1248 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 4, JULY 2000

Achievable Performance of Dynamic Channel
Assignment Schemes under Varying Reuse
Constraints

Sem Borst and Phil Whiting

Abstract—We introduce a reward paradigm to derive novel of resource utilization. In the present paper, we derive novel per-
bounds for the performance of dynamic channel assignment formance bounds which provide insight into the potential ca-
(DCA) schemes. In the case of uniform reuse, our bounds closely pacity gains from a more fundamental perspective.

approach the performance of maximum packing (MP), which is - L .
an idealized DCA scheme. This suggests not only that the bounds The model that we adopt is that of the circuit-switched net-

are extremely tight, but also that no DCA scheme, however Works currently deployed for carrying voice traffic. Suitably
sophisticated, will be able to achieve significant capacity gains modified, most of the insights carry over to the packet-oriented

beyond those obtained from MP. _ _ ~ systems that have been proposed for supporting high-speed data
Our bounds extend to varying reuse scenarios which may arise users. In these systems, backlogged packets are queued, in con-

in the case of reuse partitioning techniques, measurement-basedt tt lIs that lost. whil t '
DCA schemes, or micro-cellular environments. In these cases, the 'St t0 calls that are 10st, while resource management operates

bounds slightly diverge from the performance of MP, which in- ON a faster time scale to be able to adequately respond to the
flicts higher blocking on outer calls than inner calls, but not to  bursty nature of data traffic. We refer to a companion paper [1]
the extent required to maximize carried traffic. This reflects the  which explores these issues in greater detail.

inherent tradeoff that arises in the case of varying reuse between

efficiency and fairness. Asymptotic analysis confirms that schemes

which minimize blocking intrinsically favor inner calls over outer ~A. DCA Schemes

calls, whereas schemes which do not discriminate among calls in- o .
evitably produce higher network-average blocking. Comparisons ~ ON€ approach to enhance capacity in wireless networks, is to
also indicate that DCA schemes are crucial in fully extracting the allow channels to be assigned in a more flexible manner. Most

potential capacity gains from tighter reuse. existing networks operate according to Fixed Channel Assign-

Index Terms—Achievable performance, call blocking, dynamic ment (FCA) schemes [10]. In FCA, channels are statically allo-
channel assignment, Erlang bound, Maximum Packing, perfor- cated to cells, subjectto certain reuse constraints. The reuse con-

mance bounds, reuse partitioning, revenue bound, varying reuse straints determine which pairs of cells may use the same channel
constraints, trunk reservation. simultaneously, based on interference considerations.
In DCA, in contrast, channels are not permanently allocated
I. INTRODUCTION to cells, but may be dynamically diverted to respond to fluctu-

. . . ations in the offered traffic [10]. Besides the potential capacity
HE use of wireless services has been expanding at a o
) . mprovements, the flexibility of DCA schemes greatly reduces

tremendous rate. The dramatic growth is fueled not on

by the proliferation of traditional voice users but also theMe need for frequency planning. Detailed frequency planning

introduction of new hiah-speed data services. The capach seriously hampered by the fact that in practice it may be ex-
expansion has not bee?] keF()e ina equal pace V\;ith the dgma{rr}%{nely difficult to estimate the offered traffic and to predict the
P ping equal p grference conditions. This is in particular true in micro-cel-

creating a strong incentive to squeeze the most out of i . . . . ;
S , L ar environments. Unreliable information may necessitate a
existing network resources. With further growth anticipate . : L ;
: - e ; . . conservative approach, causing a reduction in capacity. In the
the drive for efficient resource utilization will certainly persist . . :
. . . . .~ present paper, however, we restrict the attention to the potential
since the available spectrum for wireless communications’is . " L ;
T . . L capacity improvements when the offered traffic is known in ad-
quite limited, while the cost of new infrastructure is significant. . .
. . vance and does not have any spatial or temporal variations.
Numerous approaches to increase efficiency have been pro:,” . . . : . .
) . Maximum packing (MP) is an idealized DCA scheme which
posed, such as Dynamic Channel Assignment (DCA) schemes, .
L X - Was introduced by Everitt and MacFadyen [2]. MP accepts calls
reuse partitioning techniques, measurement-based algorithm . e .
énever possible, even if this involves rearranging the chan-

and micro-cellular networks. Simulation results indicate thaf . :
) . . . nels assigned to calls in progress. Kelly [7] presents an exact

these approaches may achieve substantial capacity gains. To re- " PR h . .

) o o ! : analysis of MP on a doubly infinite strip, in which two adja-
solve basic design issues, however, it is crucial to gain under- .

. oy cent cells cannot simultaneously use the same channel. The re-
standing at a more fundamental level of the most efficient ways . i
Ults show that even for uniform offered traffic, MP outperforms

FCA, unless the load exceeds a certain critical value. Jordan and

Manuscript received February 17, 1998; revised October 12, 1999. Khan [5] and Kindet al. [9] report a similar observation, which
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NJ 07974-0636 USA. as led to the belief that there might actually be hybrid schemes
Publisher Item Identifier S 0018-9545(00)04836-2. that outperform MP. Our results however indicate thaDCA
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scheme will be able to achieve significant capacity gains beyoatithose offered to the system, including calls that may have

those obtained from MP. been blocked or dropped at some earlier stage. Xu and Akansu
_ [18] and Zander and Eriksson [19] obtain asymptotic lower and
B. Tighter Reuse upper bounds for measurement-based DCA schemes in planar

Another approach to improve efficiency, is to allow tightenetworks. The bounds are derived from geometrical arguments,
reuse of channels. The conventional cell-by-cell reuse cdieating traffic as a deterministic, infinitely-divisible fluid. In the
straints are based on the interference levels which mobil@@sent paper, we obtain a novel family of bounds which fully
would experience under worst-case conditions. Tighter reusgpture the dynamics and the stochastic nature of the system.
may be achieved by taking the actual mobile locations into In summary, the paper is organized as follows. In Section I,
account. In reuse partitioning for example, cells are split inlwe present a more detailed model description, and briefly re-
inner and outer regions. The smaller radius of the inner regioview the derivation of the Erlang bound. We also provide some
allows for lower powers and thus tighter reuse of channelasic examples illustrating how the Erlang bound may be calcu-
Measurement-based algorithms may be viewed as a limititaged. Subsequently, we examine the achievable carried traffic
form of reuse partitioning. Tighter reuse of channels is alsoregion to understand why the Erlang bound may not always
primary source contributing to the capacity gains in micro-cepe tight. In Section Ill, we introduce a reward paradigm which
lular networks. The model that we adopt in the present paggaves the way for the construction of sharper bounds. We re-
is that of cells split into inner and outer regions. Most of theisit the examples studied in Section Il to illustrate how the rev-
observations however pertain to any of the variants mentionedue-based bounds may be used to improve upon the Erlang
above. bound. Section IV specializes the results to symmetric, pos-

Our results show that MP-type strategies fail to fully extragibly infinite networks. We present numerical results for sce-
the potential capacity gains in these scenarios. MP infliomgrios with uniform and varying reuse in Sections V and VI, re-
higher blocking on outer calls than inner calls, but not to thgpectively. In Section VII, we investigate the tradeoff between
extent required to maximize carried traffic, see also Shimaé#iciency and fairness that arises in the case of varying reuse.
et al. [14] and Valenzuela [15]. The first of these two paperinally, in Section VIII, we summarize the main conclusions.
proposes various mechanisms to alleviate the spatial imbalance
in blocking, at the expense of higher network-average blocking.
This reflects the inherent tradeoff that arises in the case of
varying reuse between efficiency and fairness. Asymptotic We first present a more detailed model description. We con-
analysis confirms that schemes which minimize blockingider a cellular network of arbitrary topology. The cells, which
intrinsically favor inner calls over outer calls, whereas schemage indexed by the sét, share a pool o€ channels. Users in
which do not discriminate among calls inevitably produceell: generate calls as a Poisson process ofiatkll calls have
higher network-average blocking. exponentially distributed holding times with unit mean.

