. The locations
and probabilities are determined elsewhere, and are based on
input by the Ocelot user, from a variety of sources, and also
on estimates of forward-link coverage probability, and other
considerations. The locations could just be points on a regular
grid, but Ocelot provides many other options.

We thereby model a dynamic set of mobiles simply as the
expectation of the mobile power generated at each location.
With some abuse of notation, we index the locations withm,
and have corresponding lossesLkm, power levelssm, and so
on. Since we are modeling probabilities and expectations and
not specific mobiles, the powersm need not be a discontinuous
sawtooth function ofxk, but instead can drop off smoothly,
as an ensemble average. We might base this dropoff on a
log-normal probability distribution for shadow fading. Such
a model is discussed in Section II. However, for efficiency
reasons, we use spline-based approximations to the mobile
response, as discussed in Section III. This leads to a function
F : RK → RK , which disregarding call dropping would
be F (x) = η + Ax, but instead we haveF (x)k′ = ηk′ +∑
k Ãk′k(xk), where Ãk′k(xk) is a spline function of the

sector k interferencexk. This smooth replacement for the
sawtooth is not only more plausible as an estimate, but is

convenient computationally: with discontinuities, there may
not be a solution to the fixed point problemx = F (x);
with the smooth version, we are able to show that under
some reasonable conditions, a fixed point solution exists. The
solution of the fixed point problem is discussed in Section V.

Here is the outline for the rest of the paper: we begin
in Section II by explaining the smoothed sawtooth functions
and their relationship to log-normal fading. Then Section III
gives a spline-based approximation that allows contributions
for various locationsm to be combined and manipulated
efficiently, and Section IV presents a resource-saving refine-
ment. Next, Section V presents robust algorithms for finding
fixed points and gives appropriate theorems. The results in
Section VI include discussions of the various models, and
tests on realistic scenarios (not just hexagonal grids). Finally,
Section VII presents conclusions.

II. SMOOTHED SAWTOOTH FUNCTIONS

Consider a single term from the sum (2) as changed to
account for the dropping of calls due to reverse-link limi-
tations. If ŝ is the maximum mobile uplink transmit power,
multiplying the term byxk, if sm < ŝ, and 0 otherwise,
where againsm := xkLkmφk for m ∈ Sk, gives the
sawtooth function that we need to smooth by considering the
ensemble average of a dynamic set of mobiles and finding the
contribution to interference due to locationm. The sawtooth-
based interference contribution to sectork′ from locationm
transmitting to locationk could thus be expressed as

ŝ

Lk′m
γmQ

−(γm), where Q−(t) :=

{
1 if t < 1
0 otherwise,

and the ratioγm := sm/ŝ. Another way to describe this is as

ŝ

Lk′m
G(γm),

whereG(γ) is the sawtooth function

G(γ) := γQ−(γ). (3)

Replace pathlossesLkm andLk′m by Lkm exp(Rkm) and
Lk′m exp(Rk′m), where random variablesRkm andRk′m are
N(0, σ), that is, normally distributed with zero mean and stan-
dard deviationσ. This implies replacingγm by γm exp(Rkm)
as well. Then the expected interference contribution for loca-
tion m could be estimated as

E
[

ŝ

Lk′m exp(Rk′m)
γm exp(Rkm)Q−(γm exp(Rkm))

]
=

ŝγm
Lk′m

E
[
exp(Rkm −Rk′m)Q−(γm exp(Rkm))

]
, (4)

although the non-outage conditionQ−(γm exp(Rkm)) = 1
might be better modeled as a non-outage probabilityQ().

It may be thatRkm andRk′m are partially correlated, so we
assume that there is someβ ∈ [0, 1] andN(0, σ)-distributed
random variableR̂k′m, independent ofRkm, so thatRk′m =
(1− β)Rkm + βR̂k′m, and so

exp(Rkm −Rk′m) = exp(−βR̂k′m) exp(βRkm).



If we use this in (4), use the independence ofRkm andR̂k′m,
and observe thatE[exp(−βR̂k′m)] = E[exp(βR̂k′m)], the
expected interference contribution becomes

ŝγm
Lk′m

E
[
exp(Rkm −Rk′m)Q−(γm exp(Rkm))

]
=

ŝγm
Lk′m

E[−βRk′m]E
[
exp(βRkm)Q−(γm exp(Rkm))

]
.

(5)

It is not hard to show that this is
ŝ exp(β2σ2)

Lk′m
γmΦ[− ln(γm)/σ − βσ]. (6)

HereΦ(x) is the normal cumulative distribution function atx,
the probability that aN(0, 1) random variable is less thanx.
Note thatγmΦ[− ln(γm)/σ − βσ] is essentially a smoothed
version of (3). In the following discussion, we assumeβ = 0
for brevity, but it is not hard to generalize toβ > 0, which
our algorithms handle.

