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Figure 1:Partial bit-stream reconstructions from a progressive encoding of the Venus head model. File sizes are given in bytes and relative
L2 reconstruction error in multiples of10−4. The rightmost reconstruction is indistinguishable from the original.

Abstract
We propose a new progressive compression scheme for arbitrary
topology, highly detailed and densely sampled meshes arising from
geometry scanning. We observe that meshes consist of three dis-
tinct components: geometry, parameter, and connectivity informa-
tion. The latter two do not contribute to the reduction of error in
a compression setting. Using semi-regular meshes, parameter and
connectivity information can be virtually eliminated. Coupled with
semi-regular wavelet transforms, zerotree coding, and subdivision
based reconstruction we see improvements in error by a factor four
(12dB) compared to other progressive coding schemes.
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1 Introduction
Today we can accurately acquire finely detailed, arbitrary topology
surfaces with millions and most recently billions [22] of vertices.
Such models place large strains on computation, storage, trans-
mission, and display resources. Compression is essential in these

settings and in particularprogressivecompression, where an early,
coarse approximation can subsequently be improved through addi-
tional bits. While compression ofimageshas a long history and has
achieved a high level of sophistication, compression ofsurfacesis
relatively new and still evolving rapidly.

Compression is always a tradeoff between accuracy and bit rate,
i.e., bits per vertex. This tradeoff is the subject of classical rate-
distortion theory. While rate-distortion curves are common in the
image coding literature they have only recently appeared in geome-
try coding. This is partially due to the fact that the error for images
is easily measured using theL2 norm of the difference between
original and approximation, while measuring error for surfaces is
more involved. Since there is no immediate correspondence be-
tween the original and compressed surface, one cannot simply sub-
tract one surface from another. This difficulty is typically addressed
by computing a geometry error using, for example, Hausdorff dis-
tance. Such error metrics do not depend on the particular sample
locations or connectivity, but instead measure the distance between
the geometric shapes. This is important since the original and com-
pressed mesh may have very different sample locations and con-
nectivity, especially in a progressive setting. By sample location
we mean the precise location of the vertexwithin the surface.

How low can such errors be? Consider a continuous physical sur-
face, such as the Venus sculpture whose scan generated the mesh in
Figure 1. Given that the source geometry is continuous, any dig-
ital representation, such as a triangle mesh, has some errorE as-
sociated with it. This error has three components due to sampling,
discretization, and quantization. Sampling errorEs arises from ac-
quisition noise. Discretization errorEd is due to the fact that a
triangulation with edge lengthh can approximate a smooth geome-
try no better thanO(h2). Finally, a finite bit representation for the
vertex positions leads to quantization errorEq. The sampling and
triangulation of the model fixEs andEd. A standard float repre-
sentation typically leads to a quantization error much smaller than
Es +Ed. All existing single rate coders proceed by first quantizing
the vertex positions more coarsely leading to a quantization error
E′

q ≈ Es + Ed followed by lossless encoding of the connectiv-
ity and quantized vertex positions. Existing progressive coders aim



to eventually recover the quantized sample locations and original
connectivity. For small meshes with carefully layed out connectiv-
ity and sample locations this is very appropriate. The situation is
different for highly detailed, densely sampled meshes coming from
3D scanning: Since distortion is measured as geometric distance
the sample locations and connectivity can be treated as additional
degrees of freedom to improve the rate-distortion performance. As
long as the final result has geometric error on the order of the orig-
inal E, the actual sample locations and connectivity do not matter.
We will call the information contained in the sample locations, the
parameterinformation. For example, by letting the vertices slide
within the surface we only change the parameter information and
not the geometric fidelity.

