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Dynamic Channel-Sensitive Scheduling Algorithms
for Wireless Data Throughput Optimization

Sem Borst and Phil WhitingMlember, IEEE

Abstract—The relative delay tolerance of data applications, to- simplification, let us suppose that at the start of each slot the base
gether with bursty traffic characteristics, opens up the possibility  station has perfect knowledge of the maximum feasible rate at
for scheduling transmissions so as to optimize throughput. A par- \yhjich each user can receive and decode a signal with some ac-
ticularly attractive approach in fading environments is to exploit ceptably low error probability. This is the approach used in the

the variations in the channel conditions and transmit to the user .
with the currently “best” channel. We show that the “best” user 1S-856 [also known as high data rate (HDR)] standard [6].

may be identified as the maximum-rate user when feasible rates ~ The above framework allows the base station to schedule
are weighed with some appropriately determined coefficients. In- transmissions to users when their channel conditions are favor-
terpreting the coefficients as shadow prices, or reward values, the gple. The so-called proportional fair algorithm [10] is specifi-

optimal strategy may thus be viewed as a revenue-based policy, .4y designed to achieve the latter objective. The key feature

which always assigns the transmission slot to the user yielding the . t lect hen their rat timal i lati
maximum revenue. is to select users when their rates are near-optimal in a relative

Calculating the optimal-revenue vector directly is a formidable S€Nse, so as to optimize throughput performance while ensuring
task, requiring detailed information on the channel statistics. In- some degree of fairness among users. The proportional fair al-
stead, we present adaptive algorithms for determining the optimal- - gorithm is the default scheduling mechanism implemented in
revenue vector online in an iterative fashion, without the need current product releases that are based on the 1S-856 standard.

for explicit knowledge of the channel behavior. Starting from an . " "
arbitrary initial vector, the algorithms iteratively adjust the reward The selection of .the. best qser depends, of Courge, on
values to compensate for observed deviations from the target the performance objective that is considered. Depending on

throughput ratios. The algorithms are validated through extensive the specific situation, there are various performance criteria
numerical experiments. Besides verifying long-run convergence, that might be adopted. In the present paper, we specifically
we also examine the transient performance, in particular the rate  consider throughput optimization relative to prespecified target
of convergence to the optimal-revenue vector. The results show 4,65 These target values may be set arbitrarily, taking into
that the target throughput ratios are tightly maintained and that ; . . !
the algorithms are able to track sudden changes in the channel aCCO!“mt the. quallty-of-se'rv'lce requwements'of the usgrs or
conditions or throughput targets well. possibly their current activity levels or locations. For given
Index Terms—High data rate, scheduling, stochastic control target ra.tios, we show that the "bes.t" user may be idgntified as
throughput optimization. ‘ ' ' the maximum-rate user when feasible rates are weighed with
some appropriately determined coefficients. Interpreting the
coefficients as shadow prices, or reward values, the optimal
I. INTRODUCTION strategy may thus be viewed as a revenue-based policy. Under

EXT-GENERATION wireless networks are expecte&UCh a policy, the transmission slot is always assigned to the
N to support a wide range of services, including high-raf¢Ser Yielding the maximum revenue.

data applications. In contrast to voice users, data applicationd’nfortunately, calculating the optimal-revenue vector (i.e.,
the revenue vector associated with the optimal strategy) directly

can usually sustain some amount of packet delay, as long: . . - >
the throughput over somewhat longer intervals is sufficierl & complicated problem, requiring detailed information on the

The relative delay tolerance of data applications togeth%l?a””e' statistics. Although the feasible rates of the users are
with bursty traffic characteristics, opens up the potential f@SSumed known slot by slot, the underlying probability distri-
scheduling transmissions so as to optimize throughput. bution that is producing these rates_ls unknown._Even if |tw9re
coordinated approach along these lines is proposed in [5]. known, it would not be easy to use since the feasible rates might

A related approach may be advocated for low-mobility scd€ dependent, so that the computations would be significantly

narios, such as indoor networks. In such environments, Raylefii{Pered by the curse of dimensionality. _
fading frequencies can be quite low and the fading levels canl0 avoid these obstacles, we develop adaptive algorithms for

even be anticipated to some extent. For example, fading éiﬁ]termining the optimal-revenue vector online, in an iterative
be measured by having the base station provide a pilot sigri@fhion. without the need for explicit knowledge of the channel
which can be measured by all the users. These measurem ﬁh‘awor. Starting from an arbitrary initial vector, the algorithms

can be fed back to the base station and used to estimate fadiffptively adjust the reward values to compensate for observed
levels and, hence, user rates in subsequent slots. With a liflyiations from the target throughput ratios. The corrections en-
sure that discrepancies in throughput cannot persist. To ensure
convergence to the optimal-revenue vector, the size of the ad-
Manuscript received May 29, 2001; revised October 7, 2002. i i
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The algorithms are validated through extensive numerical ex-
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amine the transient performance, in particular the rate of caassume that the base station has perfect knowledge of the

vergence to the optimal-revenue vector. The results show thaaximum feasible rate?,,,(n) for userm at the start of the

the target throughput ratios are tightly maintained and that théh slot (see also Remark 2.2 below). (&, ,..., Ry/) be a

algorithms are able to track sudden changes in the channel ce@mdom vector with distribution the joint stationary distribution

ditions or throughput targets well. of the feasible rates. Deno¥,, (n) := X,,(n)R,,(n), with
Some interesting related algorithms are proposed in [2], [3Y,,,(n) a 0-1 variable indicating whether or not thih slot is

[11], [18], and [19], where queue lengths, rather than rewardgssigned to user.. Definey,,, (N) := E[Erjjzl Y,.(n)/N] as

are used as weight factors. These algorithms provide throughihé expected average throughput received by usefter N

guarantees in terms of bounded expected queue lengthsg|ifs.

achievable) rather than target ratios. The abovementionecRemark 2.1: Notice that we allow for dependence between

proportional fair algorithm [10] has a similar structure as welthe feasible rates for the various users. Independence may be

where the weights are taken reciprocal to the historical averag¢easonable assumption in the case of an isolated base sta-

throughputs (with exponential smoothing). The latter algorithfbn serving a group of independent users. In the case of several

inherits its name from the fact that the achieved-throughpgjse stations, however, the feasible rates may vary not only due

vector is such that, for no single user, the throughput can Rgindependent fading, but also because of the common impact

improved without reducing the throughputs of the other usegs control actions at adjacent base stations. For example, base

by a greater total percentage, which property is referred 10 &giions may transmit at reduced power if there are no back-

“proportional faimess.” A further class of algorithms that arg,ggedusers, inducing strong correlations in interference levels
based on a utility maximization formulation are proposed ifatween users. 0O

[1]. Algorithms aimed at optimizing throughput performance \ye assume that the slot duration (1.67 ms in the 1S-856

subject to additional faimess constraints are described in [1¢}5tem) s relatively short compared to the relevant time scales
The appllpba};t](?n 0;‘ the above a|gor|thmks ope]zcns up two 'T]quﬁ the traffic patterns and delay requirements of data users. This
tant possi ||t|e§ or Improving ”eFWOT periormance, whicly,qng up the possibility for scheduling the data transmissions so
deserve further investigation. The first is that admission control , = 11206 performance. In particular, scheduling provides

can be gpp“id Iby usml? lp}{rol:;]ng tez[chrrlquetar} alpprqtach a potential mechanism for exploiting variations in the feasible
ustézr ad)élede'?hoe in? ac?o(;cihe(:lewouuser vioulljd then beissees TJ] e M data users may actually be thought of as the subset
N P ; a active (backlogged) users among a greater population, which

on the basis of the new revenue values as determined by the . :
- may change over time. For scheduling purposes, however, the
dummy control. It should be noted that the decisions from . . )
i eparation of time scales allows us to think of the subset of ac-
the dummy control wouldhot be acted on, which means tha ive users as nearly static and continuously backlogged. (In prac-
existing users are unaffected. As an additional benefit, the new y y gged.{inp

revenue values would be immediately available, in case the u &F Iﬂf)rvé'som.ml al'golrllthll)ns suc&fl afs trgrgjsrrls_,slorlhcogtrol prto-
is admitted. The second possibility is coordinated operation ol ( ) willtypically be used to feed data into the base-sta-

base stations in the network, which allows for load sharing al qn buffer at a relatlvely slow rate, compargble to t_he actual
higher throughput for edge users. throughput provided to the user over the wireless link. Thus,

The remainder of the paper is organized as follows. In Se%z bulk of the bac.klogs will usually reside at the sender rather
tion 11, we present a detailed model description and introducd 221 the base-station buffer) ,

class of revenue-based scheduling strategies. We subsequentt)ePending on the specific situation, there are various perfor-
prove that revenue-based policies optimize throughput relatf@nce criteria that might be adopted. One of the most common
to prespecified target values, for discrete rate distributions B&rformance objectives is throughput maximization. This can be
well as for continuous rates in Sections Il and 1V, respectivelchieved by simply assigning each slot to the user with the cur-
In Sections V-VII, we develop adaptive online algorithms fdiently highest feasible rate. The disadvantage is that typically
determining the optimal-revenue vector in an iterative fashiofNly @ few strong users will ever be selected for transmission,
In Section VIII, we describe some numerical experiments th&@Using starvation of all others.

we performed to examine the convergence properties of the proTo alleviate that problem, an alternative option is to equalize
posed control algorithms. The results in Sections VII and Viihe (expected) throughput of the various users. This can be

extend the preliminary results presented in [7]. We make sordehieved easily by assigning each slot to the user with the
concluding remarks in Section IX. currently smallest cumulative throughput. The downside is
that this strategy does not exploit variations in the feasible
rates. Moreover, by insisting on equal throughput, a few weak
users may cause the throughput of all others to be dramatically
We consider a base station servihf) data users. The basereduced.
station transmits in slots of some fixed duration. In each slot, A further option is to equalize the proportion of slots allotted
the base station transmits to exactly one of the users. to the various users. This can be realized simply by using a
We assume that the feasible rates for various users vary okaund-robin scheme. Again, however, this strategy fails to take
time, according to some stationary discrete-time stochastidvantage of the fluctuations in feasible rates. In addition, some
process{(Ry(n),...,Ry(n)),n = 1,2,...}, with R,,(n) users may end up with extremely low throughput, despite re-

representing the feasible rate for userin the nth slot. We ceiving their fair share of the number of slots.

