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Abstract— Consider two M /G /1 queues that are coupled in tle follow-
ing way. Whenever both gueaes are non-cmpty, each server serves lts own
queue al unit speed. However, If server 2 has no work In its own queue, then
it mssists server 1, resulting in an Increased service speed #3 > 1 in the first

queue. This kind of coupling Is related to generalized processor sharing. We
sssume that the service request distributlons at both quenes are regularly
varying at infinity of index —v1 and —uy, viz,, they are heavy-talled. Under
this assumptlon, we present a detallcd analysis of the tail behaviour of the
worklosd distribution at each queue, If the guarantced unit speed of server
1 Is alvendy sufficient to handls lts offered traffic, then the workload distrl-
hntion at the first gueue is shown to be regularly varylng at infinity of Index
1 — 1. But i€ it is not sufficient, then the workload distribotion at the first
quene is shawn to be rogularly varying at infinity of index 1 -- min{u, 1),
In parileolar, traffic at server 1 is then no longer protected from worse e~
having (heavier-tnlled} traffic at server 2.

Keywnords— Coupled processors, Generallzed Processor Sharing, work-
load, tail hehaviour, regular varlation.

I. INTRODUCTION

Consider the following model of two coupled M/G /1 quenes,
¢y and Q,. @, ¢ = 1,2, receives a Poisson arrival stream of
customers of type ¢ with arrival rate A; and required amounts of
service that are ii.d. random variables with distribution B;( ),
with mean 5; and Laplace-Stieftjes transform (LST) 3;{s}. By
denotes a random variable with distribution B;(+), ¢ = 1,2. De-
note the average amount of traffic offered per unit of time at
(); by p; := A:f3;. The arrival processes at the two quoues,
and the families of requited service amounts in both sireams,
are independent of each other. Whenever there is work of each
type, each scrver serves its own queue with speed 1. However, if
gerver 2 is idle then the speed of server 1is v} > 1, and if server
1 i3 idle then the speed of scrver 2 is r5 > 1. In a sense, the
servers are coupled, and a server with no work at its own quene
is able to assist the other server, i

This coupled-processors model has been anatysed by Fayolle
and Insnogorodski [11] and by Kenheim, Meilijson and Melk-
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man [13] in the case of negative exponentially distributed ser-
vice requests, and by Cohen and Boxma [9] in the casc of gen-
erally distributed service requests. Konheim et al, apply the
uniformisation technique; Fayolle and Tasnogorodski determine
the joint queue length distribution by formulaling and selving
a Riemann-Hilbert boundary value problem; and Cohen and
Boxma obtain the joint disiribution of the wotkloads in both
gueues by formulating and solving a Wiener-Hopf boundary
value problem,

The coupled-processors medel is highly relevant for Gener-
alized Processor Sharing (GPS), GPS-based scheduling algo-
rithms, such as Weighted Fauir Queueing, have emerged as an
important mechanism for achieving differentiated quality-of-
service in integrated-services networks, The GPS discipline op-
crates as follows. Consider N > 2 sources shaving a link of unit
rate, There is a nonnegative weight ¢; associated with source
i, with 22;1 #; = 1. If the buffer content of each source is
positive, then soutce 4 is served at rate ¢;. But if vome of the
sources have an empty buffer, then the excess service capacity
is redistributed among the scurces with non-emply buifers in
proportion to their respective weights, See [10] for a formal de-
scription of the evolution of the buffer content process.

The queueing analysis of GPS is extremely difficull. Interesting
partial results were obtained in [2], [10], [14], [17]. E N = 2,
then the above coupled-processors model with f = 5 = 2 co-
incides with the GPS model with equal weights; hence the exact
queue length analysis in [11], [13], for the casc of exponentially
distributed service requests, applies to this special GPS case,
Furthermore, the exact anatysis of the joint workload process
in [9], which holds for generally distributed service requests, is
also applicable. The latter study forms the starting-point of the
present paper,
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Our goal is to investigate the influence of heavy-tailed service
reguest distributions on the tail behaviour of the workload dis-
tributions at the two coupled processors, The motivation for this
investigation is the following. Statistical data analysis has pro-
vided convincing evidence of heavy-tailed traffic characteristics
in high-speed communication netwaorks (see, e.g,, the forthcom-
ing book [16]). This has stimulated much research into the effect
of heavy-tailed traffic on key performance measures kke waiting
times and workloads. An important question is; To which extent
are performance measures for one type of input traffic affected
by worse (i.e., heavier-tailed) input traffic of another type? In
two recent stadics [4], [5], we have partially answered this ques-
tiont for GPS. Using & sample-path analysis to determine lower
and upper bounds for buffer content {workload) tails, we have
identified conditions under which the buffer content of an in-
dividual source with long-tailed traffic characteristics behaves
similarly as when served af a constant rate which is equal to
the maximum feasible average rate for that source to be stable
— regardless of the possibility that other soutces have heavier-
tailed input traffic. Under those conditions, GPS-based schedul-
ing mechanisms apparently are able o protect individual con-
nections.

