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Ahfrucf- We analyze the asymptotic behavior of long-tailed traf- 
fic sources under the Generalized Processor Sharing (GPS) discipline. 
GPS-based scheduling algorithms, such as Weighted Fair Queueing, have 
emerged as an important mechanism for achieving differentiated quality- 
of-service in integrated-services networks. 
Under certain conditions, we prove that in an asymptotic sense an individ- 
ual source with long-tailed traac characteristics is efIectivelg sewed at a 
consfanf rate, which may be interpreted as the maximum feasible average 
rate for that source to be stable. Thus, asymptotically, the source is only 
affected by the traffic characteristics of the other sources through their av- 
erage rate. In particular, the source i s  essentially immune fi” excessive 
activity of sources with ‘heavier’-tailed traffic characteristics. Thii suggests 
that GPS-based scheduling algorithms provide an effective mechanism for 
extracting high multiplexing gains, while protecting individual connections. 

Keyworuk- Generalized Processor Sharing (GPS), long-tailed, queue 
length asymptotics, regular variation, subexponential, Weighted Fair 
Queueing (WFQ) 

I. INTRODUCTION 
Statistical data analysis has provided convincing evidence of 

long-tailed (subexponential [ 181) traffic characteristics in high- 
speed communication networks. Early indications of the long- 
range dependence of Ethernet traffic, attributed to long-tailed 
file size distributions, were reported in [26]. Long-tailed charac- 
teristics of the scene length distribution of MPEG video streams 
were explored in [19], [23]. 

These empirical findings have encouraged theoretical devel- 
opments in the modeling and queueing analysis of long-tailed 
traffic phenomena. Despite significant progress, however, the 
practical implications are not yet thoroughly understood, in 
particular issues relating to control and priority mechanisms 
in the network. To gain a better understanding of those is- 
sues, the present paper analyzes the queueing behavior of long- 

(GPS) discipline. As a design paradigm, GPS is at the heart of 
tailed traffic sources under the Generalized Processor Sharing 

commonly-used scheduling algorithms for high-speed switches, 
such as Weighted Fair Queueing, see for instance Parekh & Gal- 
lager [29], [30]. 

A basic approach in the analysis of long-tailed traffic phe- 
nomena is the use of fluid models with long-tailed arrival pro- 
cesses (e.g. OdOff sources with long-tailed On-periods). Fluid 
models are closely related to the ordinary single-server queue, 
thus bringing within reach the classical results on regularly- 
varying (Cohen [ 161) or subexponential (Pakes [28], Veraver- 
beke [31]) behavior of the service and waiting-time distribution 
in the GUG/l queue. We refer to Boxma & Dumas [ 131 for a 
comprehensive survey on fluid queues with long-tailed arrival 
processes. See also Jelenkovie [20] for an extensive list of ref- 
erences on subexponential queueing models. 

As mentioned above, the impact of priority mechanisms on 
long-tailed traffic phenomena has received relatively little at- 
tention. Some recent studies have investigated the effect of 
the scheduling discipline on the waiting-time distribution in the 
classical M/G/l queue, see for instance Anantharam [3]. For 
FCFS, it is well-known [16] that the waiting-time tail is reg- 
ularly varying of index 1 - U iff the service time tail is reg- 
ularly varying of index -v. For LCFS preemptive resume as 
well as for Processor Sharing, the waiting-time tail turns out 
to be regularly varying of the same index as the service time 
tail [ll], [35], although with different pre-factors. In the case 
of Processor Sharing with several customer classes, Zwart [34] 
recently showed that the sojourn time distribution of a class-i 
customer is regularly varying of index -vi iff the service time 
distribution of that class is regularly varying of index -U%, re- 
gardless of the service time distributions of the other classes. In 
contrast, for two customer classes with ordinary non-preemptive 
priority, the tail behavior of the waiting- and sojourn time distri- 
butions is determined by the heaviest of the (regularly-varying) 
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service time distributions [ 13, [ 121. 
In the present paper, we consider the Generalized Processor 

Sharing (GPS) discipline. GPS-based scheduling algorithms, 
such as Weighted Fair Queueing, have emerged as an impor- 
tant mechanism for achieving differentiated quality-of-service 
in integrated-services networks. The queueing analysis of GPS 
is extremely difficult. Interesting partial results for exponen- 
tial traffic models were obtained in Bertsimas et al. [5] ,  Dupuis 
& Ramanan [171, MassouliC [27], Zhang [32], and Zhang 
etal. [33]. 