In particular, we propose a new progressive geometry compres-
sion method which is based on smooth semi-regular meshes, i.e.,
meshes built by successive triangle quadrisection starting from a
coarse irregular mesh. Almost all vertices in a semi-regular mesh
have valence six and their sample locations can easily be estimated.
Hence, semi-regular meshes allow us to eliminate almost allparam-
eter and connectivity information. As we illustrate below, param-
eter and connectivity information make up a considerable fraction
of the bit budget in existing coders, but do not contribute at all to
reducing geometric error. Consequently our rate-distortion curves
are significantly better than those of existing coders. For most mod-
els, our error is about four times smaller at comparable bit rates, a
remarkable 12 dB improvement!

Semi-regular meshes additionally allow for wavelet transforms
and zerotree coders. Zerotrees are amongst the best image coding
algorithms today. Wavelets have superior decorrelation properties
and allow for subdivision based reconstruction. This means that
in regions where the encoder sets wavelet coefficients to zero the
decoder uses subdivision to reconstruct the geometry. Hence even
highly compressed surfaces are still smooth and visually pleasing.
Figure 1 shows a sequence of progressive reconstructions of the
compressed Venus model at different bitrates.

Goals and Contributions The main contribution of this paper
is the observation that parameter information makes up a significant
fraction of the bit budget while not contributing to error reduction
at all. This motivates our compression algorithm based on semi-
regular meshes.

As input our algorithm takes an irregular mesh describing a 2-
manifold (possibly with boundary) and produces successive ap-
proximations employing semi-regular meshes with little parameter
and connectivity information. The coder first produces a hierar-
chical approximation of the surface which is subsequently encoded
with a zerotree progressive coder. Novel aspects of the algorithm
include
• reducing parameter information through the use of semi-regular

meshes;

• a Loop based wavelet transform for high order decorrelation and
subdivision based reconstruction;

• a novel zerotree hierarchy for primal semi-regular triangle
meshes of arbitrary topology.

We emphasize that our target application is the compression of
densely sampled, highly detailed surfaces. Our algorithm is not ef-
fective when the input geometry is well described by a small, care-
fully layed out mesh. In this case progressive coding is generally
questionable and non-progressive coders are more appropriate and
perform exceedingly well.

1.1 Review of Related Work
Mesh Compression: Algorithms for efficient encoding of ar-
bitrary connectivity meshes have been described both for the pro-
gressive and non-progressive setting (for an excellent overview of

3D geometry compression see [36]). Most of the early efforts
concentrated on finding efficient encodings for mesh connectivity
with the current state of the art at around 2-6b/v (bits per ver-
tex) [37, 13, 35, 29, 28]. Vertex positions are dealt with by perform-
ing an initial quantization followed by predictive coding induced by
the traversal order of the connectivity encoding.

In contrast to single target rate coders, progressive coders aim
to code for a range of rates by allowing reconstruction of interme-
diate shapes using a prefix of the encoded bit stream. Such cod-
ing schemes are typically based on mesh simplification techniques.
Examples include progressive meshes [26, 23, 16], independent set
vertex removal strategies [4], topological surgery [34], and topo-
logical layering [1]. Connectivity bits increase to around 4-10b/v in
these schemes. Prediction of vertex positions is now more naturally
performed in a hierarchical fashion as induced by the associated
mesh simplification. Examples include centroid predictors [34, 4]
as well as higher order predictors [26]. To date, progressivity in
these coders has typically been focused on connectivity encoding.
Rate-distortion theory however says that coordinate values should
be progressively quantized [23, 17] as well: to minimize error at a
given rate one must trade off additional quantization bits for already
present vertices against bits for new vertices and their connectivity.

Wavelets It is well known from image coding that wavelet repre-
sentations are very effective in decorrelating the original data [8, 6],
greatly facilitating subsequent entropy coding. In essence, coarser
level data provides excellent predictors for finer level data, leav-
ing only generally small prediction residuals for the coding step.
For tensor product surfaces many of these ideas can be applied in
a straightforward fashion [8, 33, 12]. However, the arbitrary topol-
ogy surface case is much more challenging. To begin with, wavelet
decompositions of general surfaces were not known until the pio-
neering work in [25]. These constructions were subsequently ap-
plied to progressive approximation of surfaces [2] as well as data
onsurfaces [31, 19].

