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Abstract

We propose a systematic method for creating constellations of unitary space-time signals for multiple-
antenna communication links. Unitary space-time signals, which are orthonormal in time across the
antennas, have been shown to be well-tailored to a Rayleigh fading channel where neither the trans-
mitter nor the receiver knows the fading coefficients. The signals can achieve low probability of er-
ror by exploiting multiple-antenna diversity. Because the fading coefficients are not known, the crite-
rion for creating and evaluating the constellation is nonstandard and differs markedly from the familiar
maximum-Euclidean-distance norm.

Our construction begins with the first signal in the constellation—an oblong complex-valued matrix
whose columns are orthonormal—and systematically produces the remaining signals by successively
rotating this signal in a high-dimensional complex space. This construction easily produces large con-
stellations of high-dimensional signals. We demonstrate its efficacy through examples involving one,
two, and three transmitter antennas.

Index Terms—Multi-element antenna arrays, wireless communications, fading channels,
transmit diversity, receive diversity, Unitary Space-Time Modulation



1 Introduction

Recent theoretical treatments have shown that communication systems that employ multiple antennas can
have very high channel capacities, especially in Rayleigh flat-fading environments [5], [16], [9]. In [5], a
constructive approach to achieving some of this capacity is proposed under the assumption that the receiver
knows the complex-valued Rayleigh fading coefficients. Under the same assumption, [14] presents a trellis-
based approach for designing space-time codes, and [15] gives a space-time signaling method based on
orthogonal designs. However, the known-channel assumption may not be realistic in a rapidly changing
fading environment or with a large number of transmitter antennas.

A new class ofunitary space-timaignals is proposed in [10] that are well-tailored for flat-fading chan-
nels where neither the transmitter nor the receiver knows the fading coefficients. Suppose théteaaise
mitter antennas, and that we transmit signals in block& e samples, over which interval the fading
coefficients are approximately constant. Then a constellatidnwfitary space-time signalsy = vT®,,
¢ =1,...,L, has the defining property that,,..., ®; areT x M complex-valued matrices obeying
®ld, = ... = @l &, = I. Of necessityM < T. Themth column of anyS; contains the signal transmit-
ted on antennan as a function of time. Essentially, the directions, and not the lengths, of the orthonormal
columns of®, (more precisely, the subspace spanned byftsolumns) carry the message information.

Intuitive and theoretical arguments in [9] and [10] suggest that unitary space-time signals are not only
simple to decode, but they also attain capacity when used in conjunction with coding in a multiple-antenna
Rayleigh fading channel when eith&r>> M or the signal-to-noise ratio is reasonably large afid< T
Hence, there is a strong motivation for designing good unitary space-time constellations. Some successful
unitary space-time constellations are designed and demonstrated in [10] but the techniques used therein can
not be readily extended to large constellations or to signals of high dimension. This paper presents some
simple algorithms for designing effective constellations of these signals.

The onlya priori structure on a unitary space-time constellation is the time-orthonormality of the signals.
Constellation design is viewed in [10] as a difficult and cumbersome search and optimization problem.
But, as we show, by imposing additional structure on these signals and requiring that their generation be
systematic, we can construct some effective constellations with relatively little effort. We present the design
in two disparate but ultimately equivalent ways. The first approach, Section 3, is Fourier-based and uses
ideas from signal processing theory. The second approach, Section 4, is algebraic and uses ideas from coding

theory. Section 5 demonstrates the performance of these approaches on a multiple-antenna Rayleigh fading



channel where neither the receiver nor the transmitter knows the propagation coefficients. The performances
of constellations for use with one, two, and three transmitter antennas are compared.

Throughout the paper, we concentrate on modulation and constellation design, and do not address coding
issues that lower error probability by adding redundancy. We focus, instead, on raw or uncoded signal and
bit error probabilities.

The following notation is used throughout the paper: Two complex vecaicaadb, areorthogonalif
a'b = 0, where the superscriptdenotes “conjugate transpose.” The zero-mean, unit-variance, circularly-

symmetric, complex Gaussian distribution is denoted by(0, 1).

2 Channel Model; Unitary Space-Time Modulation

2.1 Rayleigh flat fading

Consider a communication link comprisidd transmitter antennas ard receiver antennas that operates
in a Rayleigh flat-fading environment. Each receiver antenna responds to each transmitter antenna through
a statistically independent fading coefficient that is constanfffaymbol periods. The received signals

are corrupted by additive noise. We use complex baseband notation: duriigsymbol interval, we

transmit the signa{s;,,, t = 1,...,7, m = 1,..., M} on M antennas, and we receive the noisy signal
{zin, t=1,..., T, n=1,...,N} onN receivers,
M
Ttn =\ P/M Y hnStm + Win, t=1,...T, n=1...N. (1)
m=1

Hereh,,, is the complex-valued fading coefficient betweenthth transmitter antenna and théh receiver
antenna. The fading coefficients are constantifer 1,...7T, and they are independent with respectito
andn andCN (0, 1) distributed. The additive noise at tinteand receiver antenna is denotecw,,, and
is independent (with respect to batlandn), identically distributed N (0, 1). The quantities in the signal
model (1) are normalized so thatrepresents the expected signal-to-noise ratio (SNR) at each receiver
antenna, independently 8f. We assume that the realizations/gf,,, m = 1,...,M,n =1,...,N are
not known to the receiver or transmitter. See Figure 1 and [9] for more details.

