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Abstract

We present a fast algorithm for exact maximum likelihood multi-symbol noncoherent PSK decod-
ing. While the standard algorithm is exponential in the rate and the block length, our algorithm is rate
independent and linear-logarithmic in the block length.

Index Terms-Noncoherent decoding, differential modulation, phase shift key

1 Introduction

We consider communication over a fading channel where the fading is unknown but approximately constant
over multiple symbol periods. Coherent decoding requires explicit learning of the channel and its overhead
may be excessive especially in mobile or multiple antenna settings. Standard differential modulation tech-
nigues like DMPSK encode the data in the phd#terencebetween two consecutive PSK symbols [1].
However, the performance of noncoherent differential decoding is inferior to coherent decoding; in [2] it
is shown that when the number phases useq gets large DMPSK suffers from a 3dB performance loss
compared to coherent MPSK decoding. By using maximum likelihood (ML) decoding over blocks of mul-
tiple symbols a portion of this loss can be recuperated [2] . However, the computational complexity of the
standard ML algorithm is exponential in both the ré&te= log, M and the block lengtfl". In [3] a linear
complexity algorithm (7)) that approximatelycomputes the ML answer was introduced. In this paper

we present a linear-logarithmi©(7 log 7)) algorithm forexactML noncoherent decoding. We also show

that for the approximate algorithm to have a constant approximation quality, its complexity needs to grow

quadratically Q(7?)).



2 Channel Model

We use complex baseband notation: at tinvee transmit the signal; and we receive the signa} at the

receiver antenna. We assume a Rayleigh fading channel given by:

xt:\/ﬁhtst—i—wt, tZO,l, (l)

The additive noisev, is independent, identically complex Gaussian distribild(0,1). The complex-
valued fading coefficienk, is CA/(0,1) distributed but not necessarily independent. The signals are nor-
malized to have average energy oiiids;|> = 1; thenp represents the expected signal-to-noise ratio (SNR)
at the receiver.

For a data rate oR bits per channel use, we nead = 2% symbols. A common technique is Phase
Shift Key (PSK) which uses symboils that ar&h roots of unity

= 2mm/M =0, M — 1. 2)

Um

Known channel: Suppose we want to send a data sequence of integers ... with z, € {0,..., M —

1}. In case we assume that the receiver knows the fading coefficient, then the transmitter simply sends

St = Uz
The ML coherent decoder is given by
Z; = arg pax |zt — hivm| = |arg (x¢/he) M/(27)] . )

X

Herearg is the phase of a complex number and stands for the integer closestito|z| = |« + 1/2]. In
this case the decoding is done per symbol and there is no advantage from using block decoding. Note that

the decoding depends only on the phase of the fading coefficient and not its magnitude.



Unknown channel: In case the receiver does not know the fading coefficient, one has to use block modu-
lation and decoding. Typically one assumes that the fading is constant over blocks ofaéhgth h; 1).

The transmitter transmits a blogk v,,], where the first symbol can be thought of as a training symbol.

The receiver uses the phase of the first received symbol as an estimate of the fading phase. But using non
overlapping blocks of course cuts the data rate in half. Therefore when the fading varies continuously one

lets the blocks overlap. The transmitter sends the symbols
St = Uy, St—1 t=1,2,... (sp=1). (4)
The ML noncoherent decoder is given by
Z = arg mniln |z — 241 v | = |arg (z¢/zi—1) M/(27)], t=1,2,.... (5)

Comparing this with (3) we see that indeed ; is used to estimate the phase of the fading. This becomes

more clear when we substituting (4) in (1) to obtain (usig= h;_1):
Ty = T4_1Vz, + Wy — VWit = Ty_10, + V2,

wherew; is iid CA/(0,1). Formally this is equivalent to the known channel model with fading, and

twice the noise power. This relates to 3dB loss compared with the coherent decoder.

3 Block Decoding

If the fading coherence interval is sufficiently large, one can recuperate a portion of the noncoherent decod-
ing loss [2]. We assume that the fading is approximately constantioggmbol intervals and will group the

sent and received symbols into non overlapping blocks of lefhge will use boldface to denote vectors

of lengthT"; the components of a vectarare given byz; for 1 < ¢ < T. The channel model can now be

written as

x=,/phs+w, (6)



wherex,s,w € CT andh € C. We also consider the additive groGp= ZZ,: the elements are lengfhi
vectors with integer components betwekeand M — 1 and addition is done component wise and modulo
M. The groupG clearly hasM” elements. The all one elementlisc G and the standard unit vectors are

e, € Gforl <t <T.Letn=wv =exp(2mi/M) and define the exponential map e G as

n& =[no...n97) e CT.

