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Abstract— The relative delay tolerance of data applications, together maximume-rate user when the feasible rates are weighed with
W“htthe bursty traffic ChatfaCtE{_iSt?CSv opens up ttheA pOSSt_ibi“Ity |f0f ftChetO_'U" some appropriately determined coefficients. Interpreting the co-
ing transmissions so as to optimize throughput. A particularly attractive . : .
approach, in fading environments, is to exploit the variations in the channel efficients as ShadO\_N prices, or reward values, the_optlmal strat-
conditions, and transmit to the user with the currently ‘best’ channel. We €gy may thus be viewed as a revenue-based policy. We prove
show that the ‘best’ user may be identified as the maximum-rate user when that revenue-based policies optimize throughput relative to pre-
the feasible rates are weighed with some appropriately determined coeffi- specified target ratios. These target values may be set arbitrarily
cients. Interpreting the coefficients as shadow prices, or reward values, the . . ’ . . . '
optimal strategy may thus be viewed as a revenue-based policy. taking into account the Quality-of-Service requirements of the

Calculating the optimal revenue vector directly is a formidable task, re-  users, or possibly their current activity levels or locations.
quiring detailed information on the channel statistics. Instead, we present Unfortunately calculating the optimal revenue vector directly
adaptive algorithms for determining the optimal revenue vector on-line in . . ! . . . .
an iterative fashion, without the need for explicit knowledge of the chan- Isa compllcated prOblem' requirng detailed information on the
nel behavior. Starting from an arbitrary initial vector, the algorithms it-  channel statistics. Although the feasible rates of the users are
]?fa“"i'y adjust tr?e fe‘;]\'afd values t% COflnpe”ﬁate for Obfzfveg dﬁ\/iaﬁﬁns assumed known slot by slot, the underlying probability distri-
rom the target throughput ratios. The algorithms are validated throug . . . . . e
extensive numerical experiments. Besides verifying long-run convergence, bution which _IS producmg these rates is !’mknown' E\_/en if it
we also examine the transient performance, in particular the rate of con- Were known, it would not be easy to use, since the feasible rates
vergence to the optimal revenue vector. The results show that the target might be dependent, so that the computations would be signifi-
throughput ratios are tightly maintained, and that the algorithms are well cantly hampered by the curse of dimensionality To avoid these
able to track changes in the channel conditions or throughput targets. b | d | danti | ith f d t . th

Keywords— Dynamic rate control, fading channels, Quality-of-Service, 0 §tac €s, we develop a aF’ Ive, a gor'l mS, or de _ermlm,ng N
target throughput ratios, throughput optimization, varying channel condi-  Optimal revenue vector on-line in an iterative fashion, without
tions. the need for explicit knowledge of the channel behavior.

The application of these algorithms opens up two important
I. INTRODUCTION possibilities to improve network performance. The first is that

Next-generation wireless networks are expected to supporéf%mlssmn control can b.e applied by usmgrablng tg_chmque .

. . ) . . .- an approach proposed in [2]. The second possibility is coordi-
wide range of services, including high-rate data applications. . . : .

nated operation of the base stations in the network, which allows

In contrast to voice users, data applications can usually sust%lrnIoad sharing and higher throughput for edge users

some amount of packet delay, as long as the throughput ove . : .
P y g anp he remainder of the paper is organized as follows. In Sec-

somewhat longer intervals is sufficient. The relative delay toler- ! o )
g y n |l we present a detailed model description, and introduce a

. . . . I
f I h hth ffic ch . ;
ance of data applications, together with the bursty traffic c arei ass of revenue-based scheduling strategies. We subsequently

teristics, opens up the potential for scheduling transmissions - . .
P P P 9 ve that revenue-based policies optimize throughput relative

as to optimize throughput. A coordinated approach along the¥€ . . ) T
lines is proposed in [3]. to pre-specified target ratios, for discrete rate distributions as

A related approach may be advocated for low-mobility sc%eg:‘;i?r:scc\)/m'\?lu%unsdrslﬁsvlvl%ee(\:}é?gs glciznfil\);/,()rrﬁiﬁicglvez)ly.
narios such as indoor networks. In such environments, Rayle P ' P P 9

I re . ; ) )
fading frequencies can be quite low, and the fading levels C@smsgorIietseergt]ilcr;ng/ltnevfengq:cirrii\éeggﬁ\éeﬁt?rzIenriiglIf)iate;\r/i?
even be anticipated to some extent. For example, fading can ggon. P

measured by having the base station provide a pilot signal wh@ﬁnts which we performed to examine the convergence prop-

ert{)es of the proposed control algorithms. We make some con-
can be measured by all the users. These measurements cap de . .
iding remarks in Section IX.