Here, we focus on non-exponential t r a c  models. Extending 
the results from [7], we show that, under certain conditions, an 
individual source with long-tailed traffic characteristics is effec- 
tively served at a constant rate, which may be interpreted as the 
critical mean rate for stability. This is strongly reminiscent of 
the reduced-load equivalence established by Agrawal et al. [2]. 
In particular, the source is largely insensitive to excessive activ- 
ity of sources with 'heavier'-tailed traftic characteristics. This 
insensitivity property starkly contrasts with a recent result in [9], 
which shows that in other scenarios a source may be strongly 
affecfed by the activity of 'heavier'tailed sources, and may in- 
herit their traffic characteristics, causing induced burstiness. The 
sharp dichotomy in qualitative behavior illustrates the crucial 
importance of the weight parameters in protecting individual 
connections while extracting multiplexing gains. 

In 
Section 11, we present a detailed model description. In Sec- 
tion 111, we briefly discuss some stability issues, and introduce a 
stability-related notion which will play a crucial role in the anal- 
ysis. General lower and upper bounds on the buffer content of 
an individual source are derived in Section IV. We then show, in 
Section V, that for long-tailed traffic characteristics, the lower 
and upper bounds have the same asymptotic behavior, yielding 
exact asymptotic results. In Section VI, we make some conclud- 
ing remarks. 

The remainder of the paper is organized as follows. 

11. MODEL DESCRIPTION 

Consider N sources sharing a link of unit rate. Traffic from 
the sources is served in accordance with the Generalized Proces- 
sor Sharing (GPS) discipline, which operates as follows. There 
are weights $1,. . . , $ N  associated with each of the sources, 

with $i = 1. Denote by K ( t )  the buffer content of source i 

at time t. Let V, be a stochastic variable with as distribution the 
limiting distribution of K ( t )  for t + 00 (assuming it exists). If 
all the sources are backlogged at time t, i.e., Q(t) > 0 for all 
i = 1,. . . , N, then source i is served at rate 4,. If some of the 
sources are not backlogged, however, then the excess capacity 
is redistributed among the backlogged sources in proportion to 
their respective weights. We refer to Dupuis 8z Ramanan [17] 
for a formal description of the evolution of the buffer content 
process. 

Denote by A ~ ( T ,  t) the amount of work generated by source i 
during the time interval (T ,  t] ,  and assume that Ai is a stationary 
process. Define B2(r, t) as the amount of service received by 
source i during (T, t]. Then the following identity relation holds 

N 

7=l 

K ( t )  = & ( T )  + A ~ ( T ,  t )  - &(T, t). (1) 

Remark 1Z.Z: Although we use the term 'buffer content' to in- 
dicate the workload, we do not make any particular assumptions 
where traffic physically resides while waiting to be served. Us- 
ing end-to-end flow control algorithms such as TCP, backlogged 
sources may for example be instructed to feed traffic into the net- 
work only at a rate comparable to the actual service rate so as to 
avoid excessive buffer overflow due to congestion. 

Before describing the traffic model, we first introduce some 
further notation. For any two real functions g(.)  and h(.), 
we use the notational convention g(z) - h(z) as z -+ 00 

to denote lims-tw g(z) /h(z)  = 1, or equivalently, g(z) = 
h(z)(l + o(1)) as z + 00. For any stochastic variable X with 
distribution function F(.) ,  EX < 03, denote by FP(.) the dis- 
tribution function of the residual lifetime of X, i.e., F'(z) = 

The classes of long-tailed, subexponential, intermediately 
regularly varying, and dominatedly varying distributions are de- 
noted with the symbols l, S, ZR, and DR, respectively. The 
definitions of these classes are given in Appendix A. 

.& J,"(l - F(Y))dY. 

Foranyc 2 O,denotebyy(t) := sup { A i ( ~ , t ) - c ( t - ~ ) }  

the buffer content of source i at time t if it were served in iso- 
lation at rate c (assuming v ( 0 )  = 0). Denote by p I  the traffic 
intensity of source i. For c > pi, let V; be a stochastic variable 
with as distribution the limiting distribution of (t) fort + 00. 

Define W,C(z) := P{Vg 5 z} and w;(z) := 1 - W;(z). In 
the next sections, we will analyze the asymptotic behavior of 
sources i where the function w;(-) satisfies the following three 
properties for some value of ui > p i .  

O<rst 

PropertyII.1: For any c E (p2 ,  ai), W t ( * )  E 1, i.e., 

Property 11.2: For any c E (p , ,u i ) ,  U';(,) E VR, i.e., 

W . C ( T ) X )  

x--tw Wf(z)  
limsup L = G;(T)) < 00 for some 7 E (0 , l )  

(which implies the property holds for all T) > 0). 