Multiresolution surface representations based on subdivi-
sion [39] and local frame details are closely related to our wavelet
constructions and have proven to be very powerful in a variety of
circumstances. However, they require the initial surface to be rep-
resented by a semi-regular mesh. This has led to the development
of a number of algorithms for remeshing [10, 20, 21, 18].

Zerotree Coders Some of the best wavelet based progressive
coders are based on zerotrees [5, 32, 30]. They effectively exploit
the fact that wavelet coefficients at finer scales tend to be smaller in
magnitude than coefficients at coarser scales in the same region. A
zerotree coder encodes the location of coefficients below threshold
in subtrees. Standard zerotree coders for images are based on a dual
formulation, i.e., coefficients are associated with faces. For primal
hierarchical mesh decompositions using face splits (e.g., quadrisec-
tion of triangles) the data however lives at vertices, not faces. We
show in Section 3.4 how to build zerotree coders for primal hierar-
chies.

Irregular Subdivision Our separation of parameter versus ge-
ometry information is partially inspired by the work done on irreg-
ular subdivision [14] and intrinsic curvature normal flow [7]. They
point out that without the parameter side information, it is impos-
sible to build high order schemes converging to smooth meshes.
Irregular parameter information is inherently hard to encode and
hinders the performance of irregular mesh coders.

2 Geometry, Parameter, and Connectivity
Information

Elimination of parameter and connectivity information is a key in-
gredient of our algorithm. In this section we go into more detail



regarding parameter and connectivity information and how to elim-
inate it.

Previous compression approaches have typically treated triangle
meshes as consisting oftwo distinct components: connectivity and
vertex positions. State of the art coders are able to encode con-
nectivity of irregular meshes with 2b/v or even less. Hence, it is
argued, vertex positions are much more expensive and their coding
needs further advancement, for example through better predictors.

The main insight of this paper is that there are actuallythree
components: connectivity, geometry, andparameterinformation.
The parameter information captures where the sample locations are
within the surface while the geometry information captures the ge-
ometryindependentof the sample locations used. So far parameter
and geometry information were treated together.

Consider a vertex of a particular Venus head triangulation. Mov-
ing this vertex slightlywithin the surface, does not change the dis-
cretization error or geometry information. It only affects the pa-
rameter information. Alternatively, moving the vertex normal to
the surface clearly changes the error and geometry information, but
leaves parameter information unchanged. This illustrates that while
geometry and parameter information are globally intertwined they
disconnect locally: infinitesimally, we may think of parameter in-
formation as being described by displacements in the tangent plane
to the surface. Geometry information on the other hand is normal
to the surface. This implies that from a rate distortion point of view
bits should be allocated preferentially to the local normal direction.
For smooth parameterizations this occurs naturally since prediction
residuals in the tangent plane will be small.

Sphere Example To illustrate the power of the distinction be-
tween geometry, parameter, and connectivity information we con-
sider three triangulations of a sphere (Figure 2). All three meshes
contain the same geometry information and carry the same dis-
cretization errorEd with no sampling noise. The first two meshes
have semi-regular connectivity but different parameter information.
The middle one was generated by jiggling the sample locations
within the sphere, thereby adding significant parameter informa-
tion. The rightmost has irregular connectivity and parameter infor-
mation.

Figure 3 shows the respective rate-distortion curves when using
the state of the art non-progressive coder of Touma and Gotsman
(TG) [37]. We always show non-progressive curves dashed since
these points are not achievable in a progressive manner. In case of
the smooth semi-regular mesh, the TG coder correctly noticed that
it contains almost no connectivity information (0.1 b/v) and almost
no parameter information. Its performance is essentially limited
by the quality of the predictor used. The TG coder for the non-
smooth semi-regular sphere is worse illustrating the bit penalty for
parameter information. The TG coder for the irregular mesh (right)
illustrates the additional overhead from irregular connectivity. This
example demonstrates the tremendous pay off of reducing both con-
nectivity and parameter information in a mesh.