We assume that the fading coefficients change to new independent realizationd’ eveiy symbol
periods. This piecewise constant fading process (also called a block fading model [12, 2]) mimics, in a

tractable manner, the approximate coherence interval of a continuously fading process. Furthermore, it is
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Figure 1. Wireless link comprising/ transmitter andV receiver antennas. Every receiver antenna is
connected to every transmitter antenna through an independent, random, unknown propagation coefficient
having Rayleigh distributed magnitude and uniformly distributed phase. Normalization ensures that the total
expected transmitted power is independentbfor a fixedp.



an accurate representation of many TDMA, frequency hopping, or block-interleaved systems. Each channel
use (consisting of a block @f transmitted symbols) is independent of every other.

Equation (1) can be written compactly as

. P
X_\/%SH—I—W 2)

whereX istheT x N complex matrix of received signalS,is theT x M matrix of transmitted signald/
is the M x N matrix of Rayleigh fading coefficients, aidl is theT x N matrix of additive receiver noise.
In this notation, thel/ columns ofS represent the signals sent on thetransmitter antennas as functions

of time.

2.2 Unitary space-time signals

We use constellations of unitary space-time sigifals= vT®,...,S; = v/T®;, to transmit binary in-
formation over the multiple-antenna link. It is shown in [9] and [10] that the capacity-achieving distribution
for T > M and for a fixep is S = /T ®, whered'® = I and® is isotropically distributed. Details about
the isotropic distribution may be found in [9], but it suffices to say that its defining characteristic B that
andO©® have the same distribution for any deterministic unitry

It is also shown in [10] that the maximum likelihood decoder for a constellation of unitary space-time
signals is

D= arg ~_max tr {XTCDg(I)};X}. )

¢=P1,..,PL
This so-called noncoherent receiver has an equivalent interpretation as a generalized likelihood ratio test
(GLRT),

O = arg — max tr {— {X - (pT/M)l/2 @gﬁgr {X - (pT/JW)l/2 @gﬁe} } ; 4)

=P1,..,PL

which entails the use of the coherent receiver with the unknown valug oéplaced by its maximum

likelihood (ML) estimate under the assumption that tiesignal was transmitted; hence
. pT —-1/2
H = (M) ol X. (5)

The maximum likelihood interpretation for the noncoherent receiver (3) assumes that the propagation matrix



has independent elements that are distribute@/a@), 1), while the GLRT interpretation is less restrictive
because it does not assume anything about the statistics of the propagation matrix. Built into the philosophy
of the GLRT [17] is the notion that when the correct decision is made the associated ML esHinite
good. With this in mind, our case for using unitary space-time signals is further strengthened by the fact
that these signals constitute optimal training signals [13, 8] for learAin@pecifically, if a known signal
is transmitted from which the receiver obtains an ML estimateHorthe energy-constrained signal that
minimizes the total error variance is a unitary space-time signal.

While our original motivation for using unitary space-time signals is information-theoretic, this paper
focuses on modulation and on uncoded probability of error. These signals are of interest in their own right

because they have a simple demodulator that also has a pleasing GLRT interpretation.

2.3 Constellations of unitary space-time signals

The task is to design a constellation olunitary space-time signals that has a low probability of error. We
note that the probability of error is invariant to two types of transformations: 1) left multiplication by a
commonT x T unitary matrix,®, — Ui®, ¢ =1,..., L; 2) right multiplication by individualM x M
unitary matrices®, — ®,T,, £ =1,---, L; see [10]. We consider any two constellations to be equivalent
is they are related by unitary transformations of this type.

We are unable to compute the block probability of edfpifor a general constellation of unitary space-
time signals. However the performance may be upper-bounded in terms of pairwise probabilities of error

through the union bound,

1 L
P, = I ; P {error | ®, transmitted}

L
I S>> Py, (6)

(=101

IN

whereP, , is the pairwise (i.e., two-signal constellation) probability of mistakingor @,/ or vice-versa,

which has the closed-form expression [10]

Py = P{choose &y | &y transmitted}

= P {choose ®; | P, transmitted}
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wherel > d; > ... > dy; > 0 are the singular values of thg x M correlation matrixcbz@g/, and

“ def l 1+ pT/M
TN 4 (/M1 d)
The singular values are a measure of the overlap of the two subspaces that are spanned by the column
vectors of the signals. The exact pairwise probability of error is cumbersome to evaluate, requiring either
the extraction of residues of high-order poles, or a one-dimensional numerical integration. The Chernoff

bound is somewhat simpler [10],

N
1
1+ <p§/M>2<1dan>} ' ®

1 M
Py < 3 | |
m=1 (14+pT/M)

The probability of error (and Chernoff bound) is lowest whin= ... = dj; = 0 and highest when
diy = ... =dy = 1. We obtaind; = ... = dj; = 0 when the columns ob, are all orthogonal to all the
columns of®,. The ideal constellatio®, ..., ®; therefore has all the columns &; orthogonal to all

the columns ofp, for ¢/ #£ ¢ =1,..., L. However, because the columns of edghare within themselves
orthogonal to one another, all the pairwige . . ., dy; cannot all be made zero If > T'/M. Conversely,

®, and®, are indistinguishable, within the context of our model, when= ... = dy; = 1.