Property 11.3: For any c E (p,, ai), 

W " - B ( X )  

%--too W t ( z )  
lim sup - = H;(O) < 00 for some O E (0, c - p i )  

(which implies the property holds for all > 0 sufficiently small 
where we will assume lim H:(e) = 1). 

We now describe two traffic scenarios where the function 
Wf(+) satisfies the above three properties. 

A. Instantaneous arrivals 
Here, a source generates instantaneous traffic bursts ac- 

cording to independent renewal processes. The interarrival 
times between bursts of source i are generally distributed with 
mean l / A $ .  The burst sizes of source i have distribution B,(-) 

040 
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with mean P I .  Thus, the traffic intensity of source i is pi = Xipi. 
Let Bf be a stochastic variable with distribution Bf(.). 

The next result is immediate from Pakes [28]. 

Theorem II.1: If B:(.) E S, and pi < c, then 

W'iC(x) - - pi P{BI>x} as x + m .  
C - Pi 

n u s ,  for any finite ci > pi, iVt(.) satisfies Properties II.1 
and II.3 if BT(-) E S, and Property II.2 if B[( . )  E DR n L. 
B. On-Ofprocesses 

Here, a source generates traffic according to independent 
On-Off processes, alternating between On- and Off-periods. 
The Off-periods of source i are generally distributed with 
mean 1/&. The On-periods of source i have distribution A,( . )  
with mean a,. While On, source i produces traffic at a constant 
rate T,, so the mean burst size is ariri. The fraction of time that 
sourceiisOffispi = (l/Xi)/(I/Xi+cy,) = I/(I+Xiai). The 
traffic intensity of source i is pi = (1 - pi)ri = Xiairi/(l+ 
&az). Let Af be a stochastic variable with distribution A:(-).  

The next result is established in JelenkoviC & Lazar [21]. 

Theorem 11.2: If A;(.) E S, and pi < c < t-i, then 

E':(%) p 8 L P { A :  > z/(ri - c)} a~ z + CO. 

Thus, for any ri > gi > pi. @f(.) satisfies Property II.1 if 
A:( . )  E S, Property 11.2 if A;( . )  E DR n L, and Property II.3 
if A;(.)  E ZR. 

c - PI 

111. STABILITY ISSUES 
N 

i=l 
We first briefly discuss some stability issues. If pi < 1, 

then all the sources will be stable, since the GPS discipline is 

work-conserving. If C p, > 1, then at least one of the sources 

will be unstable, but others may still be stable. We now identify 
which sources are stable and which ones are unstable. To avoid 
technical subtleties, source i is considered 'stable' if the mean 
service rate is pi,  see also Remark 111.1 below. For the ease of 
presentation, we assume the sources are indexed such that 

N 

a= 1 

P1 P N  - < ... 5 -. 
41 - 4 N  

Proposition III.1: With the above ordering, the set of stable 
sources is S = { I , .  . . , K*},  with 

L vj J 
j = k  

Proof 
See Appendix B. 

0 

It may be verified that K* = N (i.e. all the sources receive 

a stable service rate) iff pi 5 1. By definition, each of the 

stable sources i E S receives a mean service rate pi. Each of the 
unstable sources i S receives a mean service rate &R < p I ,  
with 

N 

i= 1 

/ \ 

To understand the above formula, notice that the stable sources 
consume an average aggregate rate p j ,  leaving an average 

j € S  
rate 1 - pj for the unstable sources, which is shared in pro- 

portion to the weights &. 
j € S  

We now introduce a stability-related notion which will play 
a crucial role in the analysis. Define y i ~  as the mean rate at 
which source i would receive service if the sources j E E were 
to continuously claim their full share of the link rate (while the 
remaining sources j fZ E still acted 'normally'). (With minor 
abuse of notation we write yij for yi{j}.) Now observe that 
the sources j E E would in fact show such greedy behavior 
if they were unstable (which they need not be in reality). So 
we may determine 7 % ~  by forcing the sources j E E into the 
set of unstable sources, and then apply Proposition m.1. The 
set of sources which would receive a stable service rate if the 
sources j E E were to continuously claim their full share of the 
link rate, is then SE = { 1 ,  . . . , Kg} \ E, with 

Thus, Y ~ E  = pi for all i E SE,  and 7 , ~  = $%RE < pi for all 
i 6 SE, with 

To explain the above formula, observe that the sources j E SE 
by definition receive an average aggregate rate p i ,  leaving 

an average rate 1 - C pj for the sources j fi! S E .  which is 

shared in proportion to the weights 4i. 

j E S E  

j€SE 

Remark ZII.1: For later purposes, we find it convenient to la- 
bel source i as 'stable' if the mean service rate is p;. In fact, 
the latter condition is necessary for stability in the usual sense, 
but not entirely sufficient. A sufficient condition is p; < ~ i , .  

