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Absfmcf- Consider two M / G /  1 qiiciics that are coupled in thc Pullow 
ing way. Whcncvcr botil qiieues are non-cmpty, cach scrvor sawu Its own 
qiwiic al unit fipecd. Howcvcr, If scwer 2 has no work In its own queue, then 
It aasisb ~ r v c r  1, rwultlng In ~1 incramed scrvicc sped PI > 1 in the Ant 
qiicuc. Tbk kind of coupling Is reintcd to generatlzed pracessorsharlng. We 
mume that the servlce requcst dktributlons at both queurs arc regularly 
varying nt Infinity of Index -v i  m d  -up, VIZ.. they nre henvy.talled. Under 
this assumptlon, wc prerent n dctatlcd analysk of tho tidl heldaur  of tlic 
workload dhtribution nt each queue. If the piarmntccd unit speed of server 
I Is nlrendy sufAcient to handle ltti offered trafflc, then Ihe workload dlstri- 
hution nt the Rrst queue isshowii lo be re@larly vmrylng at hfinity of Index 
1 - v1 I But If It is not suflcient, then the workload distribution at the first 
queue LS shown to bc rogilarly varying at infinlty of Indw 1 - min(u1, ~ 2 ) .  
I n  IiartIcular, tramc at server 1 is titen no lOllgCr protected from wdnc be- 
having (hcevier-tniled) traffic at scflcr 2. 

ICeywwh-CoiipIed prOCe.Ssop8, Gcticrnllzed Promsor Sliarlng, wnrk- 
loitl, tdl bdiaviour, rcgular vnrlation. 

1. INTRODUCTION 

Consider the following model of two coupled M/G/1 queues, 
41 and Q2. QL, a = 1,2, receives a Poisson arrival stream of 
custotners of type i with aaival rate X i  and required amounts of 
service that arc i.i.d. random variables with distribution ai(,), 
with mean pi. and Laplacc-Stieltjes transform (LST) ,B;{s}. Bj 
detiotes a random variable with distribution I & ( . ) ,  i = 1,2. Dc- 
note the avcragc amount of traffic offercd per unit of time at 

by p; := Ai/&. Thc arrival processes ut the two queues, 
and thc families of rcquired servicc amounts it1 both streams, 
arc indcpcndent of each othcr. Whenevcr there is work of each 
type, each server scrvcs its own qucuc with speed 1. However, if 
scrver 2 is idle then the speed of server 1 is rl 2 1, and if server 
1 i:; idlc then the speed of scrver 2 is r; 2 1. In a sense, the 
servcrs are coupled, and a servw with no work at its own queue 
is lhle to assist the other servcr. 
This couplctl-processors modd has been analyscd by Fayolln 
and Iasiiogorodski [ll] and by  Konheim, Meilijson and Melk- 

m m  [13] in the cnse of negative exponentially diskibuted ser- 
vice requests, and by Cohen and Boxma [9] in the caw of gen- 
erally distributed scrvicc requests. Konheim et al, apply the 
uniformisation technique; Fayolie and Tasnogorodski determiiic 
the joint queue length distribution by formulating and solving 
a Ricmann-Hilbert boundary value problem; and Cohen and 
Boxma obtain the joint distribiition of thc workloads in both 
queues by formulating and solving a Wiener-Hopf boundary 
value problem, 
The coupled-processors model is highly relevant for Gener- 
alized Procossor Sharing (GPS), GPS-based scheduling algo- 
rithms, such RS Weighted Fuir Queueing, have emerged as an 
important mechanism for achicving diffcrentinted quality-of- 
service in integratcd-services networks. The GPS discipline op- 
crates as follows. Considcr N 2 2 sources sharing a link of unit 
rate. Thcrc is a nonnegative weight $i associatctl with source 
i, with q5i = 1. If the buffer content of each source is 
positivc, then sourcc i is served at race $i, But if some of thc 
sources have an empty buffer, then the excess service capacity 
is redistributed among the sources with non-emply buffers in 
proportion to their respective weights. See [IO] for B formal de- 
scription of the evolution of the buffer contcnt proccss. 
The queueing analysis of GPS is extremely difficult. Intcresting 
partial results were obtained in [Z], [ IO] ,  [14], [17]. If N = 2, 
then thc above coupled-processors mode[ with 1.; = r; = 2 co- 
incides with the GPS inodcl with equal weights; hence the exact 
queue length nnnlysis in [I  11, [13], for thc cn,sc of exponentially 
distributed scrvicc requests, applies to this special GPS casc. 
Furthermore, the exact anatysis of thc joint wurkload process 
in [9], which holds for generally distributed scrvicc requests, is 
also appiicabIe. l h e  lattcr study forms the starting-point of the 
present papcr. 



