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The Use of Service Limits for Efficient Operation 
of Multistation Single-Medium 

Communication Systems 
Sem C. Borst, Onno J.  Boxma, and Hanoch Levy, Member, ZEEE 

Abstract-Time limits are the major mechanisms used for con- 
trolling a large variety of multistation single-medium computer- 
communication systems like the FDDI network and the IEEE 
802.4 Token Bus. The proper use of these mechanisms is still 
not understood and rules for efficient system operation are not 
available. Our objective is the derivation of such rules. We use 
a cyclic polling model with different service limits (k-limited 
service) at the different queues, thus emulating time limits. We are 
interested in determining these k-limit values so as to minimize 
the mean waiting cost of messages in the system. A simple 
approximative approach is proposed for two major problems: 
One in which a limit is set on the token rotation time and one in 
which no limits are imposed. The approach is tested for a variety 
of cases and is shown to be very effective. 

I. INTRODUCTION 

IMED-TOKEN passing protocols are the medium access T control protocols used in many local area networks, such 
as the FDDI network [ l ]  and the IEEE 802.4 Token Bus [2]. 
In timed-token protocols, the time during which a station can 
continue to transmit may depend on the congestion of the 
network as well as the priority of messages under transmission 
(cf. [29]). The option of setting different limits to different 
stations is the main mechanism available for prioritizing 
the stations and achieving good system performance. Timer- 
based service disciplines have also been commonly used in 
other systems with forms of resource sharing (e.g., several 
processors on the AT&T 5ESS Switch network and control 
point). 

While the use of sophisticated time-limited service mech- 
anisms in the control of multistation systems is widespread, 
little is known about how to operate these mechanisms in order 
to achieve desired performance. Our objective is to address this 
problem by investigating which choices for the time limits lead 
to the optimal performance of the access protocol. The system 
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performance is expressed in the mean waiting cost, where 
the cost parameters of the different stations are set differently 
according to their relative importance. 

The performance of token passing protocols has often been 
studied by analyzing a cyclic polling model, i.e., a queueing 
model in which a single server S visits a set of queues 
&I, . . . , QN in cyclic order. Restrictions on the token rotation 
time, which may be invoked in times of congestion, are hardly 
handled in the performance literature. Fixed time limits, too, 
usually represent unsurmountable mathematical difficulties (cf. 
de Souza e Silva et al. [17]). Therefore, one typically finds the 
following emulations of time-limited service: 1) exponential 
timers: Coffman et al. [15], 2)  sum of exponential-phase 
timers: Leung and Lucantoni [26], 3) probabilistically-limited 
service: Leung [25],  4) Bernoulli service: Blanc and Van der 
Mei [ 5 ] ,  and 5) k-limited service: Fuhrmann and Wang [23]. 

In the present study we also use k-limited as an emulation of 
time-limited service. Under Ic-limited service S serves, upon 
each visit to Q,, at most k ,  customers; IC, E { 1 , 2 , .  . .}, 
z = 1, . . . , N .  Leung [26] numerically analyzes a polling 
model with exponential timers, and compares the mean waiting 
times with those for k-limited service and those for fixed 
timers. Taking exponential service times, it turns out that 
both an exponential timer and k-limited give very good mean 
waiting time approximations for fixed time limits. k-limited 
service is somewhat worse for relatively small timers, and 
(naturally) somewhat better for large timers; one may expect 
that k-limited has the edge when service times become less 
variable. Note that k-limited service coincides with time- 
limited in the practically relevant case of constant service 
times (fixed-length packets). Hence, the rules for setting the 
k,-values optimally, as derived in the present study, will give 
very useful indications for setting efficient time limits. 

k-limited is also of interest in its own right; there is a 
large variety of nongeneric systems in telecommunications 
which use polling strategies to provide service to several 
entities (e.g., collecting messages, which arrive on several 
incoming links and queue up in the incoming queues, in 
a telecommunications switch). Many of these systems use 
a limited-service mechanism to provide different service to 
the different queues in order to improve system performance, 
cf. also the recently introduced “weighted fair queueing” 
(or “weighted processor sharing” or “weighted round robin”) 
policy for ATM. 
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Our objective is to find the ki-values that minimize the mean 
waiting cost (or the weighted mean waiting time): 

N 

min CC;X,EW; 
i=l 

k i , . . . , k , v  

where EW; is the mean waiting time at Q;, A; is the 
rate at which customers arrive at Q;, and e; is the waiting 
cost parameter of that queue (the cost imposed by having a 
customer wait one time unit). This problem may be denoted as 
the unconstrained optimization problem. To consider systems 
in which an additional control mechanism is to set up a limit 
on the server rotation time, namely the time it takes for the 
server to complete a cycle, we consider the same optimization 
problem but under the constraint 

N 

i=l 

where y; are arbitrary parameters. We denote this problem as 
the constrained optimization problem. Setting y; = pi, with 
/3; the mean service time at Q;, translates the constraint to a 
limit on the expected value of the rotation time. If the service 
times are constant (transmission of fixed-length packets) as 
well as the switchover times, then the constrained case may 
reflect an upper bound on the actual cycle time. 

Unfortunately, polling systems with k-limited service are 
very hard to analyze (let alone optimize); an exact analysis is 
only available for very few special cases. Eisenberg [ 181 and 
Cohen and Boxma [ 161 study the 2-queue model with 1 -limited 
service at both queues and zero switchover times; both papers 
use methods from complex function theory. Boxma and Groe- 
nendijk [ 101 analyze a similar model with nonzero switchover 
times by solving a Riemann boundary value problem, the 
mean waiting times being expressed as singular integrals. The 
2-queue model with 1-limited service at Q1 and exhaustive 
service at Qz (kz = 00) has turned out to be a relatively 
simple model [24, Section 6.31. 

The fact that even mean waiting times in polling models 
with limited-service policies are generally not known, adds to 
the importance of the so-called pseudo-conservation law (pcl). 
The pcl provides an exact expression for a specific weighted 
sum of the mean waiting times. For the polling model with 1- 
limited service at all queues, such a pcl has first been derived 
by Watson [32]; a more general pcl is derived in [9], [7], 
using a simple probabilistic argument. For the case of k-limited 
service with k; > 1 for some i-values, the pcl still contains 
some unknown quantities. Everitt [ 191, [20] approximates that 
term, while Fuhrmann and Wang 1231 give bounds for it. 