Indeed, if the buffer of source i never emptied, then it would re- 
ceive a mean service rate T%,, so that yi, is the critical mean rate 
for stability. 
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IV. BOUNDS 
We now derive some general bounds which we will use in the 

next section to analyze the asymptotic behavior of the buffer 
content distribution. We focus on a particular yet arbitrary 
source i for which we assume pi < 7;; to ensure stability. 

For any set E C_ (1,. . . , N), define 

:( ,~(6) = (1 - 6)-y i~ = (1 - 6)pi for all i  E SE, 

and 

with 
'YiE(6)  = h R E ( 6 )  for all i # S E ,  

N 

i=l 
Notice that for E # 8, 7 % ~ ( 6 )  = 1 for all values of 6. 

We first state a basic lemma which will play a central role in 
deriving the bounds. 

Lemma N I :  For any set E C (1,. . . , N } ,  S 2 SE, 

for all 6 >_ 60 for some 60 < 0. 

Proof 
The proof follows immediately from combining Lemma's C. 1 

0 
and C.2 of Appendix C. 

We now present a lower bound for the buffer content distribu- 
tion of sourcei. For any j # i, define V$(r)  := s u p { y j ~ j i ( d ) ( s -  

T )  - AJ(r ,  s)}. For 6 > 0 such that yv(6) < p j ,  let U$ be a 
stochastic variable with as distribution the distribution of U,$ ( r )  
(which does not depend on r since we assumed the process A, 
to be stationary). 

8zr 

Lemma N 2 :  (Lower bound) For 6 > 0 sufficiently small, 

P{VZ > .} 2 P(V1"(6) - C u t  > z}. (2) 
j#i 

Proof 

Notice that 
N 

j = l  
Bj (T, t )  5 t - T ,  SO that &(T, t) 5 t - T - 

B, ( r ,  t) for all 0 5 r 5 t. 
32% 

Thus, from (l), for any 0 5 r 5 t, 

X ( t )  _> A ; ( r , t ) - ( t - r ) + C B . j ( r , t ) .  (3) 
j # i  

By definition, S, C (1,. . . , N }  \ {i]. Hence, from 
LemmaIV.I,forany6> 0, 

Plugging (4) into (3), for any 6 2 0 and 0 5 T 5 t ,  

A,(T, t )  - (t - r )  

Denote T* := arg sup {Ai(r , t )  - -y,i(6)(t - T ) } ,  SO that 

v;'.i(6)(t) = A i ( ~ * , t )  - Tji(S)(t - T * ) .  Substituting T = r *  
in (5)  then yields 

O<r_<t 

K(t) 2 y q t )  - CU,P3(r*). 
j#i 

From the definition it is easily verified that for 6 sufficiently 
small, T j i ( 6 )  < p j  for all j # i, so that Ufj is well-defined. 
Also, note that r * ,  &raa(6)(t) only depend on A,(s, t ) ,  and are 
independent of U:(s), s 1 0 (fixed). Hence, for 6 > 0 suffi- 
ciently small, 

P{K( t )  > 21r*} 2 P{Iy*(6)(t) - U;(.*) > ZIT* }  

j # i  

- g(~yi(6) - t (t)  - c > +-*) 
j#i  

Thus, in the stationary regime, (2) holds. 
U 

We now present an upper bound for the buffer content distri- 
bution of source i. 

Lemma N3: (Upper bound) For 6 > 0 sufficiently small, 

P{Vt > z} 5 P{VTE(-6) + Vj'+6)p' > 2, (6)  
jESE 

for all sets E 3 i with 7 , ~  > pi}. 

Proof 
Since source i is stable, the distribution of V, does not depend 

on the values of V, (0). Hence, we may assume V, (0) = 0 for 
all j = 1, ..., N .  
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Denote Sh : = SE U { i}. Then from (l), 

K(t) 5 C Q(t) = {Aj(O,t) - Bj(O,t)} .  (7) 
j&l, jGSl,  

From Lemma IV. 1, for any 6 5 J0, 

for some 60 > 0. 
Substituting (8) into (7), for any 6 5 So, 

for all sets E 3 i with T ~ E  > pi .  
From the definition it is easily verified that - y i ~  ( -6)  > pi for 

6 sufficiently small, and hence VTE(-') is well-defined. Thus, 
in the stationary regime, (6) holds for 6 > 0 sufficiently small. 