We can further simplify the bound (8) in terms of the average of squares of the singular values

% Z d?n = %tr {(CI);(I)@)T (CI);(I)@)}

2

; 9)

H@}cpé,

where (9) defines the matrix norm used in this paper (a scaled Frobenius norm). For both the pairwise
probability of error and the Chernoff bound, it can be shown that the first and second derivatives with

respect to the squares of the singular values are positive,

0P p O*Py p
L 0,0

o) " @y



This implies that for any two singular values that are contained in the open intervaJ if one increases the

larger singular value while decreasing the smaller singular value such that their sum of squares is constant,
thus maintaining constant norm (9), the pairwise probability of error (and its Chernoff bound) increases.
Consequently, for a given norm (9), the probability of error is minimized when all the singular values are
equal. Conversely, the probability of error is maximized when as many singular values as possible are equal

2
singular values are equal to one, and the

to one. This implies that, in the worst case, abﬂﬂﬂ@}@/

remaining singular values are equal to zero, which gives an upper bound on the Chernoff bound,

[0 rlevleedt])
P£7£’ S 5 1+ (pT/]\/[)Q ] . (10)
A(1+pT/M)
For a given constellation, let
_ T
o= max H@ecpg, . (11)

Then the combination of (6), (10), and (11) gives a bound on the block probability of error for the entire

constellation in terms of,

1 ]N.(M o))

T/M)?
L+ 4((1p+/éT/)J\/I)

] N-(u=[ars2])

1

T/M)?
L+ 74((&&/)1\4)

(12)

Accordingly, we attempt to construct constellations that minindire(11). This is a particularly simple
performance measure to compute, and it does not depend on either the SNR or the number of receive
antennag. The definition ofs in (11) has a connection with the standard definition of distance between
subspaces [6, Sec. 12.4.3]: Létand F» be theM dimensional subspaces 6f spanned by the columns
of &, and &, respectively. Then one can think of the singular valdgsas the cosines of the so-called
principal anglesf,,, betweenF, and F,,». The L? distance between the two subspaces is now defined as
max, sin(f,,) = max,, /1 — d2, while the chordal distance ig/y",,(1 — d2,). The minimum chordal
distance between any two subspaégsnd F), for (¢’ # /) is precisely,/M (1 — 62). This shows that our

design problem is related to so-called packings in complex Grasmannian space. Some examples of packings

The performance of a given constellation always improves with increagirfgor the remainder of the paper we 2ét= 1.



in real Grasmannian space are given in [3].

The design criterion of minimizing is markedly different from the familiar maximum-Euclidean-
distance criterion, and it arises entirely because the fading coefficients are unknown to the receiver. Because
of this, antipodal pairs of signats® are indistinguishable, for example.

An alternative criterion for constellation design that we do not pursue in this paper seeks to maximize

the product
M

[Ta-d)

m=1

upon which the Chernoff bound depends dominantly for large SKIRe note simply that for smadl,,,

M

M
[Ta-a&)~1-% &
m=1

m=1

and therefore minimizing for smalld,,, is roughly the same as maximizing this product.

To transmitR bits per channel use, we need a constellation of at least2’' signals. For example, if
R = 2 bits/channel use arifl = 10, thenL = 22° ~ 10%. Generating and storing this mafiyx M/ complex
matrices is cumbersome if the signals are not provided with some additional structure. Furthermore, it is
not obvious how to ensure that the generated signals have low probability of error. In the next section, we
describe a systematic approach to create signals with low probability of error and that requires storage of

only ®; and aI" x T diagonal matrix with which to generate,, ..., ®;.

3 Fourier-based Construction

In this section we present a Fourier-based construction of a constellation of unitary space-time signals. Sec-
tion 3.1 gives the intuition behind the construction, which has a block-circulant signal correlation structure.
Section 3.2 then proves that this construction yields all constellations having a block-circulant correlation
structure.

We make no claim for the optimality of circulant correlation structure. However, this structure has the

advantage that it significantly simplifies the design process.

2This criterion was independently suggested by an anonymous reviewer.



3.1 Fourier-based construction has block-circulant correlation

We begin withM = 1 transmitter antenna; we therefore ndednnit vectors in dl’ dimensional complex

space where, in general; > T. Clearly these vectors will form an overcomplete or linear dependent

system. Overcomplete representations are becoming increasingly popular in signal representation and are

often studied using the mathematical techniqudrarines[4]. Even though there is no immediate reason

why frames would form good constellations, we draw inspiration from existing methods for building frames.
We say that a collection of vectors®, in a 7' dimensional space form t#ght frameif all of the

eigenvalues of th&' x T matrix Zle @@} are equal, implying that

L
S o0 =K1,
/=1

where K is the frame constant. While the details of frame theory go beyond the scope of this paper, we
use a well-known result that any tight frame withvectors inT" dimensions can be seen as the projection
into a7 dimensional space of an orthogonal basid. idimensions and vice versa, see, e.g., [7]. Balan and
Daubechies construct tight frames by projectinglagimensional Discrete Fourier Transform (DFT) basis
onto a7’ dimensional space [1]. The projection simply retains the firseomponents of thé dimensional

vectors. Inspired by this construction, we propose the one antenna constellation

1
eiQT"(Zfl)

et 2(6-1) ) (13)

5=

ei%”(T—l)((—l)

For this choice, we obtain

(¢ =10

sin (w(¢' — £)T/L)
Tsin (w(¢' —¢)/L)

dy = \@;%

(0 £ 0).

