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Abstract. We present the lifting scheme, a simple construction of second generation wavelets,

wavelets that are not necessarily translates and dilates of one �xed function. Such wavelets can

be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the

lifting scheme leads to a faster, in-place calculation of the wavelet transform. Several examples

are included.

1. Introduction

Wavelets form a versatile tool for representing general functions or data sets. Essentially we

can think of them as data building blocks. Their fundamental property is that they allow for

representations which are e�cient and which can be computed fast. In other words, wavelets are

capable of quickly capturing the essence of a data set with only a small set of coe�cients. This

is based on the fact that most data sets have correlation both in time (or space) and frequency.

Because of the time-frequency localization of wavelets, e�cient representations can be obtained.

Indeed, building blocks which already reect the correlation present in the data lead to more

compact representations. This is the key to applications. Over the last decade wavelets have

found applications in numerous areas of mathematics, engineering, computer science, statistics,

physics, etc.

Wavelet functions  j;m are traditionally de�ned as the dyadic translates and dilates of one

particular L2(R) function, the mother wavelet  :  j;m(x) =  (2jx � m). We refer to such

wavelets as �rst generation wavelets. In this paper we introduce a more general setting where the

wavelets are not necessarily translates and dilates of each other but still enjoy all the powerful

properties of �rst generation wavelets. These wavelets are referred to as second generation

wavelets. We present the lifting scheme, a simple, but quite powerful tool to construct second

generation wavelets.
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Before we consider the generalization to the second generation case, let us review the prop-

erties of �rst generation wavelets which we would like to preserve.

P1: Wavelets form a Riesz basis for L2(R) and an unconditional basis for a wide variety of

function spaces F , such as Lebesgue, Lipschitz, Sobolev, and Besov spaces. If we denote

the wavelet basis by f j;m j j;mg, we can represent a general function f in F as f =P
j;m j;m j;m, with unconditional convergence in the norm of F . Simple characterizations

of the F -norm of f in terms of the absolute value of its wavelet coe�cients j;m exist.

P2: One has explicit information concerning the coordinate functionals e j;m where j;m =e j;m(f). The wavelets are either orthogonal or the dual (biorthogonal) wavelets are known.
P3: The wavelets and their duals are local in space and frequency. Some wavelets are even com-

pactly supported. The frequency localization follows from the smoothness of the wavelets

(decay towards high frequencies) and the fact that they have vanishing polynomial mo-

ments (decay towards low frequencies).

P4: Wavelets �t into the framework of multiresolution analysis. This leads to the fast wavelet

transform, which allows us to pass between the function f and its wavelet coe�cients j;m

in linear time.

These properties result in the fact that, quoted from David Donoho in [59], \wavelets are optimal

bases for compressing, estimating, and recovering functions in F ." Roughly speaking, for a

general class of functions, the essential information contained in a function is captured by a

small fraction of the wavelet coe�cients. Again this is the key to applications. Wavelets have

proved to be useful in various application domains such as: signal and image processing, data

compression, data transmission, the numerical solution of di�erential and integral equations,

and noise reduction.

Many �rst generation wavelet families have been constructed over the last ten year. We

refer to the work of (in alphabetical order) Aldroubi-Unser [2, 3, 108, 107], Battle-Lemari�e

[13, 78], Chui-Wang [19, 25, 24, 23], Cohen-Daubechies [28], Cohen-Daubechies-Feauveau [29],

Daubechies [47, 49, 48], Donoho [57, 56], Frazier-Jawerth [65, 67, 66], Herley-Vetterli [73, 110],

Kova�cevi�c-Vetterli [77, 111], Mallat [85, 84, 86], Meyer [87], and many more. Except for Donoho,

they all rely on the Fourier transform as a basic construction tool. The reason is that translation

and dilation become algebraic operations in the Fourier domain.

In fact, in the early 80's, several years before the above developments, Str�omberg discovered

the �rst orthogonal wavelets with a technique based on spline interpolation which does not rely

on the Fourier transform [103].

The construction as initiated by Daubechies and co-workers essentially consists of three stages.

The algebraic stage involves constructing the �lters that are used in the fast wavelet transform;

more precisely, it consists of �nding certain polynomials and assuring that above property P4

is satis�ed. In the analytic stage, one shows that wavelets associated with these �lters exist,
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that they are localized (property P3), and that they form a basis for the proper function space

(property P1). In the geometrical stage, one checks the smoothness of the basis functions

(property P3). In this context, we mention the work of Collela and Heil [37, 38], Daubechies

and Lagarias [50, 51], Eirola [63], Rioul [94], and Villemoes [113, 112].

Let us next consider applications which illustrate the need for generalizations of �rst genera-

tion wavelets.

G1: While �rst generation wavelets provided bases for functions de�ned on Rn, applications

such as data segmentation and the solution of partial di�erential and integral equations

on general domains require wavelets that are de�ned on arbitrary, possibly non-smooth,

domains of Rn, as well as wavelets adapted to \life" on curves, surfaces or manifolds.

G2: Diagonalization of di�erential forms, analysis on curves and surfaces, and weighted approx-

imation require a basis adapted to weighted measures; however, �rst generation wavelets

typically provide bases only for spaces with translation invariant (Haar-Lebesgue) mea-

sures.

G3: Many real life problems require algorithms adapted to irregular sampled data, while �rst

generation wavelets imply a regular sampling of the data.

A generalization of �rst generation wavelets to the settings G1-G3, while preserving the

properties P1-P4 is needed. We refer to such wavelets as second generation wavelets. The key

lies in the observations (A) that translation and dilation cannot be maintained in the settings

G1-G3, and (B) that translation and dilation are not essential in obtaining the properties P1{P4.

Giving up translation and dilation, however, implies that the Fourier transform can no longer

be used as a construction tool. A proper substitute is needed.

Several results concerning the construction of wavelets adapted to some of the cases in G1-G3

already exist. For example, we have wavelets on an interval [8, 10, 18, 30, 31, 88], wavelets on

bounded domains [27, 74], spline wavelets for irregular samples, [15, 7, 45], and weighted wavelets

[11, 12, 104]. These constructions are tailored toward one speci�c setting. Other instances of

second generation wavelets have been reported in the literature, e.g., the construction of scaling

functions through subdivision [41], basis constructions [43], as well as the development of stability

criteria [41, 42].

In this paper, we present the lifting scheme, a simple, general construction of second generation

wavelets. The basic idea, which inspired the name, is to start with a very simple or trivial

multiresolution analysis, and gradually work one's way up to a multiresolution analysis with

particular properties. The lifting scheme allows one to custom-design the �lters, needed in

the transform algorithms, to the situation at hand. In this sense it provides an answer to the

algebraic stage of a wavelet construction. Whether these �lters actually generate functions which

form a stable basis (analytic stage) or have smoothness (geometric stage), remains to be checked
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in each particular case. The lifting scheme also leads to a fast in-place calculation of the wavelet

transform, i.e. an implementation that does not require auxiliary memory.

The paper is organized as follows. We start out by discussing related work in Section 2. In

Sections 3, 4, 5, and 6 we generalize respectively multiresolution analysis, cascade algorithm,

wavelets, and the fast wavelet transform to the second generation setting. With the notation

introduced in Section 7 we are able to state and prove the lifting scheme in Section 8. Section 9

discusses the lifted fast wavelet transform, while Section 10 covers the cakewalk construction, an

enhanced version of the lifting scheme. Sections 11, 12, and 13 introduce three possible examples

of an initial multiresolution analysis to start lifting: respectively generalized Haar wavelets, the

Lazy wavelet, and biorthogonal Haar wavelets. Finally, Section 14 contains a discussion of

applications and future research.

2. Related work

The idea of second generation wavelets and abandoning the Fourier transform as a construc-

tion tool for wavelets is not entirely new and, over the last few years, has been researched by

several independent groups. In this section we discuss these development and their relationship

with lifting.

The lifting scheme was originally inspired by the work of David Donoho on one side and

Michael Lounsbery, Tony De Rose, and Joe Warren on the other. In [56, 57], Donoho presents

the idea of interpolating and average-interpolating wavelets, a construction of �rst generation

wavelets which relies on polynomial interpolation and subdivision as construction tools rather

than the Fourier transform. It thus can be generalized to interval constructions [58] or weighed

wavelets [104]. Lounsbery, De Rose, and Warren [79, 80], construct wavelets for the approxima-

tion of polyhedral surfaces of arbitrary genus. The wavelets are constructed by orthogonalizing

scaling functions in a local neighborhood. We will show later how this can be seen as a special

case of lifting.

The lifting scheme can also be used to construct �rst generation wavelets, see [105, 52].

Although in this setting, the lifting will never come up with wavelets which could not have been

found using the Cohen-Daubechies-Feauveau machinery in [29], it leads to two new insights: a

custom-design construction of wavelets, and a faster, in-place implementation of existing wavelet

transforms [52]. In the �rst generation setting, lifting has many contacts with certain �lter design

algorithms used in signal processing. Those connections are pointed out in [105, 52].

Over the last few years Donovan, Hardin, Geronimo, and Massopust have developed tech-

niques to construct wavelets based on fractal interpolation functions [60, 61, 62, 70]. They also

introduced the concept of several generating functions (multi-wavelets). As this technique does

not rely on the Fourier transform either, it too potentially can be used to construct second

generation wavelets.
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Several spatial constructions of spline wavelets on irregular grids have been proposed [15, 7].

In [45], Dahmen and Micchelli propose a spatial construction of compactly supported wavelets

that generate complementary spaces in a multiresolution analysis of univariate irregular knot

splines.

Dahmen already made use of a technique related to lifting in the �rst generation setting [40]

and later introduced a multiscale framework related to second generation wavelets [41].