0 

v. ASYMPTOTIC BEHAVIOR 

We now use the bounds from the previous section to deter- 
mine the asymptotic behavior of the buffer content distribu- 
tion. We consider a source i which satisfies Properties II.1, II.2, 
and II.3 with pi < 'y;i < o;, and assume the following condition 
holds. 

Condition I: For all sets E 9 i with T ~ E U { ; )  5 pi ,  

n q d 1 + 6 ) ( z )  
j E E  lim = 0, for any S > 0,c E ( ~ , ~ q ) .  

z- tm W t ( Z )  

Condition 1 postulates that the tail of min V: is lighter 

than the tail of V;  for all sets E 9 i with 7 ; q i )  5 pi. In case 
of instantaneous arrivals, Theorem II. 1 then implies that the tail 
of min B> must then be lighter than the tail of Bi. Similarly, in 

case of On/Off processes, Theorem II.2 indicates that the tail of 
min A> must then be dominated by the tail of AI. The inequal- 

ity -yiEU{%) 5 pi means that source i could be pushed into insta- 
bility if the sources j E E continuously claimed their full share 
of the capacity. Thus, Condition 1 guarantees that only sources 
with combined lighter tails could potentially drive source i into 
instahility. In other words, sources with combined heavier tails 
cannot drive source i into instability. 

JEE 

J€E 

?'€E 

As a special but important case, consider a scenario where 
some of the sources have regularly varying tails, while the oth- 
ers have exponential tails. Specifically, suppose that m:(m) is 
regularly varying with index 1 - vt for the sources i E R, R C_ 

(1 , .  . . , N}. For the other sources j fZ R, W;(z) = o(z-c) for 
any c > pj and some C > 0. In this case, for the sources i E R, 
Condition 1 may be rewritten as follows. 

Condition 1' 
For all sets E C R, E 9 i, with 7 ; ~  5 pi,  (uj - 1) > 

j E E  
ui - 1. 

We now state the main theorem of the paper. 

Theorem V I :  Consider a source i which satisfies Proper- 
ties 11.1, II.2, and 11.3 with pi < +yii < oi. If Condition 1 holds, 
then 

P { V i  > Z} N I P { V T '  > X} a~ z + CO. 

Before giving the formal proof of Theorem V.l, we first pro- 
vide an intuitive interpretation and discuss the significance of 
Condition 1. 

The result shows that an individual source with long-tailed 
traffic characteristics is effectively served at constant rate 'y,i. 

This is strongly reminiscent of the reduced-load equivalence es- 
tablished by Agrawal et al. [2]. Remember -yii is the mean ser- 
vice rate that source i would receive if it continuously claimed 
capacity. This suggests that the most likely scenario for source i 
to build a large queue is to generate a large burst, or to expe- 
rience a long On-period, while the other sources show average 
behavior. During that congestion period, source i then receives 
service approximately at rate -y*i. 

If Condition 1 does not hold, then there is some set E 9 
i with heavier combined tails than source i and 7 % ~  5 
p i .  We conjecture that the tail behavior of Vi in that case 
is determined by the set E* with the heaviest tails, i.e., 
lim n $qJ( l+J)  (z)/ n ~Vy('+~)(z) = o for a11 E # E* 

with TiE 5 p;. Observe that the tail of v, is now heavier than 
when source i were served in isolation at a stable rate. The 
most likely scenario for source i to build a large queue is that 
the sources j E E* generate large bursts, or experience long 
On-periods, while the other sources, including source i, show 
average behavior. Source i then receives service approximately 
at rate YiE* 5 pa, so that the queue will roughly grow at rate 
pi - ?,E. for a significant period of time. 