1
1
T

T
Z ot (t=1)(¢'~0)
t=1

As shown in (7) and (8), the two-signal probability of error depends only on the corretgteomd decreases

asd; decreases. We observe that:



1. The correlation betweeh, and®,, depends only oY’ — ¢) mod L; the correlation structure of the

entire constellation is therefore circulant and it suffices to COI’]%@E‘I’@‘ fore=2,...,L.

2. The correlation structure behaves roughly like a sinc function, and hence equation (11) yelds

|<I>}<bg+1| =1-0(1/L?) asL — oco. For largeL, equation (7) (with/ = 1 andd; = |<I>}<I>g+1\)

therefore implies that the probability of mistakingy for its immediate neighbors is high; this is

decidedly undesirable. Figure 2 shows the correlation structuré fer 6 and L = 64, for which

0 = 0.986.
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Figure 2: Correlation structure of signals in equation (13) as a functidh-e# whenT = 6 andL = 64,
which implies a transmission rate & = 1 bit per channel use. We clearly see the sinc-like behavior. The
maximum correlatiord as defined in equation (11) (which is achieved when ¢ = 1) is 0.986.

Property 2 suggests thet, ..., oy given by (13) are a poor choice of signals, especially i§ large.

However, we are not necessarily constrained to choose th&'ficsts of theL x I DFT matrix as is done in

(13). To lower the correlation between neighbors, we may consider choosing anothef' ssirnponents.

We thus let

(&

5=

e

eiL

27 9 (0—1)

i2Tup(e—1)

10

P2y (0-1) ]

; (14)



where, without loss of generalitg, < uq,...,ur < L — 1. We still have a circulant correlation structure

because
-l- 1 T - 27 (é/ ()
_ 15U -
‘(I)ZCI)@/ _f Ze Lt .
t=1
We can now choose the “frequencias/, . .., ur to get the lowest possible correlations. As mentioned in

Property 1, because of the circulant structure it suffices to look at

T T
1 2n
@l = [Yo[@e| = 7 [>T, e=2 L (15)
t=1 t=1
where[-]; denotes theéth component of-]. We wish to findu, ..., ur achieving
. - 128w (f—1 — 3 1
o 0y 2T 26T oo, 0y e

whered (given by (11)) depends omy, ..., ur. Observe thaﬁ}@g‘ can be interpreted as the modulus of
the DFT of a lengthE sequence with the value one at positiens. . . , ur and zero elsewhere. Thus one
can look at the minimization in (16) as a filter design problem, where the filter is sparse (i.€l, ontyof a
possibleL filter coefficients are nonzero), the response at zero-frequency is unity, and where we choose the
locations of thel" nonzero coefficients to minimize the response at frequencies that are multigleslof

The problem of sparse filter design is analogous to that of aperiodic antenna array design [11]. A
conventional linear antenna array haviiigelements uses periodic half-wavelength spacing between its
elements, and it has an angular frequency response having the sinc-like behavior shown in Fig. 2. The
width of the central peak at zero-frequency is inversely proportional to the physical length of the array.
If one desires the narrower central peak associated with higher angular resolution $anteeumber of
elementd’, one has to use a longer array. Doubling the spacing to give a uniform spacing of one wavelength
would reduce the width of the central peak by a factor of two, but with the penalty of replicating the angular
frequency response at intervalsmofthe so-called grating lobe effect). However by using a longer aperiodic
array, one can obtain a narrower central peak without introducing grating lobes. Despite much effort, there
has never been a completely satisfactory way to design aperiodic arrays: for small arrays one can use
exhaustive search, whereas, for large arrays, random search strategies seem to be the only resort. In our
optimizations, we therefore also generally employ a random search. Figure 3 shows the results of such a

search. Observe how optimizing ower, . . ., ur allows a much better correlation structure than in Figure 2.

11
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Figure 3: Correlation as a function éf — ¢ when choosing., ..., ur in (14), withT = 6 and L = 64.
Hereu = [1 18 23 39 46 57] and is found by minimizing using a random search, yieldiing= 0.5604.

We now show how we can generalize this single-antenna constructidn to 1 antennas. In the

single-antenna case, each signal can be written as
O, =010y, (17)

where® is aT x T matrix whose diagonal elements afé™1/L . . e??mur/L and®, is 1//T times a
vector of all ones. Note thab is a unitary matrix and tha®” = I; . Geometrically, the construction can
be interpreted as rotating an initial vector throudimensional complex space using a matrix which is the
Lth root of unity. The matrix is chosen so that the resulting vectors have as little correlation as possible, and
after L rotations the vector is brought back to its initial position.

