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Abstract—We consider a fluid queue fed by multiple On-Off flows with
heavy-tailed (regularly varying) On-periods. Under fairly mild assump-
tions, we prove that the workload distribution is asymptotically equivalent
to that in a reduced system. The reduced system consists of a ‘dominant’
subset of the flows, with the original service rate subtracted by the mean
rate of the other flows. We describe how a dominant set may be determined
from a simple knapsack formulation. We exploit a powerful intuitive ar-
gument to obtain the exact asymptotics for the reduced system. Combined
with the reduced-load equivalence, the results for the reduced system pro-
vide an asymptotic characterization of the buffer behavior.
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|. INTRODUCTION

Over the past few decades, fluid models have gained strong
ground as a versatile approach for analyzing burst-scale traffic
behavior. The basic model is that of several On-Off sources,
each aternating between activity phases (commonly referred to
as bursts) and silence periods. When active, each source gener-
atestraffic at some constant rate.

Classical papers of Anick, Mitra, & Sondhi [2] and
Kosten [19] considered a queue fed by the superposition of
several homogeneous On-Off sources with exponentially dis-
tributed activity and silence periods. Subsequent work extended
the model in various directions, such as heterogeneous source
characteristics, several source statesto account for variousactiv-
ity levels, or activity periodswith ageneral Markovian structure,
see for instance Kosten [20] and Stern & Elwalid [32]. Under
traditional statistical assumptions, it turns out that the tail of the
backlog distribution typically exhibits exponential decay.

In recent years, empirical findings have triggered a strong in-
terest in fluid models with non-Markovian activity periods. Ex-
tensive measurements indicate that bursty traffic behavior may
extend over a wide range of time scales, manifesting itself in
long-range dependence and self-similarity, sece Leland et al. [21]
and Paxson & Floyd [27]. The occurrence of these phenomena
is commonly attributed to extreme variability and long-tailed
characteristics in the underlying activity patterns (connection
times, file sizes, scene lengths), see Beran et al. [4], Crovella
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& Bestavros [11] and Willinger et al. [33]. Fluid queues with
long-tailed activity periods provide a natural paradigm for cap-
turing these characteristics. We refer to Boxma& Dumas|[9] for
asurvey paper.

Although the presence of long-tailed traffic characteristicsis
widely acknowledged, the practical implications for network
performance and traffic engineering remain to be fully resolved.
Analytical studies show potentially dramatic performance reper-
cussions for infinite buffers. For moderate buffer sizes though,
the impact of long-tailed traffic characteristics is not as pro-
nounced, see Grossglauser & Bolot [14], Heyman & Laksh-
man [15], Mandjes & Kim [24], and Ryu & Elwalid [31].
For larger buffer sizes, flow control mechanisms play a criti-
cal rolein preventing badly-behaved traffic from overwhelming
the buffer content, see Arvidsson & Karlsson [3]. However, the
amount of backlogged traffic at the user, and thus the end-to-end
quality-of-service, may still be significantly affected by long-
tailed activity patterns.

The effect of long-tailed traffic characteristics on buffer be-
havior also crucialy depends on the relative amount of heavy-
tailed traffic, in particular whether or not activity of heavy-tailed
flows aone can cause the buffer to fill. Asymptotic bounds
in Dumas & Simonian [12] indeed show a sharp dichotomy in
the qualitative behavior of the workload, depending on whether
the mean rate of the light-tailed flows plus the peak rate of the
heavy-tailed flows exceeds the link rate or not. In case the link
rate is larger, the workload distribution has light-tailed charac-
teristics, whereas the link rate being smaller results in heavy-
tailed characteristics. The exact asymptotics for the former case
were recently obtained in [6]. For the latter case, the bounds
of [12] indicate that one can usualy identify a ‘dominant’ set,
which is a minimal set of flows that can cause a positive drift
in the buffer. Asfar asboundsis concerned, all other flows can
essentially be accounted for by subtracting their aggregate mean
rate from the link rate. Somewhat related notions are devel oped
in Likhanov & Mazumdar [22] in the setting of M /G /oo input
with heterogeneous sessions.

Exact results however, have remained elusive for al but a
few specia cases. Results of Agrawal et al. [1] show that the
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dominance principle described above in fact extends to the ex-
act asymptoticsin the case of a single dominant flow. This may
be expressed in terms of a ‘reduced-load equivalence’, imply-
ing that the workload is asymptotically equivalent to that in a
reduced system. The reduced system consists only of the dom-
inant flow, with the link rate subtracted by the aggregate mean
rate of al other flows. This extends results of Boxma [8], Je-
lenkovi€ & Lazar [16], and Rolski et al. [30] for multiplexing a
single (intermediately) regularly varying flow with several ex-
ponential flows. Related results are derived in Jelenkovi€ &
Lazar [16] and Resnick & Samorodnitsky [29] in the context
of M /G /oo input. Like the reduced-load equivalence, however,
all these results rely on the assumption that a single active flow
is sufficient for a positive drift in the buffer.

In the present paper we determine the exact asymptotics for
the case where several On-Off flowsmust be activefor the buffer
to fill (under the assumption that the distribution of the On-
periodsis regularly varying [5]). From a practical perspective,
this case appears particularly relevant, as the peak rate of asin-
gleflow is usualy substantially smaller than the link rate. How-
ever, therather subtleinteraction of several flowsthat isinvolved
in filling the buffer drastically complicates the analysis, reflect-
ing the sharp demarcation in known results described above. We
start with extending the reduced-load equivalence to the case of
areduced system consisting of several flows, using sample-path
arguments. We then build on a qualitative understanding of the
large-deviations behavior to obtain the exact asymptoticsfor the
reduced system. This part of the analysis is related to recent
work of Resnick & Samorodnitsky [29] on fluid queues with
M/G/oo input.