0u.r god is CO investigate the irifluence of heavy-tailed service 
request distributions on tlie lail behaviour of the workload dis- 
Iribulions a l  the two couplcd processors. The motivatiun for this 
investigation is the following. Statistical data analysis has pro- 
vided convincing evidence of hcavy-tailed traffic characteristics 
in high-speed coinmutiicntion networks (sec, c,g,, the forthcom- 
ing book [ 161). This has stimulated much researchinto the efkct 
of hcwy-tailed traffic on key performance mcasures tike waiting 
times and workloads. An important question is: To which extent 
are performancc measures for one type of input traffic affected 
by worse (i.e., henvier-tailed) input traffic of another type'? In 
two recent studics [4], [SI, we have partially answcrcd this ques- 
tion lor QPS. Using a samplc-path analysis to detcrminc lowcr 
ancl upper boiiiids for buffer content (worklond) tails, we have 
idcntificd conditions under which the huffer contcnt of an in- 
dividual source with long-tailed traffic characteristics behaves 
similnrly ns when served nt R constant rate which is equal to 
h e  maximum feasiblc average rate for that source to he stable 

~ r*gwdlcss of the possibility that other sources have heavier- 
tailed input traffic. Under thosc conditions, GPS-based schodul- 
ing rrrcctiariisms apparently are able to protect indivjducll con- 
ncct ions, 
in Ihc prcscntpapcr we identify a situation in which such a pro- 
Lcciion is nor givcn. The exact joint steady-state distribution of 
tiic two workloads, which has been obiained in [9], subsequently 
allows us to exactly quantify the workload tail behaviour, and to 
dctsrminc to what extent the protection fails. We perforin this 
lail behaviour analysis under the asnimption of rcgutarly vary- 
ing service request distrihutions. Regularly varying distributions 
furm an impvrtaiit class of heavy-tailed clistrihi,lltians, with well- 
stu4:lied propertics [ 31. 
While the results in [Y] allow US, in principle, 10 study the work- 
load tail behaviour for all ( T : , T ~ )  combinations with r; > 1, 
r; 2 1, wc have decided to rcstrict ourselves in this paper to 
ri 2 I,, T-; = 1; analysis of the general cnse is the subject of a 
forthcoming study. The reason for the rcstriclion is, that the case 
1.5 -- 1 is rclativcty simple and transparent: Q2 is not affected 
by Q1, and the influence of the scrvice request tail at Qz on Q1 
CAI> be sli~~~irply identified ortd intcrprctcd. This yields much in- 
sight into inorc complicakd cases, for which tlierc is littlc hopc 
of iiii cxact nnalysis. 

'l'hc papcr is organiscd in the following WAY. Section I1 conhins 
tliose results from the cxactct coupled-processors analysis of [9] 
that will he used in the sequcl. We subsequently distinguish two 
cases: pl < 1 and pl > 3.. In the former case, scrvcr 1 is able 
to handle its offered traffic, eveti if Q2 werc ncver empty. In 
thc latter case, server 1 nccds thc assistance of server 2: this is 
the case where 'the protection fails', The workload myniptutics 
for pl < 1 are antllyscd in Section 111, and those fur PI > 1 
in Section IV. Thc latter section contains our main result: The 
tail of thc workload distribution at Q1 is shown to be regularly 
varying of intlcx 1 - min(y  , v2). i.e., the heaviest-tailed service 
requcst distribution dctcrrnines the tail behaviour of the work- 
load distribution. Section V coiitains conclusions and sugges- 
tiuns for future work. Some defiiiitions and results rcgarding 
regularly varying and lotig-[ailed distributions arc gadiered in 
the appcndix. 

