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Abstract

We present a fast algorithm for exact maximum likelihood multi-symbol noncoherent PSK decod-
ing. While the standard algorithm is exponential in the rate and the block length, our algorithm is rate
independent and linear-logarithmic in the block length.

Index Terms—Noncoherent decoding, differential modulation, phase shift key

1 Introduction

We consider communication over a fading channel where the fading is unknown but approximately constant

over multiple symbol periods. Coherent decoding requires explicit learning of the channel and its overhead

may be excessive especially in mobile or multiple antenna settings. Standard differential modulation tech-

niques like DMPSK encode the data in the phasedifferencebetween two consecutive PSK symbols [1].

However, the performance of noncoherent differential decoding is inferior to coherent decoding; in [2] it

is shown that when the number phases used (M ) gets large DMPSK suffers from a 3dB performance loss

compared to coherent MPSK decoding. By using maximum likelihood (ML) decoding over blocks of mul-

tiple symbols a portion of this loss can be recuperated [2] . However, the computational complexity of the

standard ML algorithm is exponential in both the rateR = log2 M and the block lengthT . In [3] a linear

complexity algorithm (O(T )) that approximatelycomputes the ML answer was introduced. In this paper

we present a linear-logarithmic (O(T log T )) algorithm forexactML noncoherent decoding. We also show

that for the approximate algorithm to have a constant approximation quality, its complexity needs to grow

quadratically (O(T 2)).
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2 Channel Model

We use complex baseband notation: at timet we transmit the signalst and we receive the signalxt at the

receiver antenna. We assume a Rayleigh fading channel given by:

xt =
√

ρ ht st + wt, t = 0, 1, . . . . (1)

The additive noisewt is independent, identically complex Gaussian distributedCN (0, 1). The complex-

valued fading coefficientht is CN (0, 1) distributed but not necessarily independent. The signals are nor-

malized to have average energy one:E|st|2 = 1; thenρ represents the expected signal-to-noise ratio (SNR)

at the receiver.

For a data rate ofR bits per channel use, we needM = 2R symbols. A common technique is Phase

Shift Key (PSK) which uses symbols that areM th roots of unity

vm = e2πim/M m = 0, . . . ,M − 1. (2)

Known channel: Suppose we want to send a data sequence of integersz1, z2, . . . with zt ∈ {0, . . . ,M −
1}. In case we assume that the receiver knows the fading coefficient, then the transmitter simply sends

st = vzt .

The ML coherent decoder is given by

ẑt = arg max
06m<M

|xt − htvm| = barg (xt/ht)M/(2π)e . (3)

Herearg is the phase of a complex number andbxe stands for the integer closest tox: bxe = bx + 1/2c. In

this case the decoding is done per symbol and there is no advantage from using block decoding. Note that

the decoding depends only on the phase of the fading coefficient and not its magnitude.
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Unknown channel: In case the receiver does not know the fading coefficient, one has to use block modu-

lation and decoding. Typically one assumes that the fading is constant over blocks of length2 (ht ≈ ht−1).

The transmitter transmits a block[1 vzt ], where the first symbol can be thought of as a training symbol.

The receiver uses the phase of the first received symbol as an estimate of the fading phase. But using non

overlapping blocks of course cuts the data rate in half. Therefore when the fading varies continuously one

lets the blocks overlap. The transmitter sends the symbols

st = vzt st−1 t = 1, 2, . . . (s0 = 1). (4)

The ML noncoherent decoder is given by

ẑt = arg min
m

|xt − xt−1 vm| = barg (xt/xt−1)M/(2π)e , t = 1, 2, . . . . (5)

Comparing this with (3) we see that indeedxt−1 is used to estimate the phase of the fading. This becomes

more clear when we substituting (4) in (1) to obtain (usinght = ht−1):

xt = xt−1vzt + wt − vztwt−1 = xt−1vzt +
√

2 w′
t,

wherew′
t is iid CN (0, 1). Formally this is equivalent to the known channel model with fadingxt−1 and

twice the noise power. This relates to 3dB loss compared with the coherent decoder.

3 Block Decoding

If the fading coherence interval is sufficiently large, one can recuperate a portion of the noncoherent decod-

ing loss [2]. We assume that the fading is approximately constant overT symbol intervals and will group the

sent and received symbols into non overlapping blocks of lengthT . We will use boldface to denote vectors

of lengthT ; the components of a vectorx are given byxt for 1 6 t 6 T . The channel model can now be

written as

x =
√

ρ h s + w, (6)
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wherex, s,w ∈ CT andh ∈ C. We also consider the additive groupG = ZT
M : the elements are lengthT

vectors with integer components between0 andM − 1 and addition is done component wise and modulo

M . The groupG clearly hasMT elements. The all one element is1 ∈ G and the standard unit vectors are

et ∈ G for 1 6 t 6 T . Let η = v1 = exp(2πi/M) and define the exponential map forg ∈ G as

ηg = [ηg1 . . . ηgT ] ∈ CT .