Finally, after �nishing this work, the author learned of two other very similar techniques

developed independent of each other and of lifting. Harten and Abgral developed a general

multiresolution approximation framework based on prediction [71, 1], while Dahmen and co-

workers [17, 46] develop a mechanism to characterize all stable biorthogonal decomposition. We

will come back to this toward the end of the paper.

3. Multiresolution analysis

In this section we present the second generation version of multiresolution analysis. We keep

most of the terminology and symbols of the �rst generation case, although their meaning can be

quite di�erent. For example, we maintain the name scaling function although it can be a little

misleading since the scaling function can no longer be written as linear combinations of scaled

versions of itself.

Consider a general function space L2 = L2(X;�; �), with X � Rn being the spatial domain, �

a �-algebra, and � a non-atomic measure on �. We do not require the measure to be translation

invariant, so weighted measures are allowed. We assume (X; d) is a metric space.

De�nition 1. A multiresolution analysis M of L2 is a sequence of closed subspaces M = fVj �

L2 j j 2 J � Zg, so that

1. Vj � Vj+1,

2.
S
j2J Vj is dense in L2,

3. for each j 2 J , Vj has a Riesz basis given by scaling functions f'j;k j k 2 K(j)g.

One can think of K(j) as a general index set. We assume that K(j)� K(j + 1). We consider

two cases:

I: J = N: This means there is one coarsest level V0. This is the case if �(X) <1.

II: J = Z: We have a fully bi-in�nite setting. This is typical when �(X) =1. We then add

the condition that \
j2J

Vj = f0g :

A dual multiresolution analysis fM = feVj j j 2 Jg consists of spaces eVj with Riesz bases given

by dual scaling functions e'j;k. These dual scaling functions are biorthogonal with the scaling
5



functions, in the sense that

h'j;k; e'j;k0 i = �k;k0 for k; k0 2 K(j) : (1)

For f 2 L2, de�ne the coe�cients �j;k = h f; e'j;k i and consider the projections

Pj f =
X

k2K(j)

�j;k 'j;k:

If the projection operators Pj are uniformly bounded in L2, then

lim
j!1

kf � Pj fk = 0:

First generation scaling functions reproduce polynomials up to a certain degree. To generalize

this, consider a set of C1 functions on X , fPp j p = 0; 1; 2; : : :g, with P0 � 1 and so that the

restrictions of a �nite number of these functions to any �-ball are linearly independent. We then

say that the order of the multiresolution analysis is N , if for all j 2 J , each Pp with 0 � p < N

can be represented point wise as a linear combination of the f'j;k j k 2 K(j)g,

Pp(x) =
X

k2K(j)

c
p

j;k 'j;k(x) :

We let eN be the order of the dual multiresolution analysis, where we use a similar set of functionsePp. In case X is a domain in Rn the functions Pp typically will be polynomials; in case X is

a manifold, the functions Pp can, e.g., be parametric images of polynomials. However, in a

practical situation one often has no explicit knowledge of the parameterization. This is why we

use a very general de�nition of the order. Our de�nition obviously depends on the choice of

Pp, but we do not include this dependency in the notation to avoid overloading. Most of the

examples only have N = 1 in which case there is no dependency as P0 = 1.

We assume that the dual functions are integrable and normalize them asZ
X

e'j;k d� = 1 : (2)

This implies that if N > 0, X
k2K(j)

'j;k(x) = 1 : (3)

4. Cascade algorithm

A question which immediately arises is how to construct scaling functions and dual scaling

functions. As in the �rst generation case, there is often no analytic expression for them, and

they are only de�ned through an iterative procedure, the cascade algorithm. In this section we

present the second generation version of the cascade algorithm. To do so we need two things: a

set of partitionings and a �lter.
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Let us start by de�ning a �lter. The de�nition of multiresolution analysis implies that for

every scaling function 'j;k (j 2 J , k 2 K(j)), coe�cients fhj;k;l j l 2 K(j + 1)g exist so that

formally

'j;k =
X

l2K(j+1)

hj;k;l 'j+1;l : (4)

We refer to this equation as a re�nement relation. Each scaling function can be written as a

linear combination of scaling functions on the next �ner level. To ensure that the summation

in (4) is well de�ned we need to clearly state the de�nition of a �lter. In this paper we only

consider �nite �lters.

De�nition 2. A set of real numbers fhj;k;l j j 2 J ; k 2 K(j); l 2 K(j + 1)g is called a �nite

�lter if:

1. For each j and k only a �nite number of coe�cients hj;k;l are non zero, and thus the set

L(j; k) = fl 2 K(j + 1) j hj;k;l 6= 0g

is �nite.

2. For each j and l only a �nite number of coe�cients hj;k;l are non zero, and thus the set

K(j; l) = fk 2 K(j) j hj;k;l 6= 0g :

is �nite.

3. The size of the sets L(j; k) and K(j; l) is uniformly bounded for all j, k, and l.

Note that in the �rst generation case hj;k:l = hl�2k, so if fhk j kg is a �nite sequence the �lter

is �nite according to the above de�nition. We will always choose our indices consistently so

that j 2 J , k 2 K(j), and l 2 K(j + 1), even though it will not always be explicitly mentioned.

The above de�ned index sets indicate which elements are non-zero on each row (respectively

column) of the (possibly in�nite) matrix fhj;k;l j k 2 K(j); l 2 K(j+ 1)g. We can think of them

as adjoints of each other as

K(j; l) = fk 2 K(j) j l 2 L(j; k)g :

The dual scaling functions satisfy re�nement relations with coe�cients fehj;k;lg. We can de�ne

similar index sets (denoted with tilde).

A set of partitionings fSj;kg can be thought of as the replacement for the dyadic intervals

on the real line in the �rst generation case. Again each scaling function 'j;k is associated with

exactly one set Sj;k. We use the following de�nition.

De�nition 3. A set of measurable subsets fSj;k 2 � j j 2 J ; k 2 K(j)g is called a set of

partitionings if

1. 8j 2 J : clos
S
k2K(j) Sj;k = X and the union is disjoint,
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2. K(j) � K(j + 1),

3. Sj+1;k � Sj;k,

4. For a �xed k 2 K(j0),
T
j>j0

Sj;k is a set which contains 1 point. We denote this point with

xk.

The purpose now is to use a �lter and a set of partitionings to construct scaling functions that

satisfy (4). Assume we want to synthesize 'j0;k0 . First de�ne a Kronecker sequence f�j0;k =

�k;k0 j k 2 K(j0)g. Then, generate sequences f�j;k j k 2 K(j)g for j > j0 by recursively applying

the formula:

�j+1;l =
X

k2K(j;l)

hj;k;l �j;k :

Next we construct the functions

f
(j)

j0;k0
=

X
k2K(j)

�j;k �Sj;k j � j0 : (5)

These functions satisfy for j > j0,

f
(j)

j0;k0
=
X
l

hj0;k0;l f
(j)

j0+1;l
: (6)

If lim j!1 f
(j)

j0;k0
converges to a function in L2, we de�ne this function to be 'j0;k0 . This procedure

is called the cascade algorithm. The limit functions satisfy

lim
j!1

�j;k = 'j0;k0(xk) a.e.

If the cascade algorithm converges for all j0 and k0, we get a set of scaling functions that

satis�es the re�nement equation (4). This can be seen by letting j go to in�nity in (6). Note

how the resulting functions depend both on the �lter and the set of partitionings. If the scaling

functions generate a multiresolution analysis, the cascade algorithm started with a sequence

f�j0;k j k 2 K(j)g that belongs to `
2(K(j)) converges toX

k

�j0;k 'j0;k :

The dual scaling function are constructed similarly starting from a �nite �lter eh, the same set

of partitionings, and an initial Kronecker sequence f�j0;k = �k;k0=�(Sj0;k0) j k 2 K(j0)g. The

normalization of the initial sequences assures that h e'j;k; 'j;k i = 1.

An interesting question is now whether the biorthogonality condition (1) can be related back

to the �lters h and eh. By writing out the re�nement relations we see that the biorthogonality

(1) implies that X
l

hj;k;l ehj;k0;l = �k;k0 for j 2 J ; k; k0 2 K(j) : (7)
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but the converse is not immediately true. More precisely, if the �lter coe�cients satisfy (7),

and the cascade algorithm for the primal and dual scaling functions converges, then the re-

sulting scaling functions are biorthogonal. This follows from the fact that (7) assures that the

intermediate functions of the form f
(j)

j0;k0
in (5) (which converge to the scaling functions) are

biorthogonal at each stage j.

It is important to note that not every �lter corresponds to a set of scaling functions, i.e.,

the convergence of the cascade algorithm is not guaranteed. We would like to have a condition

which relates convergence of the cascade algorithm and the Riesz basis property back to the

�lter coe�cients, similar to the Cohen criterion in the �rst generation case [26] or the Cohen-

Daubechies-Feauveau theorem [29] or [48, Theorem 8.3.1]. This result is part of the analysis

phase of the construction. As we mentioned earlier, this paper is mostly concerned with the

algebraic phase and the generation of the �lter coe�cients.

5. Wavelets

First generation wavelets are de�ned as basis functions for spaces complementing Vj in Vj+1.

The same idea remains in the second generation case. This leads to the following de�nition

De�nition 4. A set of functions f j;m j j 2 J ; m 2 M(j)g, where M(j) = K(j + 1) nK(j) is

a set of wavelet functions if

1: The space Wj = clos span f j;m jm 2M(j)g is a complement of Vj in Vj+1 and Wj ? eVj .
2: If J = Z: The set f j;m=k j;mk j j 2 J ; m 2 M(j)g is a Riesz basis for L2.