Finally the small curve near they-axis shows the result of apply-
ing our coder to the smooth semi-regular mesh. It can approximate
the sphere with a relative error of5 · 10−5 using 166 bytes or .5
b/v. This it not surprising since a sphere has very little geometric
information and a smooth semi-regular mesh is essentially optimal
for our coder. This is where the high order decorrelation and subdi-
vision based reconstruction really pays off. The same effect we see
here so pronounced for the sphere, can also be observed in smooth,
regularly sampled regions of more general surfaces, see Section 4.

3 Algorithm Components
The algorithm accepts as input an arbitrary connectivity 2-manifold
(with boundary) triangulation. In a first step we compute a smooth

Figure 2:Three spherical meshes each with 2562 vertices: smooth
semi-regular (left), non-smooth semi-regular (middle), irregular
(right). They have the same geometry information. The middle one
also has parameter information while the right one has parameter
and connectivity information.
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Figure 3:Rate distortion curves for the triangle meshes from Fig-
ure 2 measured in relativeL2 error on a scale of10−4 as a function
of rate in b/v for TG coordinate quantization levels of8 − 12b.

global parameterization using the MAPS algorithm [21]. This al-
lows us to compute successive adaptive approximations with semi-
regular connectivity. These semi-regular approximations are sub-
sequently wavelet transformed and progressively compressed using
zerotrees. The coarsest level connectivity is encoded using a stan-
dard non-progressive mesh encoder [37]. The decoder may produce
intermediate approximations from any prefix of the bitstream.

We need to define the distanced(X, Y ) between two surfacesX
andY . Let d(x, Y ) be the Euclidean distance from a pointx onX
to the closest point onY . Then theL2 distanced(X, Y ) is given
by

d(X, Y ) =

(
1

area(X)

∫
x∈X

d(x, Y )2dx

)1/2

.

This distance is not symmetric and we symmetrized it by taking
the max ofd(X, Y ) andd(Y,X). For triangulations this distance
can be computed using the METRO tool [3]. All theL2 errors
reported here are relative with respect to the bounding box diagonal
on a scale of10−4, while rate is reported in b/v with respect to the
number of vertices in the original input mesh.

3.1 Parameterization
As a first step, we compute a smooth parameterization of our in-
put triangulation using MAPS [21]. An important feature of MAPS
is its ability to automatically align iso-parameter lines of the semi-
regular mesh with sharp features of the original input surface help-
ing to avoid large wavelet coefficients near creases.

MAPS builds a bijective map between the input meshT and a
coarse base domainB. One can then apply quadrisection in the
base domainB and use the mapping to build semi-regular approxi-
mations ofT . These approximations have some remeshing errorEr

with respect toT . While this error can be made arbitrarily small, it
does not make sense to make the remeshing errorEr smaller than
the discretization errorEd. This roughly occurs when the triangles
from the semi-regular mesh are about the same size as the triangles
of the input mesh. Using smaller triangles only serves to produce a
better approximation of the input mesh, not necessarily of the orig-
inal unknown geometry.



Of course one does not knowEd. An order estimate ofEd can be
computed by measuring the distance between the input meshT and
a much finer meshS obtained by Butterfly subdividingT . The lat-
ter serves as a proxy for the unknown original geometry. Once our
semi-regular mesh errorEr is below the estimated discretization
error Ed there is no need to further refine the semi-regular mesh.
Hence our rate distortion curves will asymptotically not go to zero,
but converge to theEd estimate. Table 1 gives theEd estimate,
the minimum remeshing error, and the connectivity coding cost in
bytes of the base domainB for various models. The connectivity
was encoded using the TG coder.