The remainder of the paper is organized as follows. In Sec-
tion 11, we present a detailed model description. In Section 111,
we give a broad overview of the main results of the paper, and
describe how the dominant set may be determined from a sim-
ple knapsack formulation. We also discuss the relationship be-
tween the asymptotic regime considered here (‘large buffers')
and amany-sourcesregime. Section |V gives some preliminary
results. The reduced-load equivalence result is established in
Section V. Section VI develops the detailed probabilistic argu-
ments involved in deriving the tail asymptotics for the reduced
system.

Il. MODEL DESCRIPTION

We first present a detailed model description. We consider a
gueue of unit capacity fed by several flowsindexed by the set 7.
For any subset E C 7, denote by Ag(s,t) := E Ai(s,t) the

aggregate amount of traffic generated by thefl 0w3z € E during
the time interval (s, t]. Denote by pp := Z p; the aggregate

traffic intensity of the flowsi € E (aswill bespecmed in detail
below). We assume p := p7 < 1 for stability.

Foranyc > 0, E C 7, define VE(t) := supg< < {AE(s,t)—
c(t — s)} astheworkload at time ¢ in a queue of capacity ¢ fed
by theflowsi € E (assuming V5(0) = 0). For ¢ > pg, let V§
be arandom variable with the limiting distribution of V5 (¢) for
t — oo. Inparticular, V(t) := V2(t) is the total workload, and
V := Vj isarandom variable with the limiting distribution of
V(t) fort — oc.
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We assume the flows may be partitioned into two sets: 7;
is the set of ‘light-tailed’ flows; Z, is the set of ‘heavy-tailed’
flows. For the flowsi € 7; we make the following assumption.

Assumption I1.1: Forany ¢ > pz,, u > 0,

Ilgr;o oHP{VZ >z} =0.

The above assumption is satisfied for many input processes
of practical interest, e.g. by On-Off flows with light-tailed or
Weibullian On-periods.

We assume the flows in Z, generate traffic according to in-
dependent On-Off processes, each alternating between On- and
Off-periods. The Off-periods of flow i are generally distributed
with mean 1/);. The On-periods A; have a heavy-tailed distri-
bution A;(-) with mean a; < co. While On, flow i produces
traffic at constant rate r;, so the mean burst size is a;r;. The
fraction of timethat flow i isOnis

Q; Aoy
UNi+a; 14X o

bi =

Thusthetraffic intensity of flow i is

)\Z’Oéi’f'i
1+ Moy

Pi = Pili =

Before stating an important preliminary result, we first intro-
duce some useful notation.

For any two real functions f(-) and ¢(+), we use the notational
convention f(z) ~ g(z) to denote lim,_, f(x)/g(xz) = 1
Also, weuse f(z) < g(z) to denotelimsup,_, . f(z)/g(z) <
1. Similarly, f(z) 2 g(z) denoteslim inf, . f(z)/g(z) > 1

For any positive stochastic variable X with distribution func-
tion F(-), E{X} < oo, denoteby F"(-) thedistribution function
of theresidual life-timeof X, i.e,

Frie) = E{X}/l‘

and by X" a stochastic variable with that distribution.

The classes of long-tailed, subexponential, regularly varying,
and intermediately regularly varying distributions are denoted
with the symbols £, S, R, and TR, respectively (notethat R C
IR C S C L). Background on heavy-tailed distributions may
be found in Embrechtset al. [13].

For each flow i € Z,, we assume that the On-period distri-
bution isregularly varying of index —v;, i.e., A;(-) € R_,, for
some v; > 1. The next result which is due to Jelenkovit &
Lazar [16] then yieldsthetail behavior of the workload distribu-
tion.

TheoremIl.1: If A7(-) € S, p; < ¢ < ri, then

))dy,

P{V >} ~ (1= p)- i

ri —C
Il. OVERVIEW OF THE RESULTS

We now give a broad overview of the main results of the pa-
per. As mentioned in the introduction, asymptotic bounds in
Dumas & Simonian [12] show a sharp dichotomy in the qual-
itative behavior of P{V > z}, depending on the value of
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pz, + 7, (i.e. the mean rate of the light-tailed flows plus the
peak rate of the heavy-tailed flows) relative to the service rate.
Incase pz, + rz, < 1, theworkload has light-tailed character-
istics, whereas pz, + rz, > 1 implies heavy-tailed characteris-
tics. In the present paper we determine the exact asymptotics of
P{V > z} inthelatter case.

A. Intuitive arguments

Before formulating our main theorems, we first provide a
heurigtic derivation of thetail behavior of P{V > z}.

Large-deviationstheory suggeststhat, giventhat a‘rareevent’
occurs, with overwhelming probability ‘it happens in the most
likely way’. In the asymptotic regime considered here (‘large
buffers'), the most likely way usually consists of alinear build-
up of the workload, due to temporary instability of the system.
In case of heavy-tailed distributions, the temporary instability
typicaly arises from a ‘minimal set’ of potential causes. The
minimal set correspondsto the minimal number of causes when
these are homogeneous in nature. In general however, when
the potential causes have heterogeneous characteristics, not only
the number of them matters, but also their relative likelihood,
and their relative contribution to the occurrence of therare event
under consideration.

Trandated to our situation, temporary instability is most
likely caused by a‘minimal set’ of flows generating an extreme
amount of traffic, while all other flows show roughly average
behavior. These considerations give rise to the following char-
acterization of the tail behavior of P{V > z}:

P{V >z} ~P{VE" >z},
with S* representing the ‘minimal set’, and cs- := 1 — p7\ 5~
the service rate subtracted by the aggregate traffic intensity of
all other flows.

We now introduce some helpful notionsin order to formalize
the above intuitive arguments. For any subset S C 7,, define
cs := 1 — pg\ s asthe service rate subtracted by the aggregate
traffic intensity of al other flows j € 7 \ S. Observe that the
stability condition implies ps < ¢g forany S C 7.

For any subset S C 7, denoteby rg := Y r; the aggregate

JES
peak rate of the flows j € S. Defineds := rg — cs = rg +
pr\s — 1 asthe netinput rate (i.e. the drift) when al flowsin S
are On and al other flows show average behavior.