One of the advantages of the pcl is that it is useful in 
developing simple and reasonably accurate approximations for 
the individual mean waiting times; Fuhrmann and Wang [23] 
have provided such an approximation for k-limited service. 
Such simple approximations may subsequently be used for op- 
timization purposes; that will be exploited in the present paper. 

Motivated by the fact that relatively “rough’ approximations 
for the mean waiting times have led to quite good operational 
rules for polling systems, [ l l ] ,  [12], we use approximations 
for the mean waiting times which are relatively simple but 

which capture the major factors important for efficient op- 
eration. For the problem of finding optimal service limits 
under rotation time constraints, we develop and investigate 
several such approximations, leading to various operational 
rules. For the unconstrained problem we start our analysis by 
deriving some properties of polling systems with k-limited 
service. In particular we derive a cp-like rule for systems with 
switchover periods. The (partially conjectured) derived rule 
states that for optimal operation of these systems the queues 
with the highest value of the ratio must have their k ,  set 
at infinity, i.e., receive exhaustive service. We then study an 
approximation which possesses similar properties, to suggest 
operational rules for the system. The resulting operational rules 
(for both problems) are numerically tested for a wide range of 
cases and are shown to be very effective in optimizing the 
system performance. 

The paper is organized as follows. Section I1 contains a 
detailed model description and some preliminary results on 
mean waiting times. In Section 111, we propose four approaches 
to the optimization problem under rotation time constraints. 
These approaches are numerically tested in Section IV. In 
Section V, we derive properties of polling systems with k-  
limited service and a (partially conjectured) cp-like rule for 
the unconstrained optimization problem. We then also study 
an approximative approach to this problem. This approach is 
numerically examined in Section VI. Some conclusions are 
presented in Section VII. 

Remark 1: The vast polling literature contains only a few 
optimization studies. At ITC-13, two surveys on optimal server 
routing were presented: [33] on semidynamic routing, and [8] 
on static routing. For given server routing, Levy et al. [28] 
prove that the service strategy that minimizes the amount of 
work in the system is to serve as many customers as possible 
at each visit. 

Blanc and Van der Mei [5] study an optimization problem 
that is related to ours. They consider the Bernoulli service 
policy at each queue: when S visits a nonempty queue, it 
serves one customer; and at each service completion which 
does not leave the queue empty, S serves yet another customer 
with probability q; and proceeds to the next queue with 
probability 1 - q2. Blanc and Van der Mei try to find those 
q2, i = 1,. . . , N ,  which minimize a weighted sum of the 
mean waiting times. Their main approach is a numerical 
one, based on the use of the power series algorithm (psa). 
The psa allows an accurate numerical determination of the 
mean waiting times in polling models for which the joint 
queue length process has the structure of a multidimensional 
quasi birth-death process [3], [4]. The psa has a quite wide 
applicability for multidimensional queueing problems, its main 
disadvantage being that the time and memory requirements 
grow exponentially with the number of queues. In view of this 
drawback Blanc and Van der Mei [5]  subsequently propose and 
investigate a simple approximation for the mean waiting times 
in polling models with Bernoulli service. 

The Bernoulli service policy is the stochastic counterpart of 
the k-limited service policy, having mainly been devised to 
emulate the behavior of the k-limited discipline. In that sense, 
our paper can be viewed as a companion paper to [5]. U 
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11. MODEL DESCRIPTION AND PRELIMINARIES 

A single server S serves N infinite-capacity queues (sta- 
tions) Q1,.  . . , Q N  in cyclic order, switching from queue to 
queue. Customers arrive at all queues according to independent 
Poisson processes. The arrival intensity at Q; is Xi ,  i = 

1,. . . , N ,  and the total arrival rate is X := X i .  Customers 

arriving at Qi are called class-i customers; their service times 
are independent random variables with mean and second 
moment ,0j2), i = 1,. . . , N .  The offered traffic load, pi ,  at Q; 
is defined as p; := Xipi, i = 1,. . . , N ,  and the total offered 

N 

i=l 

N 
load is p := pi .  

i=l 
When visiting Q;, S works until either k; customers have 

been served or the queue becomes empty, whichever comes 
first. Note that ki = CO amounts to exhaustive service. 
Fuhrmann and Wang [23] call this policy E-limited service, 
as opposed to G-limited service in which S,  when meeting m i  
customers at Qi upon arrival, only serves min(m;,ki) cus- 
tomers. In G-limited service, ki = DC) amounts to gated service. 
When swapping out of Qi (moving toward Q ( i m o d ~ ) + l )  the 
server incurs a switchover period of type i ;  the switchover 
durations are independent random variables with mean s i  and 
second moment si2), i = 1,. . . , N .  The total switchover time 

during one cycle of the server has mean s = s i  and 

second moment s(’). The interarrival, service and switchover 
processes are independent stochastic processes. 

Fricker and Jaibi [21] have recently provided a mathemati- 
cally rigorous presentation of necessary and sufficient stability 
conditions for a large class of cyclic polling systems, which 
includes the one of this paper. Their condition reads here: 

N 

i=l  

p +  , max { X i s / k i }  < 1. 
z=1,  ..., N 

In the sequel this condition is assumed to be fulfilled. 
Let W, denote the steady-state waiting time at Q,, and let 

c, denote the cost imposed on the system of having a customer 
wait one unit of time at Qz. The expected cost of operating the 

system per unit of time is thus c,X,EW,. The problem of 

interest in this paper is that of finding a vector (k1,  . . . , k ~ )  

which minimizes the expected operating cost c,X,EW,. 

This cost is minimized both for the case of a linear constraint 

y,k, 5 K and for the unconstrained case. The choice 

1 puts a limit on the number of services in a cycle, and 

Everitt [ 191 has derived the following pseudo-conservation 

N 

2=1 

N 

z = 1  

N 

z=1 
y, 
the choice y, = ,l3, yields a bound on the mean cycle time. 

law for the E-limited service discipline: 

with 

and 9:’) denoting the second factorial moment of the number 
of customers served during a visit to Qi. For k; = 1, gk2) = 0, 
but for ki # 1, g i 2 )  is not known exactly. 