Il. MODEL DESCRIPTION
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In general, the performance objective will be to maximizances the throughputs according to the raips . ., a/ is, in
some increasing function of the ford (y1,...,ya), with fact, optimal, which provides the key principle underlying our
Ym = liminf x_, o ym (V) representing the long-run expectedurther approach.
average throughput of usen. Now observe that the set of Finally, observe that setting throughput targets is equivalent
all feasible throughput vectors must be a convex region by normalizing the feasible rates by the corresponding values.
time-sharing arguments. Thus, the throughput vector that mam- the subsequent analysis, we therefore assume that the
imizes the functionH (-) must also maximize some weightedhroughput targets are discounted for in the rates and take
throughput combination. (a1,...,ap) = (1,...,1).

To formalize the above insight, we now introduce a class Remark 2.2: In practice, there is always a small probability
of revenue-based scheduling strategies. Suppose there weréha-a transmission fails because the signal cannot be success-
wardsws, ..., wys per bit transmitted to the various users. Aully decoded. The results of the present paper then remain valid
revenue-based strategy assignsstietransmission slot to the if R, (n) is redefined to represent the expected feasible rate and
userm™*(n) with the current maximum rate-reward product, i.ethe 0-1 variableX,, (n) is amended to indicate both which user

is selected and whether or not the transmission is successful.
m*(n) = arg max__ wy, Ry (n). Instead of the (expected) feasible rate, one can also take
m=hes M R (n) := K,, + R (n), with the K,,’s positive coefficients,
Clearly, the above principle maximizes the revenue earnedtfhobtain a weighted combination of received rates and slot
each individual slot and, thus, the total cumulative revenue a#ocations. By choosing suitable values for tig,’s, one can
well as the average revenue; hence, the term revenue-ba3¥g Weight to balancing the proportion of slots allotted to the
strategy. (Usually, exactly how ties are being broken al¥@ious users, besides achieving relative throughput targets.
matters. Regardless of the tie-breaking rule, however, a revRémark 2.3: The results in [12] show that optimizing a

enue-based strategy will definitelyot assign thenth slot to  throughput function subject to additional fairness constraints
any userk with w, Rp(n) < max  wy, Ry (n).) in terms of the time fractions received by the various users may
m=l,...,M . ._induce optimal policies with a different structure. Apparently,
tion of throughputs. Ignoring some technicalities, we thus Coﬁpposing gdditional constraints on the time fractions may.give
clude that there ml.,ISt exist a revenue-based str:ate that m”sg to optimal-throughput vectqrs that are not Pareto-optimal
O . . 9y IAthe absence of these constraints. O
imizes the functionH (-). Formally speaking, the optimal-rev-
enue vector is nothing but the gradient to the feasible throughput
region around the throughput vector that maximizes the function
H(-). Although the optimal-revenue vector remains difficult to In this section, we consider the case where feasible rates
determine in general, the above observation does help to lifiit,, ..., R,,) have a discrete distribution on some bounded
the search for optimal strategies to the class of revenue-basetl/ C RM. Since feasible rates are assumed stationary, we
scheduling strategies. restrict attention to the class of stationary policies in order
In the present paper, we specifically consider the problem@f not blur the presentation with technicalities. The analysis
maximizing the minimum relative long-run average throughpuay be readily extended, however, to deal with nonstationary
min oy Um /am, Whereaq, . . ., ayy are relative target values policies.

m=1,..., ’ ’

for the various users. The optimality criterion above is equiva- e first introduce some notation. Let be the stationary
lent to the notion ofveighted max-min fairneswhich is com- Probability that the feasible rate vector js € J. (Note
monly adopted in various sorts of resource-allocation problentgat j is an M -dimensional vector.) We writd?;; = j; for
A related resource-sharing concept is embodied in the genér= (j1,--.,ju) € J. Leta7; be the long-run fraction of
alized processor sharing (GPS) paradigm [14], which is at tHEne that policyr selects usei for transmission when the
heart of discriminatory packet-scheduling algorithms such gasible rate vector ig € J. Then the minimum average
weighted fair queueing (WFQ). The target values. .., a,, throughput achieved under polieyis 2™ = min 77 with

Ill. DISCRETERATE DISTRIBUTION

may be set arbitrarily, taking into account the quaIity-of—servicgr = Eje 7 piRijaT;. Let 7 be the revenue-based strategy
requirements of the users or possibly their current activity levelgrresponding to the vectar = (wy, ..., wyr). Without loss
or locations. For example, the targets may be set lower for usgfsgenerality, we assume thgf‘il w; = 1, since only the
with higher path losses, in order to prevent weak users fro@lative values of the revenues matter.
dragging down the throughput of all other users. The targets may emma 3.1: Policyr is optimal if27;, 2™ is an optimal so-
also be applied to the proportion of slots allotted to the varioWgion to the following linear program:
users (see Remark 2.2 below).

From our earlier observation, we know that, to maximize max z

min Ym/m, W€ may restrict attention to the class of rev- sub z < ijRijxij i=1... M

.....

enue-based scheduling strategies. Further observe that we may Jer

assume that the optimal-throughput vector realizes the target M

throughput ratiosvy, . . . , «,,, With equality, since one could al- ZJ;IJ <1 jeJ
ways reduce the throughputs of users with a surplus. Thus, we i=1

conclude that any revenue-based policy that additionally bal- xi; 20i=1,...,.M,j € J. Q)
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Proof: Letz};, 2* be an optimal solution to the linear pro-enue, which may also be derived as follows. For any veetor
gram above. Now consider the policy that assigns the slot to useth Ef‘il w; = 1, the total expected earned revenue is
i with probability z;; when the feasible rate vector jse J. " v "
The minimum average throughput achieved under this poli% o e . v
. . ) . w) = w; I > w; 1 > w; min 1)
is min Zjejijijx;“j > z*. Thus, the optimal achievable (w) ; e = ; e = ; m=l,..M ™

i=1,...,

throughput is at least*. M M
Conversely, for any policyr, =7;, 2™ are a feasible solu- = sz‘ mfr?in u " = Zw;“T{r = R(w").

tion to the above linear program. Thus, the optimal achievable i=1 i=1

throughput is at most* and, hence, exactly*. The statement

then easily follows. O IV. CONTINUOUS RATE DISTRIBUTION

It follows from the above lemma, in conjunction with basic ) ) ) .
linear programming theory [16], that there exists an optimal In this section, we consider the case where the feasible rates
policy = with at most.J| + M — 1 of the variables:,’i} nonzero, (R4, ..., Rar) have a continuous distribution on some bounded

M
which forces most of the variables to be one. Thus, only forsgtU € R™.

limited number of rate combinations, the slots are shared among/ /€ first introduce some notation. Lgtu) be the stationary
several Users. density of the feasible rate vector, i.e., the probability that the

In Section 11, we observed that a revenue-based policy tH§RSIPIe rates are in some $etC U is [, .- p(u)du. We write

balances the throughputs is optimal. The next theorem shoffd®) = i foru = (uy,....un) € U. Letz7(u) be the

that the revenue criterion is in fact a necessary optimali?f‘gir“n fraction of time that policy selects usef for trans-
condition, in the sense that there exists a revenue vegtor MiSSion when the feasible rate vectouis U.

such that when usérdoesnot have the maximum rate-reward Il_e!”nma 451: fF’l‘I’"CYf IS optlhmal 'f?? (|“>' 2" are. an optimal
product, i.e..w*Ri; < _HlaX]\[w;:szj' thenz7. = 0, solution to the following mathematical program:

.....

m=
i.e., user; shouldnot be selected for transmission. Thus, any max =z

optimal strategymustbe a revenue-based policy associated g, , </ p(u) Ry (w)zi(w)du i=1,..., M
with w* (see [2] for a related stability result). -~ Juev ' ' o

Theorem 3.1: If policy is optimal, then there exists a vector M
w* > 0 such that sz(u) <1 weU
=1
o7 [wfRij— max w?, Ronj| =0 ) zi(u) >0 i=1,.... M,ueU. 4)

) yeeey

The proof of the above lemma is similar to that of Lemma
foralli=1,...,M,j € J. 3.1.

Proof: By Lemma 3.1, the:7; are an optimal solutionto [N Section|l, we reasoned that arevenue-based policy that bal-
the linear program (1). Now leb}, y* be an optimal solution ances the throughputs is optimal. The next theorem shows that

2

to the dual problem of (1) the revenue principle is in fact a necessary optimality criterion,
in the sense that there exists a revenue vegtosuch that if
min Z y; user; doesnothave the maximum rate-reward product on some

set of nonzero measure, then usehould not be selected for

J; transmission on that set. Thus, in the above sense, any optimal
subz w;>1 strategymustbe a revenue-based policy associated with

i—1 Theorem 4.1: If policy: is optimal, then there exists a vector

Yj ijRijwi L:17/M/JEJ w* 2 0 such that

wi 20 Z =L...M / xl (u) [w:‘Ri — max wh Ry(u)| p(u)du =0 (5)

y; 20 jeJd @) Juev m=1,...M

Ni=1,..., M.
Proof: By Lemma 4.1, the:7(u) are an optimal solution
to the mathematical program (4). Now lef, y*(u) be an op-
______ timal solution to the following “dual” problem of (4):
The dual problem (3) may be interpreted as follows. The vari- .
abley; = p; maxw;, R,,,; represents the revenue generated in -~ min / y(u)du
statej, so that the objective function measures the total expected u€U

earned revenue. Also, optimality impli sV owr = 1. Thus, M
P y Impligs,_, w; sub Zw, >1
1=1

» for a
Then the complementary slackness conditions [16?
imply z7[y; — pjRijwf] = 0, while optimality forces

the dual problem amounts to finding a revenue veatbithat
minimizes the total expected earned revenue, subject to the con-
straint} ) w} = 1.