In the present paper we identify a situation in which such a pro-
tection is #of given. The exact joint steady-state distribution of
the two workloads, which has been obtained in [9], subsequentiy
allows us to exactly quantify the workload tail behaviour, and to
determine to what extent the protection fails. We perforn this
tail behaviour analysis under the assumption of regutarly vary-
ing service request distributions. Regularly varying distributions
form an important class of heavy-tailed distributians, with well-
studied properties [3].

While the results in [9] allow us, in principle, 1o study the work-
load tail behaviour for all (r},73) combinations with r{ > 1,
ry > 1, we have decided to restrict ourselves in this paper to
ri 2 1, ry = 1; analysis of the general case is the subject of a
forthcoming study. The reason for the restriction is, that the case
73 = 1 is relatively simple and transparent: ¢}y is not affected
by &)1, and the influence of the scrvice request tail at G on Q1
can be sharply identified and interpreted. This yiclds much in-
sight into more complicated cases, for which there is little hope
of an cxact analysis.

The paper is organised in the following way. Section I contains
thase results from the exact coupled-processors analysis of [9]
that will be used in the sequel. We subsequently distingnish two
cases; p1 < 1and p1 > 1. Inthe former case, server 1 is able
to handle its offered traffic, even if {)y werc never empty. In
the latter case, server 1 nceds the assistance of server 2; this is
the case where ‘the protection fails’, The workload asymptotics

II. PRELIMINARIES

In this section we summarise those results of Section I11.3.7
of [9] that will be used in the analysis of the tail behaviour of the
wotkleads in the coupled-processors model. We refer to Seclion
13,7 of [9] for a discussion of the ergodicity conditions; for the
moment it suffices to observe that at least one of the conditions
p1 < 1, po < 1should be satisfied, but not necessarily both. For
example, if ;m > 1 then it is still possible that the server at (Jy
sufficiently often faces no work at its own queue and is able to
serve the other queue. We restrict ourselves in the sequel to the
steady-state situation.

V; denotes the steady-state workload at €y; (+) is used to denote
an indicator funetion. For Re g, > 0, Re g3 > 0, let

Blor,o) = BV, M
P1{sg) = Ele™*V2(V; =0)], @
Ya(s1) 1= Ble ViV, = ()], 3)

e = P(W =0,V, :0). (4)

Formula (2.16) of Chapter IIL.3 of [9] (in the sequel we omif
mentioning Chapter H1L3 when referring to formulas from that
chapter) expresses (s1, 92} into ¢ (82), ¥2(s1). and ¢0. For
our purposes it is sufficient to study the LST’s of the marginal
workload distributions. In particular, we concentrate on the
wortkload at &), . From (2.16) of [9] it follows that, for Re 5 > 0,

s — TM—8WV1] _ .—-._.(l.—_m’_)_s__.__
pr( 10) "B{e ] - s—)u(]"“ﬂl{s}’)
$:(0)  rf-1
o, T o= ()] ©)

Note that the first term in the righthand side is the Pollaczek-
Khintchine LST of the workload in M/G/1 quene @y in iso-
lation (with service speed 1). We now discuss t3(s). In [9] a
distinction is made between the special case 1/ + 1/r) = 1
{which corresponds directly to generalized processor sharing)
and the case 1/r} + L/r5 % 1, Let us concentrate on the latter
more general case, which is of more interest for our purposes (in
the next two sections, we take 73 == 1}. According to (6,22) of