111. WAITING COST MINIMIZATION 
UNDER A ROTATION TIME CONSTRAINT 

In the present section we study the problem of finding the 

service limits k l ,  . . . , k ~ ,  constrained to yiki 5 K ,  that 

minimize the waiting cost ciX;EWi. The constraint reflects 

some rotation time restriction. We successively consider the 
following four mean waiting time approximations: 

I) an approximation based on a 1-limited polling table; 
11) a simple k-limited approximation; 
111) a Fuhrmann and Wang-like k-limited approximation; 
IV) the original Fuhrmann and Wang k-limited approxima- 

Each of the first three approximations for EWi is convex 
decreasing in ki while being insensitive to k j ,  i # j .  Thus, 
ignoring integrality constraints, the optimal service limits 
k ? ,  . . . , kh may be determined by putting (with some abuse of 
notation) ciXi&EWi = -Tie, i = 1,. . . , N ,  with e denoting 
a Lagrangean multiplier. The optimal service limits based on 
the fourth approximation cannot be solved analytically but 
have to be determined numerically. 

N 

i=l 
N 

i=l 

tion. 

A. An Approximation Based on a I-Limited Polling Table 

A generalization of the cyclic visit order considered so far is 
a fixed, generally noncyclic, visit order. Such a visit order may 
be described in a polling table, which may contain mi 2 1 
visits to &i. 

Our approximation idea is the following. There is some 
resemblance between adopting the k;-limited service discipline 
at Q;, visiting Qi once, and adopting the 1-limited service 
discipline at Q;, visiting Q, k; times; in either case the server 
is allowed to serve at most ki customers in one “cycle”. 
So the optimal visit numbers ml, . . . , m~ for the 1-limited 
service discipline may provide an indication for the optimal 

Boxma, Levy, and Weststrate [ l l ]  study the problem of 
finding those polling table visit numbers ml , . . . , m ~ ,  that 

minimize ciX,EW,. They propose the following mean 

waiting time approximation, under the assumption that the m, 
visits to &, are spaced as evenly as possible: 

k l  , . . . , k N .  

N 

i=l 
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j=1 
with EC = m j s j l ( 1 - p )  the mean cycle time, and B some 

unknown constant. B could be determined using the pseudo- 
conservation law for polling tables, but its value is not relevant 
for the determination of the optimal values of mi (denoted by 
m;), which follow easily from (4) by using the Lagrangean 
multiplier technique: 

P -  
N 

j = 1  

i) the time from its arrival to the start of the subsequent 
visit of the server to Qi,  i.e., a residual cycle time RCi 
with regard to Q;; 

ii) the time from the start of the latter visit to its service, 
i.e., approximately Xi/ki cycle times C+ with regard to 
Q; (atypical cycles, as each contains k; services at Qi),  

when the (tagged) customer finds Xi waiting class-i 
customers upon arrival. 

Applying a traffic balance argument, ECf M kip, + s + 
( p  - p;)EC'. Noting that EXi = XiEWi, we thus obtain 

Here R represents an arbitrary scaling factor, reflecting the 
homogeneity of the objective function in ml , . . . ? m N .  

As remarked before, the optimal visit numbers ml , . . . , m~ 
for the 1-limited service discipline may provide an indication 
for the optimal k l , .  . . ? k N .  However, visiting Q; k; times 
differs from visiting Qi only once in the respect of the 
switchover time incurred. In the former (latter) case the 
switchover time corresponding to Qi is incurred ki times 
(once) per cycle. So the optimal visit numbers ml,  . . . ? mN 

may be better candidates to provide an indication for the 
optimal k l , .  . . , k ~ ,  when the mean switchover times in (4) 
are scaled by a factor l / k i ;  this yields 

I - p - - s  4 
ki 

For k, = 1 (8) reduces to EW, M l - p f p ,  E R G ,  

the known approximation [I31 for the 1-limited service 
discipline. However, for k, = 00 (8) reduces to 

EW, M - + "ERC,,  rather than EW, = (1-p,)ERC,, 

the known exact result for the exhaustive service discipline 
(defining a cycle with regard to Q, as the interval between 
two successive departures of S from Q,). The reason for this 
discrepancy is that the derivation of (8) ignores the possibility 
that a class-z customer upon arrival finds S visiting Qz and 
can still be served during that visit. 

Starting from (8), assuming E R C ,  z ERC = BEC = 

1 - p - X,s 

1 - P  

- 
Bs/(l - p )  with B some unknown constant, 

? z = 1 , . . . ,  N ,  (6) 
1 - ~ + p ,  EC EW, M B  l-P-X,s kz N 

4 s  

1 - P  j=1 

X,JC,(1 - P + P,)/Yz 

c Y 3 X 3 J C j P  - P + P,)/Y3 

+ ( K  - C7,G) * k ,  = k ,  
with EC = s/( I - p ) .  This leads to (7) shown at the bottom of 
the page. One may interpret (7) as follows. The server should 

customers during a visit to A, s be allowed to serve at least - 
T.P Q,, to satisfy the stability condition (1). The remaining service 

? 2 = 1, . . . ,  N .  (9) N 

3=1 N .  
hj s 

capacity, K - yj -, should be assigned proportionally 
1-Ll 

3 4  

to Jc;Xi(l - p + pi)/y;. Some reflection convinces one that 
indeed a station with relatively high c;, Xi, pi,  or l / y i  should 
be assigned a relatively high capacity. 

Equation (7) is just as simple as ( 5 )  and yields better results. 
Still, the numerical results in Section IV reveal that it does not 
always perform well. Below we investigate a quite different 
idea. 

B. A Simple k-Limited Approximation 

We now imitate the derivation of the mean waiting time 
approximation for cyclic polling systems with 1-limited ser- 
vice [I31 and for polling tables with 1-limited service ([I l l ,  
leading to (4)). The waiting time of a (tagged) class-i customer 
is composed of the following. 

One may interpret (9) similarly to (7). 
Note that (9) slightly differs from (7) in the proportional as- 

N 
x j  S 

signment of the remaining service capacity, K - yj G, 
i=l 

which may be explained as follows. Visiting Q i -  ki times 
differs from visiting Q; only once not only in the respect 
of the switchover time incurred, as remarked before, but also 
differs in the respect of the residual time until visiting Q;. 
In the former case the residual subcycle time is assumed to 
behave inversely proportional to k;,  whereas in the latter case 
the residual cycle time is assumed to behave constantly. 