Nothing prevents the tighter reuse of channels to be inte-When a user generates a call, the admission policy determines
grated with the use of DCA schemes. In fact, a key observahether to accept or reject it. If accepted, the call is carried
tion from our paper is that the use of DCA schemes is crucial far the complete duration of the holding time. In case a call is
fully extracting the potential capacity gains from tighter reuseejected, the user does not make any retrials.

We refer to Katzela and Naghshineh [6] for a comprehensiveWe assume that the admissible states of the network satisfy
survey of DCA schemes and reuse partitioning techniquesthe constrainty _, .. n; < CforallC € , with n; denoting the

is finally worth mentioning that besides the potential capacityumber of calls in celf. The se is the collection otliques
gains there are other important issues in evaluating the meritsdfich are defined as the subsétef 7 such that no two users
DCA schemes and reuse partitioning techniques, such as addthin C can share a channel.

Il. THE ERLANG BOUND

tional complexity and hand-offs. Denote by
C. Bounds o c .
y 17
As a rule, exact analysis of DCA schemes is prohibitively Erl(v;C) = IC_' Z ]—' Q)
! 7!
=0 -

demanding. In fact, to the best of our knowledge, MP on a
doubly-infinite strip is one of the very few exceptions. The pro-

hibitive complexity of exact analysis motivates the constructiafe Erlang blocking formula for offered traffie and € chan-
of performance bounds as an alternative way of gaining insighéls. Notice thaErl(; O) is the blocking in FCA for offered
into the potential capacity gains from DCA schemes. traffic » andC channels per cell.

An example is the Erlang bound, which was first derived in' As shown in Whiting [16], the Erlang bound provides a lower
Whiting [16], and later studied in Raymond [13]. The Erlangimit on the network-average blocking under any admission

bound provides a lower limit on the network-average blockingcheme. It may be obtained as the solution to the following
under any DCA scheme, which may be obtained as the sofirear program:

tion to a certain linear program. Frodigh [3] derives bounds

for measurement-based DCA schemes in linear networks. The

bounds are based on a ‘snapshot’ analysis, determining the max- min B = Z v; B; Z v; (2)
imum number of calls a particular scheme could accommodate T il
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Fig. 1. Three-cell linear network.
sub Y viB;i >y wiErl <Z Vi 0) forallCe Q (3)
1cC 1cC 1cC
0<B; <1 forallie? 4)
with the variablesB; representing the probability of call
blocking in cell: under some arbitrary admission policy.

The key constraints are provided by the inequalities (3),
which are obtained by considering each cligue 2 in isola- Fig. 2. Four-cell planar network.
tion. Since no two users within a cligue can share a channel,
we cannot accommodate more thancalls in any one clique ith 5, . .= min{vy,v3}. For uniform offered traffic, the
simultaneously. Thus, we can never reject fewer calls ingyund reduces t& = (1/3)(2Exl(2; C) + Exl(r; C)). For
clique ¢ € © than the number of blocked calls for a singlg> — 19 ,, — 5, we obtainB = 0.149. Using Markov decision

group ch channels offered traffi¢_; . »;. This number is theory, we find that the minimum achievable blocking in fact is
determined by the Erlang-B formula (1). B~ 0.215. O

In fact, the Erlang bound would still apply if we wished to Example 2.2: Four-Cell Planar NetworkConsider the
consider the sum of blocked anttopped calls Even if call toyrcell network depicted in Fig. 2. A channel cannot be
dropping were permitted, we can never lose fewer calls in toigleq simultaneously in two adjacent cells, i.e., the cliques
in a clique than the number of blocked calls for a single groufge 4 — {1,2,3} and B = {2,3,4}. Now observe that the

of ¢ channels. _ _ _ two center cells may be lumped together so that the network
We now provide some basic examples illustrating how theqces to that of Example 2.1. Thus

Erlang bound may be calculated.
Example 2.1: Three-Cell Linear NetworlConsider the B 2tV Vmax Erl(v2 + v3 + timax; C)
three-cell network depicted in Fig. 1. A channel cannot be vitretrztig

used simultaneously in two adjacent cells, i.e., the cliqu@gth ,, .= max{11,v4}. For uniform offered traffic, the
are A = {1,2} and B = {2,3}. Thus, the clique con- hound reduces t& = (3/4) Exl(31;C). ForC = 15,» = 5
straints arev1 By + 2By > (11 + 1) Erl(v1 + 12;5C)  for example, we obtai = 0.135 24.

and vy By + 3By > (va + v3)Erl(s + 15;0). An0p- By adding the single-cell cligue constraint®; >
timal solution to the linear program i8, = DBz = 0, Erl(1;;C),i = 1,2,3,4, the bound may be slightly tight-
B2 = (1/2 + VmaX/VQ)Erl(VQ + Vmax; C)y with Vmax = ened to
max{r,vs}. This yields the bound

_ 1
B = ] 3 )
ittty [(1/2 s Vmax)

V2 + Vmax

B= vi+uatii Erl(va + Vimax; C)- x Erl(va + V3 4 Vinax; C) + Yimin Etl(#min; C)]
For uniform offered traffic », the bound reduces toWith iy := min{r,»4}. For uniform offered traffic, the
B = (2/3)Erl(2v;C). For C = 10,r = 5 for example, bound reduces t& = (1/4)(3Erl(3v;C) + Erl(v; C)). For
we obtainB =~ 0.143. C = 15, = 5, we obtainB = 0.135 28. Using Markov deci-

The bound may be sharpened by adding the single-cgipn theory, we find that the minimum achievable blocking is in
clique constraintsB; > Frl(y;;C),i = 1,2,3. An optimal factB =~ 0.18579.
solution to the linear program is théh =Erl(11; C), B3 =Exrl _ )
(135 C), By = (1/12)[(V2a+Vmas) Erl(12 4 max; C) —vmaxErl A DiSCUSSION
(Vmax; C)]. (The latter fact follows from the convexity The Erlang bound as exemplified above may not always be
of the blocked traffic »Erl(v;C) as a function of the tight. To understand why, we now examine the region of achiev-
offered traffic v, see Harel [4], which implies thatable carried traffic combinations. The clique constraints (3) un-
max{(v1 + w)Erl(ty + 1;0) — v Erl(v;C), (2 +  derlying the Erlang bound may be rewritten
v3)Erl(1s + 1v3; C) — 13 Exl(11; C)} = (V2 + Vimax) Exl(1n +