If J = N: The set f j;m=k j;mk j j 2 J ; m 2 M(j)g [ f'0;k=k'0;kk j k 2 K(0)g is a Riesz

basis for L2.

We always assume that the index m belongs to the setM(j). The dual basis is given by dual

wavelets e j;m, which are biorthogonal to the wavelets,

h j;m; e j0;m0 i = �m;m0 �j;j0 : (8)

The dual wavelets span spaces fWj which complement eVj in eVj+1 and fWj ? Vj. For f 2 L2,

de�ne the coe�cients j;m = h f; e j;m i . Then
f =

X
j;m

j;m  j;m :

Their de�nition implies that the wavelets satisfy re�nement relations of the form

 j;m =
X
l

gj;m;l 'j+1;l : (9)

We assume that g = fgj;m;l j j 2 J ; m 2 M(j); l 2 K(j + 1)g is a �nite �lter according to

De�nition 2 with k substituted by m. This leads to the de�nition of the uniformly bounded
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�nite sets

M(j; l) = fm 2M(j) j gj;m;l 6= 0g and L(j;m) = fl 2 K(j + 1) jm 2 M(j; l)g :

The dual wavelets satisfy re�nement relations with a �nite �lter eg.
Also, since 'j+1;l 2 Vj �Wj , it holds that

'j+1;l =
X
k

ehj;k;l 'j;k +X
m

egj;m;l j;m :

The biorthogonality (8) combined with (1) implies the following relations between the �lters:

X
l

gj;m;l egj;m0;l = �m;m0

X
l

hj;k;l egj;m;l = 0

X
l

hj;k;l ehj;k0;l = �k;k0
X
l

gj;m;l
ehj;k;l = 0 :

(10)

De�nition 5. A set of �lters fh;eh; g;egg is a set of biorthogonal �lters if condition (10) is

satis�ed.

Now given a set of biorthogonal �lters and a set of partitionings, and assuming that the

cascade algorithm converges, the resulting scaling functions, wavelets, dual scaling functions

and dual wavelets are biorthogonal in the sense that

h e'j;k; 'j;k0 i = �k;k0

h e j;m;  j;m0 i = �m;m0

h e'j;k;  j;m i = 0

h e j;m; 'j;k i = 0 :

Next we need to generalize the notion of vanishing polynomial moments. We therefore use the

(non polynomial) functions Pp de�ned in Section 3. If the scaling functions 'j;k with k 2 K(j)

reproduce Pp, thenZ
X

Pp e j;m d� = 0 for 0 � p < N; j 2 J ; m 2 M(j) :

We say that the dual wavelets have N vanishing moments. Similarly, the wavelets have eN
vanishing moments.

6. Fast wavelet transform

The basic idea of a wavelet transform is the same as in the �rst generation case. Given

the set of coe�cients f�n;k j k 2 K(n)g, calculate the fj;m j n0 � j < n; m 2 M(j)g and
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f�n0;k j k 2 K(n0)g. From the re�nement relation of the dual scaling functions and wavelets, we

see that a fast forward wavelet transform is given by recursive application of

�j;k =
X

l2eL(j;k)

ehj;k;l �j+1;l and j;m =
X

l2eL(j;m)

egj;m;l �j+1;l :

Similarly, the inverse transform follows from the recursive application of

�j+1;l =
X

k2K(j;l)

hj;k;l �j;k +
X

m2M(j;l)

gj;m;l j;m :

The major di�erence with the �rst generation fast wavelet transform, and thus with traditional

subband transforms, is that the �lter coe�cients are di�erent for every coe�cient. One has to

be careful analyzing the complexity of the second generation fast wavelet transform. For general

�lters the complexity need not be linear as the number of terms in the above summation, albeit

�nite, can grow from level to level. This is precisely why De�nition 2 of a �nite �lter requires

the sizes of the index sets L, K, and M to be uniformly bounded. This leads to the following

corollary.

Corollary 6. In case the �lters h, g, eh, and eg are �nite, the second generation fast wavelet

transform is a linear time algorithm.

Note that in a computer implementation the data structure for the �lters can become much

more complex than in the �rst generation case and therefore has to be designed carefully.

In case the wavelets form an unconditional basis, the condition number of the wavelet trans-

form is bounded independent of the number of levels. Consequently the propagation of numerical

round-o� error in oating point calculations will be bounded. As we mentioned before, lifting

does not guarantee stability and bounded condition numbers. However in a practical situation

involving spherical wavelets [99] we numerically estimated the condition number and found it

to vary little with the number of levels. For a spherical wavelet transform involving roughly

650 000 coe�cients we found the condition number to be approximately 8.

7. A word on notation

So far we have been using a notation involving the �lter coe�cients hj;k;l and gj;m;l. As

one can see this leads to expressions involving many indices. We will refer to it as the index

notation. In this section we introduce a new notation, which we refer to as the operator notation.

The advantage is that both the statement and the proof of some results become more elegant.

Statements in the operator notation will also formally look the same as in the �rst generation

case. In this way it helps to shed light on why things work. The disadvantage is that the

operator notation is not practical and that it obscures implementation. Therefore we always

state results in the index notation as well.
11



T

'
&
�
�6`2(K(j + 1))

`2(K(j))

`2(M(j))

H

H�

G�

G

E

E�

D�

D

�
�

�
�

�
�

�
�

�
�

��+
�
�
�
�
�
�
�
�
�
�
��3

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQk

6

?

S S�

Figure 1. Schematic representation of operators, their domain and range. This

scheme can be used to verify that the order in which operators are applied is

correct and which operators can be added.

First consider the spaces `2(K(j + 1)), `2(K(j)), and `2(M(j)), with their usual norm and

inner product. We denote elements of these spaces by respectively a, b, and c, so that

a = fal j l 2 K(j + 1)g 2 `2(K(j + 1)) ;

and, similarly, mutatis mutandis, for b 2 `2(K(j)) and c 2 `2(M(j)). We always denote the

identity operator on these spaces with 1. It should be clear from the context which one is meant.

Next we introduce two operators (see also Figure 1):

1. Hj : `
2(K(j + 1))! `2(K(j)), where b = Hj a means that

bk =
X

l2K(j+1)

hj;k;l al :

2. Gj : `
2(K(j + 1))! `2(M(j)), where c = Gj a means that

cm =
X

l2K(j+1)

gj;m;l al :

The operators eHj and eGj are de�ned similarly. We refer to these operators as �lter operators

or sometimes simply as �lters.

We can now write the fast wavelet transform in operator notation. De�ne the sequences

�j = f�j;k j kg and j = fj;k jmg. Then one step in the forward transform is given by

�j = eHj �j+1 and j = eGj �j+1 ;
12
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Figure 2. The fast wavelet transform. The major di�erence with the �rst gen-

eration fast wavelet transform is that the �lters potentially are di�erent for each

coe�cient. Observe that the subsampling is absorbed into the �lters.

and one step in the inverse transform is given by

�j+1 = H�
j �j + G�j j :

One step of the transform is depicted as a block diagram in Figure 2. We use here a scheme

similar to a subband transform. Note how the traditional subsampling is absorbed into the �lter

operators.

The conditions on the �lter operators for exact reconstruction now readily follow:

eHjH
�
j = eGj G

�
j = 1 ; eGjH

�
j = eHj G

�
j = 0 ;

and

H�
j
eHj +G�j

eGj = 1 :

These we can write in matrix form as" eHjeGj

#h
H�
j G�j

i
=

"
1 0

0 1

#
and

h
H�
j G�j

i " eHjeGj

#
= 1 : (11)

De�nition 7. The set of �lter operators fHj ; eHj; Gj; eGjg is a set of biorthogonal �lter operators

if condition (11) is satis�ed.

With slight abuse of notation, i.e. by letting the operators work on sequences of functions, we

can write the re�nement relations. De�ne 'j = f'j;k j k 2 K(j)g and  j = f j;m jm 2 M(j)g.

Then

'j = Hj 'j+1 and  j = Gj 'j+1 :

In the other direction we have

'j+1 = eH�
j 'j +

eG�j  j :
Armed with this operator notation, we now can state the lifting scheme.

13



8. The lifting scheme

In this section we state and prove the lifting scheme and show how it can be used to construct

second generation wavelets.

Theorem 8 (Lifting). Take an initial set of biorthogonal �lter operators fHold

j ; eHold

j ; Gold

j ;
eGold

j g.

Then a new set of biorthogonal �lter operators fHj; eHj ; Gj; eGjg can be found as

Hj = Hold

jeHj = eHold

j + Sj eGold

j

Gj = Gold

j � S�j H
old

jeGj = eGold

j ;

where Sj is an operator from `2(M(j)) to `2(K(j)).