C. A Fuhrmann and Wang-Like k-Limited Approximation 

To remedy the weakness of (8) indicated above, a natural 
heuristic approach is to take a weighted sum of the 1-limited 
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‘ - P + P ~  ERCi 
1 - p - x i s  

mean waiting time approximation EWi M 
and the exhaustive mean waiting time result EWi-= (1 - 
pi)ERCi,  with weight factors u; (k i )  and 1 - ui(ka). The 

1 - p - x i s  

k;( l  - p )  - x i s  
choice u, (k i )  = has the desirable properties 

& S  that ui(l) = 1, ui(m) = 0, and EWi + rx for ki + -. 
1 - P  

This, in fact, yields the approximation (30) of Fuhrmann 
and Wang [23]: 

(1 - p i ) ( l -  p )  + p”(2 - p )  
EWi M ki ERC;, i = 1,. . . , N .  

(10) 
Starting from (lo), assuming ERCi M ERC = B E C ,  with 
B some unknown constant, 

X i S  
l - -p - -  

ki 

The optimal service limits based on (13) cannot be solved 
analytically but have to be determined numerically. 

In the next section we test the simple rules (7), (9), (1 l), 
and the rule based on (13). 

Remark2: Fuhrmann and Wang [23] concentrate on k-  
limited service under a gated regime at all queues. They use 
the reasoning leading to our approximation B, observe the 
discrepancy for k,  = cc [the reason for which is explained 
above (9)] and then modify their approximation in a way that 
amounts to our taking a weighted sum. Tedijanto [31] consid- 
ers cyclic polling systems with a Bernoulli service policy. He 
proposes a mean waiting time approximation which coincides 
with (10) when one replaces the Bernoulli parameters 4% by 
1 - l / k % .  His approximation is used by Blanc and Van der Mei 
[5] to find those 4% that minimize a weighted sum of the mean 

0 
Remark 3: Setting 7% = ,8%, K = L - s, i.e., imposing 

a limit L on the mean cycle time at periods of overload 
(namely, when all queues are loaded), (1 1) reduces to (14) 
shown at the bottom of the page. One may interpret (14) as 
follows. The server should be allowed to visit Qz at least for 
a time - ”’ , to satisfy the stability condition. The remaining 

waiting times, cf. Remark 1. 

1 - P  
nonswitchover time, L - , should be assigned propor- 

tionally to ,/c;pi[pi(2 - p)  + Xis(l - p i ) ] .  This suggests a 
rule for the optimal setting of time limits in polling models 
with a time-limited service discipline. Note that in the case of 
constant service times, the k-limited and time-limited service 

One may interpret (1 1) similarly to (7). 1 - P  

D. The Original Fuhrmann and Wang k-limited Approximation 

ERC but 
they do not ERC = BEC. Instead they approximate 
ERC by substituting (IO) into (2), taking g,!’) = 0, 

Fuhmann and wang [231 also ERCi 

disciplines coincide. 0 

N 
S 

D + - E ! !  I v .  NUMERICAL RESULTS FOR THE 
CONSTRAINED WAITING COST MINIMIZATION 1 - P j=1 4 

E R C z  2 (12) 
For a wide variety of cases we compared the optimal values 

of the service limits and the waiting cost with the values 
achieved by the rules (7), (9), (1 I) ,  and the rule based on 

Taking gj2) = max{ 0, (s) - -} in (2) would (13) proposed in the previous section. Due to space limitations 

probably improve the accuracy of (12). we did however we give here only a brief overview of the numerical results 
not consider this option, as the numerical results in Section Iv gathered; more extensive numerical results are presented in [6]. 
reveal that the rule based on (12) performs already very well. To the mean waiting times we used the power 

series algorithm (psa). The psa allows an accurate numerical 
determination of the mean waiting times in polling models 
for which the joint queue length process has the structure 
of a multidimensional quasi birth-death process, cf. [3], [4]. 
(Alternatively, the mean waiting times for k-limited service 
could also be evaluated by the numerical approach developed 
by Leung [25].) The main drawback from which the psa 
and the approach of Leung [25] suffer is that the time and 

2 (13) memory requirements grow exponentially with the number of 
queues. We therefore confined ourselves to cases with only 
a few queues. We have confidence however that the various 

P 3 2 - P  

x i  S 

1 - P  

j=1 

2 

Substituting (12) back into (lo), 

(1 - P i ) ( l  - p )  + q 2  - p )  

1 - p - -  

ki  
x i  S 

ki 

EWi M 

N 2  
P j  

1 - P j=l k j  
D + L Z -  

N P j 2 - P  

j=1 
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TABLE I 
TWO-QUEUE CASES 

approaches will perform at least as good for a larger number 
of queues. In Remark 6 we shall discuss the case of a large 
number of queues in some detail. 

A further drawback from which the psa suffers is that the 
time and memory requirements grow rapidly with the number 
of stages of the service and switchover time distributions. For 
this reason, most of the numerical tests are conducted for cases 
with exponential service and switchover times. The following 
arguments support our belief that the results for other service 
and switchover time distributions will be similar in general. It 
should be noted that the ki-values prescribed by the rules (7), 
(9), and (1 1) are completely insensitive to the form of the ser- 
vice time and switchover time distributions. The Fuhrmann and 

Wang approximation (13) suggests that ciXiEW; depends 

on the second moments of these distributions mainly through 

Xi/?,!’) and ps@) /2s  (both hidden in the term D),  and that 

the second moments hardly affect the influence of the kj’s on 

ciXiEWi. Thus the optimal 5 ’ s  will be almost insensitive 

to those second moments. Limited numerical experience with 
Erlang and hyperexponential service time distributions (cf. 
Tables V, VI, and VI11 of Section VI) supports this view 
completely. Numerical experiments of Blanc and Van der 
Mei [5]  for cyclic polling with the closely related Bernoulli 
service policy (cf. our Remark I )  also point in the direction 
of a robustness of the optimal policy w.r.t. service time 
distributions; a robustness that was also observed in designing 
optimal polling tables, cf. pp. 152, 153, and 161 of [ l l ] .  
Finally, it should be observed that while Fuhrmann and Wang 
[23] p. 50 test their approximation only for exponentially 
distributed service times, they state that “limited experience 

N 

i=l 

N 

i=l  

N 

i=l 

TABLE I1 
THREE-QUEUE CASES 

TABLE 111 
A FIVE-QUEUE CASE 

indicates that the accuracy for other service time distributions 
seems to be similar in general.” 