III. SPLINE APPROXIMATIONS

The normal CDF needed for (6) is easily evaluated via the
error functionerf(), since2Φ(x) = 1 + erf(x/

√
2). However,

it would be awkward to handle sums of such interference
contributions for many different locationsm ∈ Sk. Viewing
(6) as a function ofxk rather thanγm requires a substitution
γm = sm/ŝ = φkxkLkm/ŝ that shifts thexk values at which
(6) begins to fall to zero. Even if we were to scale them so
that their initial slopes match, the functions (6) for different
locationsm would be as in Figure 2a.

1 2 3 4 1 2 3 4

Fig. 2. (a) Smoothed sawtooth functions for various locationsm where
γm/xk differs by factors ofα = 1.26; (b) the corresponding spline
approximations with dashed lines at the ends of spline segments.

Spline approximations such as those shown in Figure 2b
are much more convenient when taking smoothed sawtooth
functions for various locationsm, and adding them up in
a manner analogous to (2). The splines are piecewise-cubic
polynomial functions chosen to have second-order continuity
at the knots where one cubic polynomial segment joins the
next one. Placing the knots at powers of a parameterα ensures
that any linear combination of these spline functions will be
a piecewise cubic spline with the same knot spacing.

We have found a spline with four knots, leading to a linear
system of ten equations in ten unknowns, to be an effective
approximation. Call such a spline approximationGα(x); it is
normalized to have an initial slope of one.

The complete set of normalized smoothed sawtooth splines
is {

Gα(bαix)
bαi

∣∣∣∣ i ∈ Z
}
,

whereb is a bias parameter to be chosen along withα. We
must chooseα andb so that

Gα(bγ)
b

≈ γΦ[− ln(γ)/σ − βσ] (7)

as functions ofγ. (Again, we assume for brevity thatβ = 0.)
We can quantify the difference between the two functions

by evaluating each side of (7) atγm valuesσ−3.00, σ−2.97,
σ−2.94, . . . , σ3.00 and taking the RMS mean of the differ-
ences. For any givenσ, it is easy to chooseα and b so as
to minimize this. For example, exhaustively trying multiples
for 0.0001 forα and b gives the results in Table I. We have

TABLE I

CHOOSINGα AND b SO AS TO SATISFY(7)

σ lnα b RMS error
0.09212 0.1799 1.14574 0.00379052
0.2303 0.457 1.76343 0.00498369
0.4606 0.9679 4.09981 0.00748236
0.6909 1.5904 12.3288 0.00915151
0.9212 2.3385 50.1016 0.0108936
1.1515 3.1548 239.085 0.0173641
1.3818 3.9875 1140.56 0.030776
1.6121 4.8184 5061.15 0.0540373
1.8424 5.668 21703.5 0.0943915
2.0727 6.6114 141023 0.165292

also defined and used an empirical formula givingα andb as
functions ofσ andβ.

These smoothed sawtooth splines need to be added up for all
locationsm served by sectork so as to obtain a function̄Ak′k
for interference at sectork′ due to mobiles owned by sector
k as a function ofxk, the interference at sectork. In other
words, we need a spline-based generalization of (2). For each
m, we must choose a smoothed sawtooth splineGα(bαimxk)

bαim

so thatαimxk ≈ γm. This gives

Āk′k(xk) =
∑
m∈Sk

ŝ

Lk′m

Gα(bαimxk)
bαim

.

IV. U SING SIMILARITY TO SAVE RESOURCES

Since the path lossLkm can vary by more than a factor
of 1000 as the locationm ranges overSk, the Āk′k function
will typically have dozens of spline segments. This seems like
a lot of information to store and manipulate for each pair of
sectorsk′k, especially sinceĀk′k functions for a commonk
but differing k′ tend to be related, as shown in Figure 3.

Since the knots are all aligned, it is easy to add up the the
spline functionsĀk′k to obtain a master spline functionAk(x)
that can be thought of as an averageĀk′k, normalized to have
unit initial slope.

The resource-saving idea is to storeK master spline func-
tions andK2 simple transformations instead ofK2 spline
functions. We use

τk′kx

(
Āk(x)
x

)τ̄k′k
(8)

in place ofĀk′k(x), whereτk′k and τ̄k′k are chosen based on
Ā′k′k(0) andĀk′k(x̄) for some fixedx̄ that can be thought of
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Fig. 3. (a)Āk′k functions fork = 11 and variousk′; (b) the corresponding
functions based on raw unsmoothed sawteeth. The test data are from the
scenario shown in Figure 1.

as an a priori guess at a typical interference level. This way,
there are just two values to keep track of for eachk′k pair
while we consider various locationsm. After finding these
2K2 values and theK master spline functions̄Ak, we can set

τk′k = Ā′k′k(0) and τ̄k′k =
log(Āk′k(x̄)/(τk′kx̄))

log(Āk(x̄)/x̄)

for each pairk′k. (In practice, one must impose also a positive
lower bound on̄τk′k to avoid00 in (8).)