For M > 1 transmitter antennas, & be aT" x M matrix with @J{CIH = I; and form the constellation
again by applying (17). Becaus$is an Lth root of unity, we have a block-circulant structure in the sense
that theM x M matrix @}cbg/ only depends ori?’ — ¢) mod L, and becaus® is unitary, @}@g = Iy.
Geometrically, this construction can be interpreted as rotating an initi@imensional subspace using an

Lth root of unity to formL different A/ -dimensional subspaces.

12



As noted in Section 2.3, a constellation with small probability of error generally has §makk may

therefore choosey, ..., ur to achieve
min 0 = min max H@I@g“. (18)
0<ui,...,up<L-—1 0<ui,..,ur<L—-1/¢=2,..L

A simple method to build a starting matrix, is to choose\/ distinct columns of & x T' DFT matrix. This
ensures tha@{cbl = Is. A secondary benefit is that the transmitted power never varies.

In the next section we show that the above construction generates all constellations with circulant corre-
lation structure.
Remark: The starting unit vector®, that we have used so far—eithef/T times a vector of all ones,
or the columns of a DFT matrix—have components all with modul(x¢7. There is no particular need
to impose this constraint, and experiments indicate that optimizations that allow the moduli of the starting
vector components to vary (but maintain unit norms for the columns of éaclan yield even smaller

values of. For simplicity, we do not pursue these optimizations.

3.2 Block-circulant correlation has Fourier-based construction

In the previous section, we propose a constellation with a circulant correlation structure. This structure
does not automatically guarantee that the constellation performs well. However, the structure simplifies
performance testing since only — 1 rather thanL(L — 1)/2 correlations need to be checked. In this
section, we investigate the restrictiveness of this condition by characterizing all constellations which yield a
circulant correlation structure.

Let {®4,---, P} be some constellation of unitary space-time signals. We impose the block-circulant

correlation structure,
0y =Fp pmoars =1,....L, '=1,...,L, (19)

whereF; are M x M matrices and the orthonormality of the columns of each signal impliegthat I,,.
It is also easy to see that

Fy=F,,=®®,=F , =F (20)

The block-circulant correlation structure implies that the exact conditional probability of error for deciding

which of theL signals was transmitted is the same forlaBignals.

13



We now take the double (i.e., bothdrand?’) discrete Fourier transform of both sides of (19) to obtain

Z Z Ol dpe EEE =D D= (-D0-1)] Z §1 G, = LE8 () mod I » (21)
(=10=1

where the Fourier transforms, which are matrix valued, are denoted by the hatted quantities,

XL: ZD0-1)  and F, = ipge—z‘%”(ﬁ—l)(n—l), (22)
=1 =1
Equation (21) is equivalent to the well-known result that a circulant matrix is diagonal in the Fourier domain.
According to (21), thel Fourier coefficients,,, each &’ x M matrix, are mutually orthogonal. Con-
sequently all but at modgt of the coefficient matrices are zero. We denote’fhgossibly nonzero Fourier
coefficient matrices bﬁ)ul, cee @uT where0 < uq,...,ur < L — 1. The signals are thus given by the

inverse Fourier transform,

T
1 Z i) (=1, L. (23)

h

When exactlyl" coefficient matrices are nonzero, then orthogonality requires them all to have rank one, for
there cannot be more thdnlinearly independent’-dimensional vectors. When only — 1 coefficients are
nonzero, at most one of them can have rank two while the others have rank one. The rank-two matrix can
always be written as the sum of two rank-one matrices; for example, take its singular value decomposition
and write the two-element diagonal matrix as a sum of two one-element diagonal matrices. Then we again
have a sum (23) witli" terms where each coefficient matrix has rank one; the only difference is that the two
coefficient matrices coming from the split have the same frequencyetieiT”ﬁ‘f(g‘l). Similar arguments for

T — 2 or fewer nonzero coefficients yield the same conclusion that all coefficient matrices in (23) can be

made to have rank one.

We now show that, without loss of generali@m, el @uT can be nonzero in exactly one row. Consider
theT x T matrix formed by taking the first column of ea@at, t =1,...,T. The columns of this matrix

are then orthogonal, but not necessarily orthonormal. Thus, this matrix can be writted,aghereV is
aT x T unitary matrix andD is diagonal. Now¥'t times the first column of)ut is a vector with only the
tth component nonzero. BecauBg, is rank-one, all its columns are scaled copies of one another. Hence

\If@ut is a matrix with only itstth row nonzero. Recall that the error performance of a constellation does

14



not change when applying the transformation
o, Uo, 0=1,... L, (24)

for unitary ¥. From (23) we see that this transformation is equivalently applied to the Fourier coefficient
matrices:®,,, — Uid, ¢t =1,...,T. After this transformationd,,, is zero except in itsth row. The set
of Fourier coefficients are therefore orthogonal by virtue of their disjoint row support.

The signal®; combines the different nonzero rows of tﬁgt matrices,

Any other signalb, can be formed fromb; by multiplying thetth row byei%“’f(“l) as in (23). Hence,
d, can be expressed more conveniently 85:a 7" diagonal unitary matri)© that is raised to thé/ — 1)th
power, times thd" x M matrix @4,

P, =019, (25)

where
0= , 0<uy,...,up < L-—1. (26)
Since®; only underwent the unitary transformation (24), it still has the property@l}ﬁ@tl = Ip. By (25),
the correlation matrix between any two signals has the block-circulant structure (19)
ol0, = dlO" D, (27)

We conclude that any unitary space-time constellation whose correlation matrix is block-circulant can be

designed using the methods of Section 3.1. We therefore have the following theorem.