Feline Bunny Horse Venus Fandisk

# Vert. 49864 34835 48485 50002 6475
Ed (10−5) 7.3 9.4 6.0 5.5 28
Er (10−5) 6.3 7.4 5.1 4.2 4.8
# Base Vert. 250 127 112 196 73
Base conn. (B) 122 76 62 72 46

Table 1:Statistics for example meshes.

3.2 Wavelet Transform
The wavelet transform replaces the original mesh with a coarsest
mesh and a sequence of wavelet coefficients expressing the dif-
ference between successive levels. Since we deal with piecewise
smooth models, neighboring vertices are highly correlated. The
wavelet transform removes a large amount of this correlation. The
distribution of wavelet coefficients is centered around zero and their
magnitude decays at finer levels with the rate of decay related to the
smoothness of the original surface. This behavior of the magnitude
of wavelet coefficients is the key to progressive coding and justifies
the choice of the zerotree coder for the bit encoding of coefficients.

Several methods for building wavelet transforms on semi-regular
meshes exist [25, 31]. These are typically based on interpolating
subdivision schemes such as Butterfly [9, 38]. A detailed descrip-
tion of the construction of lifted Butterfly wavelets can be found
in [31]. The advantage of lifted wavelets is that both forward and
inverse transforms can be computed with finite filters.

We use a novel Loop [24] wavelet transform, which has the ad-
vantage that the inverse transform uses Loop subdivision. Experi-
mentally, we found it has rate distortion curves essentially identical
to Butterfly, but typically better visual appearance.

The choice of Loop subdivision fixes the low pass reconstruc-
tion filter P in a wavelet construction. We require a high pass
reconstruction filterQ. Together they define the inverse wavelet
transform

pj+1 =
[

P Q
] [

pj

dj

]
, (1)

wherepj are the usual control points anddj the wavelet coeffi-
cients at levelj. For performance reasons we would likeQ to have
small support. One way to achieve this is to apply a quadrature
mirror construction [27], deriving a high pass from a low pass fil-
ter. The result is shown in the regular case in Figure 4. Note that a
globally consistent choice of the sign-flipping direction is possible
only for orientable surfaces. Though we can use the same stencils
in the general case, the wavelet subbands corresponding to edges of
a certain orientation are well-defined only for orientable surfaces.

Around irregular verticesP is modified as usual. For edges im-
mediately adjacent to an irregular vertex,Q must be modified as
well. The only taps of theQ filter that can fall onto irregular ver-
tices are the two−6 coefficients left and right of the center. If one
of them is irregular we essentially “open up” that part of the filter
and parameterize the coefficients by edge number, counting from
the “10” (Figure 4, right). If an irregular vertex has valence less

than six this leads to the stencil folding over on itself, while for
valences larger than six a gap is left. There is currently no theory
available for wavelet constructions around irregular vertices. The
only justification of the “trick” we used is that it does not impact
the numerically computed condition numbers of our transform. Fi-
nally, boundaries are dealt with in the usual way through reflection.
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Figure 4: Low (left) and high (middle) pass Loop reconstruction
filters in the regular case. For irregular vertices the high pass filter
is opened as indicated on the right.

The forward wavelet transform, which goes from finer to coarser
levels, is defined as the solution[pj ,dj ] of the linear system in
Eq. 1 for a givenpj+1. Consequently computing the forward
wavelet transform requires the solution of sparse linear systems.
To solve these systems we use a bi-conjugate gradient solver [11]
with diagonal preconditioning. We found the condition number for
up to a 7 level transform to be no worse than 30 depending on the
model.

Of course solving a linear system makes the forward transform
slower than the inverse transform. This is acceptable as encoding
is typically done once off-line while decoding happens frequently
and in real time. For the Venus model the Loop forward transform,
for example, takes 30s on a 550Mhz Pentium II Xeon while the
inverse transform takes 2.5s. In case symmetry is important one can
use a lifted Butterfly wavelet for which both forward and inverse
transforms take about 2.5s.