191,

1 5 1 e~ Pi(0)-Rg{0)
ry PO e T T
[1 — ¢~ Mutedtialed] Rew > 0. (6)
We still have to specify the functions 2, (w), 8;(w) and &, (w).
Fori = 1,2,

for py < 1 are analysed in Section IIL, and those for ;3 > 1 SR wy

in :Qgétion 1V, The litter section contains our main result: The Filw} = L ﬁE[G vl ol < 0)], Rew <0, (T
1ail of the workload distribution at 2 is shown to be regularly n=1

varying of index 1~ min(, ve), Le., the heaviest-tailed service o ;

request distribution determines the tail behaviour of the work- Ri{w) = Z _“:'-E[e“wrf.‘,' (589 > 0)), Rew>0. (8)
load distribution. Section V contains conclusions and sugges- 1

tions for future work, Some definitions and results regarding Here

reguiarly varying and long-tailed distributions arc gathered in b= pu (1 — _1“) 2} ©
the appendix, : "3 ry’
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1 £
= - =+ = 10
by := pa(1 T,{) g (10)
and fori = 1,2,
ol = X + ..+ Xin, {1
with X11,.. ., Xup Lid. and Xoy, ..., X, Lid., and
N 1
Xu = P owp 'E'i'(l" ;;)a
2
-P wap Ef}z-;—, (12)
2
Xo1 = P owp i)%'_“-’
1
“ 1
~B wp. gi(l - ) (13)
2 7y

1 denotes a husy period in an M/G/1 quene that has exactly
the same traffic characteristics as (J; and has service speed 1,
ancl that starts with an exceptional first service that has distri-
bution fur '—‘ﬂ:ﬂdu {a residual service time; we denote such a
random variable by B} *).

We alse have to specify 61 (w), which plays a key role in the
analysis of this coupled-processors model. The function

fils,w) = M{1 - Bi{s}) —s+w

has for Re w > 0, w # 0, exactly one zero s = d(w) in
Re & > 0, and this zero has multiplicity one,

(14)

f1{s,0) has for p; < 1 exactly onc zeru 8 = &(0) = Din
Re s > 0, with multiplicity one;
f1(5,0) has for py = 1 exactly one zero 8 = §1(0) = 0in

Re s > 0, with multiplicity two;

Fi(5,0) has for p; > 1two zeros 8 = 6,(0) > Oand s =
e1(0y = 0in Re s > 0, cach with multiplicity one.

Similarly 83(w) is defined for Re w < 0, as zero of the function

fa(s,w) 1= Xa(l - Ba{s}) — 5 —w.

The different behaviour of ) {w) for w near 0 for p; < 1 and
g1 > L will be reflected in different tajl behaviour of the work-
load digteibution at 2, for these two cases. In Section III we
consider the case py < 1, and in Section 1V the case py > L.

(15)

1. WORKI.OADS FOR THE CASE py < 1

Firstly, remember that v = 1. Hence, &2 is not influenced
by ) it is an ordinary M/G/1 queue. It follows from Cohen
[71 that P(V3 > t) is regularly varying of index 1 — 5 at infinity
iff the tail of the service request distribution P{(B; > t) is reg-
utarly varying of index — vz at infinity (see the appendix for the
definition of regularly, and slowly, varying functions}, and more
precisely:

Cs

Here and in the sequel, f{t) ~ ¢{t) denotes: Ly, f(£)/g() =
1; and [{+) and {;(:) will be used w denote slowly varying func-
tions.

Having established the tail behaviour of the workload at (J9, we
concentrate on ¢4 in the remainder of this section. Assume that
P(B, > t) is regularly varying at infinity of index —in:

Gy
P(B1 > t) = “P(l — Vl)
Let us assume that 1 < vy < 2: higher values of 4 can be
handled with minor adaptations. According to Lemma A.1, (18)
with 1 < vy < 2 is equivalent with
1-fufs}t _ G gy L
e =1 .618 11(8), 510
We are interested in the tail behaviour of the workload distri-
bution at ¢)1. We intend to show that it is similar to that of 13
as given above, but with index 1 — 1 instead of 1 — wg; e,
in the case p1 < 1, the index of regndar variation of the tail of
P(Vi > t) is not influcnced by §9, Our approach is as fol-
lows, If we can determine the behaviour of E{e~*¥1) for s |. 0,
then we can invoke Lemma Al to determine the behavionr of
P(V; > t) for i - oo. Formula (5) expresses B(c—*"1] into
(s}, Formula (6) oxpresses 12 (s}, or rathor 3 (5 (w)), into
Iy (w) and Re(w). Therefore we now concentrate on the be-
haviour of the latter functions for w | 0. Note that, since »§ = 1,
we have by = py and Xy = - < 0 w.p. 1, which implies
that By (w) = 0, According to (6.21) of [9],