V. FINDING A FIXED POINT

The last three sections have described different versions of
a function that gives the (expected) interference received at
sectork′ from mobiles whose primary sector isk. In whatever
way each such functionAk′k(xk) is defined, the result is an
estimateηk′ +

∑
k Ak′k(xk) of the interference received at

sectork′. This could also be written as a vectorη + F̄ (xk)1,
whereF̄ (xk) is aK ×K matrix with F̄ (xk)k′k = Ak′k(xk),
and 1 is theK-vector of all ones. Defining the functionF :
RK → RK by F (x) = η + F̄ (x)1, the interference vector
thus obeys the conditionx = F (x). In other words, it is a
fixed point of the mappingF .

When the sector-to-sector interference function is linear,
a sum of sawtooth, or smoothed via log-normal fading, the
corresponding fixed-point problem is easy, unsolvable, or
impractically slow. It remains to consider finding fixed points
for the last two versions, with spline-based functions, and with
the more compact spline-based scheme of Section IV.

Before discussing methods of solution of such general fixed
point problems, we consider the implementation of a model of
noise-rise limitsfor power control. Here sectork tries to keep
xk ≤ ρ̂ηk, for someρ̂ > 1, by blocking calls if necessary.
The simplest way to model this is just to composeF with
a function that limits thekth component to at most̂ρηk, but
it would be more accurate to replace1 in η + F̄ (x)1 with a
vectorh(x) whosekth component is a probability that sector
k decides not to block a call due to noise rise concerns.

By any of these definitions,F is a smooth function that
maps the positive orthant into a rectilinear region

U = {x ∈ RK | ηk ≤ xk ≤ µk},

where the upper boundµk is readily derived. Thus we have
pointsµ andη that are opposite corners ofU .

SinceU is homeomorphic to a closed ball and the continu-
ous functionF maps the whole positive orthant (a superset of
U ) into U , the Brouwer fixed point theorem guarantees that
there is at least one fixed pointx = F (x).

It would also be desirable to guarantee a unique fixed point
and provide an algorithm that finds it efficiently. A popular
approach used by Yates [4] and others is to let the algorithm be
Picard iteration, where repeatedlyx← F (x), and also to give
conditions under which Picard iteration provably converges to
a unique fixed point. For example, if we can exhibit a real
numberκ < 1 and a vector norm‖·‖∗ under which

‖F (x)− F (y)‖∗ ≤ κ ‖x− y‖∗ for all x, y ∈ U , (9)

then the fixed point is unique and Picard iteration converges
from any starting point inU . Nuzman [5] has shown that this
type of argument can be applied to a class of non-monotonic
functions that unfortunately does not containF .

In order to have an algorithm that is as reliable as possible,
we certainly need guaranteed convergence if (9) holds. We can
do this by producing a sequence of iteratesx(1), x(2), x(3), . . . ,
where each∥∥x(i+1) − F (x(i+1))

∥∥ ≤ κ∥∥x(i) − F (x(i))
∥∥ (10)

for the standard Euclidean norm. Picard iteration under (9)
achieves this if a few iterations, each of which reduces
‖x− F (x)‖∗ by the factorκ suffice to reduce‖x− F (x)‖
by that factor.

Another way to find a fixed point is to use Newton iteration
to look for a zero ofF (x) − x. Such an iteration does not
require (9) and is known to converge quadratically if the initial
x is sufficiently close to a solution ofF (x) − x = 0. This
suggests a hybrid algorithm that uses an intelligent starting
point, does Newton iterations, but switches to Picard iterations
if necessary to obey (10).

1) Use binary search to find a pointx on the line between
η and µ where the number of negative components in
x− F (x) is between1

3K −
1
2 and 2

3K + 1
2 .

2) Compute a Newton step∆x = (JF (x)−I)−1(F (x)−x)
and find the maximum̄λ such thatx− λ̄∆x ∈ U . Here
JF (x) is the Jacobian ofF .

3) Let y = x, e0 = ‖x− F (x)‖ and exit ife0 is tiny. Then
if λ̄ < 0.8, do Picard iterations and go to Step 2 as soon
as‖x− F (x)‖ ≤ κe0.

4) Let λ̂ = max(λ̄, 1 + 10−6) andλ = min(1, λ̄). While
‖x− F (x)‖ > e0 for x = y − λ∆x, iterate λ ←
max(λ/2, 2λ− λ̂).