Vanax; C) — Vinax Erl(1max; C).) This tightens the bound to Z A< Z ” <1 _ Erl < ” C)) forallC e (5)
B 1 ieC ieC ieC
B=———|¥ max Erl (2 max s C . : PR i

v+t s [ ) Erl(va 4 ) with »; denoting the offered traffic in cefl and the variables

+ Vmin Ertl(#min; C)] Ai = v;(1 — B;) representing the carried traffic in célunder
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Fig. 3. Achievable carried traffic region for a single groupldot= 2 channels offered two streams of traffic of rate= 1 each.

some arbitrary admission policy. Now let us return to Exampihows that the corresponding carried traffic p@ig, \2) =
2.1. Theouterregion in Fig. 3 delineates the set of all carried0.8,0.4) is infeasible. Thus, the Erlang bound may be strength-
traffic pairs (A1, A2) that satisfy the constraints (5) for cliqueened if we replace the clique constraints (3) by the linear in-
A = {1,2} for offered traffic(v1,22) = (1,1). The diagonal equalities describing the boundary segments of the achievable
boundary segment represents the constraint (5) correspondiegjon. This insight will be formalized in the next section.
to the cliqueC = {1,2}, i.e.,, Ay + A2 < 1.2, noting that Note that a different picture would emerge if call dropping
Erl(2;2) = 0.4. The vertical boundary segment is determinediere permitted. If pre-emption were allowed, then the achiev-
by the constraint (5) for the single-cell clig@e = {1}, i.e., able carried traffic pairs are exactly the vertices of the outer re-
A1 £ 0.8, noting thatErl(1;2) = 0.2. Similarly, the hori- gion in Fig. 3. Thus, the Erlang bound may not be tight because
zontal boundary segment corresponds to the constraint (5) itofails to exclude carried traffic combinations which are only
the single-cell clique&® = {2}. However, thetrue achievable feasible if call dropping were permitted. Allowing for pre-emp-
carried traffic pairs for cligued, are demarcated by thener tion, however, appears inappropriate as call dropping should be
region in the figure. This is the case if calls mayldecked but negligibly small for any sensible admission control scheme.
not dropped

The piece-wise linear boundary of theie achievable re- IIl. THE REWARD BOUND
gion may b_e interpreted as follows. Consider a reward vectorWe now proceed with a formal statement of the proposed
(wl’w2.)’ with w; .repres_entmg the reward g(_en(_ar_ated by ®aHbunds. As we have seen in the previous discussion, we may
s;reamfa C"’L” that is qarrled. The reward—maX|m|2|ng z°|'(.:ﬁ' 'Use areward paradigm as an insightful way of characterizing the
E lg]n ?jrnu dner r;ﬁ?}[("?gg;g:&iay’tizeclglﬁfrgf?h[el}(])Va\}gr_x"rrﬁ;achievable carried traffic region, and thus sharpening the Erlang

j . ' ound. Specifically, suppose that each call carried iniagdin-

stream are rejected when there are no more ttisee channels.

Thisis the case for all nonnegative values of the reward mtoreratesareward;i.Foranyvectow € R, denote byfi(w) the
IS . . negatve valu wardvector . ximum achievable mean reward rate. Clearly, no admission
The carried traffic pairs for the class of trunk reservatio

. . L olicy can produce a higher mean reward rate tRéw). This
strategies (there are five of them in this case) are represe eb(iervation constitutes the basis for the next theorem.
by the vertices of thénner region in Fig. 3. They are labeled

th th | £ th dina trunk i Theorem 3.1:For any seWV C R_{, the carried traffic under
Wi € value of the corresponaing trunk reservation pararg-ry admission policy is bounded above by the optimum value
eter, taken negative when used against stream-1 calls. No car- L
i . ) ) . N . ; cﬁw of the following linear program
ried traffic pair outside the inner region is achievable, since oth-

erwise the optimality of the class of trunk reservation strategies max Z 4 (6)
would be contradicted. (Any pair within the inner region is in ieT
fact achievable through some probabilistic strategy, but this fact sub Zwm < R(w) forallwew @)

is not directly relevant for our purposes.)
The Erlang bound in Example 2.1 followed from the solution
(By,Bs) = (0.2,0.6) to the linear program. Fig. 3, however, z; >0 forallieZ. (8)

€T
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Proof: The proof follows by interpreting the variables most a finite number of these are relevant. We now describe two
as the carried traffic in cell under some arbitrary admissionapproaches to obtaiky,n exploiting that fact.
policy. The objective function (6) then exactly represents the In the first approach, we generate a finite yet exhaustive
carried traffic. Constraint (7) is satisfied since the policy cannetibset including all the relevant inequalities. For any subset
produce a greater revenue than the maximum achievable je< Z, denoteP” := {x € R{ DY icr wizy < R(w) for all
ward rate. Hence, the optimum value of the linear program pre-c R{}. By definition, A,yn may be obtained by maximizing
vides an upper bound for the carried traffic under any admissidn, ., z; subject to the constraintse;);cs € PP for all
policy. O D eIl Also, define4 as the convex hull of the carried traffic

Corollary 3.2: Forany set¥ C RZ, the carried traffic under combinations in the subnetwork of the cellg 7 achievable

any admission policy is bounded above by the optimum vallg the class of stationary deterministic admission policies.

i of the following linear program Observe that the convex hull is a polytope, since there are only
_ finitely many stationary deterministic admission policies.
min Y y(w)R(w) 9) Lemma 3.3: For any subset/ C 7,
weW
AT =Pp7,
sub Y y(w)w; =1 forallie T (10) Proof: The inclusion to the right is implied by the def-

weW inition of R(w). The inclusion to the left holds by virtue of
the optimality of the class of stationary deterministic admission
policies. O

y(w) >0 forallw e W. (11)

The above lemma implies thaj,n may be obtained by max-
dmizing 37, -7 z; subject to the constraints:;)ic; € AP for

Proof: The proof follows by observing that (9)—(11) is th all D € I1. Thus, it suffices to generate the set of facet-defining

dual problem to (6)—(8). Strong duality then implies that = inequalities of the polytoped? for all D € I1.
- H In the second approach, we identify the subset of relevant
The main difficulty in evaluating the above bounds does '

. ) . inequalities more indirectly. In the dual formulation, it is quite
usually not arise from solving the linear programs, but from

. ) . . natural to interchange the roles of the coefficieat@and the
computing theR(w)'s for a suitable se¥V. Typically, deter- . - "
mining R(w) requires numerically solving a Markov decisionva”ablesy(w)' For example, fixing(w) = 1 for all w € W",

g find that)_ ., R(w) > pw- > pyn for any subset

problem with a state space in as many dimensions as C W with the property thal™,_,.,. w; > 1foralli € 7.

reward vectorw has nonzero components. In certain cas . 4@ . .
v X omp . e"r:'he next theorem establishes that this in fact holds with equality
however,R(w) may be obtained in closed form. For any chqm?Or subsetdh* of remarkably small size

C € Q for example R(x) = >, cc vi(1 — Erl(}, o vi; O)), . . B
with x¢ denoting the characteristic vector af. From Theorem 3.4:For any setl, the optimum valuelyn =

A = (1 — Bi), we then also immediately see that théwm equals the optimum valué™! of the following convex pro-
: o c ¢ . ! gramming problem
inequalitiesy ., xi A\ < R(x“) are equivalent to the clique
constraints ., .- B; > > . v Ell(3>, .- v;C) in (3). . D
Thus, for the seeifv = Ucecalx i the abovgcbounds coincide mszE;R(w ) (12)
with the Erlang bound.