L (E), - o0

(18)

(19)

HOETIRS S (20)
In combination with the above, (6) reduces to
Pa(B1(w)} = oo™, Rew > 0. (1)

Before focusing an La(w), we study the behaviour of 8, (w) for
w } 0. Let P, denote a random variable wiath distribution the
steady-state distribution of a busy period in the M /G/1 queve
with arrival rate Ay and service fime disteibution 13, {.}, viz., Q)
in isolation, Comparing (14) with the Takédcs equation for the
busy peried LST E[e~*1], cf. p. 250 of Cohen [8], it is seen
that

S (w) = w + A (1 — Efe™)). (22)

De Meyer and Teugels [15] have proven thai P(P; > £) is regu-
larly varying at infinity of index —uy ilf P(B; > t) is regutarly
varying at indinity of index —u, and if either hokls then, for
t— o,

1 By

- 1—!’1}3(1*01 @9
G 1 yit-n

Sy A

P{P >t > 1)

P(Dy > t) ~ ———2 7V (8), £ o0, (16)
(B2 >4) ~I(1 — v3) ’ Lemma A.1 then gives the behaviour of Eje =71 ] ~ 1 forw | 0.
iff We conclude that, if (18) holds, thea
! WG gy oo, (1) (W) = —2— — MG — ek (S), wl0. (24
PV, > ) GgI‘(2—V2)1-—pgt la(t), {ahn 1{w) T MOE D 1(“1); 1 )
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In addition, using {14):
87 (8) = ¢~ M1~ Bi{s})
(1 — )8 + )\;Cls”‘h(%), 510,

I

w

(25)

Y

In the study of Ra(w), a key role is played by the LST of B,
a busy period in ¢} in isclation that is started with a residual
service time. From (6.4) of [9],

1—A{&(wh}
B {w)
1t is now readily verified, using (19), (24) and {26), that

¥ -1 _»i_,
o gy weo @

BlevP) = , Rew>0. (26

1 Ble~%h] ~ %

Hence, using Lemma A.1, P(P, > 1) is seen to be regularly
varying at infinity of index 1 — ;.

P{A > 1)~ )((1 — g UL (E), t o0,

B I‘(2
(28)

The difference with (23) is caused by the residual service time
with which the busy period starts; it is regularly varying of one
index higher than an ordinary service time. We are now ready
ta study the tatl behaviour of Ra(w). Observe that Ro{w) is the
LST of

S = S22 8, 0.
ro($) nzglnP(O(Xm-l- 4+ Xan <), £>0. (29)
Coasider, for t > 0,

Ry(0) = ma(t) = Z B Py 4. 4 Xan > 1), (30)

n=1

Inroduce Bernoulli random variables ¥;, 1 = 1 2,.

- With
Plri=1)=pPY:=0)=1-p withp:= b ok Usmg(lS)

and introducing the 1.i.d, random variables By respectively By,
that have the same distribution as Py respectively P, we can
write fori > 1,

Xoi = YiPy~ (1 - ¥) Py
Hence, fort > 0,
P(X21+...+in >t = (31
n k L
ny i —k o ~
> (k)p (1-py* P(Z Py — ‘}: By >t
k=0 =l i=k+1

Since Py € R(1 — 1), the class of regularly varying func-
tions of index 1 — vy, we also have (see [31) Zf=1 f’n [
R(1 — ). The class £ of long-tailed distributions (see the
appendix) contains R(1 — »), and therefore Zle Pie L
Since S, ., Pa: > Ow.p. 1, we can apply the following well-
known property of £ (¢f. [31):

&
P(Z By~
=1

0-7803-3880-5/00/$10.00 {c} 2000 1EEL
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=k+1 =1
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Hence, for ¢ -+ o0,

PXog+...+ Xan > 1)
n k
ny & ni—& *
~ 1-p)"*p(3 " By
> (3)rra-a OITED

~ Y (:)Pk(l - )" kP (Pu > 1)
k=0

= npP(Py; > 1). (33)

The second ~ sign follows from a well-known property of the
class of regularly varying distributions (again, cf, [3]). We con~
chude from (30), (33) and (28) that, for ¢ — oo,

Ra(0) ~ 1a(8) ~ TR (Py > 1)

1 AN 01
-t D@
Note that by < 1if gy < 1, pg < 1, 7} > 1, which is the case

under consideration in this section. Again applying Lemma A.1,
forw i 0,

(34

(1 pBIL ().