A set S C 7, iscaled (strictly) critical if ds > (>)0,i.e, if

rs +pns > (>) 1.

Thus, when all flowsin a (strictly) critical set are On, the work-
load has a (strictly) positive drift. A critical set S is termed
minimally-critical if no proper subset of S iscritical, i.e., ds <
min{r; — p;}.

For any subset S C Z,, denote ug := > (v; — 1). A

es
gtrictly critical set S C 7, is said to be (weajlkly) dominant if
s < (<) wpy for any other critical set U C Z,. Observe that
for aset S C 7, to be dominant, it must be minimally-critical
(because otherwise the defining property would be violated for
any critical subset U C S).
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Thequantity s may beinterpreted asameasurefor the‘ cost’
associated with atemporary drift dg: the probability of all flows
in S being Onfor atime of the order z in steady state is roughly
equal to z~#s. Thus, aset S is (weakly) dominant if the flows
in S being On causes the drift to be positive in the cheapest
possible way.

In case of light-tailed distributions, the cost minimization is
usually not so simple; one then also needs to consider how long
acertain positive drift must be be maintained in order for agiven
workload level x to be reached. Thisissue doesnot arisein case
of regularly varying On periods, since P{A! > ax} is of the
same order of magnitude (up to a constant) as P{A} > z} for
any constant a > 1. Thisimpliesthat the value of the temporary
driftisnot relevant aslong asit is positive.

B. Tail behavior of the workload distribution

We now state our main theorem.
TheoremI11.1: (Reduced-load equivalence)

Suppose the set of flows S* C Z, isdominant. If 4;(-) € R
for all j € Z,, then

P{V >z} ~P{VE" >z}, (3.
with
PVE >at~ [[ps D) Prla), (3.2)

jes:

where Py, (z) is given by (with 73 = S* \ J, and dg- =
rg+ — cg+ asdefined earlier)

JoCS*

1
Py (z) = 7/ (3.3
’ H E{Al} yi€(0,00),i€T1
[ISVEY
H P{ds-A; > Z yi(rj —pj) — ds-y; + =}
i€ JET
[T Blds-AT > > yilrs —ps) + 2} I dus.
i€Jo Jj€T SV

The proof of the above theorem may be found in Section V
(Equation (3.1)) and Section VI (Equations (3.2) and (3.4) and
the regular variation property).

Note that in case the reduced system consists of just asingle
flow, i.e, S* = {i*}, the tail asymptotics follow directly from
Theorem 11.1. Thisis in fact the reduced-load equivalence es-
tablished in Agrawal, Makowski & Nain [1] (under somewhat
weaker distributional assumptions). Note that in this case the
right-hand side of (3.2) takes the form p;«[Py(x) + Pi- ()],
which is consistent with Theorem 11.1.

In case the reduced system consists of severa flows, the tail
asymptotics cannot be obtained from known results. In fact, the
analysis of the reduced system then poses a major challenge be-
cause of the rather subtle mechanicsinvolvedin reaching alarge
workload level. By definition though, the reduced system has
the special feature that all flows must be On for the drift in the
workload to be positive, i.e., rg- —;’Ielisrl{rj —pj} <cge <rge.

In Section VI we determine the exact asymptotics for systems
satisfying this property, yielding the integral expression givenin
Theorem 11.1.
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C. Knapsack formulation for determining a dominant set

We now describe how adominant set may be determined from
asimple knapsack formulation (for arelated optimization prob-
lem, see [22]). Recall that the On-period distributions of the
flowsi € 7, areregularly varying of index —v;.

For adtrictly critical set S C Z, to be dominant, it must nec-
essarily solve the optimization problem

min > (- 1)
- jeSs
sub ZTj-l- Z pj >1—pz,.
j€S  jEL\S

Note that the constraint is equivalent to ds > 0. If we define
0; := r; — p; fordl i € 7, then the above problem may be
expressed in the standard knapsack form as

max Z(l/j -1
= JEU
sub Zaj§p11+7'12—1—6,
JjeEU

withU = 7, \ S and e some small positive number. The above
problem may not always have a unique solution. In case it does,
the corresponding set S is dominant, except for the case when
some set T exists which is critical but not strictly critical (i.e.
rr + ppnr = 1), with up < ps (see the definition of a domi-
nant set). Although intriguing, this ‘critical case’ is not further
considered in the present paper. In this case, the temporary drift
may be zero for along period of time during the path to overflow.

In case the knapsack problem has several solutions, the corre-
sponding sets are weakly dominant (except for the critical case
again). The next theorem extends the reduced-load equivalence
to the case of weakly dominant sets.

Theorem I11.2: (Generalized reduced-load equivalence)

Let Y C 272 bethe collection of all weakly dominant sets. If
Aj(-yeRforalje S, SeT,then

P{V >z} ~ Y P{VE >z},
SeYT

(3.4)

with P{V > z} asin (3.2), (3.3).

D. Homogeneous On-Off flows

We briefly consider the case of homogeneous On-Off flows as
an important specia case with weakly dominant sets. Assume
that the flows i € Z, haveidentical characteristics. With some
minor abuse of notation, let A(-) := A;(-), v := v;, p := pi,
r = r; p; = p. Define N* := argmin{N : Nr + (|Z»] —
N)p > 1 — pz, }. (Observe that the assumption pz, + rz, > 1
ensures N* < |Z»|.) To exclude the critical case, assume that
(N*=1)r+(|Zz| - N*+1)p < 1—pz,, so that the drift remains
negative (and cannot be zero) when only N* — 1 flows are On.

Corollary I11.1: If A(-) € R, then

P{V >z} ~ ( b{,i' ) P{V > z},
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with
N*

P{V>x}~pN*Z<

]\TTL > P{l,,n}(m)

where Py () isgiven by (3.4). In particular, P{V > z}
and Py ..y (z) areregularly varying of index —N*(v — 1).