fed back to the base station, and used to estimate fading leve
and hence user rates in subsequent slots. This is the approach
proposed in Qualcomm’s High Data Rate (HDR) scheme [4].
Clearly, it is then advantageous to exploit the variations in the We consider a base station serving data users. The base
feasible rates, and transmit to the currently ‘best’ user. station transmits in slots of some fixed duration. In each slot,
With a little simplification, let us suppose that at the start dfie base station transmits to exactly one of the users.
each slot the base station has perfect knowledge of the maxiwWe assume that the feasible rates for the various users vary
mum feasible rate at which each user can receive and decoder time according to some stationary discrete-time stochastic
a signal with some acceptably low error probability. The queproces( 1( ),..., wm( )), =1,2,...},with ,,( )rep-
tion then arises what the ‘best’ user is to be selected for tramssenting the feasible rate for useiin the -th slot. We assume
mission. We show that the ‘best’ user may be identified as ttiet the base station has perfect knowledge of the maximum fea-

Il. MODEL DESCRIPTION
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siblerate ,,( )foruser atthe start of the -th slot, see also weighted combination of the throughputs, while equalizing the

Remark 11.1 below. Let 1,..., ) be arandom vector with normalized throughputs, is optimal.

distribution the joint stationary distribution of the feasible rates. To formalize the above insight, we now introduce a class of
We assume that the slot duration (1.67 ms in the HDRvenue-based scheduling strategies. Suppose there were re-

scheme) is relatively short compared to the relevant time scaté&ds 1,..., s per bit transmitted to the various users. A

in the traffic patterns and delay requirements of the data uség/enue-based strategy assigns thé transmission slot to the

This opens up the possibility for scheduling the data transmigser *( ) with the current maximum rate-reward product, i.e.,

sions so as to enhance performance. In particular, scheduling .

provides a potential mechanism for exploiting variations in the ()=arg mel ™ m( -

feasible rates so as to optimize throughput. o o )
%Farly, the above principle maximizes the revenue earned in

The data users may actually be thought of as the sub h individual slot. and thus the total lati
of active (backlogged) users among a greater population, whighch (ndividual siot, and thus the total cumufative Tevenue, as
Il as the average revenue, hence the term revenue-based strat-

may change over time. For scheduling purposes, however, . .
Y g g purp . (It usually also matters exactly how ties are being broken.

separation of time scales allows us to think of the subset of act dl  the tie breaki le. h based
users as nearly static and continuously backlogged. (In practiccS’gar €ss ot e le breaxing rule, NOWEVer, a revenue-base

flow control algorithms such as TCP will typically be used t8t.r ategy will definitelynot assign the -th slot to any user

feed the data into the base station buffer at a relatively slow ra\f‘@t,h Bor() < ey ™ m( ).) Now observe that rev-

comparable to the actual throughput provided to the user oeue is simply a weighted combination of the throughputs. From

the wireless link. Thus, the bulk of the backlogs will usuallpur earlier observation, we thus conclude that any revenue-based

reside at the sender rather than the base station buffer.) policy which balances the throughputs, is in fact optimal, which
One of the most common performance objectives is througprovides the key principle underlying our further approach.

put maximization. This can simply be achieved by assigning Finally, observe that setting throughput targets is equiva-

each slot to the user with the currently highest feasible rate. TilRgt to normalizing the feasible rates by the corresponding val-

disadvantage is that typically only a few strong users will evé€s. In the subsequent analysis, we therefore assume that the

be selected for transmission, causing starvation of all others.throughput targets are discounted for in the rates, and take
To alleviate that problem, an alternative option is to equalize1,---» ) = (1. ,_1)- . -

the (expected) throughput of the various users. This can easiljRemark I1.1:1n practice, there is always a small probability

be achieved by assigning each slot to the user with the curredfigt @ transmission fails because the signal cannot be success-

smallest cumulative throughput. The downside is that this strilly decoded. The results of the present paper then remain valid

egy does not exploit the variations in the feasible rates. Mof- m( ) is redefined to represent tagpectedeasible rate, and

over, by insisting on equal throughput, a few weak users mie 0—1 variable ,,,( ) is amended to indicate both which user

cause the throughput of all others to be dramatically reducediS selected and whether or not the transmission is successful.

In the present paper we assume there are throughput targets m
1,---, u defined for the various users. These target values ) ) ] ]
may be set arbitrarily, taking into account the Quality-of-Service In this section we consider the case where the feasible rates

requirements of the users, or possibly their current activity levéls1, ---» ) have a discrete distribution on some bounded
or locations. set C RM. Since the feasible rates are assumed stationary,

Denote ,( )= m( ) m( ), With n( )a0-1variable we restrict the attention to the cla}ss of sta_tioryqry policies in or-
indicating whether or not the-th slot is assigned to user. der not to blur the presentation with technicalities. The analysis
N may readily be extended however to deal with non-stationary

Define ,,( ) := E[Y wm( )/ ] as the expected averaggolicies. We first introduce some notation. Letbe the sta-

throughput received g?user after slots. tionary probability that the feasible rate vector is=s . We
., M) € . Let T bethe

We consider the problem of maximizing the minimunf’"® i = ifor = (1. .1
long-run_expected average normalized throughput := probabll!ty that policy §elects user for transm|SS|on when

min o/ moWith = liminfy_ m( ). The above the feasible ratg vector is € - Then the m|n|-mum average
m=1,..,M throughput achieved under policyis ™ = min T with
problem may equivalently be formulated as maximizingub- . w i=L,...M
ject to the constraint < ,,/ ,,forall =1,..., .The ¢ = E i ij ij- Let * be the revenue-based strategy cor-
constraints may in fact be sharpened te- ,,/ ., since one resporiding to the vector = (
can always reduce the throughput for the users with a surplus. M