Proof. We write the lifting scheme in matrix notation:" eHjeGj

#
=

"
1 S

0 1

#" eHold

jeGold

j

#
and

"
Hj

Gj

#
=

"
1 0

�S� 1

#"
Hold

j

Gold

j

#

If we think of the biorthogonality conditions (11) in the matrix notation, the proof simply follows

from the fact that "
1 S

0 1

# "
1 �S

0 1

#
=

"
1 0

0 1

#
:

One can use Figure 1 to assert that the order of the operators H , G, and S is correct. The

theorem in the index notation reads:

Theorem 9 (Lifting in index notation). Take an initial set of biorthogonal �lters

fhold;ehold; gold;eg oldg, then a new set of biorthogonal �lters fh;eh; g;egg can be constructed as

hj;k;l = hold

j;k;lehj;k;l = ehold

j;k;l +
X
m

sj;k;m eg old

j;m;l

gj;m;l = goldj;m;l �
X
k

sj;k;m h
old

j;k;l

egj;m;l = eg old

j;m;l :

After lifting, the �lters h and eg remain the same, while the �lters eh and g change. As h remains

the same, so do the primal scaling functions. The dual scaling functions and primal wavelets

change since eh and g change. The dual wavelets also changes because the dual scaling functions,
14



from which they are built change. However, the coe�cients eg of the re�nement equation of the

dual wavelet remain the same. More precisely we have

'j = 'old

j

e'j = eHold

j e'j+1 + Sj eGold

j e'j+1 = eHold

j e'j+1 + Sj e j
 j = Gold

j 'j+1 � S�j H
old

j 'j+1 =  old

j � Sj '
old

je j = eGold

j e'j ;
or

'j;k = 'old

j;k

e'j;k =
X
l

ehold

j;k;l e'j+1;l +X
m

sj;k;m e j;m: (12)

 j;m =  old

j;m �
X
k

sj;k;m '
old

j;k (13)

e j;m =
X
l

eg old

j;k;m e'j+1;l : (14)

Although formally similar, the expressions in (13) and (12) are quite di�erent. The di�erence

lies in the fact that in (13) the scaling functions on the right-hand side did not change after

lifting, while in (12) the functions on the right-hand side did change after lifting. Indeed, the

dual wavelets on the right-hand side of (12) already are the new ones.

The power behind the lifting scheme is that through the operator S we have full control over

all wavelets and dual functions that can be built from a particular set of scaling functions. This

means we can start from a simple or trivial multiresolution analysis and use (13) to choose S

so that the wavelets after lifting have particular properties. This allows custom-design of the

wavelet and it is the motivation behind the name \lifting scheme."

The fundamental idea behind the lifting scheme is that instead of using scaling functions on

the �ner level to build a wavelet, as in (9), we use an old, simple wavelet and scaling functions

on the same level to synthesize a new wavelet, see (13). Thus instead of using \sister" scaling

functions, we use \aunt" scaling functions of the family tree to build wavelets. As we will point

out later, the \aunt" property is fundamental when building adaptive wavelets. The advantage

of using (13) as opposed to (9) for the construction of  j;m is that in the former we have

total freedom in the choice of S. Once S is �xed, the lifting scheme assures that all �lters

are biorthogonal. If we use (9) to construct  , we would have to check the biorthogonality

separately.

Equation (13) is also the key to �nding the S operator, since functions on the right-hand

side do not change. Conditions on  j;m thus immediately translate into conditions on S. For
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example, we can choose S to increase the number of vanishing moments of the wavelet, or choose

S so that  j;m resembles a particular shape.

If the original �lters and S are �nite �lters, then the new �lters will be �nite as well. In such

case de�ne the (adjoint) sets

K(j;m) = fk j sj;k;m 6= 0g and M(j; k) = fm j k 2 K(j;m)g :

If we want the wavelet to have vanishing moments, the condition that the integral of a wavelet

multiplied with a certain function Pp is zero leads to,Z
X

Pp j;m d� = 0 )

Z
X

Pp 
old

j;m d� =
X

k2K(j;m)

sj;k;m

Z
X

Pp '
old

j;k d� :

For �xed indices j and m, the latter is a linear equation in the unknowns fsj;k;m j k 2 K(j;m)g.

All coe�cients only depend on the old multiresolution analysis. If we choose the number of

unknown coe�cients sj;k;m equal to the number of equations, we simply need to solve a linear

system for each j and m. Remember that the functions Pp had to be independent, so if the

functions 'old

j;k are independent as well, the system will be full rank.

Notes:

1. Other constraints than vanishing moments can be used for the choice of S. For example one

can custom-design the shape of the wavelet for use in feature recognition. Given the scaling

functions, choose S so that  j;m resembles the particular feature we want to recognize. The

magnitude of the wavelet coe�cients is now proportional to how much the original signal

at the particular scale and place resembles the feature. This has important applications in

automated target recognition and medical imaging. Other ideas are �xing the value of the

wavelet or the value of the derivative of the wavelet at a certain location. This is useful to

accommodate boundary conditions.

2. In general it is not possible to use lifting to build orthogonal or semi-orthogonal wavelets

using only �nite lifting �lters. In the semi-orthogonal case, the condition that a new

wavelet  j;m is orthogonal to the Vj typically will require to use all 'j;k scaling functions of

level j in the lifting (13). In [80] this was bypassed by pseudo-orthogonalization, a scheme

where  j;m is only required to be orthogonal to the (interpolating) scaling functions in

a certain neighborhood. As mentioned in the introduction, part of the inspiration of the

lifting scheme came from generalizing this idea to a fully biorthogonal setting.

3. In [17] several examples, including splines with nonuniform knot sequences are given where

semi-orthogonal wavelets are constructed. This construction uses all possible degrees of

freedom for the construction of the wavelet, which is more than what lifting allows, but

does not lead to �nite primal and dual �lters.

4. One of the appealing features of using the lifting scheme in the construction of second

generation wavelets is that one gets the �lters for the scaling functions and the wavelets
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together. Other constructions, such as non-stationary subdivision, only give the �lters for

the scaling functions, see for example [104, Chapter 5]. One then needs to use a technical

trick to �nd the wavelet �lters with the right biorthogonality properties. There is no

guarantee that this is always possible.

9. Fast lifted wavelet transform

In this section we show how the lifting scheme can be used to facilitate and accelerate the

implementation of the fast wavelet transform. The basic idea is to never explicitly form the new

�lters, but only work with the old �lter, which can be trivial, and the S �lter.

For the forward transform we get

�j = eHj �j+1 = eHold

j �j+1 + Sj j :

In index notation this becomes

�j;k =
X
l

ehold

j;k;l �j+1;l +
X
m

sj;k;m j;m :

This implies that if we �rst calculate the wavelet coe�cients j as eGold

j �j+1, we can later reuse

them in the calculation of the �j coe�cients. The �j are �rst calculated as eHold

j �j+1 and later

updated (lifted) with the j coe�cients. This way we never have to form the (potentially large)

�lter eHj . In other words, the lifting scheme makes optimal use of the similarities between theeH and eG �lter. This both facilitates and accelerates the implementation.

For the inverse transform we �nd that

�j+1 = H�
j �j +G�j j = Hold

j
�
(�j � Sj j) + Gold

j
�
j :

In index notation this becomes

�j+1;l =
X
k

hold

j;k;l

 
�j;k �

X
m

sj;k;mj;m

!
+
X
m

goldj;m;lj;m :

The inverse transform thus �rst undoes the lifting (between the parentheses) and then does an

inverse transform with the old �lters.

This leads to the following algorithm for the fast lifted wavelet transform depicted in Figure 3.

On each level the forward transform consists of two stages. Stage I is simply the forward

transform with the old �lters while stage II is the lifting. In the inverse transform, stage I

simply undoes the lifting and stage II is an inverse transform with the old �lters. In pseudo

code this becomes:
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Forward I Forward II Inverse I Inverse II
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-
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j
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j

-
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����+ -

-
?
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�j

j

-

-

����� -

?

?

Sj

Hold

j
�

Gold

j
�

6

?

����+ - �j+1

Figure 3. The fast lifted wavelet transform: The basic idea is to �rst perform

a transform with the old, simple �lters and later \lift" the scaling function coef-

�cients with the help of wavelet coe�cients. The inverse transform �rst undoes

the lifting and then performs an inverse transform with the old �lters

Forward wavelet transform

For j = n-1 downto 0

Forward I(j)

Forward II(j)

Inverse wavelet transform

For level = 0 to n-1

Inverse I(j)

Inverse II(j)

Forward I(j): Calculate the j;m and �rst stage of �j;k

8k 2 K(j) : �j;k :=
X

l2 eL(j;k)

ehold

j;k;l �j+1;l

8m 2 M(j) : j;m :=
X

l2 eL(j;m)

eg old

j;m;l �j+1;l

Forward II(j): Lift the �j;k using the j;m calculated in Stage I

8k 2 K(j) : �j;k+=
X

m2M(j;k)

sj;k;m j;m

Inverse I(j): Undo the lifting

8k 2 K(j) : �j;k�=
X

m2M(j;k)

sj;k;m j;m

Inverse II(j): Calculate the �j+1;l using the �j;k from Stage I:

8l 2 K(j + 1) : �j+1;l :=
X

k2K(j;l)

hold

j;k;l �j;k +
X

m2M(j;l)

goldj;m;l j;m
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As noted in [100], there are always two possibilities to implement these sums. For example, take

the sum in the Forward I routine. We can either implement this as (after assigning 0 to j;m)

8m 2 M(j) : 8l 2 L(j;m) : j;m+= eg old

j;m;l �j+1;l ;

or as

8l 2 K(j + 1) : 8m 2 M(j; l) : j;m+= eg old

j;m;l �j+1;l :

The �rst option loops over all m, for each j;m identi�es the �j+1;l that determine its value,

then calculates the linear combination and assigns it into j;m. The second option loops over

all l, identi�es the j;m which are inuenced by �j+1;l, and then adds on the right amount to

each j;m. Both options are theoretically equivalent, but often one of the two is much easier to

implement than the other, see for example [100]. There one of the index sets always contains the

same number of elements, while the cardinality of the other can vary depending on the mesh.

10. Cakewalk construction

In this section we discuss how one can iterate the lifting scheme to bootstrap one's way up to

a multiresolution analysis with desired properties.