Theorem 1 Any unitary space-time signal constellation Bfx M matrices®q,...,®; with a block-

circulant correlation structure is equivalent to one that can be written

P, = 01, (28)
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where® is al x M matrix obeying@{cpl = Iy, and© is aT x T diagonal matrix whose diagonal
elements arel.th roots of unity. Conversely, every constellation of the form (28), has a block-circulant

correlation structure.

3.3 Multiple index block-circulant structures

The previous constellation construction may be extended to a doubly-indexed constridtion, /; =
1,--+,Ly; b =1,---, Lo}, whereL; - Ly = L, and where the constellation has the following correlation

structure,

1 _
Dy, 0, P, = Fler—1) mod Ly (¢,—£2) mod Lo

It can be shown (we omit the details) that this construction yields a constellation that is generated by means

of a separate rotation for each index,
Bpp, =00 1O D), 4 =1,... Li; ly=1,..., Ly, (29)

where©; and ©, are diagonal unitary matrices that afgth and Loth roots of I, respectively. This

construction involves choosing the diagonal elemeni® p0&nd©,, which we label < wuqq,...,u1r <
Ly —1and0 < usay,...,usr < Lo —1. The constellation is therefore completely determined byithke)M
matrix @1, and the2 x T matrix U whose entries arey;, k = 1,2,t =1,...,T.

This construction extends readily td&indexed constellation in which = Hﬁil LyandUisaK xT

matrix.

4 Equivalent Algebraic Construction

The constellation construction described in the previous section can also be viewed algebraically, and in this
section we create a constellation of signals by mapping a linear block code into complex signal matrices.
The code is over the ring of integers modyl@nd the number of codewords is equal to the number of
desired signald.. We will relateq to L shortly, and we begin by describing the construction ¥or= 1
transmitter antenna.

LetR, = {0,...,¢ — 1} be the ring of integers modulg-and letC = {c;,---,c} denote a linear
code overR, of lengthT" and containingl codewords. Each elemeat of C is a vector ofI” integers in

{0,...,q — 1}. Because the code is linear it contains the all-zero vector, andaiidc, are inC then so is
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acy + bey foranya,b € Ry.
We map these codewords into signals by mappindtirgegers in a codeword to theé components of

a complex signal using the function

(b(j):Teq , j=0,...,q9— 1

Note that addition modulg-for the argument corresponds to complex multiplication for the function value.

By letting the¢ function work on vectors, we effectively obtain the one-antenna constellation

27 B
ez - [ee)r

2w
ez - [ce]2

ei%r [ce]lT

Let ¢; be the all zero codeword; theby is 1/\/T times a vector of all ones. We show that the maximum

correlation of the resulting constellation is given by

-----

where[-]; again denotes th&h component of-] (and the arithmetic is in the field of complex numbers).
To see this, pick two different signafs, and ®,. By definition, ®, = ¢(c,) and®y = ¢(cy) for some

co,cp € C. Thus,

T
1 —i28 o]y 1% [cy
ojoy = Y o (leddller)) = = e e etk

for somel”, where the last equality follows from the code’s linearity. Therefore, as in (15), in searching for
constellations that minimize their maximum correlation, we need to checkiorlyl quantities.

So far, the code€ are restricted to be linear but are otherwise arbitrary. We further restrict our search
by considering codes that havekax T generator matriX/ of elements irR,, whereK can be thought of

as the dimension of the code. The calleepresented b¥/ is the linear span of the rows éf, i.e., every
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code word can be written in the form

co=41-U,

for somel x K vector? = [¢; --- (k] whoseK elements are all ifiR,. We incorporate this restriction
explicitly, because, unlike linear codes over finite fields, linear block codesRyvéo not necessarily have
a generator matrix. It follows that the size of the constellatioh is ¢*.

We may now call the multi-index ¢<-index) of the codewords @f. Then the signals have a multi-index

circulant correlation structure since

co —cp=([0y - U]l - tk)U = [( =l - Lk —Lk]U
= [ - (KU
= Céu

where all arithmetic is modulg-

The connection to the constellation construction discussed in Section 3.1 becomes more apparent if
we rewrite the codes in the following form. Givén, we let©, ©,, ..., Ok be diagonall’ x T' complex
matrices with entrie$9; ]y = ¢(Ugt), k = 1,...,K,t =1,...,T. Note thato] = ... = 0% = I. The

one-antenna constellation determined by the méfrig then the set of all vectors of the form
orelz...ox e,

For K = 1 and K = 2 these are exactly the forms suggested in (25) and (29). Thus, the one-antenna
constellation is the image ob; under the action of the discrete group generatedby...,Ox. We
can extend this construction to admit multiple-antenna constellations by replacing the ¥eatéth a
representation of a subspace of larger dimension in exactly the same way as is done in Section 3.1.