The decorrelating power of the wavelet transform is illustrated
in Figure 5. On the left is the histogram of the magnitude of Venus
vertex positions. On the right is a histogram of the magnitude of
the wavelet coefficients. Clearly a large amount of correlation was
removed and the first order entropy has decreased considerably.

0.3 0.3 0.4 0.5 0.6 0.0 0.8 1.7 2.5 3.3

Figure 5:Left: histogram of vertex position magnitudes for Venus.
Right: histogram of the wavelet coefficient magnitudes, showing the
decorrelation power of the wavelet transform.

3.3 Vector Valued Wavelet Coefficients
Since our wavelet coefficients are vector valued, it is not immedi-
ately clear how they should be quantized. There is a fair amount of
correlation between thex, y, andz wavelet components. We found
that representing the wavelet coefficients in a local frame [39] in-
duced by the surface tangent plane makes the components much
more independent. In particular, we find that the variance of nor-
mal wavelet components is on average twice as large as the variance
of the tangential components. Recalling the earlier geometry ver-
sus parameter distinction this is exactly what we want. In a smooth
semi-regular mesh, the geometry information (normal component)



is much larger than the parameter information (tangential compo-
nent). Figure 6 illustrates this by showing the histograms of the
polar anglesθ (the angle from thez of normal axis) of the wavelet
coefficients in global and local coordinate frames. The distribution
becomes very non-uniform in the local frame with peaks around
0 andπ indicating that most of the wavelet vectors lie in the nor-
mal direction. The angle along the equator is fairly uniformly dis-
tributed both in the global and local frame, hence the choice of basis
vectors in the tangent plane is not important. Recall that parameter,

0 90 180 0 90 180

Figure 6: Histograms of wavelet coefficient polarθ angles for the
Venus head model in global (left) and local (right) frames. Coeffi-
cients lie mostly in the normal direction.

i.e., tangential, information does not contribute to the error met-
ric. Unfortunately, we cannot just ignore tangential wavelet com-
ponents since this argument only holds in the infinitesimal limit.
Especially at coarser levels, tangential wavelet coefficients can still
contain some geometric information. However, we did find that the
error metric is much less sensitive to quantization error of tangential
versus normal wavelet components. Thus, we can further improve
the error curves by more coarsely quantizing the tangential compo-
nent.

A basic operation in a scalar zerotree coder is thecoefficient sig-
nificance test, i.e., checking its magnitude against a threshold. If it
is below, the coefficient is added to a zerotree, else the location and
sign of the coefficient need to be transmitted. For the vector case
this becomes more difficult and we examined three quantization op-
tions. (1) Spherical cells are natural as we can use the magnitude
for the significance test. We deal with the quantized angular com-
ponents as “generalized” signs. (2) For cubical cells we divide the
cube into 64 subcubes. Coefficients in the 8 internal cubes are in-
significant and all the others are significant; their cell number again
is an analog of the angular component. (3) We can deal with each
vector component independently and encode it separately, reducing
the vector case to three independent scalar passes.

We have compared all three cases and found that three scalar
passes results in the best rate distortion curves for all models we
considered. Experimentally, we found that quantization cells for
the tangential component were best taken to be 4 times larger than
those for the normal component.

3.4 Zerotree Coding
Given that we settled on scalar quantization, our coder consists of
three independent zerotree coders. The bits from the three coders
are interleaved to maintain progressivity.

A general principle of wavelet coefficient encoding is to send the
highest order bits of the largest magnitude coefficients first. They
will make the most significant contributions towards reducing error.
LetT0 = max{|ci|} be the maximum magnitude of all coefficients,
then in a first pass the coder should send the locations (indexi) of
newly significantcoefficients,|ci| > T0/2. Doing so na¨ıvely is
expensive. However, if source and receiver agree on a canonical
traversal order the source only has to send the result of the sig-
nificance testS(i) = (|ci| > T ) and, if true, the sign bit ofci. If
coefficients can be organized into canonical sets such that with high
probability all coefficients in a given set are simultaneously below