jEE* 2-+00. I C E  

The conjecture has recently been proved in [9] for the case of 
N = 2 sources and a class of arrival process which include regu- 
larly varying burst sizes, i.e., 1 - B,(z) - l i ( ~ ) ~ - " *  as z + 00, 

with vi > 1 and I , ( . )  slowly varying functions, i = 1,2, see the 
definition in Appendix A. Suppose that p1 > p1 + p2  < 1, 
so that p z  < 4 2 .  Then 711 = 1 - PZ > P I ,  TZZ = 4 2  > ~ 2 ,  

cyl{l,q = 41 < P I ,  and YZ{I,Z.)  = 4 2  > P Z .  Thus Con&- 
hon 1 holds for source 2, so that if source 2 satisfies Proper- 
ties II.1, 11.2, and II.3, then P(V2 > Z} - IP{Vt2 > z} as 
z + 00. NOW suppose that v1 > vp. Then Condition 1 does 
not hold for source 1, and source 1 inherits the tail behavior of 
source 2, regardless of whether or not it satisfies Properties 11.1, 
II.2. and 11.3. and thus experiences heavier tail behavior than 
when served in isolation. This may be explained as follows. 
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Note that when source 2 is backlogged, source 1 receives ser- 
vice at rate 41, so queue 1 will roughly grow at rate p1 - 41. 
When source 2 is not backlogged, queue 1 will drain at rate 
1 - p l. Thus the tail behavior of source 1 is equivalent to the tail 
behavior of a single On/Off source served at constant rate 1 -P I ,  
with peak rate 1 - $1, as On-period distribution the busy-period 
distribution of source 2 (which is also regularly varying of in- 
dex 14, and fraction Off-time 1 - p2/#2.  This is also shown for 
a closely related coupled-processors model in [8]. 

A special but important case is a scenario where pi < 4i 
for all i = 1,. . . , N .  It is easily verified that in that case 
yii = 1 -  Cpj > 1 -  zb. 3 = $i > pi. Also, for all 

sets E 9 i, - y i ~ U { t )  > q5i > p i .  Thus, Condition 1 holds, so 
j#c j#i 

1-c P, 
that Theorem V.l gives P{Vi > x} N P{Vi jiLi > x} as 
z + CO. This result can in fact be obtained using a simpler 
proof technique and under slightly weaker conditions, see [7] 
and also Remark V. 1 below. 

Now suppose each of the sources were served in isolation. 
Then the required capacity to achieve similar tail behavior is 
N N N 

i=l  i=l  j#i i=l 
The latter quantity may typically be expected to be significantly 
larger than 1. This suggests that GPS is effective in extract- 
ing high multiplexing gains, while protecting individual connec- 
tions. 

C ~ z z  = C ( 1 - C P j )  = C ( ~ - P + P ~ )  = l+( jV-1) (1-~) .  

Recall that besides stability, i.e., p1 < ~ i i ,  we also assume 
C T ~  > T~~ in Theorem V.1. In  case of instantaneous arrivals, 
this assumption is not restrictive. However, in case of On/Off 
processes, rsi < I-,, so that Theorem V.l does not apply when 

If Condition 1 does not hold, then we expect the tail behavior 
of V, in that case is still determined by the set E* as described 
above. If Condition 1 does hold, however, then we conjecture 
that, possibly under certain additional conditions, the tail behav- 
ior is determined by the set E* with the heaviest tails for which 
either (i) y t ~  < pr, if i $! E or (ii) y i ~  < I-%, if i E E. Observe 
that the tail of Vi is now lighter than when source i were served 
in isolation. The most likely scenario for source i to build a large 
queue is still that the sources j E E* generate large bursts or ex- 
perience long On-periods, while the other sources show average 
behavior. 

ra I Yia. 

We now give the proof of Theorem V. 1. 

Proof 
(Lower bound) From Lemma IV.2, for b > 0 sufficiently 

small and any value of y. using independence, 

Using the fact that wf (.) satisfies Properties II. 1 and 11.3 for 
c E (pi, Vi) and for 6 sufficiently small, 

(Upper bound) Let us index the sets E 3 i for which Y,E > p$ 
as Eo, El,. . . ,EM. Because pi < 'y,$, we may assume Eo = 

c V y ) P ,  
W. 

Denote Wfm := VTEm(-6) and Zf := 
jESi 

Then, from Lemma IV.3, for 6 > 0 sufficiently small and any 
value of y, using independence, 

P{Vi > z} 5 

P ( V y 6 )  + zp > z, 

wfm + C V~'+')~J > z vm 1 1) 5 

B{vT*(-~) > x - y or Z; > y, 

jESE, 

X 5 wim > or 3j, E SE, : v ~ ~ ) P J ~  > - Vm 2 1) 5 

p{Vr"(-6) > z - a / )  +IF{@ > y,3m 2 1 : wfm > E) 
N 

2 

M 
P ( V y - 6 )  > x - y} 1- P(2f > y} P{w:m > z) X 

m=l 
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with 

Using the fact that I%';(.) satisfies Properties II.1, II.2, 
and II.3 for c E (pi ,  a,), 

P{Vi > x} 
lim sup < HT'(yi; - T i i ( 4 ) )  

z + w  B{VT' > z} - 

M 

Now consider a set {jl, . . . , jM} with jl E SE1,. . . , j M  E 
 SE^. By definition, j, $! E,,  . . . , jM $! EM.  so that 
(2, j1,. . . , j ~ }  # El,. . . , E M .  Consequently, ~ i ~ i ( ~ , ~  *,..., jM) 5 
pi.  Condition 1 then implies that 

Hence, 

l M  
+ P { Z f  > y}GT'(-) HTi(y,i -7iE,,,(-S)). 