The transmitter uses uncoded vectg¥sfor g € . After averaging over the unknown channel phase, the

likelihood function at the receiver is a monotone function of

L(g) = [x"n®|,
and the ML noncoherent decoder thus is
g = L(g). 7
g = arg max (g) (7)

The ML decoder is unaffected by the phasex6f;8; integer vectorg that differ by a multiple of the all
one vectorl hence are indistinguishable at the receivéfg) = L£(g + 1). Our codebook thus consists of
equivalence classes 6f each withT" elements that differ by a multiple df. As representatives we can take
the vectors with first componept = 0; hence there ar#/” ! distinct codewords in the codebook.

A naive implementation of the ML noncoherent decoder computes the likeliliggd for every code-
word g; its cost isO(2f(T=1)), i.e., exponential in both the rate and the block length. This is a high price
to pay in comparison with the standard two symbols differential decoding (5) which is constant per symbol.
In this paper we present an algorithm faactlycomputing the noncoherent ML decoder with complexity

O(T'logT'). The cost per symbol is thy3(log 7).



4 Fast Block Decoding

First observe from (3) that the coherent decoding decision does not depend on the magnitude of the fading
coefficient, but only on its phase. We thuslet= e~*#. In casey is known then the coherent ML decoder

as a function ofyp is given by
I'(p) = arg min Hx — e_wngH = arg max Re (x*e %n8) = |(arg x + @ 1)M/(27)] mod M.
geG gcl

As we pointed out above, coherent ML decoding is done component wise. We next ask ourselves whether
there is some value for ¢ for which the coherent decoder gives the same answer as the noncoherent

decoder (7)g = I'(p)? To answer this note that

I(p) = arg max[x"®| cos(arg (x"7%) — ).
g€

We know thatg = g maximizes the first factor in this product. Hence if we chopse arg (x*n8) then

the cosine is maximal as well gt= g. Thus
g="C(p) with & =arg (x"®).

This of course does not lead to an algorithnzda turn depends og. But it shows that a value fap exists

where the coherent decoder agrees with the nocoherent decoder. Hence we can in theory find the answer
by scanning all possible values f@r computing the coherent decoder, and picking the one with the largest
noncoherent likelihood:

g=TI(p) with @=arg max L(T(p)).
p€0,2m)

The main observation underlying the algorithm is that when scanning all phpasés, 27), I'(¢) takes
on only T distinct codewords. We call them thest wordsg®! for 1 < ¢ < 7. This can be seen as follows.
First observe that

T(p+27/M) =T(p) + 1, (8)



which is a codeword equivalent I&(). Hence we can restrict ourselvesgae [0, 2 /M). Lets start with

¢ = 0 andT'(0). The first test word ig!!) = I'(0). Because of (8), each componentdecodes tcgi”
wheny = 0 and tOgt[l] + 1 wheny = 27 /M. For each component; there is a value fop in [0, 27 /M)
where the cross over happens; we call thisdioss overanglea;. Note that since the ML decoder is done
componentwise and we only scan o2et/M this cross over happens only once. The cross over angle for
component can be found as

o = (gil] +1/2)27/M — arg xy.

Figure 1 illustrates this. The closest multiple2af/M to arg x; is gtm; however wherarg x; + ¢ is larger

than(gp} + 1/2)27 /M the closest multiple igp} + 1.

21 /M

(677
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Figure 1: Whenp = 0, the component; decodes t@i”. However, forp > oy, x4 will decode tOgF] + 1.

To find the test words, we need to sort the cross over angles at a @@§'dbg 7'). Letu; be the index

of the sorted cross over angles so that
Qy, < 0, for 1<t <T.

We can now build the remaining — 1 test words as follows. Let the angjescan from0 to 27 /M. At
¢ = 0 we decode tg!!l. The first cross over angle we encountetjs. Thus the next test vector is obtained

by adding one (moduld/) to theu;th componentg? = gl + ey, . In general
gl =gl 1e,  for 2<t<T.

Fort = T'+1 we would end up witlg!l +-1 which is equivalent tg!!]. We thus havé test words. Figure 2



illustrates how the cross over angles divide the intej¥atr /A) into T' pieces each corresponding to one

test word.
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Figure 2: The interval0, 27 /M) is cut up inT" pieces by the cross over angleg,. If the channel phase is
between,, , anda,,, the the coherent ML answergs'!.