threshold, a few set-based significance tests can enumerate the lo-
cations of the relevant coefficients. The decay properties of wavelet
coefficients make their hierarchical tree organization the natural set
structure [32, 30, 5]. Coding consists of a number of passes with
exponentially decreasing thresholdsTj+1 = Tj/2. In each pass
significance bits are sent for newly significant coefficients. Addi-
tionally, refinement bits are sent for those coefficients which be-
came significant in an earlier pass. Since source and receiver al-
ready agreed on locations of the latter, no location bits have to be
sent for them. The number of such bit plane passes depends on the
final quantization level. The decoder can reconstruct the geometry
associated with any prefix of the bitstream by running an inverse
wavelet transform on the coefficient bits seen so far.

The main distinction of our setting from the image case is the
construction of the zerotrees. For images, one associates the coef-
ficients with a quadrilateral face and the trees follow immediately
from the face quadtree. While this works also for dual, i.e., face
based subdivision schemes, our triangular transform is primal, i.e,
vertex based.

The main insight is that while scale coefficients are associated
with vertices, wavelet coefficients have a one-to-one association
with edges of the coarser mesh. Vertices do not have a tree struc-
ture, but the edges do. Each edge is the parent of four edges of the
same orientation in the finer mesh as indicated in Figure 7. Hence,
each edge of the base domain forms the root of a zerotree; it groups
all the wavelet coefficients of a fixed wavelet subband from its two
incident base domain triangles. The grouping is consistent for arbi-
trary semi-regular meshes, i.e., no coefficient is accounted for mul-
tiple times or left out.

Figure 7: A coarse edge (left) is parent to four finer edges of the
same orientation (right).

For brevity we do not give the complete coder/decoder algorithm
here, but refer the interested reader to the pseudo code in [30],
which is identical to our implementation with the above quadtree
definition.

A final question concerns the transmission of the scale coeffi-
cients from the coarsest level. These are quantized uniformly. Ex-
perimentally, we found that it is best to send 4 bit planes initially
with the base domain connectivity. Each remaining bitplane is sent
as the zerotrees descend another bit plane.

The zerotree encoding (10 passes) of the Venus model takes 1s
while decoding takes about 0.6s bringing the total decompression
time to about 3.1s. Of course the low rate models can be decom-
pressed faster.

3.5 Entropy Coding
The zerotree algorithm is very effective at exploiting parent-child
coefficient correlations, minimizing the amount of encoded signif-
icance bits. However, the output of the zerotree coder can still be
compressed further through arithmetic coding, which allows for a
fractional number of bits per symbol.

The zerotree coder output contains three different types of infor-
mation, significance bits, refinement bits and sign bits. Refinement
and sign bits tend to be uniformly distributed; hence they are not
entropy coded. Significance bits on the other hand can be further
entropy coded. For early bitplanes most coefficients are insignif-
icant resulting in mostly zero bits. For later bitplanes many coef-
ficients become significant, resulting in mostly one bits. An arith-
metic coder naturally takes advantage of this.
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Figure 8:Rate-distortion curves.

We found that encoding of the significance bits in groups fur-
ther improves performance of entropy coding [30]. Because chil-
dren of any node always appear together during a zerotree pass
we group their significance bits to form symbols of a2j alpha-
bet (j = 4, 3, 2, 1). The actual number of bits of the alphabet is
the number of children which were left insignificant at the previous
pass. This grouping exploits correlations between magnitudes of
spatially close wavelet coefficients.

4 Results
We compare our Loop based coder against known state of the art
coders for different models. The coders we used are:

• TG: The Touma-Gotsman coder, which is a non progressive
coder. It can be operated at different rates by changing the coor-
dinate quantization between 8 and 12 bits.

• CPM: The compressed progressive mesh coder of Pajarola and
Rossignac [26]. It can start with various quantization sizes. We
found 10 or 12 to work best (and always show the best one).