In conclusion, for policyr®” to balance the throughputs, the w; 20 i=1,....M
revenue vectow™* must minimize the total expected earned rev- ylu) >0 wel. (6)

y(u) > p(u)Ri(w)w; i=1,... MueU
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Then the complementary slackness conditions [16] yield VI. Two USERS
T (u)[y*(u) — p(u)R;(u)w}] = 0, while optimality requires

2

v(u) = plu) max w* R (u), giving (5). (Although We first focus on the case of two users. In the next section,

_ LM we consider the situation with an arbitrary number of users.
strong duality does not directly apply, the complementary

slackness properties may be derived via discretization.)d A. Algorithm Description

V. ADAPTIVE ALGORITHMS Before describing the algorithm in detail, we first introduce

. . some useful notation. With minor abuse of notation, we write
In the previous two sections, we concluded that revenue- _ w1, 0 thatws = 1 — w. DenoteAY (n) = Y;(n) —

based policies optimize throughput relative to pre-specifi%d (n) and definel/(N) := ZN AY (n) as the difference
target values. However, calculating the optimal-revenue VeCmQrcumuIative throughpu;[ betw?ézln users 1 and 2 afteslots
directly is a complicated problem, requiring detailed im‘ormal—.he absolute differend@ (V)| is referred to as the throughput

tion on the channel statistics in the form of the joint statlonargap We say that the throughput gapdensin the Nth slot if

distribution of the feasible rate§R;, ..., Ry/). Instead, we X . .
develop adaptive scheduling algorithms for determining '[A[(a](N>| > B e YO |U(n)]. User 1 is said to béeadingif

optimal-revenue vector online in an iterative fashion, withodf (V) > 0 and is referred to alagging otherwise (vice versa

the need for explicit knowledge of the channel behavidior user 2). We say that@ossovemccurs in theVth slot if the
Specifically, in thenth slot, a revenue vectan(n) is used leading and lagging users exchange positions, which means that
for selecting a user for transmission, i.e., i@ transmission the throughput gap changes sign, ilé(N)U(N — 1) < 0.

slot is assigned to the usen*(n) identified asm*(n) = The algorithm may now be described as follows. In every slot,
arg max wm(n)Rm(n). Starting from an arbitrary initial the user with the maximum price-rate product, at the current

vectorw7('f),ythe algorithms iteratively adjust the reward valuestg''c® value, is sel_ected for transmission. Thus;ftieslot is as-
ned to user 1 ifv(n)R1(n) > (1 — w(n))R2(n) and to user

compensate for observed deviations from the target through (&

ratios. The corrections ensure that discrepancies in through githerwise (ties being broken arbitrarily).To drive the price se-
cannot persist. To ensure convergence to the optimal-reveﬂﬁ'@nqe”(”) toward the optimal value”, the price is adpste_d
vectorw*, the size of the adjustments is gradually reduced. over time on the basis of the observed throughput realizations.

In the next two sections, we assume that the distributidi® 10ng as the throughput gap daest widen, the price is left
of the feasible rates is modulated by some underlying stghaltered. However, if the throughput gapeswiden, then the
chastic process(n), which may be interpreted as the channdlfice is changed in favor of _the deficit user; thus, at _the expense
state. The evolution of the proceskn) is governed by a of the surpll_Js user. The price of thg Ieadmg user is decreased
discrete-time irreducible Markov chain with a finite discret®Y dx(n), While the price of the lagging user is simultaneously
state spaces. When the channel state ise S, the feasible increased by the same amount.
rates have some continuof$-dimensional distributiorF(-) To ensure convergenceresetis triggered at every crossover.
oNR C [Rumin, Rmax]™, 0 < Ruin < Rmax < 00, With zero The step sizéy () is then reduced by incrementirign ), with
probability measure in any set of Lebesgue measure zero.{fa,k = 1,2,...} a predetermined convergent sequence (e.g.,
practice, the feasible rates will typically have to be selectdd+1 = 61p" With p < 1 or 6, = 6,:k~7 with g > 1).
from a limited set of discrete values. However, we may adhere
to the above assumptions by simply adding a small randd@n Convergence Proof
perturbation. By choosing the sufficiently small random per-
turbation, the true achieved throughputs should be arbitrari
close to the perturbed ones.

Denote byW := {w € RY : M _ w, = 1} the set
of all price vectors. For anyw € W, denote byE,,(w)
the expected average throughput per slot received by u
m under price vecton in stationarity. Define=,y.(w) :=

We now proceed to demonstrate convergence of the above-
scribed algorithm. We first state an important assumption.
Assumption 6.1 (Large-Deviations Assumption): Let
XN (s,w) be a random variable representing the sage
ggpughput per slot obtained by userover a period ofV slots
under price-vectotw, given that the initial state of the Markov

I — - - hain iss. Given a price vectoww € W and¢ > 0, there exist
UM)YM 2, (w), Emm(w) = Ep(w), and © o
(/M) 2 Zom () (w) m=l o AT <w). _ numbersCS, (w), DS, (w) > 0 such that for any initial state
Emax(w) := max Z,,(w) as the average, the minimum,

m=1,...M 7 —_ — w)N
and the maximum expected throughput per slot under price P{| X (s,w) — Z,n(w) | > €} < O, (w) e~ Pm (@D

vectorw over all users, respectively.
The above assumptions ensure that the expected throughput ™ = 1,2.
vector (El(w), Y (w)) is completely determined by the It may be verified that the above assumption is satisfied for
price vectorw (without the need to specify a tie breaking rule)the feasible-rate process described earlier.
The assumptions further imply that the expected throughputLet Y, *“(n) be random variables representing the

vector (21 (w),...,Ey(w)) is a continuous function of the throughput that userm would receive in thenth slot
price vectorw. if the price were fixed atw* + ¢, m = 1,2. Define
To facilitate the presentation, we assume that the optimal pridd ™™ *¢(n) = Y;* *9(n) — Y;* *¢(n) as the differ-

vectorw™ is unique. The analysis may be readily modified foence in throughput between users 1 and 2 in slie slot.
the case where there is a whole range of optimal price vectoBBefine¢ := =; (w* + €) — Eo(w* 4+ €) > 0 as the difference
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in expected throughput between users 1 and 2 in stationarBymilarly,w(n) cannot move from the intervakf* — ¢, 1] to the

Forall N > ng > 0, the events interval [0,w™ — 2¢] infinitely often.
N ¢ Proof: We only prove the first statement. The second one
Z Y e (n) > (N —ng + 1) <El(w* +e)— Z) follows from symmetry considerations.
n=ngq The idea of the proof is as follows. In order for the price se-
and guence to move from the interval [@;* + €] to the interval
N ¢ [w* 4+ 2¢, 1], it must cross the interv@l™* + ¢, w* + 2¢] from left
Z Y2 t(n) < (N —ng + 1) <52(w* +¢€) + Z) to right. For that to happen, the algorithm must make a number
n=ngq of e-wrong moves. By aa-wrong move, we mean that the price
imply the event is increased while the current price is at leastbove the op-
N timal valuew™*. As will be shown below, the expected number
Z AYY e (n) > w. of e-wrong moves before a crossover occurs is finite. However,
neno - 2 as crossovers occur, the step size will get smaller and smaller
Assumption 6.1 then implies that there exist numisér® > 0 and the requi.red number efwrong moves for the_intgrval to
such that be crossed will get larger and larger. As a result, it will eventu-

N ally become increasingly unlikely for the interval to be crossed.
P Z AY" e (n) < (N —no +1)¢§ <20 e~ P(N=no+1) To make the above idea precise, we first introduce some
2 helpful terminology. A crossover is referred to as an upward

which rr01eans that turn in case user 2 takes over the lead from user 1. Otherwise, a
N crossover is called a downward turn. L€tt) and L(t) be the
Z AY" +(n) — o (7) total number and the total size efvrong moves, respectively,
neno between thetth upward turn and the subsequent downward
with probability (wp) 1 asV — oc. turn. _
The next theorem establishes almost-sure convergence to th¥ote that the value of the step size betweenttheupward
optimal-revenue vector. turn and the subsequent downward turn is at mgstOnce the

Theorem 6.1: For the scheduling algorithm described abovélue ofda; has_dropped*below/*Z, we must have.(t) > €/2
the price sequence(n) converges to the optimal priee* wp1 N order for the intervajw* + €, w* 4 2¢] to be crossed between

and, consequently, the sequenc¢e) converges to the optimal thetth upward turn an_d the subsequent downward turn.
Valuezﬂw* wp 1 Also, note that the interval can be crossed at most once be-

In preparation for the proof of the above theorem, we firfveen thetth upward turn and the sub_sequent dO.W nward tur.n
present two lemmas and cannot be crossed from left to right otherwise. Thus, in
Lemma 6.1: The .price sequenegn) cannot get perma- order for the interval to be crossed infinitely often, we must have
nently trapped in either of the intervd8, w* —e] or [w* +e¢, 1]. 2o Lt) = co. h L |
Proof: We only prove the statement for the interval{+ Now suppose t af[, at some point in t|mg, etus sawt{ﬂh
¢, 1]. The statement for the interval [0;* — €] follows from slot, the price value increases to enter the intevéh- e, w* +
symmetry considerations. 2¢] for the first time, between thih upward turn and the sub-

The idea of the proof is as follows. As long as the price ré€duent downward turn in the”-th slot. Thenw(n) > w* + ¢

mains in favor of user 1, the throughput difference continues @y all » = no,...,N*. As aresulty(n) > Y;* *€(n) and
have a positive drift and will wander off to infinity. As a result,Y2(n) < Y3* *<(n) foralln = ng, ..., N*, so thatAY (n) >
the price will keep decreasing in fixed steps and will eventuali}Y ™ ™“(n) for all n = no, ..., N* and thus
turn negative, which is not possible. "2 "2