We �rst introduce the dual lifting scheme. The basic idea is the same as for the lifting scheme

except that we now leave the dual scaling function and the eH and G �lters untouched. The H

and eG �lters and the dual wavelet, scaling function, and wavelet (by re�nement) change. We

can use the dual lifting scheme to custom design the dual wavelet. If we denote the operator

involved with eSj , the new set of biorthogonal �lter operators is given by

Hj = Hold

j + eSj Gold

jeHj = eHold

j

Gj = Gold

jeGj = eGold

j � eS�j eHold

j ;

where eSj is an operator from `2(M(j)) to `2(K(j)). Relationships like (13) and (12) can be

obtained by simply toggling the tildes. In the second stage of the fast wavelet transform, the j

coe�cients are now lifted with the help of the �j coe�cients calculated in the �rst stage.

We now can alternate lifting and dual lifting. For example, after increasing the number of

vanishing moments of the wavelet with the lifting scheme, one can use the dual lifting scheme

to increase the number of vanishing moments of the dual wavelet. By iterating lifting and dual

lifting, one can bootstrap one's way up to a multiresolution analysis with desired properties on

primal and dual wavelets. This is the basic idea behind the cakewalk construction.

There is one issue that remains to be checked to allow cakewalk constructions. Suppose we

�rst use dual lifting to increase the number of vanishing moments of the dual wavelet. How do

we know that this will not be ruined by later lifting? Remember that lifting changes the dual
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scaling function and thus, by re�nement, the dual wavelet. The answer is given by the following

theorem.

Theorem 10. Given a multiresolution analysis with order N . After lifting, the �rstN moments

of the dual scaling function and dual wavelet do not change.

Proof. The primal scaling functions do not change after lifting. This means that

Pp =
X
k

hPp; e'old

j;k i'j;k =
X
k

hPp; e'j;k i'j;k for 0 � p < N :

This implies that the �rst N moments of the dual scaling functions do not change after lifting.

Since the coe�cients of the re�nement relations of the dual wavelets do not change (14), neither

do their moments.

Thus lifting does not alter the number of vanishing moments of the dual wavelet obtained by

prior lifting.

Suppose we use dual lifting to increase the number of dual vanishing moments from N old to

N . This involves solving a linear system of size N , independent of how many vanishing moments

the old dual wavelets already had. This means that if we use a cakewalk construction the linear

systems to be solved become larger and larger, and so do the S �lters. Therefore we present a

scheme which allows us to exploit the fact that the dual wavelets already have N old moments

and thus only solve a system of size N�N old. The basic idea is to lift an old dual wavelet (e old

j;m)

not with old dual scaling functions on the same level (e'old

j;k), but with old dual wavelets on the

coarser level ( e old

j�1;n). This leads to a new dual wavelet of the form:

e j;m = e old

j;m �
X

n2M(j�1)

etj;n;m e old

j�1;n :

Here the etj;n;m are the coe�cients of a �lter operator eTj : `2(M(j))! `2(M(j� 1)). We always

assure that the index n belongs to M(j � 1). Note that the new dual wavelets, independent

of eT immediately have at least as many vanishing moments as the old ones (N old). Expressing

that the new dual wavelets have N vanishing moments leads to only N �N old equations in the

unknowns fetj;n;m j ng.

Let us try to �nd a fast wavelet transform associated with this. In operator notation we have

e j = e old

j � eT �j e old

j�1 = e old

j � eT �j eGold

j�1 e'old

j :

This construction thus corresponds to letting eS�j = eT �j eGold

j�1. The basic idea is to use only the

old �lters and the �lter eT and never construct the eS �lter or any of the new �lters explicitly.

The forward transform takes three stages:

I: Given the sequence �j+1 calculate the forward transform with the old �lters: �j :=eHold

j �j+1 and j := eGold

j �j+1.
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eGj�1

eHj�1
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eT �j6
6

����� - j

Figure 4. Part of a cakewalk construction. The basic idea is to lift the wavelet

coe�cients with wavelet coe�cients on the coarser level. This way the fact that

the old dual wavelets already have N old vanishing moments can be exploited.

II: Calculate another level with the old �lters: �j�1 := eHold

j�1 �j and j�1 :=
eGold

j�1 �j .

III: Lift the j with the j�1: j� = eT �j j�1.
Note that the second stage on level j coincides with the �rst stage on level j � 1, see Figure 4

for a block diagram. The inverse transform in a �rst stage undoes the lifting and then applies

an inverse transform with the old �lters.

We have seen how the lifting scheme can pass between an old and a new multiresolution

analysis. To start the construction of second generation wavelets we therefore need an initial

multiresolution analysis. In the following sections we will give three examples of an initial

multiresolution analysis to start the lifting scheme.

11. Orthogonal Haar wavelets

In this section we present the generalized orthogonal Haar wavelets, which form a �rst example

of an initial multiresolution analysis to start the lifting scheme. The idea was �rst introduced by

Coifman, Jones, and Semmes for dyadic cubes in [33], generalized for Cli�ord-valued measures

in [9, 91], and later generalized for arbitrary partitionings in [68].

We �rst introduce the notion of a nested set of partitionings.

De�nition 11. A set of measurable subsets fXj;k j j; kg is a nested set of partitionings if it is

a set of partitionings and if, for every j and k, Xj;k can be written as a �nite disjoint union of

at least 2 sets Xj+1;l:

Xj;k =
[

l2L(j;k)

Xj+1;l ;

Note that because of the partition property (Xj;k � Xj+1;k) we have that k 2 L(j; k). Let,

according to our normalization (2), 'j;k = �Xj;k
and e'j;k = �Xj;k

=�(Xj;k). De�ne the Vj � L2
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Figure 5. The generalized orthogonal Haar wavelets for square partitionings.

The wavelets are piecewise constant and have a vanishing integral. The sign

is indicated in the support. The orthogonality follows immediately from the

support and the vanishing integral of the wavelets. Similar constructions apply

to arbitrary partitionings.

as

Vj = clos span f'j;k j k 2 K(j)g :

The spaces Vj generate a multiresolution analysis of L2, see e.g. [68] for a proof. As the scaling

functions are orthogonal, we let Wj be the orthogonal complement of Vj in Vj+1 so that eVj = Vj .

Now �x a scaling function 'j;k. For the construction of the Haar wavelets, we only need to

consider the set Xj;k. First we assume without loss of generality that L(j; k) contains either 2 or

3 elements. Indeed, if L(j; k) contains more elements, we can split them into two groups whose

numbers of elements di�er by at most one. For each group we can introduce (implicitly) a new

corresponding Xj0;k0 . We can continue to do this until the number of elements is either 2 or 3.

In case L(j; k) = fk;mg we let the wavelet  j;m be

 j;m =
'j+1;k

2�(Xj+1;k)
�

'j+1;m

2�(Xj+1;m)
: (15)

In case L(j; k) = fk;m;m0g we keep  j;m as above and let

 j;m0 =
'j+1;k + 'j+1;m

2�(Xj+1;k) + 2�(Xj+1;m)
�

'j+1;m0

2�(Xj+1;m0)
:

In case L(j; k) = fk;m1; m2;m3g, we need two stages. Each stage involves two sets and a

wavelet of the form (15), see Figure 5. The Haar wavelets are constructed so thatZ
X

 j;m d� = 0 and

Z
X

j j;mj d� = 1 :

They are orthogonal to 'j;k because they have a vanishing integral. Two di�erent wavelets are

orthogonal, since either their supports are disjoint or one is constant on the support of the other.

These wavelets form an orthogonal basis for L2. In fact, they also form an unconditional basis

for Lp.

Theorem 12 ([68]). The generalized orthogonal Haar wavelets f j;m j j;mg form an uncondi-

tional basis for Lp with 1 < p <1, with unconditional basis constant p��1, where 1=p+1=p� = 1.
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This construction allows Haar wavelets adapted to the settings G1-G3 mentioned in the

introduction. Their advantage is their generality. Their disadvantages are that they are non

smooth and that they have only one vanishing moment. However, they form a perfect example

of an initial multiresolution analysis to start the lifting scheme with. With the lifting scheme

we can build wavelets with more vanishing moments and/or more smoothness.

In the case of the real line and the classical Haar wavelet, the dual lifting scheme corresponds

to a technique called average-interpolation introduced by David Donoho in [56]. Here e' is the

indicator function on [0; 1], while ' is constructed through a subdivision scheme which ensures

that polynomials up to a certain order can be reproduced with the scaling functions. This

condition is precisely the same as the vanishing moment condition of the dual wavelet as used

in dual lifting. The average interpolating technique can be generalized to a second generation

setting, see e.g. [104] for the construction of weighted wavelets. It generates primal and dual

scaling functions which are biorthogonal. However, it is not immediately clear what the wavelets

and dual wavelets are. In other words there is no immediate generalization for the Quadrature

Mirror Filter construction where one takes egk = (�1)k h1�k . The dual lifting scheme provides

a very simple solution to this problem. Again, the idea is to �rst construct the dual wavelets,

and later check what happens to the scaling functions using the cascade algorithm.

12. Interpolating scaling functions and wavelets

In this Section we introduce the Lazy wavelet, another candidate to start the lifting scheme

with, which is even simpler than the Haar wavelets. We show how it is connected with interpo-

lating scaling functions.

12.1. The Lazy wavelet. One way to look at the general index sets K(j) andM(j) is to think

of K(j) (respectively M(j)) as the generalization of the even (respectively odd) indices. This

inspires us to de�ne two subsampling operators E (even) and D (odd) as follows:

E : `2(K(j + 1))! `2(K(j)), where b = E a means that bk = ak for k 2 K(j).

D : `2(K(j + 1))! `2(M(j)), where c = Da means that cm = am for m 2 M(j).