11. PRELIMINARIES 
In this section we summarise thosc rcsults of Section 111.3.7 

of [93 that will be uscd in the annlysis of the tail bchavionr of the 
workloads in the coupled-processors model. We rcfcr to Section 
nI.3,7 of [9] for a discussion of theergodicity conditions; for the 
moment it suffices to observe that nt least one of thc conditions 
p l  < 1, pz < 1 should be satisfied, but not necessarily both. For 
cxample, if pl > 1 then it is still possible that the server at Qa 
sufficiently often faces no work at its owii queue and is able to 
serve the other qneue. We restrict ourselves in thc sequel to the 
steady- state situation. 

denotes the steady-statc workload nt Qi; (-) is iiscd to denote 
an indicator function. For Re 81 2 0, Re sa 2 a, let 

$(81,82) := E[e-8'V'-*'V' I >  (1) 

#1(82) := E[c-"" (v, = 0 ) J I  

&(SI) := E[e-81Vy& = O ) ] ,  

(2) 

(3) 

(4) 
Formula (2.16) of Chapter IK1.3 of [9] (in the sequcl we omit 
mentioning Chapter 111.3 when referring to formulas froin that 
chapter) cxprcsscs $(sl,sz) into &(sa), Q2(a1), and $0. For 
our purposes it is sufficient to study the LST's of the marginal 
workload distributions. In particular, we concentrate 011 thc 
workload at & I .  From (2.16) of [9] i t  follows that, for He .q 2 0, 

:= P(V, =; o,v, = 0). 

Note that the first term in the righthand side is the Pollacxk- 
Riintchine U T  of the workload in M/G/1 queue 91 in iso- 
lation (with service speed 1). We now discuss Q ~ ( S ) .  In [9] a 
distinction is made between thc spccial case I/r; + l / r ;  = 1 
{which corresponds directly to generalized processor sharing) 
and tlie case 1 / T i  -I- 119.; # 1. Let US concciitratc on the liittcr 
more general casc, which is of morc interest for our purposes (in 
the next two sections, wc trkc r; =- I.). According to (622) of 
[91! 

1 1 e-J3(O)--A2(0) 
-[!hi4 (4) - $01 = - 

[I - c-ni(w)+na(w)], Re 2 0. (6) 

We still have to specify the functions PI(w), .&(w) and & ( w ) .  
Fori  = 1,2, 

r;r; 1 - 1/rf - IJ r ;  

(7) 



b2 := pzj l  - 7) 1 t y, P l  (10) Here and in thesequel, f ( t )  - g ( t )  denotes: linit-,mf(t)/g[t) = 
I; and 1 ( . )  aitd 4(#> will be used tu denote slnwly varying func- 
tions. 
Having established the tail behaviour of the workload at I&, we 
concentrate on Qi in the remainder of this section. Assume that 
P(B1 > t) is regularly varying at infinity of index --VI: 

TI 

and for a = 1,2, 

up := xi1 + . . . + Xin, 11 1) 

with XI1, .  . I ,Xi, t i d .  and X21,. . ,Xan i.i.d., and 

-& ‘1u.p. - P2 
b l T ;  ’ (12) Let us assume that 1 < v1 < 2; highcr values or V I  can bc 

hantllcd with ininor daptations. Ar;cordirig to Lemma A.1, (1 8) 
with 1 < VI < 2 is equivalent with 

denotes a husy period in an M / U / l  queue that has exactly 
the same traffic charackristics BS Qi and has scrvice specd I, 
nncl that stuurt~ wirh an exceptionnl , f j i : s ~  serwice that lias distri- 
bution J,” S O U  (a residual service time; we clcnotc such a 
randoin variatie tiy B;~J). 
Wc also havc to spccIfy &(tu), which plays a key role in the 
analysis of this coupled-processors model. ‘I’he function 

f i ( S , W )  := h(1- PI{.}) - 3 + w  (14) 

has €or Re w 2 0, 7u # 0, exactly one zero s = h ( w )  in 
R,c fi > 0, and {his zero has rnultiplicity one. 
fl(s,O) has for p1 < 1 exactly onc zeru s = & ( O )  = O in 
ltc s 2 0, with nmItiplicity ono; 
fl(s,O) has for p l  = 1 cxactiy onc zero s = 6 ~ ( 0 )  = 0 in 
Rc s 2 0, with mtihiplicity twu; 
f i ( ~ , O )  has for (11 > 1 two zeros s = &(O) > 0 and s = 
€1 (0) = 0 in Re s 2 0, cach with multiplicity one. 
Similnrly & ( T U )  is defined for no w 5 0, as zero of thc function 