To formalize the above idea, suppose that, at some point in Z AY(n) 2 Z AY™ *(n)
time, let us say the:y-th slot, the price value enters the in- n=mni n=mni

terval [w* + ¢, 1] to get permanently trapped there, ine(n) > for all ng < n; < ny < N*. Hence, (7) implies that
w* 4 e for alln > ng. ThenYy(n) > Y2 ¢ (n) andYa(n) < Zﬁl\:no AY (n) reaches only finitely many decreasing ladder
V3" € (n) for all n > nyg, SO thatAY (n) > AY® +¢(n) for heights forN = n,.. -:N;,- Consequently, the throughput
all n > ng. Hence, (7) implies tha}_,_, AY(n) — oo 9aPU(N) =U(no—1)+32,_,, AY(n) widens only finitely

wp 1 asN — oo. Consequently, the throughput gagN) = many times in favor of user 2 foN = ng,...,N*. Thus,
Ulng — 1) + Efj:no AY (n) — oo wp 1 asN — oo as well, the price is increased only finitely many times before the next

which means that: (i) only a finite number of crossovers occdpwnward turn occurs, i.eEK (t) < K* < oo, and

and (ii) the throughput gap will widen infinitely many times in o ad o
favor of user 1. Thus, (i) the step sigg,, will only be reduced S EL() <> EK(t)6o < K by < 00
a finite number of times and (ii) the price will be decreased infin- t=0 t=0 =0
itely many times and increased only finitely many times. Hencehich implies thafy",~ ; L(t) < co wp 1. O
the price will eventually turn negative, which is not possible.  We conclude the section with the proof of Theorem 6.1.
O Proof of Theorem 6.1:L.emma 6.1 implies that the se-

Lemma 6.2: The price sequenoén) cannot move from the quencew(n) spends infinitely many times in the interjal* —
interval [0, w* + €] to the interval [w* + 2¢, 1] infinitely often. ¢, 1] wp 1. Lemma 6.2 shows that the sequenge) returns
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only finitely many times from the intervdlv* — ¢, 1] to the in- (i) For every user, the empirical average throughput over the
terval [0, w* — 2¢] wp 1. Combining these two statements, weample period is computed. The users are then partitioned into
find that the sequence(n) spends only finitely many times two groups: (1) those with above-average throughput and (2)
in the interval[0, w* — 2¢] wp 1. Similarly, we have that the those with below-average throughput. The prices of the above-
sequencev(n) spends only finitely many times in the intervalaverage users are decreased, while the prices of the below-
[w* + 2¢,1] wp 1. Hence, for any > 0, the sequence(n) average users are increased. As the sample size grows, so that
will eventually enter the intervdlo* — 2¢, w* + 2¢] wp 1, to  with high probability the empirical average throughputs line up
never leave it again. Thus, the sequenge) converges to the with the true expected throughputs, this ensures that the price
optimal pricew™ wp 1. vector gets closer to the optimal poimt in some appropriate

By continuity, the sequendg[Y,,,(n)] converges t&,,(w), sense, as will be shown later.
m = 1, 2. The convergence afn) then follows immediately. = Formally, the procedure may be described as follows. De-

O note by X,, the throughput received by user during a par-
ticular sample period in which price vectar is used. Define
VII. ARBITRARY NUMBER OF USERS Xave := (1/M) Zfrle X,,, as the average throughput over all
. . . . . T o= : < T o=
We now turn to the situation with an arbitrary number o sers. Denote by {m + Xp < Xave} andQ .
S ) m : X, > Xave} the groups of below-average and strictly
users. In principle, the algorithm for the case of two users, de- . . .
above-average users, respectively. Then the price update direc-

scribed in the previous sgct_lon, may be extended to several us%%v(w) is determined as
The main subtlety lies in identifying a proper rule for when

to trigger a reset. If a reset is triggered at every crossover of v (w) - €™ (8)
any pair of users, then resets may occur too rapidly. In that me%, Wm

case, two leapfrogging users may cause the step size to be re- —ws

duced quickly, while still far removed from the other users. The vi(w) Zﬁ jeQr. 9)
price sequence may then get trapped in a bias region and never meot

reach the optimal point. A better rule is to trigger a reset onfjyjote thatQ- is always nonempty, since it is impossible for

when every user has become leading or lagging. Some cgfieysers to have strictly above-average throughput. However,
is then required, though, to show that resets occur frequengy may be empty in the case that all users have exactly equal
enough compared to wrong moves, because otherwise the pfig8ughput. In that case, the price vector is simply left unaltered.

sequence may continue to visit a bias region indefinitely. Also note that the price ratios within boft— and Q+ are
) o maintained. This ensures that the expected throughput of the
A. Algorithm Description below-average users increases, while the expected throughput

In the remainder of the section, we consider a related eftthe above-average users decreases, as may be deduced from
somewhat different algorithm, which may be described as fdlemma 7.1 below.
lows. The algorithm makes price updates based on sample peNote that the above price update cannot be applied in the case
riods of predetermined ever-increasing size. Thus, the price ipat price values of some of the users(ii are zero. To pre-
dates occur at predetermined sléf$n), instead of randomly vent that situation from happening, the price process will be re-
determined slots as before, wiklin) := K(n+1) — K(n) the stricted to the setV, := {w € W : w,, > vioralm =
length of thenth sample period. In every slot of tagh sample 1,..., M}, withy := Ruyin/(Rmin+ (M —1) Rmax). Itis easily
period, the price vectow(n) is used for selecting a user forverified that ifw,, < v, thenZ,,(w) = 0, which implies that
transmission. (From now on we usdo index sample periods, w* € W,. In order to restrict the price process to the 8at,
rather than transmission slots as before.) the update is truncated at the boundary if necessary.

To drive the price sequenaee(n) toward the optimal point (i) To ensure convergence, a reset is triggered under the con-
w*, the price is adjusted over time on the basis of the obsenwdition that every user has been a membef2df at least once
throughput realizations. Thdirectionin which the price vector during a consecutive sequence of updates. Once the reset has
is modified at thenth update is determined by a random vectapccurred, the next one is not triggered until every user has been
v(w(n)), based on the throughput obtained during tita a member of2* at least once again.
sample period when the price vectofn) is used. Thesize The next lemma shows that the above price update increases
of the nth update ish(n) = 6p(,), with {6z, k = 1,2,...} a the throughputs of the users it and decreases the through-
predetermined convergent sequence. Thus, atithe 1)-th puts of the users if*.

update, the price vector is recursively determined as Lemma 7.1: Letw,w’ € W be two price vectors and
©~—,0% C {1,...,M} two groups of users such that for all
w(n +1) = w(n) = (n)v(w(n)). i€ O, wijw; > wljw forall k # iandforallj € O,
To ensure convergence, the step si¢e) is reduced by in- 3/®i < wi,/w forall k # j. Then
crementingk(n) every time a reset is triggered. Intuitively, re- Zi(w") >Ei(w) i€0~
sets should occur far away from the optimal pairttrarely, but 2;(w') <E;(w) jeot.

occur readily once the price vector is closeutt. It remains to Proof- Fi id e O- F .
specify the exact rules for (i), how to determine the update di- ro}(; ' |rs;%con5| % a u;&ri - or anz%gu(en Ir.ate,
rectionv(w(n)), and (ii), when to trigger a reset. vector (Ry,.., Ba) € R, willy = max Ry implies

c=1,...,M
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wiR; = max ’, w} Ry, In other words, if usei is selected for someé > 0, so that the price of useris decreased if the
=t oM w Price direction is right.

under the old price vectar, then so is usef under the ne : ; o
price vectorw’. Thus, the throughput of usémmust increase  FunctionT’(-): As indicated above, we also need that when

(in fact sample path wise). Similarly, the throughput of a usé@rcorrect price update direction is selected, the price vector gets
j € ©F must decrease. ] Closertothe optimal point* by some definite amount. To mea-

sure distance fromw*, we introduce a functiorf’(-), which
B. Convergence Proof attains a unique minimum ab*. Defi_neFE ={w eWw:
Wi dt tthe above-d Epax(w) — Emin(w) < €} as an €-neighborhood” ofw*. The

€ now proceed 1o prove convergence orthe above- escr't?gﬁf)wing assumption implies that, if a correct price update di-

aIgLorlthm[.)Wg ];'.rSt d'ZCUSS a ;evr\:pimzortan;aSSUéT]pt|ort1rs]. | rection is chosen, then outsidie the reduction in the value of
_?gge- e\ﬁa :Jons E_sump_m i Sd etscrlbe ?j ove, the Ia'T -) for small enough step sizeis at least times some con-
gorithm works by making price updates based on samples Qf -, proportionality;.

ever increasing size. To ensure convergence, we need that, ast %sumption 7.3: There exist positive constaits- 0, 7 >

sample size grows, a “correct” price update direction is selectg 0 such that for all price vectors) ¢ T'.. for anvé-right
with sufficiently high probability. Given a price vectar € d’irf:‘c>tionvtzw) and for anpy; e\go 5%) #le yé-nig

W, userm is called ¢-below-average (respectively;above-
average) if=,,(w) < Zave(w) — & (respectively=,, (w) > T (w + dv(w)) < T(w) — én.