Letting y + 00 and 6 J. 0, observing that lim ~;;(-6) = 'yii, 
m=l 

N 

610 

U 

R e m r k V l :  Notice that neither Property II.2 nor Condi- 
tion 1 were actually used in establishing the lower bound in 
the proof of Theorem V.1. Now suppose that there is a set 
E 3 i such that Y ~ E  > pi and for any c E (p i ,a i ) ,  

limz-,w $'+b)p' (z)/w;(z) = 0 for all j E SE. In that 
case, Property II.2 and Condition 1 are not needed in obtaining 
the upper bound either, so that Properties II.1 and II.3 are suffi- 
cient for Theorem V. 1 to hold. Two extreme cases where there 
is such a set E 3 i are: (i) pi < 4; with E = (1,. . . , N}; (ii) 
limz+w W,(lc6)'' (z)/Wf(z) = 0 for all j E Si with E = {i}. 

VI. CONCLUSION 

We. analyzed the asymptotic behavior of long-tailed traffic 
sources under the Generalized Processor Sharing (GPS) disci- 
pline. GPS-based scheduling algorithms, such as Weighted Fair 
Queueing, have emerged as an important mechanism for achiev- 
ing differentiated quality-of-service in integrated-services net- 
works. 

Under certain conditions, we proved that in an asymptotic 
sense an individual source with long-tailed traffic characteris- 
tics is effectively served at a constant rate, which may be inter- 
preted as the maximum feasible average rate for that source to 
be stable. Thus, asymptotically, the source is only affected by 
the traffic characteristics of the other sources through their av- 
erage rate. In particular, the source is essentially immune from 
excessive activity of sources with 'heavier'-tailed traffic char- 
acteristics. This suggests that GPS-based scheduling algorithms 
provide an effective mechanism for extracting high multiplexing 
gains, while protecting individual connections. 
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APPENDIX 

I. DEFINITIONS 
Definition I: A distribution function F(.) on [0, 00) is called 

long-tailed (F( . )  E L) if 
1 - F ( z  - y) 

lim = 1, for all real 3. 
Z+OO ~ - F ( z )  

Definition 2: A distribution function F ( - )  on [0, m) is called 
subexponential (F(.)  E S) if 

= 2, 
1 - F’*(x) 

lim 
=--to3 l -F(z)  

where F2*(.) is the 2-fold convolution of F(.)  with itself, i.e., 
F 2 * ( z )  = J: F(z - y)F(dy). 

The class of subexponential distributions was introduced by 
Chistyakov [14]. A well-known subclass of S is the class R of 
regularly-varying distributions (which contains the Pareto dis- 
tribution): 

Definition 3: A distribution function F(.) on [0, m) is called 
regularly varying of index --v (F(.) E E L v )  if 

where I : I&. + R+ is a function of slow variation, i.e., 
limz+w l (qz) / l (z)  = 1, > 1. 

The class of regularly-varying functions was introduced by 
Karamata [24]; a key reference is Bingham er al. [6 ] .  It is easily 
seen that R C S C L. Examples of subexponential distributions 
which do not belong to R include the Weibull, lognormal, and 
Benktander distributions (see Kliippelberg [25]). A useful ex- 
tension of R is the class ZR of intermediately regularly-varying 
distributions: 

Definition 4: A distribution function F( . )  on [0, CO) is called 
intermediately regularly varying (F(.) E ZR) if 

A further extension is the class ’DR of dominatedly varying 
distributions (see Cline [15]; R c ZR c (‘DR n L) c S): 

Definition 5: A distribution function F ( - )  on [0, 00) is called 
dominatedly varying ( F ( - )  E DR) if 

11. STABILITY ISSUES 

We now identify which sources are stable and which ones are 
unstable. Source i is considered ‘stable’ if the mean service rate 
is pi. For the ease of presentation, we assume the sources are 
indexed such that 

P l  PN - 5 . . .  5 -. dl dN 
Define S as the set of stable sources. Denote by ~i the mean 

We have ^/i _< pi for all i = 1,. . . , N ,  with equality for all 
service rate for source i (assuming it exists). 

i E S. Also, if j (2 S, then 3 5 3 for all i = 1 , .  . . , N .  
di d j  

In particular, we have - = 2 for any pair of sources i, j 

S, so 7, = &R for all i # S for some R 2 1. To determine R, 

observe that C yi = 1 if S # { 1, . . . , N}, which gives 

Yi 
4i 4j 

N 

i= 1 

We first prove a lemma that characterizes the structure of the 
set S. 