E. K heterogeneous classes

Wefinally consider theimportant special case where each On-
Off flow in Z, belongs to one of K heterogeneous classes. We
will show how an approximate solution to the knapsack problem
may be obtained using a simple index rule. The approximation
isin fact asymptotically exact in the many-sourcesregime.

Specificaly, consider the superposition of n On-Off flows,
each belonging to one of K heterogeneous classes. Let a; be
the fraction of flowsof classk € {1, ..., K}, with peak rate ry,,
mean rate py,, and an On-period distribution which is regularly
varying of index —v;,. Let the service rate be n (instead of 1),
and let V() e the stationary workload. The knapsack problem
then takesthe form

min
nr€{0,...,nar }

K
an(l/k — ].)

k=1

K K
anrk + Z(nak — ng)pr > N.
k=1 k=1

Unfortunately, the above problem cannot be easily solved due
to the integrality constraints. Intuitively however, one may ex-
pect that as n grows large, the integrality constraints should
have a negligible effect, so that a continuous relaxation with
ny, € [0, nay] should give agood approximate solution.

This relaxation may be solved using a smple index rule. In-
dex the K classes in non-decreasing order of the ratios

sub

Vi := (v — 1)/ (rk. — pr)-

Forany k € {1,..., K}, defineoy, := Z AT+ Z G P -

=1
Determine the (unique) index £ such that 1€ (o 1,0,_;] Then
take n; = nay, for al classes k < ¢, nj = 0 for &l classes
k> /¢, and TL’E = n(l — 0'5_1)/(7“5 — p[).
Thisyields the (crude) approximation
]P’{V(”)

>tz " (3.5

-1
withp = " ap(vy — 1) +
k=1
the above approximation is logarithmically exact in the many-
sources regime. In particular, one may show that the limits for
z — oo and n — oo commute if one considers logarithmic
asymptotics.
Theorem I11.3: (Robustness of logarithmic asymptotics)

(1—=0—1)7ve. In[35] we provethat

11logP{V("™W > nz}

lim lim —

n—00 £—00 N log x

1 log P{V(")
lim lim ——2 {viv > nx}
T—00 Nn—00 N logx
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The proof of the above theorem can be found in [35]. Al-
though logarithmically exact, the approximation (3.5) may not
be appropriate from a practical perspective. In particular, it is
shown in [35] that an analogue of Theorem 111.3 cannot hold if
one considers exact asymptotics.

IV. PRELIMINARY RESULTS

In this section we collect some preliminary results which will
be used in later sections. We first give a convenient representa-
tion for the stationary distribution of the workload V'¢,. Starting
point isthe definition V5(t) := supg<,<;{Ar(s,t) —c(t —s)}
(assuming V£ (0) = 0). Since the process A (0, t) has station-
ary and reversibleincrements (see[35] for adetailed description
of Ag(0,1)), we have

sup {Ap(s,t) —c(t —s)} £ sup {Ag(0,5) — cs}.
0<s<t 0<s<t
In the sequel we will use the latter expression as the definition
of VE(t). Accordingly, for ¢ > pg, the stationary workload as
t — oo may be represented as

V§ = sup{Ag(0,t) — ct}.
>0

(4.1)

We now derive some simple bounds for the workload distri-
bution P{V¢ > x} for subsets S C Z,. For any subset S C 7,
c < rg, define

P§(x) == [ piP{A]} >
JjES

T

1.

rs —c¢
Thefirst result may also befound in Choudhury & Whitt [10].

LemmalV.l: For S C 7r,c < rg,

P{VS >z} > PS(z).
For any subset S C 75, ¢ < rg, define

Kg ::Hr'

jes '

rj = pj
—pj-i-C—TS-

LemmalV.2: Let S C 7,. If c € (rg — r_nigl{rj —pitrs),
JjE
and Aj(-) € Sforall j € S, then

P{V§ > 2} S KSPS(x).
Proof: Foranyi € S, denoted; := ¢ — rg + r;. Note
that d; > p; sincec > rg — (r; — p;). Then, sample-path wise,
V&(t) < V% (t) fordl i € S. Theorem 1.1 then yields,

P{VE >z} <P{VP > zforal j € S} ~ KEPS().

We now derive some general bounds for the tail of the total
workload distribution P{V > z}. Foranyc¢ > 0, E C I,
define Z¢,(t) := supg< s« {cs— Ag(0,s)}. Fore < pg, let ZS;
be a random variable with the limiting distribution of Z¢,(t) for
t — 00.

Wefirst present alower bound. The ideabehind its derivation
asfollows: V37 being largefor some minimally-critical set £ €
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A basically implies that V must be large too, unless the other
flows j € E persist in below-average behavior. Excluding such
bel ow-average behavior (reflected in large values of Zg\ ) from
theevent {V > z} yieldsthefollowing lower bound for P{V >
LemmalV.3: Forany E C 75,6 > 0,andy > 0,

P{V >z} > P{VZF™ > o+ y}P{Z7y " <y}
Proof: Sample-path wise, using properties of the sup-
operator,
V(1) > VEET) - 255 (1)
forany E C Z,. Next, let t — oo to obtain the corresponding
lower bound in the stationary regime. ]

Denote by A/ := |Z| the total number of flows, and let Q C
272 pe the collection of &l minimally-critical sets.

We now provide a corresponding upper bound, which is
somewhat moreinvolved. Theideaisasfollows: V being large
essentially means that V7 must be large for some minimally-
critical set E € A too, unless the other flows j ¢ E exhibit
above-average behavior. Extending the event {V > z} with
possible above-average behavior of the flows j ¢ E (manifest-
ing itself in large values of VK\;H) leads to the following up-
per bound for P{V > z}.

LemmalV4: Let E € . Thenfor any §,e¢ > 0 sufficiently
small and y,

P{V>z} < P{VE>z—yl+P{Vi"" >z/N}
+ PV >y [T VYT > /N
JjEE
+ > [IPVE™ > a/ny
EcQ\A jES
Proof: Sample-path wise,

cE— \e+0
Vi) < VeES ) + VERE T

forany £ C To.