(15) f2(s, w) := X a ( l  - PZ{S}) - s - w. 
Tho different behaviour of &(w)  for w near 0 for p i  < 1 and 
pl  > 1 will he reflectcd in diffcrent tail behaviour of the work- 
load distribution at Q1 for thesc two cases. In Section 111 WO 

considcr the case pl < 1, and in Section IV thc case pl  > 1. 
m WORKLOADS FOR THE CASE p1 i 3 

Firstly, remember that r$ = 1. Hence, is not influenced 
by G I ;  it is na ordinary M/G/1 queue. It follows from Colicn 
[71 that P(V3 > t) is regularly varying of index 1 - uz at infiiity 
iff the tail of the service request distribution P(& > t )  is reg- 
uiarly v;irying of index -va at infinity (see the appcndix for the 
definition ofrcgularly, and slowly. varying functions), and m m  
precisely: 

P(D, > t )  - t-”’/2(t) ,  t t 00, (16) 
-F(l - ua) 

iff 

bution at Q,. Wc intend to show that it is similar to that of fi 
as given above, but with index 1 - VI iiistcad of 1 - 112; i.e., 
in thc case p i  < I ,  thc intlcx o i  rcgular varintion of the tail of 
P(& ;z t )  is not iafluonccd by Q2, Our approach is as fol- 
lows, If we c m  dctcmiao tho bohaviour of I ~ ~ : I C - ~ ~ ~ ]  for a 0, 
then we can invoko Lemma A,1 to doterminc thc behaviour of 
P(V, > t )  for t + 00, Formda (5) exprcsscs E[c-BVi ]  into 
$,a(s). Formula (6) expresses $ a ( s ) ,  or rathcr &(&(w) ) ,  into 
&(w) and & ( w ) .  Tlicrcforc wc now conccntratc on the be- 
haviour of the latter functions for w & 0. Note that, sincc rb = l, 
we have bl = p2  and  XI^ = -4 < 0 w.p. 1, which implies 
that RI (w) 0. According to (6.21) of [9], 

$(O) = e - 4 ( o l - R a ( o ) ~  (7-0) 

$2(S1(w)) = $0cn2(”), R e w  2 0. (21) 

In cornbinatiun with the above. (6) rctluces to 

Before focusing on &(w).  wc study the behaviour of61(io) for 
?U $ 0. Let PI denote a random variable with distrihutinn the 
steady-state distribution of  a busy period in the M / G / l  queue 
with arrivalratc A1 and service time disttihulion U1 (-), viz., Q1 

in isolatioa, Comparing (14) with the TRkAcs equation for the 
busy period LST E{e-”’\], cf. p. 250 oE Cohcn [XI ,  it is seeti 
that 

(22) 

De Meyer find Teiigels [ 151 have proven that €’(PI > t) is regu- 
larly varying fit i n h i t y  of index --VI iff P(D1 > t )  is regularly 
varying at infinity of indcx --VI, and if eithcr hulds thcn, for 
t + m ,  

Sl(W) = 211 3- X l ( 1  - E[c-””]). 

N -F(- B1 > t )  1 
I - P l  I L P l  

Lcinma A.l  then gives the behaviour of E[c-”‘l] - 1 for w 4 0. 
Wc conclude that, if (18) holds, thcn 



In addition, using (14): Hence, for f -+ CO, 

1 I: 

w = Si'(3) = s - X~(I - &{a}) P(Xa1 f * .  . .I- xa, > t} - 2 (3$(1 -p)"-"ppli  > t )  = (I - 01)s f A~C~S"Z~(;), 8 -1 0. (25) 

k=O i= 1 In Ihe study of Rl(w},  a key role is played by the LST of $1, 
a busy period in 91 in isolation that is started with a midual 

1 - P m 4 1 ,  2 0, (26) 

2 ( ~ ) ~ ~ ~ l  -p)n-kkP(f i l i  > t) 
service time. From (6.4) of [9], k=O 

= npP(P1I z t). (33) 

The second - sign follows froom a well-known property of the 
class of regutacly varying distributions (again, cf. [3]), We con- 
dude from (301, (33) and (28) that, for d + DO, 