The numerical results are presented in Tables 1-111. Table 
I contains 7 two-queue cases, Table I1 contains 3 three-queue 
cases, and Table I11 presents a five-queue case. Most of the 
parameter combinations are taken from [ 1 I]. In the two-queue 
cases we imposed the constraint k l  + < 12, in the three- 
queue cases kl + + kg < 12, and in the five-queue case 
kl + + . . . + kg 5 20. The constraint may be interpreted as 
a limit on the maximum number of services in a cycle. The 
ki-values for the rules (7), (9), and (11) were computed by 
rounding the values obtained from the corresponding formula 
to the nearest integers. The ki-values based on (13) were 
calculated by a search over the feasible integer vectors. The 
displayed cost figures are the “exact” waiting cost figures 
obtained from the psa. We have only displayed the percentage 
errors for the rule ( 1  1) and the rule based on (13), as in most 
cases they outperform the rules (7) and (9). 

Discussion of the Numerical Results: The various rules 
perform reasonably well. We have only displayed the results 
obtained for rather asymmetric systems with high load, but 
still in the majority of the examples the waiting cost achieved 
is less than 10% larger than the minimal waiting cost. It is 
however interesting to compare how the various rules perform. 
On average the rules (7) and (9) perform similarly. Sometimes 
(7) performs better, sometimes (9). 

The rule ( 1  1) performs slightly better than the rule (9). The 
underlying approximation of ( 1  1) is theoretically indeed better 
than the underlying approximation of (9). The former shows 
the correct exact behavior when Ici -+ m, the latter does not. 
As the rotation time constraint prevents that ki 4 00, the 
difference in performance is however minor. 

The rule based on the approximation (13) performs by far 
the best; only 6 out of the 35 times the relative error exceeds 
5%. The approximation (13) is indeed theoretically better than 
the underlying approximation of (1 1). The former catches 
the influence of ki on EWj, the latter does not. Thus the 
difference in performance will especially be dramatic in cases 
where that influence plays a crucial role, as is illustrated by 
the numerical results. When we take a closer look at e.g. the 
two-queue cases where the rules (7), (9), and (1 1)  perform 
poorly, we notice that ,B1 is typically larger than /?z and c1 is 
usually smaller than c2. These rules, which completely ignore 
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the influence of kl on EW2, then choose kl too large and k2  
too small. These two-queue cases are typically cases where the 
influence of kl on EW2 plays a crucial role: for large ,& the 
influence of k1 on EW:! is large and for large e2 this influence 
is heavily weighted in the waiting cost. Concluding, when very 
high accuracy is not needed, we recommend to use the simple 
rule (11); otherwise the rule based on (13) should be used. 

v. MONOTONICITY PROPERTIES AND WAITING 
COST MINIMIZATION UNDER NO CONSTRAINT 

In the present section we study the problem of finding the 
(unconstrained) service limits k1, . . . , k~ that minimize the 

waiting cost c;X;EWi. We first derive several monotonic- 

ity properties of polling systems with k-limited service and 
switchover periods. The main result is a (partially conjectured) 
rule stating that for minimizing the waiting cost in such 
systems the queues with the highest value of c i / p ;  should 
be assigned k; = 00, i.e., receive exhaustive service. This 
property is very similar to the well-known cp-rule derived 
for systems with no switchover periods and in which the 
server is free to move from queue to queue dynamically. We 
subsequently propose to use the Fuhrmann and Wang approx- 
imation for the unconstrained waiting cost minimization. We 
specifically investigate to what extent the Fuhrmann and Wang 
approximation satisfies the abovementioned properties. 

Proposition I :  In a stable polling system with cyclic visit 

order and k-limited service the sum pjEWj is nonincreas- 

ing in each of the service limits k i ,  i = 1,. . . , N .  

N 

i=l 

N 

j=1 

increase the number of services given at Q., when that queue 
is loaded (has more than k, customers), and thus is likely 
to decrease the number of services given at Q, when it has 
less than k,  customers. This implies that the variance of the 
number of services given at Q, increases with k,. 

Going back to the viewpoint of Q,, we see that when k., 
increases, the customers at QZ observe switchover periods 
of the same mean but of higher variance. Viewing &, as 
an M / G / 1  queue with vacations (where the services of the 
other queues and the switchover periods together constitute 
one large vacation), it is likely that increasing the vacation 
second moment while keeping its mean the same increases 
the mean waiting time at Q 2 .  We thus conclude that the mean 
waiting time at Q, is increasing in kJ for any 3 # a. Combining 
this fact with Proposition 1 implies that the mean waiting time 
at Qz must be decreasing in k,. 

Remark 4: The assumption that the system is stable plays 
an essential role in Conjecture 2.  If Q3 is unstable, then 
increasing k,  will not only increase the variance of the 
intervisit time of Q,, but also the mean. If the increment of 
the first moment is larger than the increment of the second 
moment, then the residual intervisit time of Q, will decrease. 
The mean waiting time at Q2 will then also decrease. 0 

Proposition 1 and Conjecture 2 lead to the main result of this 
section, namely that for optimality at least one of the queues, 
viz. the one whose c,/Pt achieves the maximum value, must 
be served without limits. 

Theorem 3: If c,/P, = max c3/&,  then the optimal 
~ = 1 ,  , N  

Pro08 We need to show that for every k = ( k l ,  . ' ' , k , ~ )  
service limit k t  = 00, provided Conjecture 2 holds true. 

N 

i = l  

Let vt be the amount Of work in the system the sum cjXjEWj is decreasing in ,Li, namely that 
at time t .  Let V be a random variable with distribution the 

_ I -  

steady-state distribution of the total amount of work in the N 
C X3cJEW, 5 0 (& denoting partial difference): system. As shown in [28] Vt is nonincreasing in k ,  (the proof 

in [28] is a path-wise proof). Hence EV is nonincreasing in 
A k ,  j=l 

k; .  Now, it is known (e.g. [7] ,  [9]) that 

N 
and thus pjEWj is nonincreasing in I C ; .  0 

j-1 
Conjecture 2: In a stable polling system with cyclic visit 

order and k-limited service the mean waiting time at Q;, EW;, 
is decreasing in its service limit k; and increasing in k j  for 
every j # i .  