In addition, for ¢ > 0 sufficiently small, V() > = implies
VIplll+€(t) > z /N, or there exists aminimally-critical set S €
Q such that V" (t) > z /N foral j € S, see[35] for details.

Thisyields, for any §, e > 0 sufficiently small and y,

P{V >z}
Pr{ViF = + VI >
IS €Q: VT S o/Nor VI > /N Ve S}

IN

pr\E+6
VII\\E]‘E > Y,

IN

Pr{Ve % > g —yor
IS eN: ng“” >z/N or VT > z/N Vj e S}
P{VPr™ >z —y} + P{V;fﬁe > z/N}

+ SRV > /N Vi€ S, VEYT Sy,
SeEQ

IN

which immediately givesthe desired result. |
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Lemma IV5: Let S C Z,. If A;(-) € Rforal j € S and
c€ (rs — I%ig{rj —pj}.rs), then
J

P{supi> {450, 1) — (e — )t} > 2}

lim lim sup

foranye € [0,rs — c).
Proof: See[35]. |

V. REDUCED-LOAD EQUIVALENCE

In this section we give a proof of Theorem I11.1. For a proof
of Theorem [11.2 and other extensions (such as the case with
additional heavy-tailed instantaneous input) we refer to [35].

The proofs of the complementing results for the reduced sys-
tem are presented in Section V1.

TheoremV.1: (Reduced-load equivalence)

Suppose S* € ) satisfies Assumptions V.1-V.5 as listed be-
low with ¢ = ¢g+. Then

P{V >z} ~P{VE"

Assumption V.1: For any y and § > 0,

P{V$e >z 4y}
P{V¢{ >a}
isindependent of y. In addition, limg,o F$(d) = 1.
Assumption V.2: Forany y and § > 0,
P{VS?® >z -y}
P{V¢ >z}
isindependent of y. In addition, lims; o G%(0) = 1.
Assumption V.3: For any € > 0,
PV s 2N}
lim ! =0.
z—00 P{V§ >z}

Assumption V.4: For any € > 0,

[T P{VY™T > 2/N}
H¢(e) := lim sup Jes

z—00 P{V¢ > x}
Assumption V.5: Forany £ € Q, E # S, forany e > 0,

[1 P{VZT > 2/}

jEE

>z}

F§(0) := liminf

T—r00

G%(06) := limsup

T—>00

< 00.

R TR
Proof: The proof consists of alower bound and an upper
bound which asymptotically coincide.
(Lower bound) Combining LemmalV.3 (take £ = S*) with

Assumption V.1 yields, forany § > 0 and y,

P{V >z . —
imial prye Sy > ORI <)
Letting first y — oo, and then § | 0 completes the proof of the
lower bound.
(Upper bound) Combining Lemma V.4 (take £ = S*) with
Assumptions V.2-V.5, we obtain for any d,e > 0 sufficiently
small and y,

lim sup LY > 7}

< G ©) + HE (OP{VES > ).
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Letting y — oo, then § | O completesthe proof. |

In order to complete the proof of the reduced-load equiva
lence result (3.1), it remains to be shown that a dominant set
S* C I, with A;(-) € R fordl j € S* satisfies Assump-
tionsV.1-V.5. That is donein thefollowing two propositionsfor
S =.5*

PropositionV.1: Let S C Z,. If Aj(-) € Rforal j € S,
then Assumptions V.1 and V.2 are satisfied for any ¢ € (rg —
min{rj — pj},7s).

Proof: We first prove Assumption V.2. It follows from
Theorem VI.3 that if A4;(-) € Rfordl j € S, thenP{V% >
x} € IR. AsR C L, it thus suffices to prove the property for
y=0.Lete€[0,rs —c),andlet§ € (0,¢]. Then

P{V$ ™ >z}
P{V¢ >z}
P{V§ > (1 -0'?)z}
P{V¢ > z}
P{sup;>,5-1/2{As(0,t) — (c — )t} >z}
P{sup;>o{As(0,7) — ct} > x} .

The fact that P{V§ > z} € ZR implies that the first term
tendsto 1asé | 0, whileLemmalV.5 (with M = §—1/2) shows
that the second term then goesto 0.

The proof of Assumption V.1 is exactly the same and there-
fore omitted. |

PropositionV.2: Let S C Z,. If Aj(-) € Rforal j € S,
then Assumptions V.3 and V.4 are satisfied for any ¢ > pg. If in
addition S isadominant set, then Assumption V.5 is satisfied as
well.

Proof: Assumption V.3 is satisfied by Lemma V.1, As
sumption (11.1) and the assumptionthat A;(-) € Rforall j € S.
Assumptions V.4 and V.5 follow from Theorem I1.1. |

lim sup
T—r00

< limsup
r—>00

+ limsup
T—>00

VI. TAIL ASYMPTOTICS FOR THE REDUCED SYSTEM

In this section we derive the taill asymptotics for the re-
duced system. In particular, we give a proof of Equations (3.2)
and (3.4).

For notational convenience, let ¢ be the capacity of the
reduced system, let the set of flows be indexed as J =
{1,...,N}, and denoter := ry and A(0,t) := Ay(0,t). By
definition, the reduced system satisfies the following two prop-
erties:

(i) The On-period distribution of flow 4 is regularly varying of
index —v; < —1,i.e, A;(:) € R_,,;

(i) All flows must be On for the drift of the workload process
to be positive, i.e., ¢ € (r — i_rlninN{ri —pi},r).

We now state our main theorem.
TheoremVI.1: Consider a queue of capacity ¢ fed by N On-
N

Off flows. If c € (r — rlninN{ri —pi}t,r) withr = 5" r;, and
i=1,..., i=1

Aj(-yeRfordlj=1,...,N,then

N
P{Ve>ay~[In Y Pal),

j=1  JoC{1,...,N}
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where Py, (z) isgiven by (3.3).