= P l & ( W >  

It is now readily verified, using (19), (24) and (26), that 

w ./, 0. (27) 

Hence, using Lemma A,1, P(pL > t )  is seen 10 be regularly 

'1 - E[e-W'l] - Cl -(-)vi-lll(-)j w 1 

I341 bap Rrq(0) - r2(tl 

(1 - a2)r; 172 - 

m P ( 4  > t )  

xlcl ((1 - pl) t>l-"' l&)# 

a 1 - P1 61 Iw) 

1 varying at infinity of index 1 - I+; ry 

Cl 
P l W  - 4 ((' - lJ')')1d"'11~t)3 ' Oom Note that ba < 1 if p1 < 1, Pa < 1, Ti 2 1, which is the cage 

(28) under consideration in this section. Again applying Lemma A. 1, 
The difference with (23) is caused by the residual service time for IU $0, 
with which the busy period starts; it is regularly varying of one 

P(P1 > t )  - 
hC1 w 1 

index higher than an ordinary service time. We are now ready ) z ~ ( ~ )  - &(o) - ( - )V1-91(-) .  (35) 
to study the tail behaviour of Ra(w), Observe that &(w) is the 
Lsr of 

< X2l + . . . -f Xzn  < t ) ,  t > 0. (29) 

(1 - ba)rt 1 - pl w 

It folIows from ( 3 3 ,  (20) and (at) that, for w 4 0, 
M 

~ , l ( t )  := z P ( 0  n &(&(w)) - e-fi(0) (36) 
I n--l 

N -e-A(o) ( L ) u l - l ~ l { d ) .  
Consider, fort > 0, 11 - ba)r; 1 - pl  W 

bg b" From (71, (1 1) and the fact that XI$ < 0 w.p. 1 (cf. (12)): &(O) - ~ ( t )  = C 2P(X21 -I- . . . f Xa, > t ) .  (30) 

write for i  2 I: 

lU,i = @li - (1 - Yi)Aim 

Hence, fort  > 0, 
P(X21-l- . . . + xan. > t) = (31) Pinally, see (24), for B 10, 

Using (51, (19) and (38), and the fact that (cf. (2.23) of [9], or 

(39) 

I511 Since & E R(l - V I ) ,  the class of regularly varying func- 
tiom of index 1 - V I ,  we also have (see 133): xt=r 4; E 
R(l - V I ) .  The class L of long-tailed distributions (sec tho 
appendix) contains R(1. - V I ) ,  and herefore $3; E l .  
Since C:=k+l & > o w.p 1, we can apply the following well- 

k *  - &lo) + T E [ &  - 3a(o)] = 1, 
1 -P1 1 - -PI  

it follows that, for 8 4 0, 

(40) 
1 known property of (cf. [3]): E[e-"V'] + 1 N -[- 

k n 1 - P 1  

160 I['IX INFOCOM 2000 



Using (IO), we can rewrite this into 

with K := p2 + (1 - p2)rf. AppIyingLemmaA.1 once moml 
we have proven the main result ofthis section: 

Theorem111. I :  If P(B1 > t )  is regularly varying at infinity 
of index -vi E (-2, -l), as given in (18), and if pl < 1, then 
P(K > t )  is regularly varying at infinity of index 1 - vi, as 
given below: 

BemarkIU.1: The above theorem implies that (cf. [7]) 
P(K > t )  behaves exactly as if &I is an M/G/l queue in 
isolation, with server speed K. Indeed K can be interpreted as 
the average available service speed for 91; K = 1 if rt = 1. 
Note that X - p~ =: .!(I - b). The distribution of Ba only 
plays R rok via its mean. The theorem has A similar flavor as the 
'reduced load equivalence' results of Agrawal at al. 111 for fluid 
qutuues, w.r.t. taking the influence of type-2 traffic into account, 

Xeinark 111.2: In 141, 151 similar results have been obtained 
for a related model with generalimd processor sharing. The 
methodemployed in 141,[51 is to derivelower and upper bounds 
for the workload tail, which asymptotically coincide. 

lZemark111.3: In the case r; = 1, which was studied in 
this; section, Q1 behaves as an M / G / I  queue wilh two service 
speeds. During exp(h2) periods the service speed is ri, and dur- 
ing busy periods of 92 the service speed is 1. All those periods 
are independent, As far as we know, there are, no exact results 
known for the workload distribution in an M / G / I  queue with 
speeds that change according to an alternating renewal process 
(except for various studies regarding the case of an alternation 
between positive speed and zero speed). The exact anaIysis of 
the iibove-mentioned case i s  implicitly contained in the annly- 
sis in Chapter IIL3 of [9]. It should be noted that an M / G / 1  
busy period cannot represent any arbitrary distribution of a non- 
negative low-speed period. 