Save(w) +€). We say that the price update directiondsiight” e il consider two alternative choices for the functisit).

if all the ¢-below-average users belong @b and have their The first one is

price increased and all tiieabove-average users belong 1t

and have their price decreased. (Otherwise, the price direction is T'(w) == Emax(w) — Emin(w)

“§-wrong.”) This ensures that the price vector gets closer to thg  the maximum difference in expected throughput between
optimal pointw* in some appropriate sense, as will be showgny pair of users. By definitiorf (w*) = 0 andT'(w) > 0 for

later. Now remember that, at each update, the prices of the effi-, -« ,*, with strict inequality in the case that the optimal
pirical below-average users are increased, while the prices of H??ce vectorw* is unique.

empirical above-average users are decreased. Thus, for the priege second function that we will consider is
update direction to be “correct,” it is critical that the empirical M

average throughputs line up with the true expected throughputs. T(w) = Z Wi En ()

This then motivates the following assumption. oo’

Assumption 7.1 (Large-Deviations ~ Assumption): I“"f'.[e.,the total expected revenue earned. As found in Section IlI,

fﬁmw)h b(t:: a r?ntdol;]: .vaga::)ble representing . tZe fme the optimal price vectan* minimizes that quantity over all vec-
lroug EU per siot obtained by user ng a period o () tors in the seW, i.e., T(w*) < T(w) forallw € W, w # w*,
slots under price vectow in stationarity. Given a price vector ... ctrict inequality in the case that" is unique.

i i 3
w € Wand¢ > 0, there exist &-neighborhoodVe (w) of w In Appendix I, we prove that Assumption 7.3 is indeed satis-

and numbersCy, (w), Dy, (w) > 0 such that fied for the above twd’(-) functions. In contrast to the firgt(-)
P{| X" (w') — Ep(w) | > £} < C& (w) o~ D5 (w)L(n) .functi.or.\, the secqnd is also su.itable t_o showthatAssumption 7.3
m - is satisfied for various alternative options to select a price update
forall w' € N¢(w), m =1,..., M. direction. For example
In Appendix I, we prove that the above assumption is satisfied - ) .
for the feasible-rate process described earlier. vie =1=f>0 " =arg m:r?mM Xm (10)
Boundary Conditions:We further require that, when a cor- v =—1 j*=arg | max Xom (11)

rect price direction is selected, the update cannot be truncatedto  MT5he

an arbitrarily small size. The following assumption implies thandvi. = (3, /(M —2) for all k # i*, j*, for 3,, a given positive

if a correct price direction is chosen then, for small enough stepquence Witalggo B = 0. In the sequel, this will be referred

sizeo, the price sequence will stay away from the boundary. to as the “update-extreme” algorithm, as opposed to the pro-
Assumption 7.2: There exist positive constaiits> 0, £ > cedure described earlier, which will be called the “move-to-av-

0 such that for all price vectors) € W,, for any¢-right direc-  erage” algorithm.

tion v(w), and for any$ € (0, 6*) The next theorem establishes almost-sure convergence to the

optimal-revenue vectan* for the move-to-average algorithm.

The proof for the update-extreme algorithm is mostly similar,

To check that the above assumption is satisfied, it suffices @scept for a somewhat different notion of a correct price-update

verify that extremely low prices cannot be decreased and tigétection.

extremely high prices cannot be increased. First, consider a usefheorem 7.1: The price sequenegn) converges to the op-

i with @ pricew; < Rumin/(Rmin + (M — 1)Rumax). Then the timal price vectors™ wp 1 and, consequently, the sequenge)

throughput of useris zero and, thus, certainfbelow-average converges to the optimal valué”~ wp 1.

for somet > 0, which means that the price of ugés increased  In preparation for the proof of the above theorem, we first in-

if the price direction is right. Similarly, the throughput of a usetroduce some terminology and present some auxiliary lemmas.

j with a pricew; > Rpax/(Rmin + Rmax) IS {-above-average We say that thesth sample is &-right” if, for every user, the

w+ dv(w) € W,,.
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empirical average throughput is withjrfrom the true expected algorithm will select &-right price update direction. The above

throughput, i.e.| X,,(n) — E,(w(n)) | < £ for all m = lemma thus implies that from a certain tifd on no£-wrong
., M. Otherwise the sample ig“wrong.” price updates will occur. It suffices to prove convergence
Lemma7.2: Foranyfixed > 0, the total number of-wrong starting from the state of the process at that time. Now observe
samples is finite wp 1. that we may simply view the state of the process at that time as

Proof: Consider some price vectar € Y. By continuity the initial state, which we allowed to be completely arbitrary.
of Z,,(w) as a function ofw, there exists for anyy > 0 a To prove convergence, we may thus assume thag-noong
B-neighborhoodV ! (w) of w such that price updates occur at all.

= n_ = < 12 Lemma 7.3: The total number of resets is infinite wp 1.
| Em(w’) = Em(w) | <7 (12) , -
Proof: Assume that the total number of resets were finite,

forallw’ € Nj(w), m = 1,. ’ M. let us sayK, and that theK'th reset occurs at thath price
Now suppose thab(n) = w’ € Ng(w) and that update. Assumption 7.2 ensures that the price update is never
| Xpn(n) = Ep(w) | <6 (13) truncated to less than sizé, unless the price direction were

forallm — 1 M. Then, using (12)—(13), taking = § — £*-wrong, which we may assume does not occur. Thus

£/2, 5(n) > min{8*, 6} (16)
| Xm(n) — E(w(n)) | for all » > N. In view of the reset condition, there must also
<| Xpn(n) = Epn(w) | 4 | Em(w(n)) = Ep(w) | be some usei that belongs to eithe®~(n) or Q*(n) for all
<n+ 6=t n > N Letus sqw—(n), thus,_ starting frqm théVth update,
the price of usef is constantly increased, i.e.,
forallm =1,..., M.
In conclusion, Ifw( ) € Nf/g( ), then the event (13) im- wi(n +1) 2 wi(n) + vé(n) a7)
plies that the:th sample i- nght Thus, the probability thatthe for all n > N.
nth sample i-wrong is then Combining (16) and (17), we conclude that(n) — oo as
o(n) <1 —P{| Xpm(n) — Epm(w) | n — oo, Which is not possible. g
¢ Lemma 7.4: The price sequeneé¢n) cannot converge to a
§§ forallm = 1 . M} (14) p0|nt 0uts|de1"

The Large-Deviations Assumption 7.1 implies that there exist ~T00f: Assume that the price sequence does converge to
ac- ne|ghborhoodN5( ) of w and numbergt, (w) > 0, & point outsidel’,; let us sayw. Define{ := (Emax(w) —

DE (w) > 0 such that ifw(n) € Ng(w), then Eave(w))/2 > €¢/2M > 0. By continuity of_m( ) as a func-

tion of w, there exist g8-neighborhoodV;(w) of w and a user
= £ ¢ —DE, (w)L(n) i such that is {-below average for all’ € Ng(w). Thus, if
— Zm = < m ; J / 1
¢ {' Xom(n) (w) 1> 2f - CUn(w) e (15) w(n) € Ng(w), theni € Q~(n), unless thesth price update

forallm=1,..., M. wereé-wrong, which we may assume does not occur.
DefmeN&( ) : — N§/2(w) n Nf( ). Combining (14) and ~ Now, sincew(n) converges tav, there exists atV such that
(15), if w(n) € N&(w ) then w(n) € Ng(w) foralln > N. Thus, usei belongs ta2~ (n)
foralln > N. In other words, userdoes not belong t&*(n)
Z CE (w e~ DS (w)L(n). for anyn > N. That implies that no resets occur after thi¢h
price update, which contradicts Lemma 7.3. O

SinceW is a compact set, there exists a finite covering of sucf} Lemma 7.5: The price sequenagn) visits I'. infinitely
setsN¢" (w®), k = 1,..., K. Thus, deconditioning often.

K o Proof: Assume that the price sequence visits only
n) < Z Z Og(k)(w(’“)) e,Dgf”(w(m)L(n) fin_itely often. Lemma 7._4 Fh_en implies that the total size of the
T m ' price updates must be infinite, i.e.,
As L(n) = nf, with 8 > 0, we haved> > | o(n) < co. The Z §(n) = oo. (18)
statement then follows from the Borel-Cantelli lemma. O

By definition, if thenth sample i /2-right, then
£

For compactness, dendf := T'(w(n)). Lemma 7.3 implies

| Xin(n) — Ep(w(n)) | < 2 that, at a certain timeV, the step sizé)(IV) falls below §*.
<5 ! :
: L Assumption 7.3 then gives that
forallm = 1,..., M, which also implies
f Tn+1 <T,- 775(77’) (19)

| Xave(n) - Eave<w<n>> | S 5 f . .
oralln > N, unless thewth price update wa&*-wrong, which
Hence, if useri is &-below average, i.e.F; (w(n)) < we may assume does not occur.
Eave(w(n)) — & thenX;(n) < Xave(n), i€, i € Q7 (n). Combining (18) and (19), we conclude tHBt — —oco as
Similarly, if user j is {-above average, i.eZ; (w(n)) > n — oo, Which is not possible. O
Eave(w(n)) +& thenX;(n) > Xave(n),i.e.,j € Q% (n). Con- Lemma 7.6: The price sequeneén) cannot move fronh',
sequently, if a sample i§/2-right, then the move-to-averageto outsidel's. infinitely often.
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Proof: Let © be the minimum distance betwe&n and

any point outsidd’s.. _ *——* User 1

Lemma 7.3 implies that at a certain timéthe step sizé(N) 0% o= User 2 ]
falls below®. From timeN on, for the price sequence to move z
from I, to outsidel's,, at least price update is required from ¢4 |
pointw ¢ T, to a pointw’ with T'(w’) > T(w). Assumption
7.3 then implies that that price update mustbevrong, which
we may assume does not occur. O

The proof of Theorem 7.1 may now be completed as follow

Proof of Theorem 7.1:Combining Lemmas 7.5 and 7.6,

we conclude that the sequeneén) spends only finitely many
times outside the regioh,. wp 1. Hence, for any > 0, the
sequencewn(n) will eventually enter the regiof's. wp 1, to
never leave it again. Thus, the sequenge) convergestothe 10| 3
optimal price vectomw™ wp 1.