Although these operators depend on the level j we will not supply them with an extra subscript,

since no confusion is possible. These operators provide a trivial orthogonal splitting, as"
E

D

#h
E� D�

i
=

"
1 0

0 1

#
and

h
E� D�

i " E

D

#
= 1 :

We can now decompose any operator W : `2(K(j))! `2(K(j)) as

W = WeE +WdD ; with We = W E� and Wd = W D� : (16)

The �lter operators of the Lazy wavelet are precisely these subsampling operators

HLazy

j = eHLazy

j = E and GLazy

j = eGLazy

j = D :
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The Lazy wavelet transform thus is an orthogonal transform that essentially does nothing. It only

resamples the coe�cients into two groups each step and thus can be seen as the generalization of

the polyphase transform to the second generation setting. However, it is important to consider

since it is connected with interpolating scaling functions. The operators E and D are crucial

when implementing the lifting scheme. Although they are mathematically trivial, the data

structure in the program has to be designed carefully to make them easy to implement. With

such a data structure, the implementation of the lifting scheme is straightforward.

Given a set of partitionings, one can formally associate scaling functions and dual scaling

functions with the Lazy wavelet. By using the cascade algorithm point wise and respecting the

normalization, one can see that e'j;k = �(� � xk) and that 'j;k is zero everywhere except at xk

where it is one. Formally they are biorthogonal, but in the L2 setting, e'j;k does not belong to

the space while 'j;k is zero. The wavelets and dual wavelets are given by  j;m = 'j+1;m ande j;m = 'j+1;m, and N = eN = 0.

12.2. Interpolating scaling functions. Next, we generalize the notion of an interpolating

scaling function. We �rst need a set of interpolation points fxk j j 2 J ; k 2 K(j)g. Remember

that such a set can be de�ned by a set of partitionings. In the other direction, we can associate

a set of partitionings with a set of interpolating points as follows. Assume that

8k : inf
j2J ; k02K(j)

d(xk; xk0) = 0 ;

for all k. Then let

Sj;k = fx 2 X j d(x; xk) < d(x; xk0) for k
0 2 K(j); k 6= k0g :

The sets Sj;k are the Voronoi cells of the set of points fxk j k 2 K(j)g.

De�nition 13. A set of scaling functions f'j;k j j; kg is interpolating if a set of interpolation

points xk exists, so that 'j;k(xk0) = �k;k0 for k; k
0 2 K(j).

As in the �rst generation case, the interpolating property can be characterized by means of

the coe�cients of the re�nement relation. We state and prove the result in the index notation.

Lemma 14. If a set of second generation scaling functions is interpolating, then

8 k; k0 2 K(j) : hj;k;k0 = �k;k0 : (17)

Proof.

�k;k0 = 'j;k(xk0) =
X
m

hj;k;l 'j+1;l(xk0) =
X
m

hj;k;l �l;k0 = hj;k;k0 :
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Note that this lemma can be seen as a special case of Remark 4.2 in [41]. A �lter h is called an

interpolating �lter if condition (17) holds. This condition can be written in operator notation

as

H int

j E� = 1 :

Note that this is the generalization of an �a trous �lter in the �rst generation case.

If we have an interpolating scaling function, we can always take Dirac functions as a formal

dual

e'int

j;k = �(� � xk) :

The biorthogonality follows immediately from the interpolation property. The �lter correspond-

ing to the dual scaling function is

eH int = E :

Now de�ne eSj as H int

j D�. Then it follows from (16) that any interpolating �lter can be

written as H int

j = E + eSjD. But this expression can be seen as the result of applying the dual

lifting scheme to the Lazy wavelet. We can then write a set of biorthogonal �lters as

H int

j = E + eSjDeH int

j = E

Gint

j = D

eGint

j = D � eS�j E :
We have thus shown the following theorem.

Theorem 15. The set of �lters resulting from interpolating scaling functions, and Diracs as

their formal dual, can be seen as a dual lifting of the Lazy wavelet.

In index notation the �lters become

hint

j;k;l =

(
�k;l if l 2 K(j)esj;k;l if l 2 M(j)

ehint

j;k;l = �k;l

gintj;m;l = �m;l

eg int

j;m;l =

(
�esj;l;m if l 2 K(j)

�m;l if l 2 M(j) :

Formally the dual wavelets are given by

e j;m = �(� � xm)�
X
k

hj;k;m�(� � xk) :
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Figure 6. The fast wavelet transform for wavelets built from interpolating scal-

ing functions. First apply a Lazy wavelet transform, then a dual lifting, and

�nally a regular lifting.

The primal wavelets are  j;m = 'j+1;m. We have eN = 0 and N possibly > 0. These �lters do

not correspond to a multiresolution analysis of L2, as the dual functions are Dirac distributions

which do not even belong to L2. In the case of linear interpolation, this examples corresponds

to what is known in �nite elements as \hierarchical basis functions" [116].

We next apply the lifting scheme to �nd wavelets which have eN > 0. This leads to new �lters

of the form

Hj = H int

j = E + eSjDeHj = eH int

j + Sj eGint

j = (1� Sj eS�j )E + SjD

Gj = Gint

j � S�j H
int

j = �S�j E + (1� S�j
eSj)DeGj = eGint

j = �eS�j E +D :

This can be veri�ed using Figure 6. For example, to �nd eHj , follow the paths from �j+1 to

�j . There are three: one direct through E, one through D and then down through Sj , and one

through E then up through eS�j and down through Sj . Consequently eHj = (1�Sj eS�j )E+ SjD.

In index notation this becomes

ehj;k;l = �k;l +
X
m

sj;k;m egj;m;l

gj;m;l = �m;l �
X
k

sj;k;m hj;k;l :

The new wavelet can be written as

 j;m = 'j+1;m �
X

k2K(j;m)

sj;m;k 'j;k: (18)

One can �nd the sj;k;m in the same way as described above.

12.3. Algorithm. The algorithm for the wavelet transform associated with the wavelets con-

structed in the previous section consists of three stages. First a Lazy wavelet transform, then
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a dual lifting and �nally a primal lifting, see Figure 6. The inverse transform can be derived

immediately by simply inverting each step of the forward transform.

Forward(j):

8k 2 K(j) : �j;k := �j+1;k

8m 2 M(j) : j;m := �j+1;m

8m 2 M(j) : j;m �=
X

k2eK(j;m)

esj;k;m �j;k
8k 2 K(j) : �j;k +=

X
m2M(j;k)

sj;k;m j;m

Inverse(j):

8k 2 K(j) : �j;k �=
X

m2M(j;k)

sj;k;m j;m

8m 2 M(j) : j;m +=
X

k2eK(j;m)

esj;k;m �j;k
8m 2 M(j) : �j+1;m := j;m

8k 2 K(j) : �j+1;k := �j;k

One of the nice properties of the fast lifted wavelet transform is that all calculations can be

done in-place, i.e., without auxiliary memory. It is su�cient to provide storage locations only for

the coe�cients �n;k of the �nest levels. No additional auxiliary memory is needed. A coe�cient

�j;k with j < n can be stored in the same location as �n;k, while a wavelet coe�cient j;m with

j < n can be stored in the same location as �n;m. The Lazy wavelet transform now simply

requires blinking your eyes. Lifting will only require updates with local neighboring coe�cients

(typically += or �= operators in the implementation) and thus does not need extra storage.

13. Biorthogonal Haar wavelets

In this section we introduce a third example of an initial multiresolution analysis: the biorthog-

onal Haar wavelets. They were �rst used in triangular subdivision in [99]. On triangles, biorthog-

onal Haar wavelets have more symmetry than orthogonal Haar wavelets. We here show how the

biorthogonal Haar wavelets themselves can be seen as a result of lifting from the Lazy wavelet.

Take a set of nested partitionings Xj;k. Note that this de�nes the index sets L(j; k). Consider

the Lazy wavelet,

e'Lazy

j;k
= �(� � xk) and e Lazy

j;m = �(� � xm) :

Let us �rst apply dual lifting and denote the resulting functions with a superscript (1). Fix a

k� 2 K(j) and letM(j; k�) = L(j; k�)nfk�g. In order for the new wavelet e (1)

j;m withm 2 M(j; k�)

to have one vanishing moment, we let

e (1)

j;m = �(� � xm)� �(� � xk�) = e'(1)

j+1;m � e'(1)

j+1;k�

so that K(j;m) = fk�g and esj;k;m = �k;k� . This implies that the scaling function satis�es

'(1)

j;k�
= '(1)

j+1;k�
+

X
m2M(j;k�)

esj;k;m '(1)

j+1;m =
X

l2L(j;k�)

'(1)

j+1;l
(19)
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Figure 7. The biorthogonal Haar wavelets on triangles. Biorthogonality follows

from the support and the vanishing integral of wavelets and dual wavelets. On

triangles the biorthogonal Haar wavelets are more symmetric than the orthogonal

Haar. This is another example to start the lifting scheme with.

which yields that '(1)

j;k = �Xj;k
and thus  (1)

j;m = �Xj+1;m
. We now have N = 1 and eN = 0 and

could call this a half Haar basis. Note that this half Haar wavelet is used in the interlaced GIF

format which is currently quite popular on the World Wide Web.