5) If ‖x− F (x)‖ > κe0, do Picard iterations until
‖x− F (x)‖ ≤ κe0. Then go to Step 2

For eachi, theith iteration of Steps 2–5 advances fromx(i)

to x(i+1) while trying to ensure that the condition of (10) is
satisfied. The testing ofλ values less than one, if one Newton
step is not feasible or does not help, is aline searchalong the
Newton step direction.

If a Newton step is significantly out of bounds or makes so
little progress thate0 ≥ ‖x− F (x)‖ > κe0, the algorithm



resorts to Picard iterations. An excessive number of such
iterations in Steps 3 or 5 should be treated as a failure
indication.

VI. RESULTS

A version of the algorithm has been tested extensively
as part of Alcatel-Lucent’s Ocelot software, but it is not
practical to rerun it on more than a few test scenarios as
shown in Table II. We will not consider defining the function

TABLE II

THE TEST SCENARIOS

Label K Explanation
H57 57 Hex pattern with 3 sectors per base station
M39 39 Metro area with population≈ 500 thousand
M39h 39 M39 with 14 times the traffic near Sector 7
M60 60 Metro area with population≈ 700 thousand
M115 115 Metro area with population≈ 2 million

F : RK → RK based on unsmoothed sawtooth functions,
because fixed point iteration did not converge for any of the
scenarios in Table II. (It continually jumps back and forth
across a particular discontinuity.) This leavesF (x) = η+Ax,
and also the spline based functions, with and without resource-
saving transformations, which we shall refer to asF §IV and
F §III. Except as stated below, theseF functions do not include
the noise rise limitation.

TABLE III

SAMPLE RESULTS WITH POWERS IN PICOWATTS, ALL ηk = 17.3pW , AND

“5 + 1P ” MEANING A PICARD ITERATION WAS NEEDED.

averagexk max xk Newton
η+Ax F §III F §IV η+Ax F §III F §IV steps

H57 19.8 19.4 19.4 20.2 19.7 19.7 4
M39 35.5 23.7 23.5 99.6 31.0 30.6 4
M39h — 25.1 25.1 — 141 131 5 + 1P
M60 23.1 21.6 21.6 60.4 35.6 36.1 4
M115 — 21.3 21.2 — 35.2 33.9 5 or 6

Table III summarizes the results for the three versions ofF
and the four scenarios. As the table suggests, it is usually easy
to solve forx = F (x) under typical scenarios, and very few
Newton iterations are needed to achieve full accuracy in 64-bit
floating point. The only case where a Newton step failed and
Picard iteration was needed was the contrived scenario M37h.

Note that the Brouwer fixed point theorem does not apply
to x = η + Ax since there is no vector of upper boundsµ
in that case. Of course, singularity of theA − I matrix is
not a problem in practice, but there were two cases where
this simple linear system failed to give a positive solution as
indicated by the “—” entries in Table III. This can happen if
entries ofA are large enough to allow‖Ax‖ > ‖x‖ for some
vectorsx.

As can be seen from Table IV, the simpleη+Ax function
gives different (and presumably less accurate) results even
when it does yield a reasonable solution. Contrast this with
the resource-saving transformations of Section IV which never
had a significant effect on the solution.

TABLE IV

RELATIVE DIFFERENCES(‖x− y‖ /(‖x‖+ ‖y‖) BETWEEN SOLUTION

VECTORSx AND y FOR EACH PAIR OF DIFFERENTF DEFINITIONS.

Ax+ η vs. Ax+ η vs. F §III vs.
F §III F §IV F §IV

H57 0.012 0.012 0.0019
M39 0.29 0.29 0.013
M39h — — 0.029
M60 0.090 0.090 0.0036
M115 — — 0.0065

Only the M39h scenario (a portion of which was shown
in Figure 1) had anyxk values large enough to trigger
reasonable noise rise limits. Qualitatively similar results were
obtained from the simple composition ofF with a function
that smoothly limits each component toρ̂ηk and from theh(x)
scheme. When̄ρ is set so both schemes reducex7 by roughly
a factor of 2, other sectors are only modestly affected; e.g., the
noise rise schemes reducex8 from 31.60pW to 28.11pW and
26.85pW, respectively. The main difference is that theh(x)
scheme makes it hard to find a fixed point unless there is a
lot of smoothing in theh(x) function. In fact, Newton steps
and Picard iterations can both fail.

VII. C ONCLUSIONS

We have given realistic models for uplink power control for
voice and circuit data services under a variety of technologies.
Like our previous work [6], [7], [8], it is motivated by practical
optimization of wireless systems. The use of averages and
fading probabilities smooths out discontinuities that could
otherwise prevent the model from having a solution. Although
incorporating outage probability leads to a nonlinear system
for which we cannot guarantee convergence, we have ensured
that F and its Jacobian are easy to evaluate, and the hybrid
algorithm for finding the fixed point has proved to be very
reliable in practice.
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