With the equality constraints in place, the objective functiogenerality, we assume thaf ; = 1, since only the relative

M i=1
may then be generalized " . m/ . forany positive vec- Vvalues of the revenues matter.
m=1

Lemma lll.1: Policy is optimal iff 7, ™ are an optimal

. DISCRETE RATE DISTRIBUTION

1,---, M). Without loss of

tor € Rﬂ\f- solution to the following linear program:

In conclusion, the above-stated problem is equivalent to max-
imizing an arbitrary weighted sum of the throughputs, subject max 1)
to the normalized throughputs being equal. Thus, the crucial sub < Z i i i =1,...,
observation is that any strategy which maximizes an arbitrary ied
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M the dual problem amounts to finding a revenue vectowhich
Z iy =1 < minimizes the total expected earned revenue, subject to the con-
=

M
i >0 =1,..., , € . straintz =1
Proof = S
Let 7, * be an optimal solution to the above linear pro- In conclusion, for policy to balance the throughputs,
gram. Now consider the policy which assigns the slot to usefhe revenue vector * must minimize the total expected earned

with probability :; when the feasible rate vector is€ . revenue, which may also be derived as follows. For any vec-
.. . . . M
The minimum average throughput achieved under this poligyy  with S, = 1, the total expected earned revenue is
iS min Y ;4 AP Thus, the optimal achievable i=1
’L:L,MJEJ M w w* M . w*
throughput is at least". ()=> «7 = Z i {2, i min 5=
Conversely, for any policy, 7;, ™ are a feasible solutionto ,, =t . = ) =t n
the above linear program. Thus, the optimal achievable through* * min Z = ().
. : b m=1,...M vt
put is at most *, and hence exactly*. The statement then eas+=1 i=1
ily follows. |

IV. CONTINUOUS RATE DISTRIBUTION

The abtjlv(()-:-fltehrgr\?;rllzra‘rgl)el:ss tg?; fg:g:ﬁ;'uﬁtfﬁ Lg:?:erz(r)r?ct)st In this section we consider the case where the feasible rates
| 1+ - i é Tyeon, ) have a continuous distribution on some bounded
of the variables to be one. Thus, only for a limited number of

rate combinations the slots are shared among several users. et < RM We first introduce some notation. Let ) be the
9 statlonary density of the feasible rate vector. We writé ) =

=(1,.-., m)€ .Let T( )bethe probability that
In Section I, we observed that a revenue-based policy WhIChIlcy selects user for transmission when the feasible rate
balances the throughputs is optimal. The next theorem sh Wetoris ¢

that the revenue criterion is in fact a necessary optimality con-
dition, in the sense that there exists a revenue vectosuch
that when user doesnothave the maximum rate-reward progSelution to the following mathematical program:
uctie., ¥ 4 < maxM ¥ mj then 7. =0, i.e., user

Lemma IV.1:Policy isoptimaliff 7( ), ™are anoptimal

3

% ij

m=1,...,
shouldnotbe selected for transmission. Thus, any optimal strat- max “)
egymustbe a revenue-based policy associated with see [1] sub < / () () () =1,...,
for a related stability result. -
Theorem I11.1: If policy is optimal, then there exists a vec- M
tor * >O0suchthatforall =1,..., , € , Z (<1 c
N N i=1
?J[i i T X g =0. ) ()=0 =1,..., , € .
Proof The proof of the above lemma is similar to that of

By Lemma lll.1, the 7. are an optimal solution to the linearLemma lIl.1.
program (1). Now let 7, * be an optimal solution to the dual

problem of (1): In Section II, we reasoned that a revenue-based policy which

. balances the throughputs is optimal. The next theorem shows
min Z j 3) ST L .
that the revenue principle is in fact a necessary optimality cri-
terion, in the sense that there exists a revenue vectosuch
b 1 that if user doesnot have the maximum rate-reward product
su Z i = on some set of non-zero measure, then uséould not be se-
lected for transmission on that set. Thus, in the above sense,

A =L, € any optimal strategynustbe a revenue-based policy associated
120 :]-a"'v with  *.
;=0 € . Theorem IV.1:If policy is optimal, then there exists a vec-

Then the complementary slackness conditions impjly i tor *>O0Osuchthatforall =1,...,

i ij 1] =0, whileoptimality forces ; = j, max o mg

yielding (2). O / i) [ ii— max oo ( ) () =0
uelU o
The dual problem (3) may be interpreted as follows. The vari- (5)
able 7 = ;max ;, n;represents the revenue generated in The proof of the above theorem is similar to that of The-
state , so that the objective function measures the total expecw@m 111.1. (Although strong duality does not directly apply,

M ) . CON
eamed revenue. Also, optimality implids. * — 1. Thus, tcf;gtfzoargglne)mentary slackness properties may be derived via dis
i=1 .
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V. ADAPTIVE ALGORITHMS price value, is selected for transmission. Thus, th#é slot is
asaigned touser1if( ) +( )> (11— ()) 2(), andto