An asymptotic characterization of P, (z) which may be use-
ful for further analysis is provided in Subsection VI-D. This
characterization also shows that P{V°® > z} and Py, (x) are
regularly varying, and gives an expression for the pre-factor in
the asymptotic expansion of P{V*¢ > z}.

The remainder of this section is organized as follows. De-
tailed heuristic arguments are given in Section VI-A. In Sec-
tion VI-B, we give some preliminary results on the most proba-
ble behavior of the process { A(0,t) — ct}. The proof of Theo-
rem V1.1listhen completedin Section VI-C. Section VI-D deals
with the asymptotic behavior of Py, (z).

A. Heuristic arguments

The proof of Theorem VI.1 is quite lengthy. Nevertheless,
it is based on a simple intuitive argument: the most likely way
for V¢ = sup;~o{A(0,t) — ct} to reach alarge valueisthat all
flows have been simultaneously On for along time. Specifically,
each flow is likely to contribute through exactly one ‘long’ On-
period; apart from these long On-periods, the flows show typical
behavior.

The above heuristic argument may be used for computing
sup;so{A4(0,t)—ct}. Let'ssay that thelong On-period of flow i
begins at time s; and ends at time s; + ¢;. Define

t* = minN{si +t:},

i=1,...,
as the time epoch at which the first of the long On-periods fin-
ishes. One may aso interpret t* as the time epoch at which
the process { A(0,t) — ct} reaches its largest value. Note that
A;(0,5:) = pisi, Ai(si, s + ;) = rity, and A;(s; + ti, 55 +
t; +t) & pit, t > 0. One thus obtains, using the fact that
c€(r- l,jflinN{Ti = pi},7)),

IERRE)

sup{A(0,t) — ct}
>0

X

A(0,t") — ct”

N

Z[pisi +ri(t" —s;)] —ct”

X

i=1
N
= 2:(;)Z —r;)si + (r—o)t*. (6.1)

i=1
The problem is thus reduced to calculating

N
P{Z(Pi —ri)si+ (r—c) ZzllmnN{Sz +ti} >zt (6.2

i=1

Although the proof is based on the representation V¢ =
sup;~o{4(0,t) — ct}, it isuseful to keep the original workload
Process supg<s<;{A(s,t) —c(t — s)} inmind aswell. Figure 1
shows a typical scenario leading to a large workload level (so
small fluctuations are ignored) in the case of two On-Off flows.

At acertain time wy, the first long On-period begins. Before
that time, both flows show average behavior. The queue startsto
build (at rater, + r» — ¢) at time w; when the second long On-
period begins, and reaches its largest level at time ws. Level x
is crossed at time wo.
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Fig. 1. Typical overflow scenario for two On-Off flows

Between timesws and wy, thequeuedrainsat ratec —ry — p»:
flow 1 is still in the middle of its long On-period, and flow 2
shows average behavior (remember small fluctuations are ne-
glected). The processis still above level = between times wy
and w;s. However, here both flows show average behavior again,
causing a negative drift c — p; — po.

The figure illustrates why the analysis of the reduced system
is still quite complicated:

« Although the long On-periods must significantly overlap, the
difference between the finishing times of these On periods can
be quite large (of order x, hence not negligible);

« Given that the observed workload is larger than z, it is not
necessarily the case that all flows are in the middle of their long
On-periods. In Figure 1, thisis only the case in the time inter-
val (w9, ws). Infact, for any given flow, itslong On-period may
have finished a long time ago. Consequently, there are 2V dif-
ferent possibilities (corresponding to which subset of the flows
are gtill in the middle of their long On-periods). Sample-path
wise, thereare N + 1 different timeintervalsin which the work-
load may be larger than x (depending on how many of the flows
are still in the middle of their long On-periods);

« Specifically, given that the observed workload islarger than z,
it may still have been evenlarger at an earlier time epoch. In Fig-
ure 1, thisisthe casein thetimeintervals (w3, ws) and (w4, ws).

These complications do not arise if one considers a related
problem, which concerns the overflow probability in a fluid
gueue with a finite buffer of size . Asis shown in a recent
paper of Jelenkovic & Momcilovi€ [18], the analysis of the re-
duced system is then considerably simpler. It suffices to use
bounds which are smilar to LemmalV.1 and LemmalV.2, and
to combine these with the asymptotic results for a single On-Off
flow in Jelenkovi€ [17] and Zwart [34]. See also [22] for related
issuesin the fluid queue with M /G oo input.

B. Characterization of most probable behavior

In this subsection we prove some preliminary results charac-
terizing the most probable behavior of the process { A(0, ) —ct}
giventhat it reachesalargevalue. In particular, weformalizethe
following two heuristic statements, resulting in aformal version
of Equation (6.1).

(i) Each flow contributes to sup,~,{A(0,t) — ct} through ex-
actly one ‘long’ On-period,; -
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(ii) Apart from these long On-periods, the flows show typical
behavior.

An On-period is referred to as ‘long’ when larger than ez,
with e some small, but positive constant. In order to formalize
the above statements, we need to keep track how many of such
long On-periods occur.

With that in mind, we define AV;(A, B), for intervals A, B C
[0, 00), as the number of On-periods of flow i of which the
length is contained in A and which overlap (in time) with B.
For compactness, denote \V; (u, t) = N;((u, 00), [0, ]).

We now proceed with afew preparatory lemmas.

First we show how to obtain an upper bound for the work-
load process in terms of a simple random walk. As in the
proof of Lemma IV.2, we have V¢(t) < V% (t) for al i =
L,...,N,withd; := ¢ —rp\{4 = ¢ —r + ;. Recdl that

V() L supyeye {4:(0,5) — dis}. Now let, for fixed 4,
Sin = Xj1 + ...+ X;, be arandom walk with step sizes
Xim = (’f’i — dz)Alm — d;Ujm, with A and Uim i.i.d. ran-
dom variables distributed as the On- and Off-periods of flow 4,
respectively.