/\101 w Vil 1
TAobptas ) hG)k 69

It follows from (35), (20) and (21) that, for w J. 0,

Ra(w) ~ Ra(0) ~

h2(d1 (w)) — e~ O (36)
_ A G w 1
- Pl(o)._,_}_.]’_ —_ _ya-1 =
e (1Hb2)rr(1__pl) Il(w)'

From (7), (11) and the fact that X, < Owp. 1 (cf. (12)):

P(0) = Z B (1 by).

n=1
Using this formula and the fact that by = pq if r§ = 1 (ef. (3)),
we get from (36): Forw ) 0,

Ya(61(w)) — (1 — p2) (37

P — AIC! w v1=1 1
Finally, see (24), for g 1 0,
- —_ ~o— A—.«&{.g’l_._. -1 l
Wa(8) — (1 — po} - p2) i~y s 03 ). (38)

Using (5), (19) and (38), and the fact that (cf. (2.23) of [9), or
(3)

“h(ﬂ)
1o .01 W’ — 42(0)] = (39
it follows that, for s | 0,
E[e"”v’} 1~ «[—-}-p; (40)

]Aj o 5‘”1_13_{ ( )
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Using (10), we can rewrite this into

Efe™"] -1~ “I?—l_“_q;—ls""‘h(é). 840, (1
with K 1= pa + (1 — pa)r{. Applying Lemma A.1 once more,
we have proven the main result of this section:

Theorem I11.1: Y P(B; > t) is regularly varying at infinity
of index —q € (—2,—1), as given in (18), and if p; < 1, then
P(Vi > ) is regularly varying at infinity of index 1 — w1, as
given below:

1 MG
K ~p D(2 -}

~ res
_“K— P(B* >1), t—=o00.

P(Vi > 1) et () (42)

Remark III.1: The above theorem implies that (cf. [7]}
P(Vi > ) behaves exactly as if §y is an M/G'/1 quens in
isojation, with server speed K. Indeed K can be interpreted as
the average available service speed for (1, K = 1ifr} = 1.
Note that K — p, = #f(1 — ba). The distribution of B, only
plays arole via its mean. The theorem has a similar flavor as the
‘reduced load equivalence’ results of Agrawal et al. [1] for fluid
queues, w.r.t. taking the influence of type-2 wraffic into account,

Remark 112! Tn {4], [5) similar results have been obtained
for a related model with generalized processer sharing, The
method employed in [4], [5] is to derive lower and upper bounds
for the workload tail, which asymptotically coincide.

Remark I{L.3: In the case 73 = 1, which was studied in
this section, }; behaves as an M /(G/1 queue with two service
speeds, During exp(Ag) periods the service speed is v}, and dur-
ing busy periods of Qo the service speed is 1. All those pericds
are independent, As far as we know, there are no exact results
known for the workload distribution in an M/G/1 queue with
speeds that change according 10 an alternating renewal process
(except for various studies regarding the case of an alternation
between positive speed and zere speed). The exact analysis of
the above-mentioned case is implicitly contained in the analy-
sis in Chapter I11,3 of [9]. Tt should be noted that an M/G/1
busy period cannot represent any arbitrary distribution of a non-
negative low-speed period.

In the present section we have assumed that p; < 1, i.e,, the
server in &)1 would have been able to handle all the work in
its queus without any assistance of the server at @y (without
periods of high speed +1). It makes sense that in this case the
tail behaviour of ¥ is not really influenced by (g, except for
the factor K. One may expect this to be different when g; > 1.
The case p1 > 1 will be investigated in the next section. The
boundary case p; = 1 is the topic of a later study.