Next we use lifting to obtain a primal wavelet with a vanishing moment. We choose

 j;m =  
(1)

j;m � sj;k�;m '
(1)

j;k�
with k� 2 K(j;m) ;

where sj;k;m = �(Xj+1;m)=�(Xj;k) if m 2 M(j; k) and zero otherwise. In this way  j;m has one

vanishing moment. The new dual scaling function becomes:

e'j;k = e'j+1;k + X
m2M(j;k)

�(Xj+1;m)=�(Xj;k) e j;m
= e'j+1;k + X

m2M(j;k)

�(Xj+1;m)=�(Xj;k) (e'j+1;m � e'j+1;k) (because of (19))

=
X

m2M(j;k)

�(Xj+1;m)=�(Xj;k) e'j+1;m +

0
@1� X

m2M(j;k)

�(Xj+1;m)=�(Xj;k)

1
A e'j+1;k

=
X

l2L(j;k)

�(Xj+1;l)=�(Xj;k) e'j+1;l
= �Xj;k

=�(Xj;k) :

Summarizing we have the following basis functions, which generate the biorthogonal Haar
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multiresolution analysis:

'j;k = �Xj;k

e'j;k = �Xj;k
=�(Xj;k)

 j;m = 'j+1;m � �(Xj+1;m)=�(Xj;k�)'j;k� with fk�g = K(j;m)

e j;m = e'j+1;m � e'j+1;k� :
Figure 7 shows the biorthogonal Haar wavelets for a triangular partitioning. Given that the

scaling function and dual scaling function are multiples of each other, we actually have a semi-

orthogonal setting. This means that the Vj and eVj spaces coincide. Consequently wavelets

on di�erent levels are orthogonal, but within one level the wavelets are not orthogonal. The

biorthogonal Haar multiresolution analysis is another example of an initial multiresolution anal-

ysis with N = eN = 1. We here actually showed how it can be constructed by twice lifting the

Lazy wavelet.

The algorithm for the biorthogonal Haar transform is given below. Again all calculations can

be done in-place.

Forward(j):

8m 2 M(j) : j;m := �j+1;m � �j+1;k (fk�g = K(j;m))

8k 2 K(j) : �j;k := �j+1;k +
X

m2M(j;k)

sj;k;m j;m

Inverse(j):

8k 2 K(j) : �j+1;k := �j;k �
X

m2M(j;k)

sj;k;m j;m

8m 2 M(j) : �j+1;m := j;m + �j+1;k (fk�g = K(j;m))

14. Applications and future research

Now that we understand the machinery of the lifting scheme, we can start to apply it in the

settings described in the introduction. We discuss a few cases in more detail.

14.1. Wavelets on an interval. As pointed out in the introduction, many wavelet construc-

tions on the interval already exist. They all involve modifying the wavelets and scaling functions

close to the end point of the interval, which leads to special boundary �lters. The derivation

of the boundary �lters is actually quite technical and it is not immediately clear to the user

why they work. With the aid of the lifting scheme, the construction of interval wavelets and the

implementation of the associated transform become much more transparent. The Haar and Lazy

wavelet can be trivially de�ned on the interval. Lifting then only requires pulling in the right
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aunts (scaling functions on the coarser level) at the boundary of the interval. All calculations

can be done in-place. For details we refer to [106].

A software package, LIFTPACK, to calculate the wavelet transformation of images is currently

available [64]. Its properties are: in-place calculation, correct treatment of boundaries, arbitrary

size images (not only powers of two), and a faster implementation of existing biorthogonal

wavelet �lters (speedup can be a factor of two).

14.2. Weighted wavelets. Let X be R and consider the weight function w(x) = d�=dx,

where dx stands for the Lebesgue measure. The wavelets constructed with the lifting scheme

are orthogonal with respect to a weighted inner product, where w(x) is the weight function. We

refer to them as weighted wavelets. They are useful for the approximation of functions with

singularities. If a function f contains a singularity, then the approximation with �rst generation

wavelets will be slow, independent of the number of dual vanishing moments N . If we can now

choose a weight function w so that w � f is a smooth function, then the approximation with

weighted wavelets will be again of the order of the number of vanishing moments. An example

of this behavior is given in [106].

Weighted wavelets are also useful in the solution of boundary value ODEs, see [75, 104]. If the

operator is of the form �DaD, then operator wavelets de�ned as the anti-derivative of weighted

wavelets with weight function w(x) =
p
a(x) diagonalize the operator. The solution algorithm is

thus simply a forward and inverse wavelet transform. Future research involves the incorporation

of the operator wavelets construction directly into the lifting scheme.

14.3. Wavelets on curves, surfaces, and manifolds. The only thing needed to construct

wavelets on manifolds is either a set of interpolating points to de�ne a Lazy wavelet or a set of

nested partitionings to de�ne Haar wavelets. Lifting will take care of the rest. The resulting

wavelets are de�ned intrinsically on the manifold and do not depend on any parameterization

or atlas.

In [99] the lifting scheme is used to construct wavelets on a sphere. Partitionings of the

sphere were obtained by starting from a Platonic solid and alternating triangular subdivision

and projection out to the sphere. This is known as a geodesic sphere construction. The Lazy

wavelet is the starting point for a family of vertex-based wavelets, while the biorthogonal Haar

wavelets lead to a family of face-based wavelets. In [100] these wavelets were used for the

processing of spherical images. Current research involves the generalization of the construction

and the applications to arbitrary surfaces.

14.4. Adaptive wavelets. The idea of adaptive wavelets was introduced in [69, 97, 98] in the

context of the numerical solution of integral equations for illumination computations. The idea

is the following. Assume the solution can be approximated with su�cient accuracy in a linear

space Vn of dimension M . We know that out of the M2 matrix entries representing the integral
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operator in the wavelet basis, only a fraction O(M) is relevant. If we have these entries, solving

the matrix equation can be done in linear (O(M)) time.

However, calculating all wavelet coe�cients of the kernel from the �nest level n to the coarsest

level 0 with the fast wavelet transform requires O(M2) operations and is thus a waste of CPU

time and memory. Indeed the majority of all computations and memory use will be in vain.

If we want an algorithm with linear complexity we can only a�ord to calculate the wavelets

coe�cients which we actually need or a slightly larger set.

Gortler, Schr�oder, et al. achieve this with the use of an oracle function. This function predicts,

in a conservative fashion and based upon knowledge of the kernel of the integral equation, which

wavelet coe�cients need to be calculated. They were able to implement this with the use of

what they call tree wavelets. Tree wavelets have the property that each wavelet of level j is

supported within the support of only one scaling function of level j. Haar wavelets and Alpert

wavelets [4, 5, 6] have this property. The advantage is that subdividing the support of a scaling

function on level j, and thus constructing the wavelets of level j associated with it, does not

imply subdividing any other support sets on level j. This way they can calculate the wavelet

coe�cients from the coarsest level to the �nest level, thereby only subdividing (adding wavelets)

where the oracle tells them to.

With traditional (non-tree) wavelets, subdividing a support set S on level j and constructing

the wavelets associated with it (whose support may reach outside of S) will imply subdividing a

neighboring set of S and dragging in the wavelets associated with that set. This process cascades

out and would imply subdividing the whole level j and thus makes adaptive constructions

awkward.

Tree wavelets are discontinuous and this is a drawback in many applications. As shown in

[99], lifting provides a solution here. Indeed, because of the \aunt" property, subdividing a set S

on level j only requires its neighbors to exist, but not necessarily requires them to be subdivided

as well. The mesh only needs to satisfy a restriction criterion in the sense that neighboring

sets only di�er by at most one level. This does not cascade out. Lifting thus opens the door

to smooth adaptive wavelets. Current research involves the incorporation of these wavelets in

illumination computations.

A word of caution is needed here. In [46, 96] it is shown that adaptive wavelet algorithms

require wavelets on manifolds satisfying speci�c conditions concerning stability, regularity, and

norm equivalence. As pointed out earlier, lifting does not guarantee these conditions and they

have to be veri�ed in each particular case.

14.5. Recursive wavelets. The principle of recursive wavelets is explained in [8, 56]. The

basic idea is not to use the cascade algorithm ad in�nitum to construct the scaling functions,

but instead �x the scaling functions on an arbitrary �nest level n. This can be generalized easily
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to the second generation case. Consider a set of partitionings and let

'n;k = �Sn;k for k 2 K(n) :

Next consider a general �lter h (not necessarily a Haar �lter) and de�ne the scaling functions on

the coarser level ('j;k with j < n) through recursive applications of the re�nement relation (4).

By de�nition all scaling functions 'j;k are piecewise constant on the sets fSn;k j k 2 K(n)g. This

is precisely the advantage of recursive wavelets; no need to go trough an in�nite limit process

to �nd the scaling functions, instead apply the re�nement relation a �nite number of times.

One can choose other functions but indicator functions as scaling functions on the �nest level.

The advantage of indicator functions is their generality, the disadvantage is that they are not

smooth. If the topology admits it, smoother choices are piecewise linear (hat) functions or

B/box-splines.

In the setting of recursive wavelets, there are L2 functions associated with the Lazy wavelet.

Indeed

 Lazy

j;m = 'Lazy

j+1;m = 'Lazy

n;m = �Sn;m :

In this paper, we have always assumed that the measure is non-atomic. This restriction,

however, is not fundamental. Recursive wavelets allow for atomic measures. Indeed, there is no

reason why any of the subsets of Sn;k should be measurable. As is shown in [68], it is possible

to build Haar wavelets on fully discrete sets such as the integers, or on sets which are of mixed

continuous/discrete nature. Also the lifting scheme remains valid.

The idea of recursive wavelets can also be combined with the idea of adaptive wavelets of

the previous section. Instead of �xing the scaling function on one �nest level n, one can let

the notion of �nest level depend on the location. Indeed, the oracle of the previous subsection

typically leads to �ner subdivisions in certain locations and coarser subdivisions in other. The

�nest level n(k) thus depends on the location k. We then �x the scaling functions

'n(k);k = �Sn(k);k ;

where

X =
[
k

Sn(k);k :

In other words, we are using an adaptive mesh.

It is important to note that even though recursive wavelets only use a �nite number of levels,

the stability issue does not go away but rather manifests itself as a problem concerning ill-

conditioning.