By continuity, the sequende[Y,,(n)] converges tc&,, (w)
forallm = 1,..., M. The convergence af(n) then immedi- 08 "ol 02 03 04 05 06 07 08-08
ately follows. O w

Remark 7.1: In the present paper, we focus on establishirlg% LN ized d throughtSt( o) as function of
almost-sure convergence to the optimal-revenue vectoThis o L Normaiized expected throughfiti(w) as function of.
critically relies on the step siz€$, k = 1,2, ...} being a con-
vergent sequence. As an alternative, the step sizes may be ! g
fixed at some given value We expect that the price sequenc ‘
will then continue to oscillate around*, but with smaller am- |
plitudes for smaller values @f Observe, however, that there is 03 |
an inherent trade-off between the accuracy achieved on the ¢ "
hand and the speed the convergence, and thus the respons |
ness to changing conditions, on the other hand. The valde 0 o5 |
may then be used to find the right balance between these 1 i
conflicting objectives. o =%

20 5

Expected throughput per Timy

09 |

07 |

VIII. N UMERICAL RESULTS
0.3 E
In this section, we describe some numerical experiments tl

we conducted to investigate the convergence properties of 02 E
proposed control algorithms. Besides verifying long-run col
vergence, we also examine the transient performance, in par
ular the rate at which the prices converge to the optimal valut
In the first three experiments, we consider continuous re
distributions. In the fourth experiment, we assume a discrete dis-
tribution in which the feasible rates are determined by a fadigy. 2. Price trajectory for two users over 1000 slots.
process via the signal-to-noise ratio (SNR). The fading process

is modeled using a discrete number of sinusoidal oscillators as ) )
described by Jakes’ model [9]. (71,72) = (0.02,0.01). Thus, the feasible rate for user 2 is

In the final three experiments, we examine how well thabout twice as large in distribution as for user 1. The throughput

throughput ratios are maintained and how well the a|g6arget for user 2 is also set twice as large as for user 1, i.e.,
rithms are able to track changes in the channel conditions (6 2) = (1,2).

0.1 E

0 1 1 1 L raaal IR Levaniiia SR IERE
0 100 200 300 400 500 600 700 800 900 1000
Spins

throughput targets. The values oE;(w) for these parameters as a functioruof
are plotted in Fig. 1. From this figure, we see that the optimal
A. Two Users With Exponential Rates price isw* = 0.6, which may be more precisely determined as

* & 0.593 using bisection.

We ran the control algorithm described in Section VI for 1000

slots. We used step sizég,; = p*6;, with initial value§; =

0.5 and reduction factgs = 0.9. The resulting price trajectories

are graphed in Fig. 2 for a period of 1000 slots. Observe that the

. 7 € [Ruin, Runax] prices converge to the optimal values in roughly 300 slots, which
corresponds to about 0.3 s of operation.

with G; = 1 — e 7i(Bmax—Emin) 3 normalization coefficient, We repeated the above experiment for nongeometric step

i =1,2. We take[ Rpnin, Rimax] = [10,400] Kbits/s and assume sizeséd, = §;k~7, with 3 successively chosen as 1.5, 2.0,

In the first experiment, we consider a model of two users with
independent rates.
The feasible rate for uséris governed by a conditional ex-
ponential distribution on some intervi@ min, Rimax], i.€.,
Fi(r) = G711 — e (r—Fmin)]

2
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before. The corresponding price trajectories are shown
Fig. 3 for a period of 1000 slots. We see that convergence
considerably slower for smaller values @fi.e., slower decay {
of the step sizes.

B. Three Users

In the second experiment, we consider a scenario with thri 0.4 - ‘
users. As before, the feasible rate for udetlows a conditional *
exponential distribution on the interval [10, 400] with parame
ters(vy1,v2,73) = (0.02,0.01,0.02). Thus, the feasible rate for
user 2 is about twice as large in distribution as for users 1 and

The target throughput ratios for the three users are set eqt
i.e., (a1,a2,a3) = (1,1,1). The optimal-revenue vector is j
w* & (0.424,0.152,0.424), as may be determined using nu- %
merical integration and two-dimensional bisection. Observe th...
.the Opt.'mal_ price for users_ 1 and 3 is higher th"_a‘n for user 1{ 213 5. Price trajectories for three users over 5000 slots versugupdate-
is required in order to obtain equal throughput since the feasilal@reme algorithm).
rate for user 2 is stochastically larger.

We ran the two control algorithms described in Sec. Eight Users

tion VII for 5000 slots, or approximately 5 s of operation, |, yhe third experiment, we consider a situation with eight
with L(n) = 10n slots for thenth update. This amounts t0,sers A before, the feasible rate for uigetiows a conditional
roughly 30 price updates. The initial revenue vector is Sgknonential distribution on the interval [10, 400]. The exponents
to w(1) (0.3,0.6,0.1). We used step sizes; k72_’ were chosen uniformly at random in [0.01, 0.05] and turned out
k = 1,2,.... The resulting price trajectories are depictegh pe approximately (0.0489, 0.0263, 0.0139, 0.0480, 0.0220,
as the solid curves in Figs. 4 and 5. The revenue Veci®in107, 0.0461, 0.0128).
for the update-extreme algorithm after 30 price updates isThe target throughput ratios are again set equal for all users.
w(30) ~ (0.441,0.123,0.436), quite close to the optimal one. As pefore, we expect that a larger value of the exponein-

We repeated the above experiment for the update-extremedilcing smaller feasible rates, requires a higher price in order to
gorithm using 4@ and 6@ slots for thenth update, with the obtain equal throughput.
same power series f@y.. The corresponding price trajectories We ran the two control algorithms described in Section VIl
are reproduced as the the dashed lines in Fig. 5 for user 1 infbe 15000 slots, or approximately 15 s of operation, with
first case and user 2 in the second (with similar results for thgn) = 30n slots for thenth update. This amounts to roughly
remaining prices.) As expected, we see that using fewer sam@&sprice updates. The initial revenue vector is set at random.
per price update leads to a slower and “noisier” convergence\i@ used step sizés = k2, k = 1,2,.... The resulting price
the optimal-revenue vectas™. trajectories are graphed in Figs. 6 and 7.
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D. Discrete Rates Driven by a Fading Process

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 3, MAY 2003

TABLE |
FEASIBLE RATE PER SLOT AS FUNCTION OF SNR

Signal-to-Noise Ratio (dB) I Rate (bits)

—5.0 < SNR 1000
—10.0 < SNR < -5.0 500
—20.0 < SNR < -10.0 250
—30.0 < SNR < -20.0 100

SNR < -30.0 30

10 T T T T T T T

-10 F 3

Received Power (dB)

" L i 1 Loy 1 L 1. L 1 N 1. N 1.
0 100 200 300 400 500 600 700 800 900 1000
Time (ms.)

Fig. 8. Fading process with unit power.

a continuous version of the problem. Thus, we ensure that the
optimal control algorithm is determined by the revenue vector
only.

The empirical average throughputs are depicted in Figs. 9 and
10. The achieved throughputs under the update-extreme algo-
rithm are approximately 130 bits per slot for both users 1 and 3
and 270 bits per slot for user 2, quite close to the target ratios.
Under the move-to-average algorithm, the realized throughputs
are reasonably close to the target ratios too, provided the step
size is reduced sufficiently slowly, as in Fig. 9.

The corresponding price trajectories are displayed in Figs. 11
and 12. We see that under the update-extreme algorithm, the
prices converge to the optimal values in about 5 s. Under the

We now consider a case with discrete rates governed by meve-to-average algorithm, the prices converge fairly quickly
dependent fading processes, as described by Jakes’ modeltf8), unless the step size is reduced so quickly that the process

The mean received powers of user 1, 2, and 3-at8.0 dB,

gets essentially overdamped.

0.0 dB, and—-10.0 dB, respectively. The feasible rates per slot
then follow from Table I, using fading realizations as shown i - comparison With a Forcing Scheme

Fig. 8.

The throughput target for user 2 is set twice as large as for& now compare the revenue-based algorithms with a
users 1 and 3, i.e(a,as,a3) = (1,2,1). We ran the two forcing scheme. The forcing scheme assigns siffe trans-
control algorithms described in Section VI for 10000 slotdMission slot to the usern”(n) with the current minimum
with L(n) = n slots for thenth update. We used step sizedi0rmalized throughput, i.e.,

op = k=32 andé, = k=2, k=1,2,....

As explained earlier, the discrete rate values are perturbed by Ym(n)

adding a small uniformly distributed random variable to obtain m=1

* _ .
m(n) =arg min, =



BORST AND WHITING: DYNAMIC CHANNEL-SENSITIVE SCHEDULING ALGORITHMS FOR WIRELESS DATA THROUGHPUT OPTIMIZATION 581

800 T T T e M 0.8
700 | —— User 1 E 0.7 §
#—* User 2 ]
= 600 [ +—+ User 3 E 06
o
@
=4
Q
£ 500 ¥ E 0.5
= ~
£ % 3
%0400 - E g 04
£ &
S E 1 3
) 300 0.
g * * ok
15
>
<< 200 E 0.2
w R PR
100 § E 0.1
0+ 1 . Licis L 1 1 ! 1 L 0 Los 1 | ! 1 L 1 L '
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Slots ( 1000 = 1second) Slots (1000 = 1 second)
Fig. 9. Empirical average throughput for three users over 10000 sld¥g. 11. Price trajectories for three users over 10000 slots (move-to-average
(move-to-average algorithm with, = £—3/2), algorithm with&, = k—3/2).
800 T T MRS RARRRRARA ] T T T T 0.8 T T T T IRRRRARZERSpes T T
1 —— User 1
*—* User 2
700 F - E 0.7 F E
A User 1 +—+ User 3
*— User 2

600 | +——+ User 3

Price (w)

Average Throughput (per slot)

TN TN L I Lo L il L d
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Slots ( 1000 = Isecond) Slots (1000 = 1 second)

| [ 1

1 1

0 | ) .
0 1000 2000 3000 4000 5000 6000 7000

| I 0 ﬁ I
0

8000 9000 10000

Fig. 10. Empirical average throughput for three users over 10000 sldtfy. 12. Price trajectories for three users over 10000 slots (update-extreme
(update-extreme algorithm with, = k=2). algorithm withé, = k—2).