While the claim made in Conjecture 2 is very appealing 
and intuitive, it seems difficult to prove it. A reasonable line 
of argument can nonetheless be provided as follows. To see 
the effect of k j  on EW; one can view the services given at Qj 
as switchover periods (whose durations are distributed as the 
sum of several independent random variables, whose number 
is the number of customers being served at Qj) .  It is easy to 
see that as long as the system is stable the mean number of 

services given at Qj per visit is constant (A, which does 

not depend on k j ) .  On the other hand, the second moment of 
the number of services does depend on k j .  Increasing k j  will 

x 'S 
1 - P  

The inequality in the second line follows from the facts that 
A E W j  Ak, is nonnegative (assuming Conjecture 2 holds) and 
that c;//3; 2 cj//3j (condition of the theorem). The inequality 

0 
Remark 5: Theorem 3 implies that if the service limit 

policies are of the gated-limited type (namely, serve up to 
k; customers but only of those present at the queue at the 
polling instant), then the queues with the maximum value of 
ci/P; should be served according to the gated policy with 
kb = CO. If the service limit policies are of the exhaustive- 
limited type (namely serve up to ki customers but allow to 
include in these services customers that arrived during the 
service of the queue), then the queues with the maximum 
value of ca/,O; should be served according to the exhaustive 

in the third line follows from Proposition 1. 
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policy with k: = CO. This reminds of the cp-rule derived for 
systems with no switchover periods and in which the server is 
free to move from queue to queue. According to the cp-rule 
the queues with the highest value of c i /P i  should receive the 
highest priority in the system, which implies, in particular, an 

0 
Having in mind the properties discussed above we now 

study the problem of finding the service limits k-1 , . . . , k~ that 

minimize the waiting cost ciXiEW;. As observed in the 

previous section, for the constrained waiting cost minimiza- 
tion the Fuhrmann and Wang approximation outperforms the 
simpler approximations. For the unconstrained waiting cost 
minimization the simpler approximations would be useless 
anyhow, as they completely ignore the influence of k j  on 
EW;,  which would always lead to k: = 03,. . . , k h  = 03. 

Therefore we restrict ourselves here to the Fuhrmann and 
Wang approximation: 

exhaustive service at those queues. 

N 

i=l  

(1 - p i ) ( l -  p)  + q 2  - p)  
Li 

X i  s 
1 - p - -  

k; 

EWi zz 

N 
S Pj” D + - C ,  1 - p  3=1  

2 
N P ; 2 - P  c - P j )  + r ; , l p I  

j=1 

We now specifically investigate to what extent the Fuhrmann 
and Wang approximation (1 5 )  satisfies the properties discussed 
above. 

Proposition 4: The approximation (15) of EW, is a) de- 
creasing in k,, and b) increasing in k,, j # a .  

Proof: A straightforward computation shows that 

EW, (b,=r+l, 3 # 2 .  (The latter inequality holds provided 

D > -  p3 (1 - p 3 ) ,  which may be shown to hold by 

0 
Proposition 4 supports the use of (15) in trying to obtain 

the optimal service limit values for the actual polling system. 
Moreover, in the numerical experiments that will be presented 
in the next section we will find that the minimal value 

of c,X,EW, where (15) is used to evaluate EW, ,  is 

alwi7: achieved when the service limit of the queue with 
the maximum value of c,//3, is set to k ,  = 03 (exhaustive 
service). (Here the service limit is set to ka  = oc when this 

yields a smaller value for c,X,EW, according to (15) than 

all values k ,  = 1, .  . . ,20. Similarly, the true optimal service 
limit is supposed to be k,  = cc when the psa produces for 

exhaustive service at Q, a smaller value for c,X,EW, than 

for all values k ,  = 1, . . . ,20.) These findings suggest that the 
approximation possesses the property derived in Theorem 3 
for the real polling system. This can however not be proved 

EW, Ikt=T> EW, Ik,=r+l and that EW, I ~ C , = ~  I 
N 

S 

- p 3=1 
substitution of the definition of 0.) 

N 

N 

2 = 1  

N 

a = 1  

along the same lines as Theorem 3, as the approximation does 
not always possess the property derived in Proposition 1. 

Remark 6: In the numerical experiments for both the con- 
strained case (Section IV) and the unconstrained case (Section 
VI), the time and memory requirements of the psa have forced 
us to confine ourselves to models with only a few queues. Let 
us now discuss what happens when the number of queues, N, 
approaches infinity, distinguishing four cases for all j :  

I) s j  fixed, pj = O(l/N), X j  fixed; 
11) s j  = 0 ( 1 / N ) ,  P; fixed, X j  = O(l/N); 
111) s j  = 0(1/N), /3; = 0(1/N), Xi  fixed; 
IV) sj fixed, pj fixed, X j  = 0(1/N). 
In case I, X i s / (  1 - p)  .+ 00 and hence necessarily ki -+ CO; 

this is not an interesting case. Case I1 reduces to continuous 
polling on a circle; cf. Fuhrmann and Cooper [ 2 2 ] .  Each 
customer will be served in the cycle in which it arrives, even if 
the ki-values equal one; the actual choice of the ki is irrelevant. 
Cases I11 and IV are equivalent up to a scaling of time by 
a factor N. Let us discuss case I11 in more detail. For the 
constrained situation, (S), (lo), and (13) all reduce to 

1 - P  
X i S  

1 - p - -  
ki 

EWi B 

with B some constant, leading to 

Note that the weakness of approximation (S), indicated above 
(9), disappears when N 4 CO. Approximation (16) may be 
expected to perform very well. For the unconstrained situation, 
(15) also reduces to (16). Hence the waiting cost is minimized 
by taking k ,  = 03 for all i. Indeed, for large finite N an 
increment of k ,  by one reduces c,X,EW, much stronger than 
it increases c,X,EW,, as is indicated by the following 

rough reasoning. 
To make things simple, let us assume that k l  < CO; 