In the present section we have assumed that p1 < 1, i.e., the 
server in Q1 wouId have been able to handle all the work in 
its queue without any assistance of the server at &z (without 
periods of high speed T;). It makes sense that in this case the 
tail behaviour of V, is not really influenced by Qz, except for 
the factor K.  One may expect this to be different when p1 2 1. 
The case p l  > I will be investigated in the next section. The 
boiindary case pl = 1 is the topic of a later study. 

IV. WORKLOADS FOR THE CASE p i  > I 
As in the previous section, rf = 1 so that @ is not influ- 

enced by I&. We a s s m e  that both (18) and (16) hald, i.e., both 
P(B1 > t )  and P(B2 > t )  me regularly varying at infinity, with 
indices I < u l ,  vz < 2. Higher values of vi can be handled 
wiih minor adaptations. Stnrting-point for studying the tail bc- 
haviour of workload Vi is again Relation (S) for its LST, but we 
can no longer iisc (21) for the tmn $2 ( 8 )  which is contained in 

it. The reason for this is the following. We want to let s 3 0, 
but &(wW) --t Sl(0) # 0 for w + 0 if p1 > 1. Let us therefore 
take a closer look at the zeros off1 (a, tu), cf. (14). In [9] it is ob- 
served that ( 8 ,  w )  has, for mal s 2 0, no zero if pi < 1, m e  
zeroso = Oifpi = Land onezeroso > Oifpl > I ,  Ifpl 2 1, 
then the point WO := 80 - x1(1 - &{SO}) is w saond-order 
branch-point of the analytic continuation of di(w), Re w 2 0, 
into Re w < 0. For pa < 1, pi 2 1, and EU E [wo>O], the two 
zeros of f i (8 ,w)  in [O,%(O)] will be indicated by E I ( W )  and 
SI(W), and such that 

CI(W) mapa [WO, 01 one - to - one onto IO, 801, 

61 ( w )  maps [WO, 01 one - to - one onto [ao, &(O)]. 

Next to (Zl), there exists the following relation if p1 2 I (cf. 
(6.24) of C91, and choose r; = 1; also remember the definition 
Of &(w) above (15)): 

To determine the behaviour of $2 (el ( w ) )  for w t 0 (which even- 
tually will give us the behaviour of E[e+&] for s .1 0, hence 
that af P(V1 > E )  for t -t m), we need to determine the be- 
haviour, for tu t 0, of tl(w), & ( w )  and $l(&(tu)) - the terms 
h a t  appear in (43). Take tu < 0, w t 0, Then (cf, (24)): 

q ( w )  = - -w -t- XICI (-)%(;), -w w t o .  (44) 
p1-1 p 1 - 1  p1-1 

I n  view of the symmetry between the regularly-varying-tail as- 
sumptions (18) and (16) and between the dcfinitions of &(tu) 
and bz(ur), it is readily seen from (24) that 

(47) 



(Rememberthat bl = pa whenrl = 1.) Using (16), LemmaA.1 
and (451, we obtain fox w t 0: 

yielding, for w t 0, 

-1 PZ(4 - 4 ( 0 1  

Using (20), &(O) = 0 and Pi(0) -t &(O) = -ln(l - bi ) ,  
i = 1,2, it follows that 

11. (49) , w W )  = -p 1 - - XaCg ( --w y a - l i 2 ( -  
1 - p z  1 - p z  1 - p a  (4 

We now turn to e - f i ( w ) .  me analysis is similar to that 
in Ihe previous section. Observe that Pz(w) is the LST of, for 

1 

e-paIO) 
$0- = 1 - ba. 