In the previous two sections we concluded that revenue-basL:i(?ger 2 otherwise (ties being broken arbitrarily).

policies optimize throughput relative to pre-specified target va To drive the price sequence( ) towards the optimal

ues. However, calculating the optimal revenue vector d'rec%lue «. the price is adjusted over time on the basis of the

is a complicated problem, requiring detailed information on th o
channel statistics in the form of the joint stationary distributio?w&bSerVGd thro'ughpurt] real.lzat'lors. AsIIong as the thro.ijg:put
of the feasible rates ; M). Instead, we develop adap-gap doesiot widen, the price Is eft unatgred. Howeyer, It the

i | ' throughput gaploeswiden, then the price is changed in favor of

tive scheduling algorithms for determining the optimal revemfﬁe deficit user, thus at the expense of the surplus user. The price

vector on-line in an iterative fashion without the need for explici . . : :
knowledge of the channel behavior. of the leading user is decreased Qy,,), while the price of the

In the next wo sections we assume that the channel statclea ging user is simultaneously increased by the same amount.
Xt tw ! w u 0 ensure convergence,rasetis triggered at every cross-

?O.\:erdned b¥ sotmte dlscré‘vzt\e;\-ltr;me ;Lredﬁmble IM f\rJI:o.v Cr:ga':‘hw'tho%er. The step size,,, is then reduced by incrementing ),
Inite discrete state spa enthecnannelstale s o, e { & =1,2,...} apre-determined convergent sequence
feasible rates have some continuousdimensional distribution (e.g — L kwith <1,0r = 1 Pwith > 1)

9() onR g [ min» max]My 0< min < max < 00, Wlth R ! , b ! '
Zero prqbability measure in any set O.f Lebesgue measure 2818 e now proceed to demonstrate convergence of the above-
In practice, the feasible rates will typically have to be select scribed algorithm. We first state an important assumption.
from a limited set of discrete values. However, we may adhere oAssumption VI.1{(Large-Deviations Assumption)
the above assumptions by simply adding a small random perturi_et N(') be a random variable representing the average
bation. By choosing the random perturbation sufficiently sma{kI me

t
u

. N roughput per slot obtained by userover a period of slots
the true achieved throughputs should be arbitrarily close to ﬁdergpficepvector given thatythe initial stgte of the Markov
perturbed ones. '

chainis . Given a price vector € YV and > 0, there exist

M
Denote byw = { € RY : . , = 1} the numbers (), &( ) > 0suchthatforany initial state
m=1
set of all price vectors. For any < W, denote by P{ N, )=Em( )|> }< & )e—Dfn(w)N
Zn( ) the expected average throughput per slot received ma - - m ’
by user under price vector in stationarity. Define _ o
e = : It may be verified that the ab tion is satisfied f
Bave( ) = & 2 Zml( ) Bmin( ) == min (), may be verified that the above assumption is satisfied for
m=1 m=1,....M _ the feasible-rate process described earlier.
and Eax( ) = _IrllaX]VIEm( ) as the average, the min-

imum, and the maximum expected throughput per slot underThe above assumption ensures almost-sure convergence to the
price vector over all users, respectively. optimal revenue vector as established in the next theorem.
Denote by * the optimal revenue vector, i.e., the price vec- Theorem VI.1:For the scheduling algorithm described
tor which balances the expected throughputs. To facilitate thBOve, the price sequence( ) converges to the optimal
presentation, we assume that is unique. The analysis mayPrice * wp 1, and consequently the sequente) converges
readily be modified for the case where there is a whole rangetotthe optimal value ™ wp 1.
optimal price vectors. In preparation for the proof of the above theorem we first
present two lemmas.
VI. TWO USERS Lemma VI.1:The price sequence( ) cannot get perma-

We first focus on the case of two users. In the next sectionn(?gtgot]fapped in either of the intervdls *— Jor[ *+ ,1].

we consider the situation with an arbitrary number of users. We only prove the statement for the interyal + 1] The
Before describing the algorithm in detail, we first introducgtatemen¥ ?or the intervdl, * — | follows from s;/m.metry
some useful notation. With minor abuse of notation, we writte ’

onsiderations.
= nsothat p=1—.DenoteA ( ):= 1( )= 20 ) Jneidea of the proof is as follows. As long as the price re-

and define () := % A () as the difference in cumulativemains in favor of user 1, the throughput difference continues to

1 have a positive drift, and will wander off to infinity. As a result,
the price will keep decreasing in fixed steps, and will eventually
turn negative, which is not possible.

throughput between users 1 and 2 afterslots. The absolute
difference| ( )| is referred to as the throughpgap We say
that the throughput gapidensin the -th slotif| ( )| >