162 = . . . = k N  = 03; now increase kl by one. Customers 
in Q1 only notice this increment at a server visit when at least 
kl + 1 customers are present. Suppose such an event occurs 
in the nth cycle. Now this saves one Q1 customer one cycle 
time Cl,n+l, which is O(1). What is the effect on some other 
queue Q,? First the bad effect. S reaches Q3 A3 later; this 
delay consists of a service time at Q1 (of O(l/N)) and of 
extended visit times at Q2,.  . . ,Q3-1;  A3 = 0(1/N). Each 
of the customers at Q, experiences this additional delay as an 
addition to its waiting time. There are on the average X,EC,,,, 
such customers. Here C3,n denotes the nth cycle time for Q,. 
The total mean “loss” for Q, is A,X,EC,,,. Here we ignore 
an O ( I V 2 )  contribution: compared to an ordinary cycle, this 
one lasted already A3 longer, during which additional period 
also on the average X,A, customers have arrived who each 
experience an extra delay A3. Now there is also a beneJt for 
Q3. During the extra delay also customers arrive at Q3 who 
are just in time to be served in this cycle; without the extra 
delay they would have arrived just after the departure of S 

3,zz 
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oplimum approximation 
k i , h , k s  e-1 k i l h . k 3  I -1 I W 

((m, m, 2)) 34.26 :m, m, 2)) 34.26 0.0 
(m. 8. 1) 14.71 (m, m. 1) 14.72 0.0 
(m. 3, 1) 8.26 (m, m. 1) 8.28 0.3 

TABLE IV 
TWO-QUEUE CASES; EXPONENTIAL SERVICE TIMES 

optimum 
( Q . S , C J )  ( k i . h , k a )  I c0.1 
(IO, 10, 10) (m, m. 1) 14.78 
(10.3, 3) (m, 3, 1) 11.47 
(Io, 1, 1) (m. 2. 1) 10.41 

TABLE V 
A TWO-QUEUE CASE; EXPONENTIAL SERVICE TIMES 

AT 91 AND HYPEREXPONENTIAL SERVICE TIMES AT Q 2  

I 

approximation 
( h , k i . k )  I colt I W 
(m, m, 1) 14.78 0.0 
(m. m, 1) 11.49 0.2 
(m. 1, 1) 10.54 1.2 

from Qj and would have had to wait a full cycle. The total 
mean "gain" for Q j  is AjXjECj,,+l + O(N-2) .  The result 
on Qj of these two counteracting effects is XjAj(ECj,, - 
ECj,,+l) + O ( N - 2 )  (the propagation of an extra service in 
Q1 in later cycles should also have an O(N- ' )  effect). It 
seems obvious that ECj,, - ECj,,+l = O( 1 )  and likely that 
ECj,, - ECj,,+l = O ( l / N ) .  In the latter case increasing 
kl by one has an O ( N - 2 )  effect on Q3, which agrees with 
(16). 17 

. .  
81 = 82 = *a = 0.1; p = 0.85. 

optimum approximation 
C I ~ C ~ ~ C J )  k x . h , h  c a t  h , h , k ~  c a t  46 

(m, m. ml I 53.05 :m, m. ml I 53.05 ' 0.0 
(10, 3, 3) ((m, 3, 1) 30.04 (m, 2, 1) 30.13 0.3 

((10, 10, 10) 

> 

VI. NUMERICAL RESULTS FOR THE 
UNCONSTRAINED WAITING COST MINIMIZATION 

For a wide variety of cases we compared the optimal 
values of the service limits and the waiting cost with the 
values achieved by the approximative approach proposed in 
the previous section. Due to space limitations we present here 
only a small subset of the numerical results obtained; more 
extensive numerical results are reported in [6]. 

Just like in Section IV we used the power series algorithm 
(psa) to evaluate the mean waiting times and we confined 
ourselves to cases with only a few queues. We further focused 
again on cases with an exponential service and switchover 
time distribution, although we did investigate some cases 
with Erlang and hyperexponential service time distributions 
as well. The results for Erlang and hyperexponential service 
time distributions appear to be similar to the results for an 
exponential service time distribution. 

The numerical results are presented in Tables IV-IX. Table 
1V contains the same 7 two-queue cases as Table I of Section 

cilca,cs 
[IO, 10, lo') 
(10.3. 3) 
(IO, I ,  1) 

TABLE VI 
A TWO-QUEUE CASE; HYPEREXPONENTIAL SERVICE TIMES 

I A, = 0.765: L = 0.085: 01 = = 1.0; I 

optimum 6ppmximalion 
- ( h . h l k s  c0.1 ( h , h , k s )  I W 

(m, m, 2; 63.47 (m. m. 4) I 65.59 3.3 
(m. m, 2) 31.60 (m, m, 2) 3160 0.0 
(m, 16, 2) 22.46 (m, m, 2) 22.50 0.2 

TABLE VI1 
THREE-QUEUE CASES; EXPONENTIAL SERVICE TIMES 

I a. A, = 1, = A, = 0.25: 0, = 0 . 2  & = 0.6: 03 = 2 . 2  I 

IV, Table V contains a two-queue case with exponential 
service times at Q1 and hyperexponential service times at Q 2 ,  

Table VI contains a two-queue case with hyperexponential 
service time distributions at both queues, Table VI1 contains 4 
three-queue cases with exponential service time distributions, 
Table VI11 contains the same three-queue cases but with 
Erlang-2 (a, b, and c) and Erlang-3 (d) service time distribu- 
tions, and Table IX contains the same five-queue case as Table 
I11 of Section IV. In case of hyperexponential distributions we 
assumed that the service times are exponentially distributed 
with mean either 0.5 or 1.5, both with probability 0.5. The 
displayed cost figures are the "exact" waiting cost figures 
obtained from the psa. 

Discussion of the Numerical Results: The proposed ap- 
proach performs extremely well; in the majority of the 67 
examples the achieved waiting cost is less than 1% larger than 
the minimal waiting cost. Only twice the achieved waiting 
cost is more than 5% larger than the minimal waiting cost, 
not once more than 10% larger. The optimal service limits 
as well as the service limits obtained from the Fuhrmann and 
Wang approximation always satisfied the property stated in 
Theorem 3, i.e., if c,/p, = , max cj/Pj, then kx* = 00. 

Recall that neither the optimal service limits nor the service 
limits obtained from the approximation were actually proved 
to satisfy the property stated in Theorem 3. 