t > 0, 1 - bl 

Combining this result with (46), (49) and (55)yields: For ’1u f 0, 

Consider, fort > 0,  

Thr: calculations in (31)-(34) for &(O) - rz(t> require a slight 
adaptation because if p1 > 1 then the busy period is defec- 
tivt!. It follows from (14) that 

so that, using (26), 

1 
PI  

P(lil < CO) = -l 

We can now mimic the calculations in (31)-(34): Fort + 03, 

n 

(n  - k)P(ia > t )  

(53) 

I n  the first step we have used a property of the class L of 
long-tailed distributions which allowed us to omit h e  finite sum 
Etzl &t; in Lhc second step, an elemeiitary property of regu- 
larly varying functions is used, and in th,e last step we have used 
(10). Using the counterpart of (28) for P2, it finally fallows that, 
fort --t 03, 

The first equality foilows from Formula (2.23) of [SI, or indi- 
rectly from (39). The second equality follows from the interest- 
ing fact that the w1-’2 factors in and are multi- 
plied by the samc constant, with different signs. 

Remark1KI: Notice that, with r; = 1, i& is an M/G/1  
queue in isolation, According to [7], the taiI of its workload 
distribution, P(& > t ) ,  is regvlarIy varying nt infinity of index 
I - v2. However, it follows from (56)  that P(Vl = 0, V2 > t )  
= ~ ( t ~ - ” ~ Z ~ a ( t > ) ,  t -4 M. The explanation is the following. 
The workload in QI haq R positive drift p l  - 1 when V2 > 0. 
Therefore P(V1 = OlV2 > t )  = o(2) for t -+ 00: When the 
workload at QZ is very large, it is highly unlikdy that &I is 
empty. 
The above result for the bchaviour of $1 (&(tu)) for w 0 al- 
lows us to determine the behaviour of @ ~ ( ( E I ( U I ) )  for w t 0. 
Using Relation (43) between $~(EI(w)) and $ ~ ( & ( w ) ) ,  along 
with the asymptotic results (44) and (45) for el(’u1) and &(to), 
it follows after some calcuIations that, for w t 0, 

(57 1 $ a ( t i ( W ) )  - (1 - PZ)  

Using (44) once more, we have fors 4 0: 

FinaIly wc are rcady to deterniinc the tail behaviour of the. work- 
load Vi at 81. Thc LST of VI is givcn by (5). The first fac- 
tor in its righthand side is the LST of the workload distribution 
in 91 in isolation, with a scrvcr that always has speed 1 (thc 
PoIlaczek-Khintchine workload LST in the M/G/l queue); this 
factor would give a tl-”l tail behaviour, cf. (16) and (17) where 
the relevant M/G/l theory {but for 92) is given. Using (36) 
and ( 5 8 ) ,  the second factor in the righthand side of  (5) is seen to 
yield a tl-”l tail behaviour. TO see which temi dominates, we 
have to distinguish between. three cam; VI < V Z ,  V I  > v2 and 
y = Pa. 

Case I: y < v2, In this case the heavicr tail of B1 dotninaks, 
and (41) still holds when p1 > 1: 
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with K = pa  +(l -pa)rf' Remember that X - p l  = rT( 1 - ba). 
Case 2: y > y. In this case the heavier tail of Ba dominates, 
resulting in: For s 4 0, 

E[e-""] - 1 (60) 

Case 3: VI = v2. In this camj addition of the righthand sides of 
(59) and(60) gives the right asymptotic behaviour of E[e-svl] - 
1. 
Applying Lemma A. 1 again, we havc proven the main theorem 
of this section: 

Theorem IKl:  If P(Br > t) ,  i = 1,2, is rcgularly varying at 
infinity of index -v, E (-2,  -11, as given in (18), (16), and if 
pi  > 1 then P (VI > t )  is rcgularly varying at infinity of index 
1 -. min(v1, pa): 

If VI < r/z, then 

w -  P(B,'"" > t), t + 00; 
K - p1 

If > y, then fort + 00: 

Thr: above result implies the following. If the tajl of D1 is heav- 
ier than that o i&,  then P(K > t) behaves exactly as if Q1 is 
an M / G / l  queue in isolation, with server speed TI (which is the 
averrage available speed for Q1). But if the tail of 32 is heavicr 
than that of B, and p1 > 1 (scrvcr 1 needs the help of server a) ,  
then the former mil behaviour determines that of P(V1 > t ) ,  