The transmitter uses uncoded vectorsηg for g ∈ G. After averaging over the unknown channel phase, the

likelihood function at the receiver is a monotone function of

L(g) = |x∗ηg|,

and the ML noncoherent decoder thus is

ĝ = arg max
g∈G

L(g). (7)

The ML decoder is unaffected by the phase ofx∗ηg; integer vectorsg that differ by a multiple of the all

one vector1 hence are indistinguishable at the receiver:L(g) = L(g + 1). Our codebook thus consists of

equivalence classes ofG each withT elements that differ by a multiple of1. As representatives we can take

the vectors with first componentg1 = 0; hence there areMT−1 distinct codewords in the codebook.

A naive implementation of the ML noncoherent decoder computes the likelihoodL(g) for every code-

word g; its cost isO(2R(T−1)), i.e., exponential in both the rate and the block length. This is a high price

to pay in comparison with the standard two symbols differential decoding (5) which is constant per symbol.

In this paper we present an algorithm forexactlycomputing the noncoherent ML decoder with complexity

O(T log T ). The cost per symbol is thusO(log T ).
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4 Fast Block Decoding

First observe from (3) that the coherent decoding decision does not depend on the magnitude of the fading

coefficient, but only on its phase. We thus leth = e−iϕ. In caseϕ is known then the coherent ML decoder

as a function ofϕ is given by

Γ(ϕ) = arg min
g∈G

∥∥x− e−iϕηg
∥∥ = arg max

g∈G
Re (x∗e−iϕηg) = b(arg x + ϕ1)M/(2π)e mod M.

As we pointed out above, coherent ML decoding is done component wise. We next ask ourselves whether

there is some valuêϕ for ϕ for which the coherent decoder gives the same answer as the noncoherent

decoder (7):̂g = Γ(ϕ̂)? To answer this note that

Γ(ϕ) = arg max
g∈G

|x∗ηg| cos(arg (x∗ηg) − ϕ).

We know thatg = ĝ maximizes the first factor in this product. Hence if we chooseϕ̂ = arg (x∗ηbg) then

the cosine is maximal as well atg = ĝ. Thus

ĝ = Γ(ϕ̂) with ϕ̂ = arg (x∗ηbg).

This of course does not lead to an algorithm asϕ̂ in turn depends on̂g. But it shows that a value forϕ exists

where the coherent decoder agrees with the nocoherent decoder. Hence we can in theory find the answer

by scanning all possible values forϕ, computing the coherent decoder, and picking the one with the largest

noncoherent likelihood:

ĝ = Γ(ϕ̂) with ϕ̂ = arg max
ϕ∈[0,2π)

L(Γ(ϕ)).

The main observation underlying the algorithm is that when scanning all phasesϕ ∈ [0, 2π), Γ(ϕ) takes

on onlyT distinct codewords. We call them thetest wordsg[t] for 1 6 t 6 T . This can be seen as follows.

First observe that

Γ(ϕ + 2π/M) = Γ(ϕ) + 1, (8)
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which is a codeword equivalent toΓ(ϕ). Hence we can restrict ourselves toϕ ∈ [0, 2π/M). Lets start with

ϕ = 0 andΓ(0). The first test word isg[1] = Γ(0). Because of (8), each componentxt decodes tog[1]
t

whenϕ = 0 and tog
[1]
t + 1 whenϕ = 2π/M . For each componentxt there is a value forϕ in [0, 2π/M)

where the cross over happens; we call this thecross overangleαt. Note that since the ML decoder is done

componentwise and we only scan over2π/M this cross over happens only once. The cross over angle for

componentt can be found as

αt = (g[1]
t + 1/2)2π/M − arg xt.

Figure 1 illustrates this. The closest multiple of2π/M to arg xt is g
[1]
t ; however whenarg xt + ϕ is larger

than(g[1]
t + 1/2)2π/M the closest multiple isg[1]

t + 1.

u

g
[1]
t 2π/M

×
arg xt

ϕ = 0

-�

(g[1]
t + 1/2)2π/M

ϕ = αt

u

(g[1]
t + 1)2π/M

×
arg xt + 2π/M

ϕ = 2π/M

αt

-�

2π/M

Figure 1: Whenϕ = 0, the componentxt decodes tog[1]
t . However, forϕ > αt, xt will decode tog[1]

t + 1.

To find the test words, we need to sort the cross over angles at a cost ofO(T log T ). Let ut be the index

of the sorted cross over angles so that

αut 6 αut+1 for 1 6 t < T.

We can now build the remainingT − 1 test words as follows. Let the angleϕ scan from0 to 2π/M . At

ϕ = 0 we decode tog[1]. The first cross over angle we encounter isαu1 . Thus the next test vector is obtained

by adding one (moduloM ) to theu1th component:g[2] = g[1] + eu1 . In general

g[t] = g[t−1] + eut−1 for 2 6 t 6 T.

Fort = T +1 we would end up withg[1]+1 which is equivalent tog[1]. We thus haveT test words. Figure 2
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illustrates how the cross over angles divide the interval[0, 2π/M) into T pieces each corresponding to one

test word.