Lemma B. I: With the above ordering of the sources, the set S 
is of the form { 1,. . . , K} for some K. 

Proof 
Suppose not, i.e., there are sources i and j ,  with i < j ,  i $ S, 

1 F. and j E S. Then we have 7, < pi, Yj = p j ,  and 
‘ J  
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P '  7 L  Thus. 
sources. 

> 3, which would contradict the ordering of the We also have TL = p~ and - < E. Thus, 
4i 4 j  4L - 4L+l 

We now prove an auxiliary lemma. 

0 

( jI1 ) 4L 

4L+1 
PL 5 -7L+1= 7 I -CP,  9 

C 4j 
j=L+l 

Lemma B.2: With the above ordering of the sources, if 
which is equivalent to 

j = k  

(9) 

then 
j=L 

By LemmaB.2 and thedefinition of K*,  this implies L 5 K*. 
0 

k 

P k S 1  > -+ (l-ZP3). (10) 
C 4, 

j = k + l  111. BASIC GPS INEQUALITIES 

Proof 
First observe the equivalence relation 

Lemma C.1: Let S 
be numbers such that 

(1,. . . , N }  be a set and let a3, j E S, 

Then 

for all 0 5 T 5 t .  
The moof then immediately follows from the fact that 

Proof 
For given values of r ,  t, define 

v* := max (v : C ~ ~ ( r , v )  2 The next proposition now identifies the set of stable sources. r l u l t  j E S  

Proposition III. 1 : 
With the above ordering of the sources, the set of stable 

sources is S = (1,. . . , K*}, with 

max 
k=1, ..., N 

Proof 
By Lemma B.l, the set S is of the form (1,. . . , L} for 

some L. so it suffices to show that L = K*. First observe that 

L 

C 4j 
j=L+l 

We need to show that U* = t. Suppose not, i.e., U* < t. Then 
there must be some source i* for which 

for all v E (v*,w*) for some w* > v * .  
Define 

.- .- max {U : B,.(r,u) 2 
r < u l w *  

inf {Ai .  (T, s) + ai. (U - 3))). 
P < 8 < U  

First observe that 

BI.(U*,W*) 5 az*(w* -U*), 

because otherwise 

By Lemma B.2 and the definition of K*,  this implies L 2 K*. Bt* (T,  w*) = B,* ( T I  U*) + Bi* (U* , w*) > 
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inf {Ai= (T,  s) + a,* (U* - s)} i- at* (w* - U*) 2 

{A,= (T, s) + at* (w* - s)}, 
r<s<u* 

inf 

contradicting the definition of w*. 
rls<_w' 

Further observe that 

B:(T, U) < inf {Ai* ( T ,  9) + (U - 8 ) )  5 At= (T ,  U) r < s s u  

for all U E (u*,w*),  so that source i* must be continuously 
backlogged during the interval (U*, tu*). 

Hence, by definition of the GPS discipline, 

(14) 
9i* 
9j 

&*(u*,w*) 2 - - -Bj (U*,ur*)  

for all j = 1 , .  . . , N, and 

N 
B j ( U * ,  w*) = w* - U * .  (15) 

j=1 

Using (12)-( 19 ,  

CBj(U*,W*) 2 &(w* --U*). (16) 
j E S  j € S  

By definition, 

Thus, we need to show that 

foralli E S. 
By definition, the above inequality holds with equality for all 

From the definition of SE and the equivalence relation (1 I), 
i E S\&. 

~ B ~ ( T , u * )  inf { A J ( ~ , s ) + a j ( ~ * - s ) } .  (17) foral l iESE.  
Hence, for all i E S and S 2 So, j € S  j ~ s ' l s ~ u '  

contradicting the definition of U * ,  so we must have U* = t as 
required. 

0 

We now show that cy3 = y J ~ ( 6 ) ,  j E S 2 SE,  satisfy (12) 
for all 6 2 do for some 60 < 0. 

Lemma C.2: For any set E C ( 1 , .  . . , N } ,  S 2 SE, 

for all i E S and 6 2 60 for some So < 0. 
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