1V, WORKI.OADS FOR THE CASE gy > |

As in the previous section, r§ = 1 so that (s is not influ-
enced by 1. We assume that both (18) and (16) hold, i.e., both
P(By > t) and P(By > £) are regularly varying at infinity, with
indices 1 < v,y < 2. Higher values of v; can be handled
wilk minor adaptations. Starting-point for stedying the tail be-
haviour of workload V4 is again Relation (3) for its LST, but we
can no longer use (21) for the term ¢ () which is contained in

0-7803-5880-5/00/$ 1{.00 (c) 2000 [ELI
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it, The reason for this is the following, We want to lets — 0,
but §1 (w) —= §,{0) # 0forw ~ Oif py > 1, Let us therefore
take acloser look at the zeros of f1(#, w), cf. (14). In [9] it is ob-
served that £ £ f1(s,w) has, forreal 5 > 0, no zeroif p1 < 1, one
zerogo = 0ifpy = 1, and one zerosp > 0if o1 > 1. If py 22 1,
then the point wy = 89 — A1 (1 — Si{ao}) is & second-order
branch-point of the analytic continuation of 8;{(w), Re w > 0,
intoRew < 0. Forpa < 1, o1 > 1, and w ¢ fwp, 0], the two
zeros of f1(s,w) in [0,8,(0)] will be indicated by € (w) and
d1(w), and such that

€1 (w) maps [wo, 0] one — to — one onto [0, sq),

83 (w) maps [wy, 0] one — to - one onto [sq, §1(0)].

Next to (21), there exists the Following relation if gy > 1 (cf.
(6.24) of [97, and choose r¥ = 1; also remember the definition
of 85(1w) above (15)):

1, w 1

[1- E)W - Fq(w)]%('sl(wn

('if’Jl (G2 (w)) — 40) + ] =

(43)

'LU)'?‘

To determine the behaviowr of 44 (61 (w)) for w + 0 (which even-
tually will give us the behaviour of Efe~#%] for g | 0, hence
that of P{V} > ¢) fort — o0o), we need to determine the be-
haviour, for w 1 0, of ey (w), §2(w) and 31 (da{w)) — the terms
that appear in (43), Take w < 0, w 1 0. Then {cf. (24));

g1

=1 ,01-1

afw) = h (“—): wt0. (44)
In view of the symmeiry hetween the regularly-varying-tait as-
sumptions (18) and (16) and between the definitions of &) {w)
and dz{w), it is readily seen from (24) that

A, ~1
T (), wto @)

For pg < 1, y1(dz(w)) is specified by Formula (6.23) of [9]:
ForRew <0,

1
L~ pg

ba(w) =

Yi(fa(w)) = o — rfePO-Re0) (46)
(1- ePl(w)—Pn{w))
= Go(1 =i} + rithpel )Pl
The last equality sign is verified by using (20),
It follows from (7) that
Py (w) Z U (pfewispyn @7
n=1
= ~ln(1 - nE["®]), Rew <0,

Hence, cf, (26) or Formula (6.5) of [9], for Re w < 0,

af(w) = L = 1 (48}

1 byElewP)

- I—ga{da(u}”
1=pa Badalw
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(Rememberthat b = ps whenvj = 1.) Using (16), LemmaA.1
and (45), we obtain for w Tk
1 AoCa , —w 1
Pilw) — 1- va=l . (49
€ 1"'02[ 1—{)2(1 P2 ) 2(53(?1))}] (49)

We now tutn to e~ P2(*}, The analysis is similar to that of g72(%)
in the previous section. Observe that P, {w) is the LST of, for
t>0,

o0

1 .
nl®) =S Bp(ct < X+ an <O (5O
't‘t=15’1
Consider, fort > 0,
00 by
- =52 it X < —8). (51
Py(0) — pa() ;nP(ng + Xon < —t). (51

The calculations in (31)«(34) for Ra(0) — ro(£) require a slight
adaptation because if py > 1 then the busy period Py is defec-
tive. It follows from (14) that

1—61{51(1{))} =1 - Ll
B (w) 51w}’
so that, using (26),
PP < ) = L (52)
M

We can now mimic the calculations in (31)-(34): Fort — oo,

k;g (:) (}%)k(l —pyk

2P IP(By > t)

bg(l—p) )
= P(Pa>t
T=by(Z +1-p) (2> 1)

= P2 ppy s,
1- [ 2]

(53)

In the first step we have used a property of the class £ of
lung -tailed distributions which alfowed us to omit the fiite sum
Ek_l Pn, in the second step, an elementary property of regu-
larly varying functions is used, and in the last step we have used
(109, Using the counterpart of (28) for Bt finally foltows that,
fort -+ cq,

FPo(0) — paft) ~

1 A
po 1-'(2 )
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2 (1 — pp}t) (1), (3
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yielding, forw 10,

Po(w) — Pa(0) ~ —%i% %)"**Iza(%). 55)
Using (20), R1(0) = 0 and Px(0) + Ri(0) = ~In(1 — &),

& = 1,2, it follows that
o~ Fa(®)
0 'i_—bl'
Combining this result with (46), (49) and (55} vields: Forw ¢ 0,

1 (82 () = (L = %) + (1 — by)
t{ba(w)) — ¥1{0)

o(wl”"’lz(%)).