0

g[1]

αu1

g[1]

αu2

g[3]

αu3 · · ·

· · ·
αuT−1

g[T ]

αut

g[1]

2π/M

Figure 2: The interval[0, 2π/M) is cut up inT pieces by the cross over anglesαut . If the channel phase is
betweenαut−1 andαut , the the coherent ML answer isg[t].

The ML answer now is

ĝ = g[t̂ ] with t̂ = arg max
16t6T

L(gt).

Naively computingL(g) costsO(T ) operations per vector. However, because of their special structure, we

can compute the likelihoods of allT test words inO(T ). We first compute the inner productsP [t] = x∗ηg[t]
.

The first one costsO(T ), but each remaining one can be computed recursively at constant cost as

P [t] = P [t−1] + x∗
t ηg

[1]
t (η − 1).

The likelihoods are now given asL(gt) = |P [t]|. Because of the sorting, the overall complexity of the

algorithm isO(T log T ). The cost per symbol is thusO(log T ).

Because of the equivalence inG, the actual rate isR(T − 1)/T . The non overlapping blocks all have

their first symbol equal to one. By multiplying an entire block with the last symbol of the previous block one

can let the blocks overlap by one and the rate becomesR. This can be seen as a block differential scheme.

5 Matlab Program

The above algorithm can be implemented using a 9 line Matlab program.
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function g = decode(x,M)

1 eta = exp(2*pi*i/M);
2 arg = angle(x)*M/(2*pi);
3 g = round(arg);
4 [void, u] = sort(g-arg);
5 p = conj(x).*eta.ˆg;
6 v = [ sum(p) ; p(u)*(eta-1) ];
7 [void,best] = max(abs(cumsum(v)));
8 g(u(1:best-1)) = g(u(1:best-1)) + 1;
9 g = mod(g-g(1),M);

Line comments:

2: Compute the phases of thex vector in multiples of2π/M .

4: Sort the cross over angles. There is no need to include the constantπ/M .

5: Compute the terms of the first inner productP [1].

6: Arrange all the terms of the recursion in a vector.

7: Compute all the inner products, take their absolute values and keep the index of the largest one.

8: Build the best test wordg[t̂ ].

9: Find the representative of the equivalence class.

6 Comparison with Approximate Algorithm

In [3] Warrier and Madhow introduce an approximate algorithm for computing the noncoherent ML decoder.

They takeL equally spaced guessesϕl = 2π/(ML) (0 6 l < L) for the unknown phase and thus haveL

test wordsΓ(ϕl). Clearly the complexity isO(TL). With the use of the cross over angles defined above we

can analyze the probability that the approximate algorithm returns the ML answer.

We make the following simplifying assumption: The cross over anglesαt and the phaseϕ are indepen-

dent and distributed uniformly on the interval[0, 2π/M). This is only true in the low SNR regime.

Since the interval is cyclic, theT cross over angles divide the interval intoT subintervals. We denote a

general subinterval withI and its length in units of2π/M is the random variableK where0 6 K 6 1. The

subinterval that containŝϕ gives the ML answer and is denotedIML. In case one of theL guessesϕl lies in

IML, the approximate algorithm will return the ML answer. The length ofIML in units of2π/M is KML.
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ForK to be larger thank, T − 1 cross over angles need to lie in an interval of length1 − k. Hence the

marginal cumulative probability forK is

P (K < k) = 1 − (1 − k)T−1.

To find the cumulative probability ofKML we need to factor in the probability that a particular interval is

the ML interval. This is simply the length of the interval. Doing this for allT intervals yields:

P (KML < k) = T

∫ k′=k

k′=0
k′dP (K < k′) = 1 − (1 − k)T−1(Tk − k + 1).

If KML > 1/L then for sure one of the guesses lies in the subintervalIML and the approximate algorithm

returns the ML answer. In caseKML < 1/L, then the chance that one of theL guesses is inIML is LKML.

Thus the probability that the approximate algorithm is ML is given by

PML = 1 −
∫ k=1/L

k=0
(1 − Lk)dP (KML < k)

= 1 − L

∫ 1/L

0
P (KML < k)dk

=
2L

T + 1
−

(
1 − 1

L

)T T + 2L − 1
T + 1

.

For constantT , increasingL makesPML go to one. For growingT with constantL, PML will go to zero.

To avoid the probability to go to zero with growingT , one needs to letL grow proportionally toT . For

example ifL = T the probabilityPML converges to2 − 3/e ≈ .89. For the approximate algorithm to have

a nonzero asymptotic probability to find the ML answer, its complexity thus becomes quadratic (O(T 2)).

7 Future Work

There are several possibilities for future work. One can build a running version of this algorithm. The

sliding window has lengthT . The algorithm keeps track ofT sorted cross over angles andT inner products.

Whenever the window moves by one, a new cross over angle gets inserted in the sorted list and one gets
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dropped and the inner products need to be updated.

One can build a QAM version. In [3] an algorithm is introduced to use the fast PSK noncoherent

decoding an a component in QAM noncoherent decoding. However, the algorithm is still exponential albeit

with a smaller base.

Finally one could envision a generalization of this technique to multiple antenna differential modulation,

see [4].
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