At the opposite side of the spectru®(1, . ..,1) equalsthe
maximum achievable carried traffic, but it is exactly the for- sub Z wP =1 forallieT (13)
midable complexity of calculating this quantity directly which el
motivated us to consider bounds. This contrast is characteristic
of the tradeoff between the computational complexity of de-
termining theR(w)’s and the tightness of the corresponding wP e le forall D € II. (14)
bounds.

For any subse/ C Z, denoteRY := {w € RE : w; = 0 Proof: We first prove thatV'! > jiyn. Let {vP ) pen

for all ¢ ¢ J}. Now suppose thdll is the collection of sub- be the optimal solution to the problem (12)—(14), 8§ =
setsD C 7 such thatR(w) can be obtained itv € RY. De- > .. R(v”). The statement preceding the theorem then in-
fine W .= Up.y RY as the set of all reward vectotsfor  dicates thab~,,; R(v”) > pyyn.

which R(w) can be obtained. In cadé C €, the collection ~ We now prove thatuyyn > VI Let {z(w)},ewn

of cliques in the network, we know that for amyc W' the be the optimal solution to the dual problem (9)—(11), so
maximum reward rat&(w) is achieved by some trunk reservagiyn = 3 cyyn 2(w)R(w). From optimality, we may con-
tion strategy. Occasionally, we will therefore refer to the correlude that thez(w)’s satisfy the constraints (10) with strict
sponding bounds as ‘trunk reservation’ bounds. equality, sinceR(-) is an increasing function.

Note that we cannot determingyn by solving either of the  Let z”(w) > 0 be variables such thadf, 27 (w) =
above two linear programs directly, since there are an infinitgw) for all w € W and2"(w) = 0 if w ¢ RY. Now define
number of inequalities (variables in the dual version) involved? := > wewn 2P (w)w for all D € 11. Itis easily verified that
From linear programming theory, however, we know that dt”}py satisfies the constraints (13)—(14). Pluggingthes
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into the objective function (12) then gives ,, . R(v?) > IV. SYMMETRIC NETWORKS
11
Ve . We now focus on symmetric, possibly infinite, networks. We
It remalgs to be shown thab_ ,q,ynz(w)R(w) = may then impose the constraint that the carried traffic be equal in
2 pen B(v”). Note that each cell, without affecting the maximum achievable amount of
carried traffic. Thus, adding the constraint= ~ for all: € 7
> Aw)Rw)= > " 2P (w)R(w) to the linear program of Theorem 3.1, we find that for any set
wEWH weWHL DCII D C 7, the maximum average amount of carried traffic per cell
— Z Z ZP(w)R(w). is bounded above by
DEM woWh R
2P = min (w) (15)

wer? 3. -
Now define¢? := > cyym 27 (w) for all D € I1. Using the CR¥ Luiep ™

fact thatR(-) is a convex function, and thdt(fw) = 6 R(w) This may in fact also be concluded from Theorem 3.4, using
for any scala@ > 0, we obtain symmetry arguments.

SinceR(6w) = 6R(w) for any scala® > 0, we may also

D Y 27 (w) impose the constrai}t, ., w; = 1 in the minimization in (15).
> )R =" 3 = Rw) o,
'LUEWH w
D
D 2w? (ww 2P = min R(w 16
> ¢ R<T> s (w) (16)
D .
=¢"R <U—D> = R(vP). with /P := {w € RY: 3, pwi = 1}.
¢ Obviously, for any seP C Z, the maximum average amount
U of carried traffic per cell is also bounded above by

We now revisit the examples studied in Section Il to illustrate AP = max{X: (A,...,\) € AP} 17)

how the revenue-based bounds may be used to improve upon AP

the Erlang bound. the achievable carried traffic region for the subnetwork

. = n
Example 2.1 (Cont'd):We first return to the three-cell of-c-ellsmdexeq b)D'T.hUS’ Qetermmlng\ amgunts tq maxi

. mizing the carried traffic subject to the constraint that it be equal

linear network of Example 2.1. From Theorems 3.1 and

3.4, we conclude that the carried traffic is bounded abotl each cell. This is a Markov decision problem with side-con-

by mingey<y V(y), With V(y) = R(r,ve,ve:L,y,0) + s?ralnts, which may be solved using linear programming tech-

R(vi,12,v3;0,1 — g, 1). niques. . .
Since the function(-) is convex in the reward vector, the The quesﬂon_naturally arises how the_bounds (15) and (17)
. . . ! are related. Notice that (15) may be rewritten as
function V(-) is convex as well. Hence, if; = v3, symmetry
arguments imply that (y) is minimal fory = 1/2. ForC =10, AP =max{\: (\,...,\) € PP} (18)
11 = s = vy = 5, we obtain an upper bound of 12.00 on
carried traffic, which corresponds to a lower bouBidv 0.200 with 7 as defined in the previous section. Lemma 3.3 saying
on blocking, tightening the Erlang bound. that.A? = PP then implies that the bounds are identical. As
Now suppose the offered traffic {8/, o,13) = (4,5,6). aside-result, we find that the reward-minimizing vecid?t =
The Erlang bound then yield8 ~ 0.192. Using numerical argminweuf R(w) may be interpreted as the reward vector for
optimization, we find that/(y) achieves its minimum value which carrying equal amounts of traffic in each cell maximizes
11.77 fory ~ 0.295, which produces the boun ~ 0.215. the reward rate.
The minimum achievable blocking is in faBt~ 0.225. O DenoteA” := (AP,... AP). Notice thatA” is the inter-
Example 2.2 (Cont'd):We now return to the four-cell planar section point of the line:(1, ..., 1) with a facet of the achiev-
network of Example 2.2. Remember that the two center celible carried traffic polytoped”. As a rule,A” lies in thein-
may be lumped together so that the network reduces to thaterfior of a facet. In that case, the facet is induced by the in-
Example 2.1. Hence, the carried traffic is bounded above byuality}", ., wPz; < R(w”), sow” is the unique reward-
ming<y<1 V(y), with V(y) = R(v1,v2 + v3,14;1,5,0) + minimizing vector with}", ., w? = 1, and any policy corre-
R(v1,v9 + v3,14;0,1 — y,1). If 11, = 14, then symmetry ar- sponding to a vertex of the facet achieves the rewafd?).
guments imply again that () is minimal fory = 1/2. For OccasionallyA” may be a vertex of the polytope. In that case,
C = 15,1 = v, = 13 = vy = 5, we obtain an upper boundany vectorw? with Y iep wP = 1 for which the inequality
of 16.58 on carried traffic, which corresponds to a lower bourd, ., wPz; < AP is valid for the polytoped? is a reward-
B ~ 0.171 on blocking, tightening the Erlang bound. minimizing vector, and the policy corresponding to the vertex is
Now suppose the offered traffic i$11,1,13,14) = the unique optimal one for all these”’s.
(5,3,5,7). The Erlang bound then yields ~ 0.135. We find The above results may be generalized to the case where the
that V' (y) achieves its minimum value 17.03 fgr =~ 0.320, network is not strictly symmetric, but where the cells may still
which produces the bounB ~ 0.149. The minimum achiev- be partitioned into a number of symmetry classes, &ayin
able blocking is in fact3 ~ 0.160. [0 these cases, for any s& C 7, let D,, index the cells in
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i-1 i i+l reward rate. Indeed, it may be shown that the minimizing reward
\( \( satisfiesy* < 1/3. Thus, the minimization may actually be re-
: = | , stricted to the intervay € [0, 1/3].
i-1 i i+1 If we consider a four-cell subnetwork, thel,., <