• MPEG: The non-progressive coder from the MPEG4 standard
which is based on topological surgery [35].

Figure 8 (left) shows the different curves for the Venus model for
bitrates up to 25b/v. The top left shows relativeL2 error in units of
10−4. The bottom left shows the same numbers but in a PSNR scale
where PSNR= 20 log10 peak/d, peak is the bounding box diago-
nal andd is theL2 error. One can see that our progressive coder
is about 12dB or a factor 4 better than the progressive CPM coder.
As expected the non-progressive coders are much worse at lower
rates and slightly better at higher rates. Our curve converges to the
remeshing error which is where it crosses the TG curve. Given that
the remeshing error is comparable to the discretization error, any
compression with smaller error is only resolving a particular trian-
gulation more accurately, but not increasing the geometric fidelity.

Figure 8 (right) shows the rate distortion curves for several addi-
tional models. Our curves are again significantly better. Typically
the TG coder crosses our curve below the discretization error. For
the fandisk, which is a model with creases, we used a tagged Loop
transform which preserves the creases. The fandisk does not have

that many triangles which is why the TG coder shows better rate-
distortion performance than the CPM coder.

Figure 9 shows renderings of the different compressed versions
of the model. This demonstrates the visual benefits of using sub-
division based reconstruction. Note that the feline dataset has non-
trivial genus (tail section), while the bunny has a number of holes on
the bottom. For purposes of comparison (in the case of the Venus
head) we have also rendered a number of partial bitstream recon-
structions produced with the CPM coder (Figure 10) at file sizes
comparable to our reconstructions (Figure 1). One could argue that
the results of a more traditional progressive mesh coder could be
improved by a smoothing post-process. However, even at very low
bit rates, bit-plane progressivity in our coder implies that we see
high order bits of significant coefficients at fine levels of the hi-
erarchy early on. The resulting reconstructions always carry more
detail than a straightforward Loop smoothing of some triangle mesh
would capture. Finally Table 2 gives numerical error values for our
coder at a variety of bit rates for the different models.

b/v 1/4 1/2 1 2 4 8

venus 15 6.1 3.1 1.60 0.85 0.55
feline 32 13 5.8 2.5 1.25 0.75
horse 9.7 4.5 2.0 1.05 0.70 0.55
bunny 22 10.8 5.1 2.5 1.40 0.95
fandisk 52 11.9 3.5 1.00 0.60

Table 2:RelativeL2 error in units of10−4 of our coder at various
bitrates.

5 Conclusion and Future Work
In this paper we described a progressive compression algorithm
based on semi-regular meshes, wavelet transforms, and zerotree
coders. Our rate distortion curves are significantly better than
the best known progressive and non-progressive coders. This was
achieved by explicitly treating sample locations and mesh connec-
tivity as degrees of freedom of the coder. The progressive recon-
structions especially at very low bit rates can be of astonishingly
high visual quality.

There are several directions for future work:
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• A mathematically sound theory for the construction of Loop
wavelets around extraordinary vertices, including stability anal-
ysis.

• Construction of Loop wavelet transforms for adaptive semi-
regular meshes. While all our reconstructions are performed
adaptively, currently only lifted wavelets allow for adaptive
analysis.

• Design of wavelet filters more suitable for geometry. Careful
examination of reconstructed geometry reveals some ringing ar-
tifacts with our current wavelets.

• Even for our semi-regular meshes, there is still a fair amount of
tangential information especially on the coarse levels. Recent

work by Guskov et al. [15] shows that it is possible to construct
normal meshes, i.e., meshes in which all wavelet coefficients lie
exactly in the normal direction.

• The issues we discuss in this paper regarding geometry versus
parameterization led to ideas such as coarsely quantizing the
tangential components. These ideas can also be used to further
improve irregular mesh coders.
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[38] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interpolating Subdivision
for Meshes with Arbitrary Topology.Proceedings of SIGGRAPH 96(1996),
189–192.
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