The space of linear codes which do havi & T' generator matrix of elements Ry, is still quite large.
Since we limit ourselves to finding codes that have low correlation by examining randomly chosen elements
of the given space and keeping the one with the lowest correlation, it helps to restrict the class even further.

In particular, we restrict/ to have a systematic generator matrix of the form

U=[I U],
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L § K q rows ofU’ (parity)
8 0.000000 1 8 3765042

16 0.306186 1 16 [03141511108]

64 0.353553 3 4 43330]
[20311]
[03233]

133 0534026 1 133 [48 98104 7238 123 4]
256 0.559017 4 4 1031]
[3112]
[2023]
[1132]
529 0.643485 2 23 [14155209]
[112114 13 19]
1296 0.695971 4 6 2015]
[2552]
[2303]
5422]
2209 0.749396 2 47 [2043643842)
[44 8 34 6 12 1]

Table 1: Table of best found/ = 1 antenna constellations of lengih = 8 based on linear block codes
overR,. The number of signals in the constellationZisthe maximum correlation i§, the dimension of

the block code id<, the arithmetic base ig, and the rows of the parity matriX’ are given last. Note that
L = ¢¥.

wherel is the K x K identity matrix andJ’ is aK x (T' — K) parity matrix with elements iR,. Tables

1 and 2 list the best/ = 1 and M = 2 antenna constellations fa@f = 8 we have found with our random
search procedure. For each constellation, the maximum scaled Frobenius isogmen, as described in
Section 2 in equation (11). The constellations all have a systematic representation and the rows of the parity
matrix U’ are listed. Hence, for a code of dimensii K rows of T' — K elements irR, are listed. The
starting vector®, for M = 1is 1/+/T times a vector of all ones, and the starting madixfor M = 2 is

. . . . | 2T i 2T (T
1/+/T times a matrix whose first column is all ones, and whose second colufha’is - -- ¢7 (71,

5 Application to Rayleigh Flat-Fading Channel

We now examine the performance of constellations designed using the methods of Sections 3 and 4 on
the multiple-antenna Rayleigh fading channel given in Section 2. We look specifically at 1, 2, and

3 transmitter antennas and considér= 1 receiver antenna. We choose typical parameter® cf 1
bit/channel use and we assume that the fading coefficients are constdhtf& channel uses. Thus, we

require a constellation of at leabt= 27 = 256 signals, each an/ x T matrix, for M = 1, 2, and 3.
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L § K q rows ofU’ (parity)

4 0.000000 2 2 §11001]
010101]
8 0383533 1 8 3072567

17 0475099 1 17 [12119146100]

32 0531944 1 32 [1811222805]

67 0588905 1 67 [73115329200]
130 0.636015 1 130 [307139 15441 124]
257 0669317 1 257 [760 79187 125198 154]
529 0.733934 2 23 [1531091517]

[22 16 14 4 21 21]
1024 076227 2 32 [26213726]
[18 28 22 8 24 1]
2304 0.803542 2 48 [152227342441]
[18 1 38 29 33 25]

Table 2: Table of best found/ = 2 antenna constellations of lengih = 8 based on linear block codes
overR,. The number of signals in the constellatiorZisthe maximum correlation norm i the dimension

of the block code igK, the arithmetic base ig, and the rows of the parity matriX’ are given last. Note
that = ¢¢.

The following constellations were used in the simulations:

e M =1: The L = 256 constellation in Table 1.
e M = 2: The first 256 signals from the = 257 constellation in Table 2.

e M = 3: Thefirst 256 signals from ah = 257 constellation where = [220 191 6 87219 236 173 170]

and®; comprises the first, sixth, and seventh columns o an8 DFT matrix:

®q

Sl -
co
—_
)
S
M
15
S
—_

Hered = 0.74355150.

This code was found by the methods described in the previous section.
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Figure 4 shows the bit error rate for the signal constellations designed fer 1, 2, and 3 transmitter
antennas. We see that the bit error rate for lafgedrops dramatically as the SNRincreases. To under-
stand the reason for this, note from the Chernoff bound on pairwise error probability (8) thatlyyher

for all m, for high SNR andV =1

1 <4M)M Mo
oo L —d2,
The probability of error therefore decays approximatelyt 48'/. More generally, if some of thé,, = 1,

then we have the pairwise probability of error bound (12), which for larged N = 1 can be written

Py

1 JAMA\M-T N 2]
v <3 <—> .
’ 2\ pT
In either case, the probability of error generally decreases more rapidly\sgid/ increases.

We also note that at low SNR’s, the behavior of the unitary space-time signals with incrédsisg
reversed—the probability of error increasesMsncreases. A similar effect is noted in [10]. Fortunately,

the decrease in performance at low SNR'’s is generally a fraction of a dB.

10° ¢
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._.
o\
b

._.
O\
L

Bit error probability

10°F

10° E M=3 E

7 I I I I I
0 5 10 15 20 25 30
SNR (dB)

10°

Figure 4: Bit error rate fo/ = 1, 2, and 3 transmitter antennas versus SNR With- 1 receiver antenna
on an unknown channe€l, = 8, andR = 1 bit/channel use.

21



By themselves, the simulations leading to Figure 4 do not address the question of whether the con-
stellations have good performance relative to some standard. Unfortunately, we are not aware of other
unknown-channel designs with which comparisons may be made. We can, however, compute the mutual in-

formation of the constellations and compare their performance to signal designs for a channel that is known

to the receiver.