The ML answer now is

g =gl with 7= L(g).
g=g arg max. (gt)

Naively computingC(g) costsO(T') operations per vector. However, because of their special structure, we
can compute the likelihoods of all test words irO(7"). We first compute the inner produdis’) = x*ng[t].

The first one cost®(T'), but each remaining one can be computed recursively at constant cost as
pll = plt=1l 4 g ngy] (n—1).

The likelihoods are now given a&(g;) = |P!Y)|. Because of the sorting, the overall complexity of the
algorithm isO(T'log T'). The cost per symbol is thug(log 7).

Because of the equivalence @ the actual rate i®2(7 — 1)/7. The non overlapping blocks all have
their first symbol equal to one. By multiplying an entire block with the last symbol of the previous block one

can let the blocks overlap by one and the rate becoRi€khis can be seen as a block differential scheme.

5 Matlab Program

The above algorithm can be implemented using a 9 line Matlab program.



function g = decode(x,M)

eta = exp(2*pi*ilM);

arg angle(X)*M/(2*pi);

g = round(arg);

[void, u] = sort(g-arg);

p = conj(x).*eta."q;

v = [ sum(p) ; p(u)*(eta-1) [;
[void,best] = max(abs(cumsum(v)));
g(u(l:best-1)) = g(u(l:best-1)) + 1;
g = mod(g-g(1),M);

© o] ~ o g S w N =

Line comments:
2: Compute the phases of tikevector in multiples oRr /M.
Sort the cross over angles. There is no need to include the congtant
Compute the terms of the first inner prodit!.
Arrange all the terms of the recursion in a vector.
Compute all the inner products, take their absolute values and keep the index of the largest one.

Build the best test worgl].

© ©° N o a A

Find the representative of the equivalence class.

6 Comparison with Approximate Algorithm

In [3] Warrier and Madhow introduce an approximate algorithm for computing the noncoherent ML decoder.
They takeL equally spaced guesses = 27/(M L) (0 < [ < L) for the unknown phase and thus have
test words'(¢y;). Clearly the complexity i©)(T'L). With the use of the cross over angles defined above we
can analyze the probability that the approximate algorithm returns the ML answer.

We make the following simplifying assumption: The cross over angjemnd the phase are indepen-
dent and distributed uniformly on the interjal 2 /M ). This is only true in the low SNR regime.

Since the interval is cyclic, th& cross over angles divide the interval irifosubintervals. We denote a
general subinterval withh and its length in units a2 /M is the random variabl& where) < K < 1. The
subinterval that containg gives the ML answer and is denotégy,. In case one of thé guesseg; lies in

Iy, the approximate algorithm will return the ML answer. The lengtief in units of27 /M is Kyr..

8



For K to be larger thark, T' — 1 cross over angles need to lie in an interval of lengyth k. Hence the

marginal cumulative probability foK is
P(K <k)=1-(1-kT

To find the cumulative probability ofyi;, we need to factor in the probability that a particular interval is

the ML interval. This is simply the length of the interval. Doing this for/&lintervals yields:

k'=k
P(Kyp, < k) = T/ KFdP(K <k)=1-(1-kT"YTk—-k+1).
k’=0

If Ky, > 1/L then for sure one of the guesses lies in the subinteiyaland the approximate algorithm
returns the ML answer. In cag€yi;, < 1/L, then the chance that one of theguesses is iy, iS LK,

Thus the probability that the approximate algorithm is ML is given by

k=1/L
Pur = 1- / (1 — Lk‘)dp(KML < k‘)
k=0

1/L
= 1—L/ P(KML<kJ)ko
0

T+1 L T+1

2L (1 1>TT+2L—1
- e

For constanfl’, increasingL. makesP,1, go to one. For growing’ with constantL, Py, will go to zero.
To avoid the probability to go to zero with growirij, one needs to lef grow proportionally tal’. For
example if . = T the probability Pyir, converges t@ — 3/e =~ .89. For the approximate algorithm to have

a nonzero asymptotic probability to find the ML answer, its complexity thus becomes quadréfié)].

7 Future Work

There are several possibilities for future work. One can build a running version of this algorithm. The
sliding window has lengtfi’. The algorithm keeps track @f sorted cross over angles afidnner products.

Whenever the window moves by one, a new cross over angle gets inserted in the sorted list and one gets



dropped and the inner products need to be updated.

One can build a QAM version. In [3] an algorithm is introduced to use the fast PSK noncoherent
decoding an a component in QAM noncoherent decoding. However, the algorithm is still exponential albeit
with a smaller base.

Finally one could envision a generalization of this technique to multiple antenna differential modulation,

see [4].
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