By construction, the forcing scheme realizes the targentirely by the normalized cumulative throughputs, which

throughput ratios perfectly, in the sense that wp 1 only depend on the feasible rates in previous slots. Under
i.i.d. assumptions, the feasible rate for usen the nth slot
yi(N) ; is indep.e.ndent Qf the fea;iple rates in previous slof[s. Hence,
v, (V) - a’ asN — oo (20) the decision variable(;(n) is independent of the feasible rate

R;(n), so that

for all pairs of userg,j = 1,..., M.
The downside of the forcing scheme, of course, is that it gen- E[Yi(n)] = E[Xi(n)]E[R;(n)] = E[X;(n)]E[R;]

erally achieves lower throughput in absolute terms, as it does

not take advantage of the variations in feasible rates. and, thus
Under independent identically distributed (i.i.d.) assump-

tions, the throughput obtained under the forcing scheme may in

fact be computed in closed form as follows. The decision as to Ely:(N)] = E Z Yi(n) | _ pi(N)E[R:] 1)

whether or not thexth slot is assigned to useiis determined
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Fig. 13. Empirical average throughput for three users over 5000 slots (forcifig- 14.  Price adjustment to allow for data burst for user 3 (move-to-average
algorithm). algorithm).

0.8 T T T T T i
— User 1

with p;(N) := IE[ZT]:T:1 X;(n)/N] denoting the expected frac-
tion of slots assigned to useout of the first\ slots. Combining 07 | e :
(20) and (21), we conclude J
a; 0.6 )

pi(N) — IELR.i] , asN — oo

b (N> E[}%j] 0.5
for all pairs of usersi,; = 1,...,M. Using the identity %04
> X pi(N) = 1, we obtainp;(N) — Ko;/E[R;] and £
yi(N) — o; K asN — oo with K—! = Zjvil a; [E[R;]. 03

We repeated the experiment of the previous subsection for tl
forcing scheme. The empirical average throughputs are repr 2
ducedinFig. 13 for a period of 5000 slots. The achieved throug|
puts are approximately 90 bits per slot for both users Land 3ar *'
180 bits per slot for user 2. The results show how tightly the targe o - N L L
throughput ratios are maintained under the forcing scheme. 75000 77000 79000 81000 83000 85000 87000 89000
absolute terms, however, the throughput for all users is about Time ms.
30% smaller than for the revenue-based algorithms. Fig. 15. Price adjustment to allow for data burst for user 3 (update-extreme
algorithm).

F. Tracking Capability

We now examine how well the algorithms are able to track The results for the move-to-average algorithm are depicted
sudden changes in the target throughput ratios or channel conFigs. 16 and 17. Similar results for the update-extreme algo-
ditions. rithm are displayed in Figs. 18 and 19.

In the first experiment, the throughput target for user 3 is ini- In the first from each of these two pairs of graphs, the size
tially set to some low value. After 80 s, the throughput targetf the price adjustment varies accordingsio = k~2; in the
is suddenly incremented to allow for the transmission of a dagacond, it varies according & = k~3/2. Thus, it is expected
burst for user 3. that the control will converge more slowly in the former case

The resulting price trajectories are plotted in Figs. 14 and 1&nd that the results confirm this. Indeed, with= k=2, con-

The optimal price values for the new throughput ratios are algergence to the new price occurs only after about 25 s. In the
indicated as dashed straight lines. The results show that, aftaéter case, the correct price is approached shortly after 20 s, but
a few oscillations, the prices quickly settle down to the nethere are stronger fluctuations around the optimal price.
optimal values. A more subtle observation is that in the interval where

In the final set of experiments, the control is “cycled” approxthe power is being changed, the price adjustment remains
imately every 5 s. To test the tracking capability, the mean riairly large, which is an advantage conferred by the reset
ceived SNR of user 3 is lowered at a rate of 5 dB/s for 5 s. Thinditions that we used. Standard control algorithms such as
is expected to lead to a rapid changeuwh The change in SNR Robbins-Monro, in contrast, prescribe such adjustments in
is initiated after 15 s of simulation time and stopped 5 s later.advance, see [13] and [15]. It should be stressed that no attempt
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Fig. 16. Cycled control: lowered SNR, user 3 (move-to-average algorlthmg 19. Cycled control: lowered SNR, user 3 (move-to-average, fyith=
with 6, = k—2). k=15,
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0o k. *EZZ; O L T W has been made here to design the sequefi¢e$, 6, or the
i i I { | il . . .
+——tr User 3 ‘ | ] cycle interval in an optimal way. Also note that the control
08 | 7 E signal could be filtered to remove high-frequency components
07 b ] if necessary.
2% N\/\ 3 IX. CONCLUSION
8 03 r|‘ E We considered the problem of scheduling data users with
& od I ‘ E varying channel conditions so as to obtain the optimal long-run
throughputs for given target ratios. We have shown that the
03 4 bl E problem may be solved by selecting users for transmission
oa b i [ ; according to an optimal-revenue vectot, which balances the
expected throughputs. We presented a wide class of stochastic
0.1 M NNl ] control algorithms that ensure almost-sure convergence to
0 | ‘ IA. b |!. n,l’ At w* and, thus, achieve the optimal long-run throughputs. The
0 5000 10000 15000 2‘;’00 25000 30000 35000 40000 45000 algorithms require only a convergent sequence of step sizes to
1me ms.
Fia 17, Cveled control: | 4 SNR 3 ( . | thbe specified, in combination with an increasing sequence of
1g. . ycled control: lowere: , user move-lo-average algori
with &, = £—2/2). Shmple sizes per price update.
Numerical experiments showed that the convergence to the
1 ‘ ' e * » T ' optimal-revenue vector is, in practice, quite rapid (of the order
User 1 E of a few seconds), making the algorithms suitable for the IS-856
“ User2 system. In addition, the results demonstrated that the algorithms
+——+ User 3 Yy ' - ! . - _g
038 | E have the ability to track changes in the channel conditions and
or b ; throughput targets. Further experiments are required to deter-

mine which form of the algorithm is most adequate for imple-
mentation in the 1S-856 system. The algorithms may also be
enhanced by allowing the step sizes or the sample sizes to be
adapted in response to nonstationary changes in the feasible rate
declarations.

Since the control algorithms require only observations of the
feasible rate, they may be used for admission-control purposes.
This is reminiscent ofhannel probingwith the additional ben-
efit that the prospective user need not be allocated any resources
until the admission-control decision has been made.

i - j In the present paper, we considered a scenario with only one
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 . .
Time ms. user scheduled at a time and a single-rate sample per user per
Fig. 18. Cycled control: lowered SNR, user 3 (update-extreme algorithm wiﬁ!Ot' These conditions, however, are actually not essential for the
S = k72). underlying optimality principle to apply. Revenue-based poli-

Price (w)
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cies, which balance the throughputs, continue to be optimal inLet X7 (w’), Y,?(N¢(w)), and ZI(N¢(w)) be the
situations where several users may be scheduled at a time #mdughput per slot obtained by userin a sample period of
various auxiliary decisions may be taken. lengthn under the above three rules. For amy € N, (w),
As an illustrative example, consider a throughput optimiz&ample path wise;;" (N¢(w)) < X2 (w') < Z (N¢(w)), so
tion problem for two adjacent base stations. Rgt be the rate in particular
in a given slot for usem in cell 1 if both base stations transmitp (| x» (/) —Z,, (w) |> ¢} < P{Y,,(N¢(w)) < Epn(w)—£€}
and letR;, be the rate for usem if only base station 1 trans- FP{Zo (Ne(w)) > E(w) + £} (22)
mits. LetR; and R; be defined similarly as the rate in a given mAte - ’
slot for user in ceII 2. A revenue-based policy then selects th@enote by
decision, which maximizes revenue over all feasible options as n BT tZ" (N< (w))
on (nt) = log Ex[ ]

follows:

W, Ron + wi Ry, m € 1,1€2 the log-moment generating function 8f; (N¢ (w)). Define

Revenue= { w’ R/ , mel SRR
o R o~y om(t) = lim — g, (nt).

Observe that the decisions as to which users are scheduled aﬁdhave that 1
which base station transmits (1, 2, or both) are taken jointly. liminf = log P{Z) (N¢(w)) > nz} = I, ()
The revenue vectar®, which balances the throughputs will be .. nmee
optimal and may be found by using the stochastic control algo-
rithms as before. This approach may also be used in conjunction I (%) := sup{tz — om(t)}.
with antenna systems, for example. t

We now computd,, (x). For anys € S, denote
APPENDIX |

LARGE-DEVIATIONS ASSUMPTION bm(t,s) = Ex] ¢t7m (Ne(w)) | 5]

In this appendix, we show that Large-Deviations Assumpticts the log-moment generating function 6f, (N¢(w)), con-
7.1 is satisfied for the feasible-rate process that we considerditional on the state of the Markov chain governing the fea-
Given a price vectow € W, consider a closed neighborhoodsible-rate DFOCGSS, and define thex S-matrix
N¢(w) of w. LetX,,,(w”) be arandom variable representing the I, (1) = {Q(51,52)Pm (t, 51) } 5.0
throughput per slot that uset receives under the price vector

w’ in stationarity. ThenX,,, (w’) may be formally represented with @ the S x & transition matrix of the Markov chain.