The results for Erlang and hyperexponential service time 
distributions are similar to the results for an exponential 
service time distribution. The waiting cost for an Erlang 
(hyperexponential) service time distribution is always smaller 

j = 1 ,  ..., N 



BORST et al.: EFFICIENT OPERATION OF MULTISTATION SINGLE-MEDIUM COMMUNICATION SYSTEMS 61 1 

’ (10,3,3) ‘  
(IO. 1, 1) 

TABLE VI11 
THREE-QUEUE CASES; ERLANC SERVICE TIMES 

I 

~ . . ~ ,  ~ ~ 

‘(m, 8,’lf 11.70 (m. m, 1) 11.70 0.0 
(m. 3,  1) 6.635 (m, m, I )  6.652 0.3 

ii; 0.5; 
( I ,  1 )  
(1. 2) 

&.si  1.776 tm. 4) 1.776 0.2 

(3, m) 3.898 (4, m) 3.898 0.0 
(m, m) 2.263 (m, m) 2.623 0.0 

(10,3, 3) 
(10, 1, 1) 

(larger) than the waiting cost for an exponential service time 
distribution with the same mean. Intuitively the waiting times 
are indeed likely to be smaller (larger) when the variance of 
the service time distribution is smaller (larger). The optimal 
service limits for Erlang and hyperexponential service time 
distributions however hardly differ from the optimal service 
limits for an exponential service time distribution with the 
same mean. 

.(m, 2, I ) ’  23.57 ‘(m, 2, I ) ’  23.57 0.0 
(m. 1. 1) 16.67 (m, 1. 1) 16.67 0.0 

VII. CONCLUSION 
We have studied the problem of finding the optimal service 

limits in a cyclic polling system with the k-limited service 
discipline. The use of the Fuhrmann and Wang approximation 
is shown to be very effective in finding the optimal service 
limits. In the numerical experiments we have observed that 
the waiting cost according to the Fuhrmann and Wang approxi- 
mation sometimes differs dramatically from the “true” waiting 
cost obtained from the psa, but that still the optimal service 
limits according to the Fuhrmann and Wang approximation 
agree with the “true” optimal service limits obtained from 
the psa. Even when completely misjudging the mean waiting 
time, the Fuhrmann and Wang approximation apparently does 
capture the major factors important for efficient operation of 
the system. 

In this context it is worth noting that there are also some 
other approximation procedures for k-limited service available, 
like the one proposed by Chang and Sandhu [14], that are 
more accurate than the Fuhrmann and Wang approximation. 
In principle such more sophisticated approximation procedures 
may be used for optimization purposes as well. As they are 
more involved they will however also demand more com- 
plicated optimization techniques. Moreover, they will yield 
only marginally better results, as the results obtained from the 
Fuhrmann and Wang approximation already tend to be very 
close to the true optimal value. 

The mean waiting time approximation for the Bernoulli 
service discipline that Blanc and Van der Mei [5] use to 
find the optimal Bernoulli parameters qi ,  and the Fuhrmann 

d. AI = 0.3; A2 = 0.8; AJ = 0.1; PI = 0.2; A = 0.5; Ps = 2; 
d, = 2; B2 = 0.1; .a = 0.5; p = 0.66. 

optimum approximation 
(CI,C~,CI) ( k L , k a , h )  I colt (h,h,k, I cod I 96 

55.40 (m. m. 5)) 56.39 1.8 
(10.3. 3) [m, m, 2; 28.69 (m. m, 2) 28.69 0.0 
(IO,], 1) (m, 16,Z) 10.48 (m, m, 2) 10.98 2.4 

’ (IO, IO. 10) 01, m. 3 

TABLE IX 
A FIVE-QUEUE CASE; EXPONENTIAL SERVICE TIMES 

I A, = 0.35: A 1  = . .. = As = 0.1; PI = 1; 02 = .. . = Rs = 1; 1 

and Wang approximation that we use, coincide when q2 = 
1 - l / k i ,  cf. Remark 1 and Remark 2. The effectiveness of 
both approximations suggests that, as far as optimization is 
concerned, the Bernoulli service discipline is a very good 
emulation of the k-limited service discipline. Yet, as far as 
evaluation of the mean waiting time is concemed, the Bernoulli 
service discipline is often not a very good approximation 
of the k-limited service discipline. In general the stochastic 
nature of the Bernoulli service discipline tends to cause the 
mean waiting times to be larger than for the k-limited service 
discipline, cf. Tedijanto [30], [31, ch. 51. 

In the present study we have been concerned with opti- 
mization of the service discipline, ranging from 1-limited to 
exhaustive, for a given cyclic server routing. Earlier studies 
mostly were concerned with optimization of the server routing 
for a given service discipline, like 1-limited, gated, or exhaus- 
tive, cf. Remark 1. We feel that it would also be worthwhile 
to consider simultaneous optimization of the server routing 
and the service discipline. Simultaneous optimization of the 
number of visits and the amount of service per visit would 
enable more flexible priorization of the various stations. 

At a few instances, we faced difficult monotonicity ques- 
tions: monotonicity of EWi in kj, monotonicity of the mean 
waiting time for an M/G/I queue with vacations in the 
vacation time variance. Relatively few monotonicity results for 
polling and vacation models have been obtained; this seems 
an interesting area for research. 

In the present study, we have focused on a static setting. 
An interesting topic for further research might be to use the 
insights obtained here to investigate the optimal control of 
a polling system with k-limited service in a dynamic context, 
e.g., fluctuating arrival rates, varying service limits. Evidently, 
in principle a dynamic control scheme may improve the 
performance of the system substantially, although probably 
little performance will be lost by simply setting the ki- 
values according to a heavy-traffic scenario, as the gain 
from tightening the ki-values in light-traffic conditions will 
be modest. Furthermore, keeping track of the arrival rates 
and queue lengths, and implementing a sophisticated dynamic 
control scheme may involve a considerable measurement and 
communication overhead, and may complicate the operation 
of the system significantly. Therefore, dynamic control is not 
necessarily preferable to static control. 

The results of this paper can not only be applied for resource 
allocation purposes in computer-communications, but also in 
other areas like road traffic control. For example, at a signal- 
ized traffic intersection the problem arises how service limits 
(green times) should be set for the different traffic streams; 
and referring to the previous paragraph, it is conceivable 
that-based on earlier traffic measurements-different service 
limits are set at different periods of the day. 
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