: . -
ma 1| ()|, User 1 is said to bieadingif ( ) > 0, For the formal proof details we refer to [5]

o Lemma VI.2:The price sequence( ) cannot move from the
and is referred to daggingotherwise, and vice versa for user 2interval [0, * + | to the intervall * + 2 , 1] infinitely often.
We say that ecross-overoccurs in the -th slot if the lead- Similarly, ( ) cannot move from the interval * — 1] to the
ing and lagging users exchange positions, which means thatititerval[0, * — 2 ] infinitely often.
throughput gap changes sign,i.e{, ) ( —1)<0. Proof
The algorithm may now be described as follows. In every slot, We only prove the first statement, The second one follows
the user with the maximum price-rate product, at the curreinbm symmetry considerations.
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The idea of the proof is as follows. In order for the pricg@re-determined convergent sequence. Thus, af the 1)-th
sequence to move from the intenjal * + ] to the interval update, the price vector is recursively determined as
[ *+2 ,1],itmustcross the interv@l *+ |, *+2 ] from left
to right. For that to happen, the algorithm must make a number (+D= )= )0
of -wrong moves. By an-wrong move, we mean that the price To ensure convergence, the step sige) is reduced by incre-
is increased while the current price is at leaabove the optimal menting ( ) every time a reset is triggered. Intuitively, resets
value *. As will be shown below, the expected number of should occur rarely far away from the optimal poirit, but oc-
wrong moves before a cross-over occurs is finite. However, @ readily once the price vector is close to.
cross-overs occur, the step size will get smaller and smaller, ang remains to specify the exact rules for (i) how to determine
the required number of-wrong moves for the interval to bethe update direction( ( )), and (i) when to trigger a reset.
crossed will get larger and larger. As a result, it will eventually (i) For every user the empirical average throughput over the
become increasingly unlikely for the interval to be crossed. sample period is computed. The users are then partitioned into

For the formal proof details we refer to [5]. O  two groups: (a) those with above-average throughput; (b) those
with below-average throughput. The prices of the above-average
Proof of Theorem VI.1 users are decreased, while the prices of the below-average users

Lemma V1.1 implies that the sequence ) spends infinitely are increased. As the sample size grows, so that with high proba-
many times in the intervdl * — , 1] wp 1. Lemma VI.2 shows bility the empirical average throughputs line up with the true ex-
that the sequence( ) returns only finitely many times from pected throughputs, this ensures that the price vector gets closer

the intervall * — ,1] to the intervall0, * —2 Jwp 1. Com- to the optimal point * in some appropriate sense, as will be
bining these two statements, we find that the sequence shown later.
spends only finitely many times in the intery@ *—2 Jwp 1. Formally, the procedure may be described as follows. Denote

Similarly, we have that the sequenc¢ ) spends only finitely by ,, the throughput received by user during a particular
many times in the intervdl * 42 ,1] wp 1. Hence, for any sample period in which price vectoris used. Define ,,. :=

> 0, the sequence () will eventually enter the interval |
[ *—2, *+2]wp 1, tonever leave it again. Thus, the\s m2=1 m as the average throughput over all users. Denote by
sequence ( ) converges to the optimal price* wp 1. 0 = Com < aetandQt = > )

By continuity, the sequendg| ,,( )] converges t&E,( ), the groups of below-average and strictly above-average users,

= 1,2. The convergence of( ) then immediately follows. respectively. Then the price update directi¢n ) is determined

U as

Remark VI.1:Some interesting related algorithms are pro- i B
posed in [1], [7], [8], [9], [10], where queue lengths instead () = S €N, (6)
of rewards are used as weight factors. These algorithms pro- mfﬂ_v "
vide throughput guarantees in terms of bounded expected queue () = =—21— cQr. (7
lengths (if achievable) rather than target ratios. | Dimea+ m

Note that the price ratios within both— andQ* are main-
tained. This ensures that the expected throughput of the below-
We now turn to the situation with an arbitrary number ofiverage users increases, while the expected throughput of the
users. In principle, the algorithm described in the previoabove-average users decreases, as may be easily checked. In
section for the case of two users may be extended to seveade™ = (), the price vector is simply left unaltered.
users, although there are some subtleties involved in identifyingAlso note that the above price update cannot be applied in
a proper rule for when to trigger a reset. case the price values of some of the user@inare zero. To
Here we consider a related but somewhat different algorithptevent that situation from happening, the price process will be
which may be described as follows. The algorithm makes pritgstricted to the sety, := { € W: ,, > forall =
updates based on sample periods of pre-determined everlin-., },with = 5in/( min+t( —1) max). Itiseasily
creasing size. Thus, the price updates occur at pre-determivedfied that * € W,. In order to restrict the price process to
slots ( ), instead of randomly determined slots as before, withe sedV,,, the update is truncated at the boundary if necessary.
():= ( +1)— ( )thelengthofthe -th sample period. (i) To ensure convergence, a reset is triggered under the con-
In every slot of the -th sample period, the price vectof ) dition that every user has been a membefdf at least once
is used for selecting a user for transmission. (From now on \lgring a consecutive sequence of updates. Once the reset has
use toindex sample periods, rather than transmission slots@urred, the next one is not triggered until every user has been
before.) amember of2* at least once again.
To drive the price sequence( ) towards the optimal
point *, the price is adjusted over time on the basis of the ob-We now proceed to prove convergence of the above-described
served throughput realizations. THieectionin which the price algorithm. We first discuss a few important assumptions.
vector is modified at the-th update is determined by a random _ )
vector ( () based on the throughput obtained during the -@r9€-deviations assumption
th sample period when the price vectof ) is used. Thesize As described above, the algorithm works by making price
of the -thupdateis ( ) = ), With{ x, = 1,2,...} a updates based on samples of ever increasing size. To ensure