It may be then shown that

as
o (nt) =log » (1L, 7(8)pm(t, 5)
Xm(w ) R I{mem_ max w; Ry} s€S
k=1,..., M . .
(see Dembo and Zeitouni [8]).
with (Ry,. .., Ry) arandom vector with distribution the joint Hence
stationary distribution of the feasible rates.
Now define random variables @m (t) = log p1 (TL (1))
Vi (Ne(w)) = RinI{vur €N, (w)w!, Ro= max  w| Ry} with p; the Perron—Frobenius eigenvalue of the malfix(t)
k=1,..., M SO that
Thus, Y, (N¢(w)) represents the rate that userwould re-
ceive in the case it were selected only if it has the maximum I (z) = Slip{m —log p1 (ILn(2)) }.
rate-reward product undedl pricesw’ € N (w). Evidently,
X (w') > Vi (Ne(w)) for all w’ € Ne(w). It remains to be shown thaf,.(z) > 0 for z >
Similarly, define random variables Ex[Zm (Ne(w))].
Sincell,, () is a compact family of nonnegative matrices, we
Zm (NC(U))) R I{Hw EN¢(w)w!, Rpy= max w R;‘} h ( )
k=1,..., WM ave
Thus, Z,, (N¢(w)) represents the rate that userwould re- (L (#))" o7 — 1) () — 0

ceive in the case it were assigned the slot if it has the maximum

rate-reward product undeome pricas’ € N (w). Obviously, component wise and uniformly for afl € [0, ¢], with /(') and

X (w') < Zp (Ne(w)) for all w’ € Ne(w). r(t") the left and right Perron eigenvectors, normalized such that
Denote byE - [V, (N¢(w))] andE [ Z,, (N¢ (w))] the respec- Xees ls(t') = 1 and}; s r«(t') = 1 (see Seneta [17, The-

tive expectations under the stationary distributiqa), s € S, orem 3.6]).

of the Markov chain governing the feasible-rate process. By Thus, ¢n(t) may be uniformly approximated by

dominated convergence (1/n)@p, (nt): for any givent > 0, ¢ > 0, there exists
_ ann such that
Ex Yo (Ne(w))] € Emn(w) < Ex[Zim (Ne(w))] Lo p
forallm = 1,..., M, with E;[Y,, (N¢(w))] T E,,(w) and |ﬁtp’"(n/)_tpm( JI<w

Ex[Zm(Ne(w))] | Em(w) as¢ | 0. for all ¢/ € [0, ).
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Hence Now consider a price vectas ¢ T'.. By definition, if a price
, , direction is¢-right, then all thet below-average users will be-
S‘;lp{m_log pr(In(t))} > Olg,*gt{t z—log p1 (T (') } long to©2~ and all thet-above-average users will belongid .

1 Thus, ifi € 07, thenZ;(w) < Eave(w) + Eandifj € QF,
> max {t'z — —¢pn,(nt') — ¢} = max v,(t',¥). then= S =
T o<v<t n' M o<t<t "V’ en“j(w)_ Z Have(w_) - ¢ _ _ _
. _ As mentioned earlier, we consider two alternative choices for
However, since all moments exist;, (¢') may be expanded t0 the function?(-). The first one is
third order around 0, using Taylor’'s theorem as follows:
T(w) = Epax(w) — Egin(w).

1 N N tl2 5 tl3
Ecpm(nt ) =t (ExZy (N¢(w)) — @,) + CRCRE Define ¢ = min{ZEna(w) — Bave(w), Eave(w) —
. Emin Z .
with lim,, .o, @,, = 0, liminf 02 > 0, andp,, < K < cc. (w)}/2 2 e/2M > 0. Then
Fore = Ex[Zm(Nc(w))] + ¢, we may taket* = (e —  Swin(w) = min =, (w')
w,)/o2. If nis sufficiently large and sufficiently small, then B min’{ ’min =,(w'), min Z,(w'))}
Y (t*, ) > 0 and, hencel(z) > 0 for z > Ex[Z,, (N¢(w))] B ica- " Vjear 7

due to monotonicity inz. It follows that there exist numbers
Ct,(Ne(w), Z) > 0,D¢, (Ne(w), Z) > 0, such that

? ?

P{Zmn(Ne(w)) > Ex[Zn(Ne(w))] + €}
< Cp(Ne(w), 7) e7"Pm(Ne().2) - (23)

> mi in =; 6n, min =, —60
> min { iIél(l)I} (w) + 6m, J}gg}r j(w) }
Z min {Emin(w) +5777 Eave(w) - 6_ 60}
>Emin(w)+min{én, & — 66}

>E min(w)+min {677,

Similarly,
ZEmin w) + 0
P{Yin (Ne(w)) < ExYim (Ne(w))] - ¢} for 5 < c/2M(n + 9() o

< Cr (Ne(w),Y) e D (Ne(w).¥), (24)  Similarly

__°
2M — 66

Now take ¢ = ¢&/2 and ¢ > 0 small enough = (v)= max ZE,(v)

so that Ex[Vi,(Nc¢(w))] > En(w) — £/2, m=1,....M

Er[Zm (N (w))] < Em(w)  +  €/2, = max { max Z;(w'), max =;(w')}
1 7

CE (w) = 2(05,{2 (Ne(w),Y) + C3/%(Ne(w), Z) > o) and

— .

< max { max Ei(w) + 60, max Zj(w) — én}

DE (w) := min {Df,,/,Z(NC(w),Y), D% (N (w), Z)} > 0. ) '€ i€
Combining (22), (23), and (24), we then obtain -

<Emax(w) + max{—¢ + 66, —én}

<

P{] X7 (w') = Em(w) | > €} < C& (w) e~ Pm (0 - €
Emax(w) + max{ Wi + 66, 617}

as required. <Bmax(w) — 67
APPENDIX I for6 < e/2M(n + 0).
FUNCTION T'(+) Thus
In this appendix, we prove that Assumption 7.3 is satisfied 7T'(w’) =Zax(w’) — Epin(w’)
for suitable functiond’(-) under certain assumptions on the fea- <Emax (W) — Emin(w) — 208 = T(w) — 298

sible-rate process _
For any subsef C R, denote byu(S) the Lebesgue mea-for all § € (0,8%) with §* = ¢/2M (n + 6). _
sure ofS and denote byt(S) the stationary probability that the ~ The second choice that we consider is the function

feasible rate vector is if. We assume that there are fixed con- M
stantsK, Ko such thatK; u(S) < n(S) < Kou(S) for all T(w) =" wpnEm(w).
S g R. m=1

We will prove that Assumption 7.3 is satisfied provid&d > Define¢ := ve/4(M — 1). For convenience, relabel the users
0, K> < oo. Itmay then be shown thatthere exjst- 0,6 < 00 g\,ch thaf)— :— ..., K}, With =5 (w) < --- < Ex (w), and
such that ifw’ = w + $u(w), with v(w) as in (8) and(®), then &+"— (& | 1. .\ M1} with Zycps (1) < - < Eay(w). Re-

forallz € 2~ call that if a price direction ig-right, then all¢-below-average

=i(w') — Zi(w) € 81, 6) users belong t®~ and all¢-above-average users belong¥o,
’ ’ ' sothatifi € Q=, 5 € QF, then
and for allj € QF _ _
, = (w) — Ei(w) > ~2€.
Zi(w') — E;(w) € —6[n,0 - )
() = &) .6} Denotevios = S0, v = Z?LKH vj. It may be easily
(see also Lemma 7.1). verified that there exist numbersq,...,up—1 > 0,

’
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with Z,Ic\/[:_lluk = w0, and integersi(k) € {1,...,K},

jk)y e {K +1,...,M}, such that

Vi = Z Uk

k:i(k)=i

(4]
(5]

(6]
foralli =1,...,.K

vy = — E Uk

ki (k)=j

(71

forallj = K+1,...,M.
Without loss of generality, we may assume thdf) = 1,
j(1) = M, uy = min {v(1),v(M)} > v > 0 and thaty;, <

(8]
[9]
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< Wiy En (W) — 6 Z ur (B (w) — Zjy (w) — 206)
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<T(w)
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4M -1
_ e

4

ve/80(M — 1).

REFERENCES

Sem Borstreceived the M.Sc. degree in applied mathematics from the Univer-
sity of Twente, Enschede, The Netherlands, in 1990 and the Ph.D. degree from
the University of Tilburg, Tilburg, The Netherlands, in 1994.

During the fall of 1994, he was a Visiting Scholar at the Statistical Labora-
tory of the University of Cambridge, Cambridge, U.K. In 1995, he joined the
Mathematics of Networks and Systems Department, Bell Laboratories, Lucent
Technologies, Murray Hill, NJ, as a Member of the technical staff. Since the
fall of 1998, he has been a Senior Member of the Probability, Networks, and
Algorithms Department of the Center for Mathematics and Computer Science
(CWI), Amsterdam, The Netherlands. He also has a part-time appointment as a
Professor of Stochastic Operations Research at Eindehoven University of Tech-
nology, Eindehoven, The Netherlands. His main research interests are in the
performance evaluation of communication networks and computer systems.

[1] R. Agrawal, A. Bedekar, R. J. La, and V. Subramanian, “Class and

(2]

(3]

channel condition based weighted proportional fair scheduleFtac.
ITC-17 Teletraffic Engineering in the Internet Er&. da Bahia, J.
M. de Souza, N. L. S. da Fonseca, and E. A. de Souza e Silva, Ec
Amsterdam, The Netherlands, 2001, pp. 553-565.

D. M. Andrews, K. Kumaran, K. Ramanan, A. L. Stolyar, R.
Vijayakumar, and P. A. Whiting, “CDMA data QoS scheduling
on the forward link with variable channel conditions,” Report
10009626—-000404—-05TM, Bell Laboratories, Lucent Technologi
Murray Hill, NJ, 2000.

D. M. Andrews, K. Kumaran, K. Ramanan, A. L. Stolyar, R. Vi

jayakumar, and P. A. Whiting, “Providing quality of service over \'

shared wireless link,/JEEE Commun. Magvol. 39, pp. 150-154, Feb.
2001.

Phil Whiting (M'94) received the M.Sc. degree
in probability and statistics from the University
of London, U.K., in 1983 and the Ph.D. degree in
electronic engineering from the University of Strath-
clyde, Glasgow, U.K., in 1987. His postdoctoral
reasearch was at the Statistical Laboratory of the
University of Cambridge, Cambridge, U.K.

In 1993, he participated in the trial of Qualcomm
CDMA by Australia Telecom. In 1997, he joined the
Mathematics of Networks and Systems Department
of Bell Laboratories, Lucent Technologies, Murray
Hill, NJ, as a Member of the technical staff. His main research interests are in
information theory and the performance evaluation of wireless networks.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