mingcpo,1/2) B(y,1/2 — 4,1/2 — y,y). In this case, the
minimization may be confined to the interval € [0,1/4].
The convexity properties allow for a simple numerical opti-
" mization using Golden-section search. Taking a five-cell or
\( larger subnetwork would generally involve solving a convex
programming problem in more than one dimension.
i+1 We have performed numerical experiments to compare the
bounds with the performance of MP and that of Fixed Channel
Assignment (FCA). MP always accepts calls as long as the
) _ clique constraints remain satisfied. The blocking for MP is
D belonging to then-th symmetry class. The maximum av-computed using the exact analytical results obtained in [7]. The
erage amount of carried traffic per cell is then bounded aboyugsits for¢ = 10 channels are shown in Fig. 6.
by minwmeufm R(wi; ... ;wn)- Fig. 6 confirms that MP may substantially reduce blocking
We now consider two examples. over FCA, which may correspond to considerable capacity gains
Example 4.1: Doubly-Infinite StripConsider a similar at a given target blocking level. In contrast to the Erlang bound,
linear array as in Example 2.1, but now a doubly-infinite strithe reward bounds closely approach the performance of MP.
of cells, instead of just three, as shown in Fig. 4. Each cell This suggests that the reward bounds are extremely tight. Also,
offered traffic at rate-. no DCA scheme, however sophisticated, will be able to achieve

The maximum average carried traffic per cell igapacity gains that are significantly larger than those obtained
bounded above, for any subnetwork df consecutive by MP.

Fig. 4. Linear array of cells.

(mi-l’ni-l) (mi’ni) (mi+
I N
i

1
i-1

i+1

)
|

Fig. 5. Linear array of cells with varying reuse.

cells, by minwcaf R(w), with Llf = {w € Rff : It is interesting to investigate how the reward-minimiziyig
Ef:l Wi — ]_} Because of Symmetry and Convexityyaries with the offered traffie-. F|g 7 shows the value Qj*
R(wy....,wg) = (R(wi, ..., wk) + R(wg, ... ,wy))/2 > asafunction of- for a subnetwork of three cells withi = 10
R((wy +wg)/2,. .., (w; +wg)/2). Thus, the minimization channels. The qualitative behavior may be understood from the
may be restricted to the sét € RX: Ei}’zl w, = 1,w; = interpretation given in the previous section. The ve¢tor 1 —

Wi, Wa = Wi_1,...}. O 2y%,y*)is determined by the slope of the facet of the polytope

Example 4.2: Doubly-Infinite  Strip with Varying-4t""** that contains the intersection poift*, \*, \*). As v
Reuse: Consider a similar doubly-infinite strip as in Ex-varies, the facets of the polytope gradually shift. The smooth
ample 4.1, but now a scenario with varying reuse, as illustraté@gments in the curve reflect the continuous change in the slope
in Fig. 5. Each cell is partitioned into an inner regiofi, 1) ©f the facet that contains the poik*, A*, A*). The breaking
and an outer regiof, 2). Each of the inner regions and eact0ints in the graph occur when the intersection point occasion-
of the outer regions is offered traffic at rate = «r and ally shifts from one facet to another, in which cageis not
vy = (1—a)v, respectively. Calls in two different inner regiong!niquely determined.
may always share a channel, while calls in outer regions cannotn particular, in heavy traffic as — oo, the achievable traffic
share a channel with any call in the two adjacent cells. polytope approaches the s\, A2, A3) € RY 1 AL + 22 +

The maximum average carried traffic per cell is boundets < 2C}. Hencey™ — 0.25 asy — oo. Similarly, it may be
above, for any subnetwork dt; inner regions andy, outer Verified thaty* | 0 in light traffic asy | 0.

regions, byminwlcufl R(wy; we). O

1 B. Interpretation of the Optimal Rewards
we EM+ 2

It may be helpful to again think of the interpretation of the

V. NUMERICAL RESULTS optimal rewards in the context of the above example.abe
- . the traffic carried in each of the two border cells, andAgt:)
A. Doubly-Infinite Strip be the maximum traffic that can be carried in the center cell.

We return to the doubly-infinite strip of Example 4.1. Using Now consider the optimization problem
the two-cell clique constraints, the Erlang bound yieléls=
Erl(2v; C). Adding the single-cell clique constraints does not max =z
strengthen the bound. sub z < H(x)

Let us now turn to the reward bounds. If we consider just a
two-cell subnetwork (i.e. a clique), then the reward bound coine., maximize the traffic carried in each of the two border cells
cides with the Erlang bound. Taking a three-cell subnetworgubject to the constraint that it not exceed the traffic carried in
we obtain Ay, < mingcp1/2) R(y,1 — 2y,y). Notice that the center cell. Note that the solution occursrat= H(z™*).
the calls in the inner cell put higher demands on the netwo8nce the functionH (-) is concave, the Strong Lagrangean
resources. This suggests that we should put higher rewardRimciple applies, see Whittle [17]. Now form the Lagrangean
carrying them if we wish to minimize the maximum achievablé(x,y) = = + (1 — 2y)(H(x) — z), associating a multiplier
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Fig. 7. Value ofy* as a function of offered traffic for a subnetwork of 3 consecutive cells with= 10 channels.

(1 — 2y) with the constraint: < H(z). The dual problem is tifying the tightest constraint on the achievable carried traffic
then, see theorem 3.11 on page 61 of Whittle [17] region is an application of the duality principle of mathematical
programming.

min L(z,y) = min max[2zy + (1 — 2y)H (z)]
Yy Yy z
— min R(y,1—2y,y) C. Infinite Hexagonal Grid
Y Consider a similar hexagonal network as in Example 2.2, but
and the minimum is achieved at the solution to the primalbw an infinite grid, instead of just four cells. Each cell is of-

problem. We thus see that the use of the reward vector in idéered traffic at rate .
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Fig. 8. Erlang bound, four-cell reward bound, and performance of FCA and CMP as a function of offered traffic on an infinite hexagonal grie-with
channels.