N

I
®
T
\
|

g
o
T
\
|

g
»
T
\

1

In
N
T
\

|

Mutual information (bits/symbol)

0 I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10
SNR (dB)

Figure 5: Mutual information for the three constellations used to generate Figure 4 versus SNR (solid
curves); channel capacity versus SNR idr= 1 (dashed curve)

Figure 5 shows the mutual information as a function of SINRBr the three constellationd{ = 1, 2, 3)
that are used to generate Figure 4. The dashed curve is the channel capacity/whkeh, which was
computed by the methods described in [9]. (As in [9], we do not know how to compute the capacity for
M = 2or M = 3.) The constellations have rate = 1, implying that for high SNR’s, the mutual
informations approach one. For SNR’s below 3 dB, the mutual information afthe 1 constellation is a
significant fraction of thel/ = 1 channel capacity, which suggests that, in this regime[the256 signals
constitute a relatively efficient packing of thédimensional complex space. However for higher SNR’s we
conclude that it should be possible, with a larger constellation, to transmit at much higher rates.

We can also examine the performance of the constellations when the channel is known to the receiver.
Figure 6 compares the block error rate for the constellations of Figure 4 when the channel is known and

unknown. Our constellations typically perform approximately 2—4 dB better when the channel is known.
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Figure 6: Block-error rate comparison of unknown and known-channel performandé fer1, 2 and 3
transmitter antennas. The performance advantage when the channel is known is approximately 2—4 dB. Also
included forM = 2 is the performance of a rate-one orthogonal design (dashed line) with a known channel.
(The orthogonal design has an effective block sizd'of 2 and would be completely ineffective for all
SNR’s if the channel were unknown.)
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For M = 2 antennas, we also give the performance of an orthogonal design [15], which has an effective
block size ofl" = 2 and is designed specifically for a known channel. As we can see, our block error rates

compare favorably even though our constellations are designed for an unknown channel.

6 Conclusions

Unitary space-time modulation is appropriate for flat-fading conditions where nobody knows the propaga-
tion coefficients. It requires the design of relatively large constellations of matrix valued signals according to
a criterion that differs markedly from the traditional maximum-Euclidean-distance criterion. We have intro-
duced new design algorithms that easily produce large constellations of these signals in a systematic manner,
by successive rotations of an initial signal. This entails the imposition of a circulant correlation structure
on the constellation. Further research is needed to determine if significant improvements are possible by
relaxing this structure.
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Appendix: Alternate multiple antenna construction

In this appendix we present another method for designing multiple antenna constellations. The basic idea
is to rearrange the vectors of a single antenna constellation into a multiple antenna one. This construction
does not lead to particularly good constellations. We include it because it has a simple structure connecting
the single antenna and multiple antenna setting.

As in the beginning of Section 3.1, we take = ¢t — 1 for M = 1 transmitter antenna. To avoid later

confusion, we denote the one antenna signals heregyitbr 1 < p < P:

1

i (p=1)

5=

- dFw-) | p=1,....P (30)

2 (T-1)(p-1)

As we already know, this results in a sinc-like correlation structure:

1 (p=1)

T .
AZ(-Dp-1)| _ [sin(r(p —1)T/P)
; T'sin (w(p—1)/P)

‘@I‘PP‘ =

1
T
The vectorsyp, are obtained by projecting down the columns aPa< P unitary DFT matrix intoZ" di-
mensions by simply retaining the firftcomponents. This projection clearly ruins the orthogonality of the
original DFT columns. However, it is possible to use projections which preserve some orthogonality. Then
the columns which remain orthogonal after projection can be used for multiple antennas by making them
the columns of th@” x M signal matrices.

If T divides P, some orthogonality is preserved after projection because the sinc-like correlation struc-

ture hasl" — 1 zeros. More precisely, for anythe T vectors

{()Dpv Pp+P/T) mod L - - - s P(p+(T—1)P/T) mod P} )

are orthogonal to one another.
For example, with\/ = 2 transmitter antennas and evéhone can construdt = P/2 signals, each

aT x 2 matrix, by combining the orthogonal vectaps andy,,, p/». In general, when/ dividesT (and
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thusP), L = P/M signals can be built as

O =g pirr o am-nL|, =1,---,L,

wherey, is given by (30). One can now show that the singular values of the correlation p@b@@tare

equal and given by

dy=dy=---=dy = Hq’}bé’

_ M |sin (w(I" = 1)T/P) ‘
T

sin(7(I' = 1)M/P)|’

Hence, remarkably, we find the same sinc-like behavior as in the one antenna case. For example,
T = 12, andM = 2, we can construct = P/M = 64 signals, each &2 x 2 matrix, whose correlation
structure iexactlygiven by Figure 2.

However, as we note in the single-antenna case, this sinc-like correlation is very higf’whént 1.
Unlike the single-antenna case, the maximum correlation cannot easily be reduced by choosing arbitrary
u1, ..., ur, as the needed zeros in the correlation that give us the orthogonal columns are ruined. Thus,
more research is needed to develop multiple-antenna signals with low probability of error using this design

method.
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