14.6. Wavelet packets. Wavelet packets were introduced by Coifman, Meyer, and Wicker-

hauser [34, 35, 114, 115]. The idea is to also further split the Wj spaces with the help of the

h and g �lters. This way one obtains a better frequency localization. The splitting leads to a
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full binary tree of wavelet packets, which form a redundant set. For a given function, one can

choose the best-basis with respect to a criterion such as the entropy of the basis coe�cients. A

fast tree algorithm to �nd the best basis was introduced in [36], see also [115].

This idea again carries over into the second generation setting and can be combined with

lifting. The conditions for exact reconstruction have exactly the same algebraic structure as

in the wavelet case. One can start with de�ning a Lazy wavelet packet or a generalized Haar

wavelet packet (which could be called generalized Walsh functions). A new wavelet packet is

now de�ned as an old wavelet packet plus a linear combination of wavelet packets that live on

a coarser level. From a practical point of view, one extra index comes in, and proper data

structures need to be designed to incorporate the new �lters.

14.7. M-band wavelets. The idea of M -band wavelets, or p-adic wavelets, a name more com-

mon in the mathematical literature, is to split a space Vj+1 into M (as opposed to 2) subspaces:

Vj �W
1
j � : : :�W

M�1
j . For each subspace a di�erent �lter is used. Several constructions were

introduced in [72, 81, 102, 109]. In some sense the second generation wavelet setting already

incorporates this. Indeed, it even allows for di�erent �lters for each individual wavelet. However,

thinking of lifting combined with M -band wavelets can lead to new constructions. Let us start

with the Lazy wavelet. An M -band Lazy wavelet is easily de�ned and again is the standard

polyphase transform [109]. Now one can de�ne a new wavelet as an old wavelet plus a linear

combination of scaling functions on the coarser level. This would be ordinary lifting. But we

could also de�ne a new wavelet as an old wavelet plus a linear combination of scaling functions

on a coarser level plus wavelets belonging to another (lower index) subband. This allows more

exibility in the construction. It requires that theM subband are calculated in ascending index

order in the transform. In the extreme case one can let each subband contain precisely one

wavelet. A new wavelet is now an old wavelet plus previously constructed new wavelets. This

requires an ordering within the wavelets of one level. This way we can construct non compactly

supported wavelets with only �nite �lters.

14.8. Non separable wavelets in Rn. As already mentioned earlier, the lifting scheme also

leads to new insights in the construction of �rst generation wavelets. This was shown in the

one-dimensional case in [105]. Higher-dimensional wavelets can always be constructed using

tensor products, but this leads to severe axial directional dependencies. Instead one prefers to

work with non separable wavelets which have more axial symmetry and which do not necessarily

use a product lattice, see for example [22, 28, 32, 76, 77, 89, 90, 92, 93].

Here too lifting can help. Each lattice allows for the immediate de�nition of a Lazy wavelet

or a Haar wavelet, either 2-band or M -band. Polynomial cancelation then leads to the �lter

coe�cients. Whether lifting will actually lead to new wavelets in this context or rather provide

faster implementations of already existing �lters as in the one-dimensional case remains a topic

for further study.
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14.9. Wavelets on bounded domains and wavelet probing. One of the important appli-

cation domains of wavelets is the solution of partial di�erential equations. In [44] it is shown

that one can use wavelets to build multilevel preconditioners which result in sti�ness matrices

with uniformly bounded condition numbers. This leads to linear solution algorithms. To solve

real life problems one needs wavelets constructed on non-smooth (Lipschitz) domains in Rn. In

[27, 74] such a construction is presented. In both cases, tensor product wavelets are used in the

interior of the domain while at the boundary specially adapted wavelets are constructed. In this

sense these constructions are the natural generalization of the interval constructions to higher

dimensions. With the lifting scheme one can build non separable wavelets adapted to general

domains. Again the only thing needed is a set of partitionings. One nice property here is that

lifting allows for adaptive meshes.

Already in the simple case of the Laplace equation and a non-smooth domain it was recently

shown that one cannot obtain an O(M�2) accuracy (whereM is the number of elements) unless

one uses non-linear approximation [39]. The underlying reason is that the solution does not

belong to the second order Sobolev space but rather to a second order Besov space. In other

words, one has to use adaptive grids to obtain the correct convergence order.

There is another important application of wavelets on domains. It is a technique called wavelet

probing introduced independently in [58] and [8, 53]. Let us discuss the idea �rst on the real

line. Consider a function which is smooth except for jump discontinuities at isolated points. We

know that the decay of the wavelet coe�cients is fast away from the jumps, and slow in the

neighborhood of the jumps. Increasing the number of dual vanishing moments leads to faster

decay away from the jumps but also to a larger set of coe�cients a�ected by the jumps because

of the larger support. It is thus not possible to obtain more e�cient approximations and thus

better compression by simply increasing the number of dual vanishing moments.

Suppose now we know the location of the jumps. If we use interval wavelets on each interval

between two jumps, and thus segment the signal accordingly, we would get fast convergence

everywhere. Wavelet probing is a technique which allows us to locate the jumps. It simply

tries every location between two samples and checks whether it would pay o� to segment at this

location. The pay-o� can be measured e.g. with the entropy of the wavelet coe�cients. Probing

one location only requires altering logM coe�cients where M is the number of samples. The

whole algorithm thus has a complexity of M logM .

Wavelet probing has important applications in image compression. Indeed it allows quick

localization of the edges in an image, and then builds wavelets on the segments de�ned by those

edges. Considerably higher compression ratios can be obtained this way. Wavelet probing thus

provides an alternative for the zero crossing representation introduced by Mallat and Zhong

[82, 83]. The advantage is that no iterative reconstruction is needed. Wavelet probing interacts

easily with lifting and the adaptive wavelets mentioned above.
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14.10. Wavelets adapted to irregular samples. As we mentioned in the introduction, one

of the motivation for the generalization to second generation wavelets, was the processing of

irregularly sampled data. Let us discuss this �rst on the real line. Assume we are given irregular

samples of a function f(x): �n;k = f(xk) with k 2 K(n). We �rst need to de�ne a Lazy wavelet,

i.e. we need the sets K(j) with j < n (the coarser levels) and the setsM(j) with j � n, together

with the xm for m 2 M(j) (the �ner levels). For the coarser levels we only need to decide which

sample locations to retain, while for the �ner levels we also have to decide where to put the new

locations. Coarser levels are needed in the wavelet transform, �ner in the cascade algorithm. A

simple strategy, which was used in [106] is to retain every other sample on the coarser level and

put a new sample in the middle of two old samples on the �ner levels. Once a Lazy wavelet

is de�ned, dual lifting provides interpolating scaling functions, and lifting yields wavelets with

vanishing moments. The dual lifting can be seen as an instance of irregular Deslauriers-Dubuc

subdivision [54, 55]. Current research involves the study of more advanced choices for the Lazy

wavelet. One of the strategies is to choose the sample locations so that the ratio of the largest

versus the smallest interval of a level becomes closer and closer to one on both the �ner (j > n)

and the coarser (j < n) levels. Future research also involves the study of these schemes in higher

dimensions.

14.11. Integer to integer wavelet transforms. In [16] lifting is used to build reversible

wavelets which map integers to integers for applications to lossless image coding. The idea is

to introduce a non-linear round-o� in each lifting step. This way the result is guaranteed to be

integer while the lifting assure that the transform is invertible. The exact same idea works in

the second generation setting and using this in second generation compression applications is

another line of future research.

14.12. Conclusion. In this paper we presented the lifting scheme, a construction tool for

wavelets adapted to general settings. We showed how one can start from a trivial multiresolu-

tion analysis and use lifting to work one's way up to a multiresolution analysis with particular

properties. As we mentioned in the introduction, the lifting scheme provides an answer to the

algebraic phase of a wavelet construction. For each of the applications mentioned in this section,

one still has to verify whether the cascade algorithm converges, whether the resulting wavelets

form a Riesz basis (analytic phase), and what their smoothness is (geometric phase).

Note

As mentioned in the introduction, we learned after �nishing this work that Wolfgang Dahmen

and collaborators independently obtained a construction of multiscale bases with a technique

very similar to lifting [17]. We here go into more detail comparing the two approaches. Recall

from Theorem 8 that the lifting involved an operator which can be written in matrix location
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as "
1 S

0 1

#
:

The main advantage of this operators is that, independent of the choice of S, it are guaranteed

to be invertible and the inverse can be found by ipping the sign on S. In the setting of [17] a

more general operator of the form "
1 S

0 K

#

is used (which for K = I becomes lifting). This operator is invertible if and only if K is

invertible. The inverse is then given by"
1 �SK�1

0 K�1

#
:

This setting is more general and allows to explore all degrees of freedom one has to generate

new biorthogonal �lters. In Section 3.3 of [17] a K 6= I is construced which generates orthogonal

decompositions. Section 4.1 discusses the case of compactly supported semi-orthogonal splines

wavelets on irregular knot sequences. However, these settings do not allow both K and K�1 to

be sparse.

There are certain advantages to the lifting (K = I) approach. One problem with the more

general approach (K 6= I) is that it involves taking the inverse of K and does not guarantee

that all primal and dual �lters are �nite. In�nitely supported �lters are less useful practically

and do not necessarily lead to fast transforms. Moreover K�1 might be di�cult to compute

numerically. Many of the attractive features of lifting such as in-place computation, no need for

inverting operators, and adaptive transforms using \aunt" functions disappear when allowing a

general K 6= I .

In the �rst generation setting it was shown recently [52] that in case of �nite �lters no

generality is lost when restricting oneself to the lifting setting: all �nite �lters can be obtained

using multiple alternate primal and dual lifting steps.

On several occasion in this paper we mentioned that lifting does not guarantee stable bases

or convergence of the associated subdivision scheme. In fact, many of these issues have been

addressed carefully in [17, 41, 42] and we refer to those papers for details.
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