Using the three-cell clique constraints, the Erlang bourwrried traffic. To limit the state space of the Markov decision
yields B = E1l(3»;C). Adding the single-cell clique con- problem, we reduced the number of channel€te= 6. The
straints does not strengthen the bound. results are displayed in Fig. 9.

Let us now move to the reward bounds. If we consider just Fig. 9 shows that the seven-cell reward bododsclosely ap-

a three-cell subnetwork (i.e. a clique), then the reward bouptbach the performance of CMP. Thus, CMP in fact continues

coincides with the Erlang bound. Taking a four-cell subnetwottk be nearly optimal in the planar case, and the discrepancy with
as in Fig. 2, we obtait,.x < ming,cjo,1/2) (y,1 — 2y,y), the four-cell reward bound mentioned above may be largely at-

with the center cell offered traffic at double the rate. As beforé&jbuted to the size of the subnetwork being insufficient.

the minimization may actually be restricted to the intenyat In the numerical experiments, we have focused on scenarios
[0, 1/3]. Taking a five-cell or larger subnetwork would generallyvith relatively small reuse groups and a limited number of chan-

involve solving a convex programming problem in more thanels. In principle, the bounds may also be computed for larger
one dimension. reuse groups or a larger number of channels. However, the cal-

We have conducted numerical experiments to compare th@ations may be significantly hampered by the curse of dimen-
bounds with the performance of Cligue Maximum Packingionality in dynamic programming.

(CMP) and that of FCA. Like in the one-dimensional case,

CMP always accepts calls as long as the clique constraints

remain satisfied. Other than in the linear case, this may not VI. SCENARIOSWITH VARYING RE-USE

be_ sufficient _for a feasible a_SS|gnment of channels to usersAtp Doubly-Infinite Strip With Varying Reuse

exist. Our primary purpose is however to evaluate the reward
bounds, which are still valid for CMP. Because there are noWe return to the doubly-infinite strip with varying reuse of
exact analytical results available in the planar case, the blockigample 4.2. The Erlang bound no longer applies at the level of
for CMP is obtained using simulation for6ax 6 wrap-around cells now, but does still apply at the level of the regions. Con-
grid. The results foZ = 15 channels are shown in Fig. 8. sidering cliques consisting of two outer regions and one inner

Fig. 8 demonstrates that also in the planar case, CMP nragion yields the boun# = ((2—«)/2) Erl((2—a)v; C). Not
substantially reduce blocking over FCA. The reward bound stiilirprisingly, the bound is decreasinginthe fraction of traffic
sharpens the Erlang bound, but does not approach the perfidfered to the inner regions. Adding the constraifis; >
mance of CMP as closely as in the linear case. This discrepatiy(av; C), the bound may be tightened & = (1/2)[(2 —
could in principle be caused by two factors: 1) the reward bound Erl((2 — «)v; C') + a Erl(ar; C)).
may fail to be tight in the planar case; and 2) CMP may fail We now turn to the reward bounds. Taking a clique con-
to be nearly optimal in the planar case. To resolve this issigsting of one inner region and two outer regions, we obtain
we considered a seven-cell subnetwork which gi¥gs, < Amax < R(1;1/2,1/2) as an upper bound on carried traffic.

mingepo1,7 B(y,¥,%,¥,%,%,1 — 6y) as an upper bound onlf we consider a subnetwork consisting of two cliques with a
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Fig. 9. Erlang bound, seven-cell reward bound, and performance of FCA and CMP as a function of offered traffic on an infinite hexagonakgrid with
channels.

common inner region, thek,. < min  R(1;y,1—2y,y). works does not significantly help close the gap. To explain these

y€[0,1/2] . o . ; ;
As before, the convexity properties aliow for a simple numep_bservatlons, it is helpful to consider the blocking of inner and

ical optimization using Golden-section search. The calculati(S’llllte_r calls separately as d|sp|aye_d in Fig. 11. _ _
of R(-) in each iteration, however, is of formidable complexity Fig. 1_1 reveals f[hat the blocking of outer calls in MP_ IS
for all but the smallest number of channels, and is the main O%kgout_ twice that of inner calls for moderate values of blocking.
stacle in considering larger subnetworks. Draw!ng upon the theory of loss networks, see Kelly [8], the
We have performed numerical experiments to compare tmg)cklng ratio may be understood from the fact that outer calls

bounds with the performance of MP and FCA, both adapted rt%quire a channel in four cliques, whereas inner calls in only
the varying reuse constraints. In FCA, we statically asgign two. To maximize carried traffic, however, blocking should be

channels to each of the inner regions, @fdchannels to each primarily inflicted on the outer calls, since these put higher de-
of the outer regions, witl@, + 2C, = O MP always accepts mands on the network resources. Indeed, to minimize blocking

calls as long as the clique constraints remain satisfied (cqud@sFCA' more.and more channels are Sh'ﬂed, ffom the outer
gions to the inner regions as the offered traffic increases, and

now existing of one inner cell and two outer cells). The blocking he blocki - | 91 h i
for MP is calculated using the exact analytical results obtain s the blocking ratio gets larger an arger, up to the point
that all the channels are allocated to the inner regions.

in the Appendix. i . -
The results forC = 10 channels and a fraction = 0.3 This reflects the inherent tradeoff between efficiency and
inrness that arises in the case of varying reuse, see also Shi-

of traffic offered to the inner regions are shown in Fig. 10. F ; L
FCA, we plot the minimum blocking over all feasible combimadaet al.[14] and Valenzuela [15]. Schemes which minimize

nations of(Cy, C»). (Observe that the optimal combination deploh(:kmg |ntr|hr?3|hcaély favor(;nne_r calls over outer calllls,_whetregls
pends on the offered traffic.) schemes which do not discriminate among calls inevitably

Fig. 10indicates that also in the case of varying reuse MP mB{pduce higher network-average blocking. _
substantially reduce blocking over FCA. Comparing with Fig. 1 1€ Versions of FCA and MP described above may be viewed
6, we see that the reduction in blocking is larger than in the ca&& W0 extreme ways of operating a network with varying reuse.
of uniform reuse. In contrast to MP, tighter reuse does not signffo" conciseness, let us refer to the set of all inner regions as
icantly help reduce blocking in FCA. Presumably, the benefi[ge |r'1nerllayer, an.d to the outer regions as the outer layer. Two
from tighter reuse do not offset the loss in trunking ef'ficiencié%oss'bIe intermediate approaches are as follows.
from splitting the cells into smaller regions. This suggests that 1) Borrowing channels within each cell, but notamong cells.
DCA is crucial in fully extracting the potential capacity gains ~ We still statically assigi’; channels to each of the inner
from tighter reuse. Although the reward bounds still improve  regions and’s channels to each of the outer regions, with
upon the Erlang bound, they slightly diverge from the perfor- €1 +2C: = C, but allow outer-region channels to be
mance of MP now. As it turns out, considering larger subnet-  Porrowed by inner-region calls (not vice versa). The joint
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Fig. 11. Blocking of inner and outer calls for FCA and MP as a function of offered traffic on the doubly-infinite strip with varying reuse-and channels.