Xcmlcrk IK2; Formula (62) has the following interesting in- 
terpretation. First notice that the workload of &I has a positive 
drift pl - 1 during the busy periods P2 of 92, and a negative &i€t 
pl . -  r; during thc (exp(X2) distributed) idle periods of Q2. Now 
consider a fluid queue fed by one on/off source, The off-periods 
are exp(X2) distributed, and the on-periods are distributed like 
the busy periods of Qz (which is an M/G/l queue in isolation, 
sincc ~4 = 1). During off-periods, the buffer content V of the 
flui.d queue decreases at rate PT - p l .  During on-periods, the 
bullfcr content V incrcases at rate p l  - 1. Jelenkovid and Lazar 
il2] have proven for this model that, with Pps denoting a m i d -  
ual busy period, for t + 03: 

To handle fhc latter tail probability, use the result of De Meyer 
and Teugels for the relation between the tail of the regularly 
varying service time distribution in an M / G / 1  queue snd the 
tail ofits busy period (changeindices 1 into 2 in (23)). The inter- 
esting conclusion then is, that the tail behaviour of the workload 
in this Ruid queue ir equivalent to the tail hehaviour of V I .  This 
gives very useful insight into the workload tail behaviour under 
more complicated GPS disciplines, in cases where the guaran- 
teed rate of a source is not sufficient to handle all its work. 

v. CONCLUSIONS 

In this paper we have studied amodcl of two coupled M / G / l  
queues. The service speed at the first queue is increased during 
periods in which the second queue is empty. Under the assump- 
tion that the service request: distributions at both queues are reg- 
ularly varying at infinity of index -UI and -va, we have pre- 
sented a detailed analysis of the tail behaviour of the workload 
distribution at each queue. If the guaranteed unit spced of server 
1 is already sufficient to handle its offered traffic, then the work- 
load distribution at the first queue is regularly varying at infinity 
o f  iidex 1 - V I .  But if it is nut sufficient, then the workload at 
Ql has a positive drift during regularly varying busy periods of 
Qa, and the workload distribution at the first queue is regularly 
varying at infinity of index 1 - min(y , y). In particular, traf- 
fic at server 1 is then no longer protected from worse behaving 
(heavier-tailed) trafic at server 2. 
We believe that these results form a useful step towards deter- 
mining tha axtcnt to which GPS-based scheduling algorithms 
nre able to protect individual connections. Several extensions 
are possible, and we intend to study these in a folIowing paper: 
(i) the special case p1 = 1; (ii) the special case 4 -t 4 = 1; 
(iii) the general case Ti 2 1, r; 2 1: (iv) one of the two service 
request distributions has an exponential tail. 
Thi: thus obtained results, along with the results obtained in [4], 
[5],  should give insight into the performance of a wide range of 
GPS-based scheduling disciplines, and into the effect of heavy- 
tailed input characteristics. This might be useful in various rc- 
specls, e.g., in making appropriate choices for the weight factors 
4, in GPS. 

rl 
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APPEND I x 

DefinItioaA.I: A distribution function F(*) on [O,oo) is 
1. HEAVY TAILS 

called long-tailed (F( . )  E L> if 

A weltknown subclass of the class of Iong-tailed distribu- 
tions is the class of regularly varying distributions R (this class 
contains the Pareto distribution): 

DefinirionA.2: A distribution function F(+) on [O,m) is 
called regulariy varying ofifidex -U (F(9) E R(-v)) if 

where I(x) : R+ --t R+ is a function of slow variation, Le,, 

A key reference i s  [31. The following lemma [cf. hn” 2.2 
in [6],  which is an extension of Theorem 8.1.6 in [31), links the 
regularly varying tail behaviour of P(Z > t )  for t -+ 00 to the 
behaviour of its EST f ( 8 ) .  It plays a key role in the proofs of 
our main results. 

LemmaA.1: Let 2 be a non-negative random variable with 
LST f ( ~ ) ,  E(t) a slowly varying function, v E (n, n + I) (a E 
N )  and C 2 0. Then the following arc equivalent: 
(i) P(Z > t )  = [C + o( l ) ] t -” l ( t ) ,  t + 00; 
(ii) E[Zn] < 00 and f ( s )  - Cy=’=, 
v)[C 4- 0(1)]#d(1/8), 3 Lo.  

iim,-twl($x)/I(s) = 1, > 1. 

= (-l)*r(l - 
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