Sincec € (r — minN{ri —pi},r), wehave p; < d; for al

i=1,...,
i=1,...,N,sothat E{X;;} < 0, i.e, the random walk has
negative drift. Because of the saw-tooth nature of the process

A;(0,s) — d;s, we have
sup {4;(0,s) —d;s} < (r; —d;)Al, +

0<s<t

sup Sin,
n<NA(L)

with N/ (t) denoting the number of Off-periods of flow i
elapsed during [0, t] which started after time 0. The above ob-
servations are summarized in the following auxiliary lemma.

LemmaVI.1: Forale > 0,tandx,

P{V*(t) > z,Nj(ez,t) = 0}
< P{ sup Sin>z(l—e€(r; —dy)),Ni(ex,t) = 0}.
n<N{(t)
Proof: See[35]. |

To obtain upper bounds for probabilities asin Lemma VI.1,
we will frequently apply the following key lemma, which is a
trivial modification of Lemma3in [28].

LemmaV!.2: Let S, = X; + ...+ X,, be arandom walk
withi.i.d. step sizessuch that E{X; } < 0 and E{(X )P} < o0
for somep > 1. Then, for any 8 < oo, thereexistsan ¢* > 0
and afunction ¢(-) € R_g such that for e € (0, €*]

]P{Sn > 1'|XJ S 61‘,j = ]-7-"’77‘} S gZ)(.Z’),

fordl n and al z.

Note that if X; can be represented as the difference of two
non-negative independent random variables X and X3, then
the lemmaremainsvalid if the X ;'s are replaced by X}

The final preparatory lemma is a simple consequence of
LemmalV.1, and will be used several timesin combination with

Lemma V1.2 to show that probabilities of certain events are of
N

o(P{V® > z}). Define P(z) := [] P{A} > z} € R,
N =
W= ;(Vj —1).
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Lemma VI.3: lim SUP, 00 % < 0.

We now show that, with overwhelming probability (as z —
00), therareevent {V°¢ > z} occursas follows.
(i) The process {A(0,t) — ct} reacheslevel z beforetime M«
for somelarge M;
(if) Up totime Mz, each flow generates exactly one long On-
period, i.e., N;(ex, Mz) =1fori=1,..., N.

Proposition VI.1: im0 liminfa_ % =1.
Proof: Followsfrom LemmalV.5. |

Now suppose that the workload reaches level z. By the pre-
vious proposition, we may assume that this occurs before time
Mz (for M sufficiently large). The next two propositions show
that we may restrict the attention to a scenario where each flow
initiates exactly one long On-period beforetime M .

Thefirst proposition indicates that each flow has at least one
long On-period.

Proposition VI.2: For al i, there exists an ¢* > 0 such that
forall e € (0,e*]and all M,

P{V(Mzx) > z,Ni(ex, Mz) = 0} = o(P{V° > z}).
Proof: Define NV (t) := max{n: 3 U;; < t}+1. Note
j=1
that N/ (t) < NY(t). Using LemmaV1.1, takingt = M,

P{V¢(Mz) > z,Ni(ex, Mz) = 0}

< P{ sup S, >=z(1-c¢€(r;—d;)),Ni(ex,Mz) =0}
n<NA (M)

< P{ sup S, >z(l—e¢(r;—d;))|Ni(ex,Mz) =0}
n<NA(Mz)

< P{ sup Sp>z(l—¢(r—d;))Ai <ex,j>1}
n<NV(Mz)

< P{ sup S, >z(l—e(r; —d;))|Ai; <ex,j>1}
n<Mzz

+ P{NY(Mz) > Msx}.

The second term decays exponentiadly fast in x if My > AM.
The first term can be bounded by

Mszx
Z P{S;, > x(1 —e(r; — d;))|Aij <ex,j=1,...,m}.

m=1

Accordingto LemmaV|1.2, thereexistsan ¢* > 0 and afunction
#(-) € R_g with 8 > p + 1, such that for € € (0, ¢*] the last
quantity is upper bounded by Myz¢(z). The latter function is
regularly varying of index 1 — 5 < —pu. Invoking LemmaV1.3
then completes the proof. |

The next proposition shows that each flow has at most one
long On-period.

Proposition VI.3: For al i, al M andall e > 0,

P{V(Mzx) > z,Ni(ex, Mz) > 2} = o(P{V° > z}).
Proof: Without loss of generality we may takei = 1. By
Proposition V1.2 it suffices to consider

N
P{N; (cz, Ma) > 2} [ PNi(ex, M) > 1.

=2
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Invoking Lemma VI.3 it suffices to show that: (i)
P{N;(ex, Mz) > 1} is bounded by a function which is reg-
ularly varying of index 1 — v;; (ii) P{N;(ex, Mz) > 2} =
o(P{N;(ex,Mz) > 1}). The proof of these statements is
straightforward, see [35]. |

We have now shown that, with overwhelming probability,
each flow contributes to a large value of sup,s,{A(0,t) — ct}
through exactly one long On-period. We thus proceed with the
second statement (as indicated at the beginning of this subsec-
tion), implying that apart from these long On-periods, the flows
show typical behavior. In order to formalize that statement, we
need to introduce some notation. Define

T(y) :=inf{t > 0: A(0,t) — ct = y}

as the first time at which the process {A(0,t) — ct} reaches
level y.

For fixede > 0 and z, let 75 ;(ex) and 74 ; (ex) be the respec-
tive starting and finishing times of the first On-period of flow i

exceeding length ex. Denote 74(ex) := _max Ts,i(ex) and

Tr(ex) := min 7y ;(ex).

Note that all flows are in the middle of their long On-periods
between times 7, (ex) and 77 (ex). We will show that the fluctu-
ations of the process { A(0, t) — ct} away from the mean before
time 7, (ex) and after time 7 (ez) can be neglected.

A formal statement is made in the next two propositions (for
aproof, see [35]). Thefirst proposition indicates that it is most
unlikely that the process { A(0, t) — ct} reacheslevel §z before
time 7, (ex).