distribution of the number of inner and outer calls in a ii) Sharing channels within both the inner and outer layer,

particular cell then has the product form but not between these two layers. We now allocate
_loniq ovne. nidns channels to the inner layer add’ channels to the outer
m(nyna) =G (1 — o)y layer, withC’ + C” = C. The blocking for inner calls
for all (n1, no) with ny < Cy,n1 +n9 < C1 + Co, with is then simply given byB; = Erl(aw; C"). The blocking
G representing the normalization constant. The blocking B for outer calls satisfies the bounds derived in Example
forinner calls isB; = f‘;&? w(k,C1 +Cs — k). The 4.1 for the standard doubly-infinite strip (but now with

blocking for outer calls is3; = B; + Ef;gl w(k,Cy). C" channels and offered traffi — «)v). (Generally,
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imposing a hard boundary between the inner and outen carried traffic. If we consider a subnetwork con-
layer results in two independent networks with differergisting of two cliques with a common inner region, then
but fixed reuse factors.) Amax < 71[13111/ . R(1;y,1 — 2y, y), with traffic offered to the
yelo,
We have investigated how the performance of these two inteenter cell at double the rate.
mediate approaches compares to that of the two extreme stratdde have conducted numerical experiments to compare the
gies examined before. In case B, we also consider a scendxwinds with the performance of CMP and FCA, both adapted
in which the outer layer is operated using MP. The results ft@ the varying reuse constraints. In FCA, we statically assign
C = 10 channels and a fraction = 0.3 of traffic offered channels to each of the inner regions, @hdchannels to each
to the inner regions are plotted in Fig. 12. We show the mif the outer regions, witli’; + 3C, = C. CMP always accepts
imum blocking over all feasible combinations @;, C») and calls as long as the clique constraints remain satisfied (cliques
(C’,C"), respectively. The figure indicates that the two interow existing of one inner region and three outer regions). (As
mediate approaches for sharing the channels actually perfomantioned earlier, this may not be sufficient for a feasible as-
quite similarly, but that both fall short of MP. This reinforcessignment of channels to users to exist, but the reward bounds are
the earlier statement that unrestricted sharing is crucial in fuljill valid for CMP.) In the absence of exact results, the blocking
exploiting the potential capacity gains from tighter reuse.  for CMP is obtained using simulation foréax 6 wrap-around

grid.
o o _ The results forC = 15 channels and a fraction = 0.3
B. Infinite Hexagonal Grid With Varying Reuse of traffic offered to the inner regions are shown in Fig. 13. For

) S ) ) ~ FCA, we plot the minimum blocking over all feasible combina-

Consider a similar infinite hexagonal grid as in the previoygns of (C1, Cy).
section, but now a scenariq with var_ying reuse as described ir]:ig_ 13 shows that also in the planar case with varying reuse
Example 4.2. Each of the inner regions and each of the ouggp may substantially reduce blocking over FCA. Although
regions is offered traffic at rate, = cw andvy = (1 — @), the reward bounds improve upon the Erlang bound, they consid-
respectively. erably deviate from the performance of CMP. The discrepancy

Considering cliques consisting of three outer regions and ofiRy be attributed to two sources: i. Like in the planar case with
inner region yields the Erlang boudti= ((3—2a)/3) Erl((3—  uniform reuse, the reward bounds for four-cell subnetworks fail
2a)v; C). Adding the constraintB; ; > Erl(ar; C), thebound to be tight. Indeed, the gap may be somewhat reduced by consid-
may be tightened t& = (1/3)[(3 — 2a) Erl((3 — a)1;O) +  ering larger subnetworks, which may however prove extremely
20 Erl(ar; O). demanding; ii. Like in the linear case with varying reuse, CMP

We now move to the reward bounds. Taking a cliqutailsto be nearly optimal. As observed before, CMP favors inner
consisting of one inner region and three outer regions, walls over outer calls, but not to the extent required to maximize
obtain \u.x < R(1;1/3,1/3,1/3) as an upper bound carried traffic. This is illustrated in Fig. 14.
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VIl. A SYMPTOTIC ANALYSIS C — oo, v — oo, andrv/C = p. Note thatErl(pC; C) —
max{1—1/p,0} asC — oo foranyp > 0.

We now further investigate the tradeoff between efficiency Denote byB; and B» the blocking of inner and outer calls,
and fairness that arises in the case of varying reuse. We focugespectively. Denote b¥; and . the carried traffic in each of
the doubly-infinite strip with uniform offered traffic of Examplethe inner regions and outer regions, respectively. By definition,
4.2. We consider a scenario in which the number of channels and= (1 — B;)v1, A2 = (1 — By)r». Note thatB = aB; +
the offered traffic grow large in proportion to one another, i.e{]l — «)Bs = (11 By + 12 B2)/v =1 — (A1 + A2) /1.
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Considering a clique of one inner cell and two outer cells, we We now analyze the asymptotic performance of MP. The Er-

have lang fixed-point approximation for MP may be constructed as
follows:
A 222 < R(1;1,1 19
1+ 22 S ALY (19) 1— A=Etl(apCA+ 2(1 — a)pCA3; C)
1-— Bl ~ A2
)\1 S (7% (20) 1— B2 ~ A4.

This approximation is consistent with the earlier observation
that for moderate values of blocking, i.el,~ 1, the blocking
of outer calls is about twice that of inner calls.

Asymptotically,

A2 £ (1—a)r. (21)

Observe thaRR(1;1,1) < min{(2—a)», C'}. Maximizing A\; +
Ao subject to the constraints (19)—(21), we find tiat> 5*,

with . 1
A 1.
1 —>Inln{apA+2(1_a)pA37 }
0 S 2 _ o Since the Erlang fixed-point approximation is asymptotically
1 1 1 BMP _ 2\
gr={1- J;ap S <p< - 22) exact, see Kelly [8]BM'" — aG 4 (1 — «)G#, with
7 1 ) —ap+ /a2p? +8(1 - a)p
1- = p> = G = min 18
p T o 41— a)p
Define v := min{ap,1}. Now suppose we reserve a frac- It may be verified algebraically that" < BMP < 5# for all

tion ~ of the channels for the inner calls, and leave the r¥alues of andp. Fig. 15 plots the values ¢f*, 5%, and BM"

maining fractionl — ~ of the channels for the outer calls. Therfs a function op for o = 0.3.