The first equality follows from Formula (2.23) of [9], or indi-
rectly from (39). The second equality follows from the interest-
ing fact that the w!' =2 factors in eF1(*) and e=F2(%) gre multi-
plied by the same constant, with different signs.

Remark IV.1: Notice that, with 7§ = 1, Qs is an M/G/1

queue in isolation, According to (7], the tail of its workload
distribution, P{V, > 1), is regularly varying at infinity of index
I — 1. However, it follows from {56} that P{V; = 0,V2 > 1)
= o{t! ™" la(t)), t -+ co. The explanation is the following.
The workload in ¢4 has a positive drift o, — 1 when 12 > 0.
Therefore P(V1 = 0|Va > 1) = o(l) for ¢ = oot When the
workload at €}y is very large, it is highly unlikety that {}; is
empty.
The above result for the behaviour of ¢ (82(w)) for w + 0 al-
lows us to determine the behaviour of ¢ (e;(w)) for w 1 0.
Using Relation (43) between 42 {¢; (w)) and ¥, (d2(w)), along
with the asymptotic results (44) and (45) for 1 (w) and da(w),
it follows after some calculations that, for w T 0,

‘:1‘—'153.

fi

1l

(56)

ales{w)) — (1— 92) 61}
- pL—1 AQC( )va—lf( 1)
I RARY
Using (44) once more, we have for & J, 0
Po(s) — (1 -~ p2) (58)
A £ - 1 wo—1 1
A O 27 g (=),
DR

Finally we are ready to determine the tail behaviour of the work-
load V1 at ;. The LST of Vi is given by (5). The first fac-
tor in its righthand side is the LST of the workload distribution
in &1 in isolation, with a sorver that always has speed 1 (the
Pollaczek-Khintchine workload LST in the M /&/1 queue); this
factor would give a t1 =" tail behaviour, cf. (16) and (17) where
the relovant M/G/1 theory {(but for s) is given. Using (39)
and (58), the second factor in the righthand side of (5) is seen to
yield a £1772 tail behaviour. To see which term dominates, we
have to distinguish between thiee cases; 1 < v, #1 > vo and
¥ = Vg

Case It 11 < 1. In this case the heavier 1ail of 3, dominales,
and (41) still holds when p; > 1:

E[e-ﬂV=]u1~_7s”*-lz1c§), 510, (59
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with K = gz +(1— p2)r}. Remember that K — py = r1(1-ba).
Case 2: vy, > vo. In this case the heavier tail of By deminates,
resulting in: For s L 0,

Efe™*%] -1

(60)
1o -1 1
T ;; )\20‘2(5';1“ o )”“"119{;)
— T’; ~1 pL — 1 ra=—1 1
= K—pj,\chz(sl—fiz) lg(s).

Case 3: 11 = vy, In this case, addition of the righthand sides of
(59) and (60) gives the right asymptotic behaviour of E[e V1] -
1

Applying Lemma A.1 again, we havo proven the main theorem
of this section:

Theorem IV.]: T P(B; > t),1 = 1,2, is regularly varying at
infinity of index —», € (—2,—~1}, as given in (18), (16), and if
o1 > 1, then P(Vy > #) is regularly varying at infinity of index
1 — minfp, 12):

If 11 < w4, then

1 MO i
PWVi>t) ~ m*ﬁmt I(t) (61)
M~ res .
~ Kv,olp(Bl >1), t—oo;

If 1y > 1g, then for t — oo

rf—1 My pr=1 -
P(Vy > t) ~ 4 vemigl-vag. ().
(1> ) Kﬂplr'(2—i/z)(1-"p2) 2()
(62)
If i = v, then for ¢ =4 c0:
1 MO
P )~ —— =" (1
(V1 >1) K= p T~ 1) 1(t)
T N R NUSNCE)

K—pT(2-1)"1-p;

The above result implies the following. If the tail of By is heav-
fer than that of By, then P(V] > t) behaves exactly as if @1 is
an M/G/1 queue in isolation, with server speed & (which is the
average available speed for @)1). But if the tail of By is heavier
than that of 21 and p1 > 1 (server 1 needs the help of server 2),
then the former tail behaviour determines that of P(V) > ¢),