VIl. ARBITRARY NUMBER OF USERS
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convergence, we need that as the sample size grows, a ‘@wugh step size, is at least times some constant of propor-
rect’ price update direction is selected with sufficiently higtionality .
probability. Given a price vector € W, user is called Assumption VI1.3:There exist positive constants > 0, >
-below-average (respectively;above-average) iE,.,( ) < 0, > 0 such that for all price vectors ¢ T, for any -right
Eave( )— (respectively=,,( ) > Zave( )+ ). Wesay that direction ( ), andforany € (0, *),
the price update direction is-right’ if all the -below-average
° (+ (N ()= .
users belong t62~ and have their price increased, and all the . : ; . .
T We will consider two alternative choices for the functiof).
-above-average users belong@d and have their price de- . .
: . The first one is
creased. This ensures that the price vector gets closer to the op-
timal point * in some appropriate sense, as will be shown later. () :=Emax( ) — ZEmin( ),
Now remember that at each update, the prices of the empirical h . diff . dth hout b
below-average users are increased, while the prices of the elz'r%-’ t € maximum direrence in expected throughput between
g ' any pair of users. By definiton( *) = 0,and ( ) > 0
pirical above-average users are decreased. Thus, for the PriC

L : R . all  # *, with strict inequality in case the optimal price
update direction to be ‘correct’, it is critical that the empirical | o +'is unique.

average throughputs line up with the true expected throughputs]_he second function that we will consider is
This then motivates the following assumption.

Assumption VIl.1:(Large-Deviations Assumption) o _
Let [ ( ) be a random variable representing the aver- ()= Z mEm( ),
m=1

age throughput per slot obtained by userover a period of _ .
() slots under price vector in stationarity. Given a price i-€- the total expected revenue earned. As found in Section llI,

vector € Wand > 0, there exist a-neighborhood 5( ) the optimal price vector * minimizes that quantity over all vec-
' ¢ torsinthe seW,ie., ( *)< ( )forall ew, # *
of andnumbers §,( ), &,( ) > 0such that 1€, S , )

m with strict inequality in case * is unique.
P{ "()=Zm( )|> }< &( )e Palwiin) We refer to [5] for a proof that Assumption VII.3 is indeed
. satisfied for the above two(-) functions.
forall "e (), =1.... . ~Incontrast to the first one, the secong:) function is also
~ We refer to [5] for a proof that the above assumption is satisuitable to show that Assumption VII.3 is satisfied for various
fied for the feasible-rate process described earlier. alternative options to select a price update direction, for example
Boundary conditions = = 1= >0 f=arg min o, (8)
We further require that when a correct price dire_ctio_n is se- o= -1 *—arg max_ . (9)
lected, the update cannot be truncated to an arbitrarily small m=L,...M

size. The following assumption implies that if a correct pricgnd , = o/ —2)forall # *, * for , agiven positive
direction is chosen, then for small enough step sizthe price sequence withlim ,, = 0. In the sequel this will be referred to

sequence will stay away from the boundary. as the ‘Updatg—_lgztreme’ algorithm, as opposed to the procedure

Assumption VII.2:Therg exist positive constants > 0, yesqribed earlier which will be called the ‘Move-to-Average’ al-
> 0 such that for all price vectors € W,, for any -right gorithm

direction ( ), andforany € (0, *),

+ ()ew,. The next theorem establishes almost-sure convergence to the

To check that the above assumption is satisfied, it sufficesaptimal revenue vector * for the Move-to-Average algorithm.
verify that extremely low prices cannot be decreased and that exTheorem VII.1:The price sequence( ) converges to the
tremely high prices cannot be increased. First consider a useptimal price vector * wp 1, and consequently the sequence
with a price ; < min/( min +( —1) max). Thenthe () converges to the optimal valué” wp 1.
throughput of useris zero, which means that the price of user The above theoremis proved in [5]. The proof for the Update-
is increased if the price direction is right. Similarly, the througlExtreme algorithm is mostly similar, except for a somewhat dif-
put of a user with aprice ; > ax/( min + max) IS - ferentnotion of a correct price update direction.
above-average for some > 0, so that the price of useris Remark VII.1:1n the present paper we focus on establishing
decreased if the price direction is right. almost-sure convergence to the optimal revenue vectof his
critically relies on the step sizds,, =1,2,...} beinga con-
vergent sequence. As an alternative, the step sizes may be kept

As indicated above, we also need that when a correct pribeed at some given value We expect that the price sequence
update direction is selected, the price vector gets closer to thid then continue to oscillate around*, but with smaller am-
optimal point * by some definite amount. To measure digplitudes for smaller values of. Observe however that there is
tance from *, we introduce a function () which attains a an inherent trade-off between the accuracy achieved on the one
unigue minimum at *. Definel’. := { € W : Enax( ) — hand and the speed the convergence, and thus the responsive-
EZmin( ) < }asan‘-neighborhood’ of *. The following as- ness to changing conditions, on the other hand. The value of
sumption implies that if a correct price update direction is chthen may be used to find the right balance between these two
sen, then outsidE, the reduction in the value of(-) for small conflicting objectives. m

Function (-)
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Fig. 2. Price trajectory for 2 users over 1000 slots.
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VIIl. NUMERICAL RESULTS

In this section we describe some numerical experiments
which we conducted to investigate the convergence properties
of the proposed control algorithms. Besides verifying long-run
convergence, we also examine the transient performance, in par-
ticular the rate at which the prices converge to the optimal val- =
ues.