B, = Erl{apC;~C), By = Erl((1 — a)pC; (1 — v)C). It

is easily verified that3 approacheg* asC — oo, i.e., the VIII. C ONCLUSION

bounds* is asymptotically achievable and hence tight. Observe The Erlang bound may not always be tight because it fails to

that this strategy only grants capacity to the outer calls thatdgc|ude carried traffic combinations which are only feasible if

essentially not needed by the inner calls. This confirms thgd dropping were permitted. The “trunk reservation” bounds

schemes which minimize network-average blocking will intringhich we introduced are also obtained by considering cliques

sically favor inner calls over outer calls. of cells in the network. The construction of these bounds is
We now examine what the increase in blocking is if Wgased on a reward paradigm as an intuitively appealing way of

require the blocking of inner calls and outer calls to bgharacterizing theue achievable carried traffic region, thus ex-

equal. Adding the condition\; /»; = Xz/r> to the con- posing any infeasible combinations that may weaken the Erlang
straints (19)—(21), before maximizing, + A2, we find that phound. The computational complexity increases somewhat, but
By = By = B > p#, with the bounds may be readily obtained in planar networks.
1 Even tighter bounds may be obtained by not considering
0 p< 5 o cliques, but subnetworks of cells in which a channel may be
p* = 1 1 (23)  used more than just once. In the case of uniform reuse, the
1- (2—a)p Pz 2_ revenue-based bounds then closely approach the performance

of MP. This suggests not only that the bounds are extremely
Now suppose we allocate a fractiafi(2—«) of the channelsto tight, but also that no DCA scheme, however sophisticated,
the inner calls, and assign the remaining fractior- «)/(2 —  will be able to achieve significant capacity gains beyond those
«) of the channels to the outer calls in each cell. T#&n= " optained from MP. The fact that such tight bounds can be
Erl(apC;aC/(2 — a)), B> = Exl((1 — a)pC; (1 —a)C/(2—  obtained by considering just three or four neighboring cells
a)). Itis easily verified thatB,, B, and B approach3* as  in the network is striking. For a given subnetwork, no tighter
C — oo, i.e., the bound3# is asymptotically achievable andpound can be obtained, since the reward paradigm completely

hence_ tight. demarcates the achievable carried traffic region.

Defines := g% — *. From (22) and (23) Subsequently, we considered scenarios with varying reuse

1 which may arise in the case of reuse partitioning techniques,

0 [ 5o measurement-based DCA schemes, or micro-cellular environ-

a 1/1 1 1 1 ments. We showed how the analysis presented in Kelly [7] for

6= 2 + ; <§ T 5 a) 2 o =p= E MP on a doubly-infinite strip may be generalized. The revenue-
1 1 1 based bounds extend to these scenarios with varying reuse, but

P <1 T 5= a) Pz . the computational complexity increases further, which means

that only relatively small subnetworks can be considered. In
This demonstrates that schemes which do not discriminadlese circumstances, however, the bounds slightly diverge from
among calls inevitably produce higher network-averaghe performance of MP, which inflicts higher blocking on outer

blocking. calls than inner calls, but not to the extent required to maximize
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Fig. 15. Minimum average-blocking*, minimum equal-blockingg#, and asymptotic performance of MP for varying reuse with a fractiea 0.3 of traffic
offered to the inner regions.

carried traffic. This reflects the inherent tradeoff that arises in APPENDIX
the case of varying reuse between efficiency and fairness. TESOCKING FORMAXIMUM PACKING UNDER VARYING RE-USE

observation is consistent with the empirical finding of spatially In this A ; ; :
) S . ppendix, we extend the analysis presented in
mhomogeneou; blockmg N Sh_lmaeltaal.[14] and Va'ef?zue""? Kelly [7] for MP on the doubly-infinite strip to the case

[15]. Asymptotic analysis confirms that schemes which minjse varying reuse described in Example 4.2. We first con-

mize blocking |ntr|nS|c_aIIy favor inner .ca.lls over outer Ca"Ssider a finite array of2l + 1 cells indexed by the set
whereas schemes which do not discriminate among calls Ip-_ (—1, -1 +1 0 I —1,1}. Denote byw;; and

evitably produce higher network-average blocking. vi2 the offered traffic to the inner and outer region of cell

Inthe present paper we have not considered any user mobilityrespectively. The state of the network may be described
In reality, however, users move around so that calls in progresg the vectom = (n;)ier = (mi,n;)ier, with m; andn;
may occasionally have to be handed off from one cell to anothgspresenting the number of calls in the inner and outer region of
In the case of varying reuse, hand-off calls may be expectedddl| i, respectively. The set of admissible states of the network
experience similar high blocking as peripheral calls at set-ug.defined as
Since calls in progress should in fact receive a preferential treat-
ment, this suggests an even greater need for channel reservat®a= {n : n; + n;+1 + max{m;, m;y1} < Cforall C € Z}.
mechanisms in the case of varying reuse.

In the presence of mobility, a more reasonable goal is proBbserve that the equilibrium distributiar{n) satisfies the de-
ably to minimize blocking subject to a dropping constraint, deiled balance conditions
to minimize a weighted combination of blocking and dropping.
The reward paradigm may be generalized to obtain bounds m;m(n) = vapr(n — d;)
in these cases. The bounds may still be obtained by solving nim(n) = viom(n — ¢;)
a linear program. However, the complexity of computing the
reward coefficients will increase considerably, because thhered; denotes a vector consisting of all 0's but for a 1 in
hand-off process is quite complicated. In contrast to fresh calise position corresponding to the inner region of component
hand-off calls do not arrive according to independent Poissgactori. The vector; is defined similarly for the outer region
processes. The closer interaction between cells will also dilucell . Thus, the equilibrium distribution is
the capacity limits that can be lifted from a subnetwork in
isolation. Since.,- the .bou'nds may not be as tight, while MP may w(n) = @ H ﬂ Vig Cnes 24
be far from optimal in view of the need for channel reservation b m;! n;!
mentioned above, the gap between the two should be expected
to increase dramatically. with GG representing a normalization constant.




BORST AND WHITING: DYNAMIC CHANNEL ASSIGNMENT SCHEMES

We now consider the special case of uniform offered traffic,
i.e.,v;1 = v, vi2 = o forall i € Z. Define thesquarematrix

Q(n,n’) by .
Q((m,n), 7(7371’,;}’)) 2
_ 2/!% n+n' + max{m,m'} < C
0 otherwise (3]
From (24), we see that the sequence of veagrs € Z, deter- 4

mine an inhomogeneous Markov chain, with transition matrix

proportional toQ. Indeed, the equilibrium distribution may be [3]
written

(6]

7(n) = 7o(n)®(n)
) [71
with
8
R%‘I) = Q(no, Ill) e Q(njfl, n[)Q(no, Ilfl) e

Qn_r41,m_y) [10]

Ri(no) = Z Q(no,ny)...Q(n7_;,nj) [11]

[12]

and r, representing the marginal equilibrium distribution for
cell 0. Observe thak; is simply the sum, over columns, of row [13]
n of Q1. [14]

Applying the detailed balance conditions to the component
vectorng for both the inner and outer region, we see that [15]
must satisfy

[16]

o [Riug 4+ do)?
To(zo + do) = mo + 1 ER[(EIIO)](; mo(no) i
120 71 (& 2 (18]
molmo o) = D [Rfézzr;)]g)] molno)-

[19]
Thatis, the marginal equilibrium distribution is similar to what it
would be for cell O in isolation, but with the birth rates modified
by R;y.
Using standard arguments from the Perron-Frobenius theory
of nonnegative matrices, we find that As—» ~

[Rr(ng + do)]? 72(ng + do)
[R1(no)]? r?(ng) '

[Rr(no +eo)]*  7*(no + o)
[R1(no)]? r?(no)

wherer denotes the right eigenvector of the matgixThus, we
deduce that the marginal form of the equilibrium distribution fc
cellOis ;
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