Remark [V.2: Formula (62) has the following interesting in-
terpretation. First notice that the workload of @1 has a positive
drift p1 — 1 during the busy periods Py of ()2, and a negative drift
p1—r} during the (exp(Aq) distributed) idle periods of ¢}2. Now
congider a fluid queue fed by one on/off source. The off-periods
are exp{Az) distributed, and the on-periods are distributed like
the busy periods of Q» (which is an M /G'/1 queue in isolation,
since #3 = 1). During off-periods, the buffer content V' of the
fluid queue decreases at rate r} — py. During on-periods, the
buffer content V' increases at rate gy — 1. Jelenkovié and Lazar
{12] have proven for this model that, with P§*¢ denoting a resid-
ual busy period, for ¢ = oc:

P 5 o)~ Lo mlesll = pppee s Loy (ot

0-7803-5880-5/00/510.00 (¢) 2000 ILEE
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To handle the latter tail probability, use the result of De Meyer
and Teugels for the relation between the tail of the regularly
varying service time distribution in an M/G/1 queue and the
fail of its busy period (change indices 1 inta 2 in (23)). The intet-
esting conclusion then is, that the tail behaviour of the workload
in thie Duid queue ic equivalant to the tail behaviour of V;. This
gives very useful insight into the waorkload tail behaviour under
more complicated GPS disciplines, in cases where the guaran-
teed rate of a source is not sufficient to handle all its work,

V. CONCLUSIONS

In this paper we have studied a model of two coupled M /G 1
queues, The service speed at the first queue is increased during
periods in which the second queue is empty. Under the assump-
tion that the service request distributions at both queues are reg-
ularly varying at infinity of index —#y and —wa, we have pre-
senfed a detailed analysis of the tail behaviour of the workload
distribution at each queue. If the guaranteed unit speed of server
1 is already sufficient to handle its offered traffic, then the work-
load distribution at the first quene is regularty varying at infinity
of index 1 ~ ., Butif it is not sufficient, then the workload at
¢}, has apositive drift during regularly varying busy periods of
()2, and the workload distribution at the first queue is regularty
varying at infinity of index 1 — min(p, 1g). In particular, traf-
fic at server 1 is then no longer protected from worse behaving
{heavicr-tailed} traflic at server 2.

We believe that these results form a useful step towards deter-
mining the extent to which GPS-based scheduling algorithms
are able to protect individual connections. Several extensicns
are possible, and we intend to study these in a following paper:
(i} the special case g1 = 1; (ii) the special case 7“1? + 3—5 =1
(i) the general case ry > 1, rj > 1; (iv) one of the two service
request distributions has an exponential tail.

Thé thus obtained results, along with the results obtained in [4),
[51, should give insight into the performance of a wide range of
GPS-based scheduling disciplines, and into the effect of heavy-
tailed input characteristics. This might be useful in various re-
spects, e.g., in making appropriate cheices for the weight factors
¢, in GPS.
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APPENDIX
1. HEAVY TAILS

Definition A.I: A distribution function F(+) on [0,00) is
called long-tailed (¥ () € L) if

L 1-Fle—y) _
mlglgo T F@) =1, forallrealy.

A well-known subclass of the class of long-tailed distribu-
tions is the class of regularly varying distributions R (this class
contains the Pareto distribution):

Definition A.2: A distribution function F(:) on [0,00) is
called regularly varying of index —uv (F(\) € R{—)) if

where {(2) : Hy — R4 is a function of slow variation, ie.,
liMyyee i(nz)/l(z) = L, > L.

A key reference is [3]. The following lemma (of, Lemma 2.2
in {6), which is an extension of Theorem 8.1,6 in [31), links the
regularly varying tail behaviour of P(Z > t) for ¢t — oo to the
behaviour of its L8T f(4). It plays a key role in the proofs of
our main results.

Lemma A.I: Let Z be a non-negative random variable with
LST f(s), {{t) a slowly varying function, ¥ € (n,n+ 1} (n €
N)and €7 > 0. Then the following are equivalent:

A P(Z > =[C +o()t77I{E), t—= 00

(i) BIZ") < o0 and f(s) ~ T, BEM=0 = (_1paT(1 —
(G + o()]a*I(1/5), 5 L0,
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