Proposition VI.4: For any § > 0, thereexistsan ¢* > 0 such
that for al € € (0, €*],

P{r(6z) < 1s(ex)} = o(P{V*‘ > z}).
The next proposition shows that, given that the process
{A(0,t) — ct} reacheslevel x before time Mz, most probably
level (1 — )z iscrossed beforetime 7y (ex).

Proposition VI.5: For any § > 0, thereexistsan ¢* > 0 such
that for all e € (0,€*) and M < oo,
P{r((1 = d)x) > 7r(ex), VS (Mz) >z} = o(P{V° > z}).

C. Proof of TheoremVI.1

In this subsection we give a sketch of the proof of Theo-
rem V1.1. From the previous subsection we obtain, using Propo-
sitionsVI.1, VI.4 and VI.5,

TheoremVI.2: For any § > 0, there exists an ¢* > 0 such
that for al € € (0, €*),

P{V° >z} > P{A(0,77(ex)) — crs(ex) > z}

P{VE >z} < P{A(0,7s(ex)) — crp(ex) > (1 — &)x}.

In order to obtain tight bounds for the probabilities in The-
orem V1.2, we condition upon 7, ; for al i. Hence, for any
Jo C J, definetheevent D 7, (ex) by

D g, (ex) := {75,i(ex) = 0iff i € Jo}.

The event D 7, (ex) implies that the flows i € J, started their
long On-period before time 0 (remember that we consider the

system in stationarity). The flowsi € 7; start their long On-
period at alater time epoch.

Denote P4, {-} = P{:|D,(ex)}. Thefollowing two lemmas
will be useful for providing tight upper and lower boundsfor the
probabilitiesin Theorem VI.2.

Lemma VI.4: (Lower bound) There existsan e > 0 such that

P, {A(0, 7s(ex)) — crp(ex) > x} [ P{A] > ex}
i€Jo

2 PJO (.Z‘) H Di-
i€J1
Lemma VI.5: (Upper bound) For any § > 0, there exists an
es > 0 such that for all € € (0, ¢5)

Py {A0, 74 (ex)) — crp(ex) > (1 - 6)z} [[ P{A] > ex}
i€Jo

S Pr((1-d)) [] »
[ISVEY

Theorem V1.1 now follows by combining the above two lem-
mas with Theorem V1.2, see [35] for details.

We concludewith a brief sketch of the proof of LemmasV1.4
and VI.5. Theformal proofsare quite technical and can befound
in[35].

Under the event D 7, (ez), A(0, 77) — cry can be represented
as

A0, 1) —cp = min{ggijn F;, min G;},

0 i€
where 71 = J \ Jo. For aformal definition of the random
variables F; and G; we refer to [35], where it is shown that F';
and G; may be approximated as follows.

F; ~ (r—coAj(ex)+ Y reE{Up}Ni(e),
keT1
Gi ~ (T — C)AZ(GI') + [(T — C)E{AZ} — dzE{UZ }]NZ(GI‘)

Z TkE{Uk }Nk(el‘)
ke T \{:}
The only random variables appearing in the above expressions
are A;(ex), B” (ex), and N;(ex), of which the distributions are
known. What thus remains is a lengthy, but straightforward
computation.

D. Asymptotic behavior of Pz, () and P{V° > x}

In this subsection we give an asymptotic characterization of
P, (x), which may be useful for further analysis. In particular,
we establish that Py, () and P{V°® > z} are both regularly
varying.

Define g = (%ﬂ) ce=(1,...,1). LetZ;,i € J, be
JETL
i.i.d. random varigbleswith P{Z; > y} = (1 + (r — ¢)y) %,
anddefineZ 7, = (Z;) ey, -
We have the following theorem (see [35] for a proof).

TheoremVI.3:

X

N
Pz (x) ~ kg H]P{A: > 2
i=1

r—c

N
xr
]P){VC > .Z’} ~ Iﬁ:HpZ]P{A: > :},
i=1
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with kg =1, KTy = eg%l]P’{Zl > eg%lgzm,i € ._70}, if 7o 19
isaproper subset of 7, and k = > kg, Inparticular, [10]
JoC{1,...,N}
Py, (z) and P{V° > z} arebothregularly varying of index —p..  [11]
The abovetheorem is used in proving the reduced-load equiv-
alence (see Section V), and may be potentially useful for compu-  [12]
tational purposes. In particular, in the case of two On-Off flows, 13
the computation of « is as difficult as the computation of & [13]
and k. Using the probabilistic interpretation of these constants  [14]
readily leads to an integral expression, which can be solved ex- [15]
plicitly when both v, and v, are integer-valued. We omit the
details.
[16]
VII. CONCLUDING REMARKS [17]
We have characterized the asymptotic behavior of the work-  [1g]
load distribution in a fluid queue fed by multiple heavy-tailed
On-Off flows. Theresults extend previouswork, like the bounds (19]
derived in [12], and the exact asymptotics in [9] and [16] [20]
which rely on strong peak-rate conditions. As a by-product, the
proofslead to several important insights|like the extension of the
reduced-load equivalenceestablished in [1] (see Section V), and  [21]
a detailed understanding of the typical overflow behavior (see
Section VI). In the analysis, we excluded the case where the 5,
drift may be zero during the path to overflow (see Section I11-
A for abrief discussion), which appears particularly interesting  [23]
from atheoretical perspective. [24]
There are several other interesting topics for further research.
The methodology of Section V1 is also applicable to the fluid (25
queue with M /G /oo input, as is shown [7]. We expect that
other similar problems may also have become more accessible,
such as related problems multi-server queues, and Generalized (26]
Processor Sharing queues. A further avenue for research isthe [27]
extension of the results to the case of On-Off flows with more o8
general subexponential On-periods, for example Weibull. Par- (28]
tial resultsin [1] indicate that the typical overflow behavior may
then actually be quite different. (29]
Acknowledgment The authors would like to thank Onno  [30]
Boxma and Miranda van Uitert for useful comments on an ear-
lier version of the paper. [31]
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