In the first three experiments we consider continuous rate dis-
tributions. In the fourth experiment we assume a discrete distri-  °3 E
bution where the feasible rates are determined by a fading pro- .t ]
cess via the signal-to-noise ratio. The fading process is modeled
using a discrete number of sinusoidal oscillators as described by
Jakes, mOdeI [6] 0O 160 2‘00 éOO 4‘100 ‘500 ‘600 ‘700 ‘800 ‘ 900 1000

In the final three experiments, we examine how well the Slots
throughput ratios are maintained, and how well the algorithms
are able to track changes in the channel conditions or throughputFig. 3. Price trajectories for 2 users ws* (non-geometric step sizes).
targets.

A. Two users with exponential rates are graphed in Figure 2 for a period of 1000 slots. Observe that
i ) , the prices converge to the optimal values in roughly 300 slots,
In the first experiment we consider a model of two USe(Fhich corresponds to about 0.3 seconds of operation.
with independent rates. The feasible rate for us& gov-  \ye repeated the above experiment for non-geometric step
erned by a condmonal exponential distribution on some intervgl, oo » = 1 P with successively chosen as 1.5, 2.0, 3.0,
[ wins max], 1€, 4.0. Note that the sum of the price changes is still convergent,
()= - ef’yl'(rme;n)] el m ] although the step sizes decay slower than before. The corre-
! ’ e sponding price trajectories are shown in Figure 3 for a period of
with ; = 1 — e 7iBmax—Bmin) g normalization coefficient, 1000 slots. We see that convergence is considerably slower for
=1,2. We take] min, max] = [10,400] Kbits/s and assume smaller values of , i.e., slower decay of the step sizes.
(1, 2) = (0.02,0.01). Thus, the feasible rate for user 2 is
about twice as large in distribution as for user 1. The throughprt 11€€ users
target for user 2 is also set twice as large as for user 1, i.e.|Jn the second experiment we consider a scenario with three
(1, 2)=(1,2). users. As before, the feasible rate for usetlows a conditional
The normalized expected throughputs for these parameterggsonential distribution on the interval [10, 400] with parame-
a function of are plotted in Figure 1. From the figure, we seters( 1, 2, 3) = (0.02,0.01,0.02). Thus, the feasible rate for
that the optimal price is * ~ 0.6, which may more precisely user 2 is about twice as large in distribution as for users 1 and 3.

be determined as* ~ 0.593 using bisection. The target throughput ratios for the three users are set equal,
We ran the control algorithm described in Section VI for 100Ce., ( 1, 2, 3) = (1,1,1). The optimal revenue vector is
slots. We used step sizeg,; = * i, with initial value ; = * = (0.424,0.152,0.424) as may be determined using numer-

0.5 and reduction factor = 0.9. The resulting price trajectoriesical integration and two-dimensional bisection. Observe that the
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Fig. 4. Price trajectories for 3 users over 5000 slotsus(Move-to-Average Fig. 6. Price trajectories for 8 users with 15,000 slotsws(Move-to-Average
algorithm). algorithm).

00 ‘ TABLE |
FEASIBLE RATE PER SLOT AS FUNCTION OFSNR.

0.8

| Signal-to-Noise Ratio (dB] Rate (bits)]

0.7

—5.0 < SNR 1000
0e —10.0< SNR < —5.0 500
Zos —20.0 < SNR < —10.0 250
8 —30.0 < SNR < —20.0 100
o 04 SNR < —30.0 30

the optimal revenue vector*.

0 JL— N C. Eightusers

0 500 1000 fsoo 2000 2500 ‘3000 ‘3500 ‘4000‘ 4500 5000

Slots (1000 = 1 second) In the third experiment we consider a situation with eight
users. As before, the feasible rate for uséollows a condi-
tional exponential distribution on the interval [10, 400]. The
exponents were chosen at random uniformly in [0.01, 0.05], and
turned out to be approximately (0.0489, 0.0263, 0.0139, 0.0480,

optimal price for users 1 and 3 is higher than for user 1, as(0220,0.0107, 0.0461, 0.0128).

required in order to obtain equal throughput, since the feasible! € target throughput ratios are again set equal for all users.
rate for user 2 is stochastically larger. As before, we expect that a larger value of the exponeiit-

We ran the two control algorithms described in Section Vﬁucirjg smaller feasible rates, requires a higher price in order to
for 5000 slots, or approximately 5 seconds of operation, wigit@in equal throughput.

Fig. 5. Price trajectories for 3 users over 5000 slotsws.(Update-Extreme
algorithm).

() = 10 slots for the -th update. This amounts to We ran the two control algorithms described in Section VI
roughly 30 price updates. The initial revenue vector is sfqr 15,000 slots, or approximately 15 seconds of operation, with
to (1) = (0.3,0.6,0.1). We used step sizes, = 2, ( ) =30 slots for the -th update. This amounts to roughly

- 1,2,.... Tr’1e r:asulting price trajectories are depicted 25 price updates. The initial revenue vector is set at random.
the solid curves in Figures 4 and 5. The revenue vector for tA& used step sizes = 2 =12, - The resulting price
Update-Extreme algorithm after 30 price updates {80) ~ trajectory for the Move-to-Average algorithm is graphed in Fig-
(0.441,0.123,0.436), quite close to the optimal one. ure 6.

We repeated the above experiment for the Update-ExtreBe
algorithm usingt0 and60 slots for the -th update, with the —
same power series fog.. The corresponding price trajectories We now consider a case with discrete rates governed by inde-
are reproduced as the the dashed lines in Figure 5 for user pémdent fading processes as described by Jakes’ model [6]. The
the first case and user 2 in the second (with similar results for tmean received powers of user 1, 2 and 3 are -15.0 dB, 0.0 dB,
remaining prices.) As expected, we see that using fewer samed -10.0 dB, respectively. The feasible rates per slot then fol-
per price update leads to a slower and ‘noisier’ convergencdda from Table 1.

Discrete rates driven by a fading process
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The throughput target for user 2 is set twice as large as for
usersland3,i.e(, 1, 2, 3)=(1,2,1).

We ran the two control algorithms described in Section VII 07
for 10,000 slots, with ( ) = slots for the -th update. We
used step sizes, = ~3/2and , = 2, =1,2,.... 06l

As explained earlier, the discrete rate values are perturbed by
adding a small uniformly distributed random variable to obtain
a continuous version of the problem. We thus ensure that the
optimal control algorithm is determined by the revenue vector
only.

The empirical average throughputs are depicted in Figures 7,
and 8. The achieved throughputs under the Update-Extreme al- )
gorithm are approximately 130 bits per slot for both users 1 013
and 3 and 270 bits per slot for user 2, quite close to the tar-
get ratios. Under the Move-to-Average algorithm the realized O e 0000
throughputs are reasonably close to the target ratios too, pro- Slots (1000 = 1 second)
vided the step size is reduced sufficiently slowly as in Figure 7.

The corresponding price trajectories are displayed in Fi@g- 9. Price trajectories for 3 users over 10,000 slots (Move-to-Average algo-

054l

Price (w)
=} =}
w IS

I
)

. . Ragiryr
ures 9, and 10. We see that that under the Update-Extremd™™m With 5 = ~7/%).
algorithm the prices converge to the optimal values in about 5
seconds. Under the Move-to-Average algorithm the prices con-  os o
. . . . — User
verge fairly quickly too, unless the step size is reduced so fast ol User 2 ]

that the process gets essentially overdamped.

0.6

E. Comparison with a forcing scheme

We now compare the revenue-based algorithms with a forc- 05
ing scheme. The forcing scheme assigns tkh transmission
slot to the user *( ) with the current minimum normalized
throughput, i.e.,

Price (w)
o
'

e
w

“( )=argmzrglﬁigM m( )/ m

I
N}

By construction, the forcing scheme realizes the target °*

throughput ratios perfectly, in the sense that with probability 1,

(A)‘ 1(;00 2600 3‘000 1‘1000 ‘5000 ‘6000 ‘7000 ‘ 8000 ‘ 9000 10000

( ) Slots (1000 = 1 second)

- — —l, as — oo

j( J Fig. 10. Price trajectories for 3 users over 10,000 slots (Update-Extreme algo-
rithm with §, = k—2).

for all pairs of users, =1

geeey
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algorithm). ig. 12. Price adjustment to allow for data burst for user 3 (Move-to-Average
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The downside of the forcing scheme of course, is that it gen- i i
erally achieves lower throughputin absolute terms, as it does R§Pected throughputs. We presented a wide class of stochastic

take advantage of the variations in the feasible rates. Under i.£@ntrol algorithms which ensure almost-sure convergence to

assumptions, the throughput obtained under the forcing scheid thus achieve the optimal long-run throughputs.
may in fact be computed in closed form as Numerical experiments showed that the convergence to the

optimal revenue vector is in practice quite rapid (of the order

()= i, as — oo. of a few seconds), and that the algorithms have the ability to
track changes in the channel conditions and throughput targets.

with -1 — % JJEL ). Further experiments are required to determine which form of
j=1 the algorithm is most adequate for implementation in the HDR

We repeated the experiment of the previous subsection for Huheme. The algorithms may also be enhanced by allowing the
forcing scheme. The empirical average throughputs are repstep sizes or the sample sizes to be adapted in response to non-
duced in Figure 11 for a period of 5000 slots. The achievethtionary changes in the feasible rate declarations
throughputs are approximately 90 bits per slot for both users 1
and 3, and 180 bits per slot for user 2. The results show how REFERENCES
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