
Submitted for publication, January 2001

Consistent Mesh Parameterizations

Emil Praun
Princeton

Wim Sweldens
Bell Labs

Peter Schr¨oder
Bell Labs

+ + + + + + + =

Figure 1:When given a set of head models an obvious shape to compute is their average. In general the connectivity and sampling patterns of
the models are different and computing the average is non trivial. After computing consistent mesh parameterizations (red patch boundaries)
and remeshing, all models have the same connectivity and sampling pattern so computing the average becomes trivial.

Abstract
A basic element of Digital Geometry Processing algorithms is the
establishment of a smooth parameterization for a given model. In
this paper we propose an algorithm which establishes parameteriza-
tions for a set of models. The parameterizations are called consis-
tent because they share the same base domain and respect features.
They give immediate correspondences between models and allow
remeshes with the same connectivity. Such remeshes form the ba-
sis for a large class of algorithms, including principal component
analysis, wavelet transforms, detail and texture transfer between
models, andn-way shape blending. We demonstrate the versatil-
ity of our algorithm with a number of examples.

1 Introduction
Digital Geometry Processing (DGP) is the field concerned with the
construction of signal processing style algorithms for geometry.
Due to the non-Euclidean nature of geometry the construction of
DGP algorithms is fundamentally more difficult than the construc-
tion of classical signal processing algorithms. Sound (1D), images
(2D), and video (3D), are readily parameterized onto a Euclidean
space, e.g., an image is given by the irradiance function over a sec-
tion of the plane. In addition images are always sampled using a
Cartesian grid. As a result, simple operations such as averaging
two images or computing the norm of their difference are easy. The
same is not true for geometry. There are two causes for this: (a) the
non-Euclidean nature of geometry and (b) the generally differing
sampling patterns and connectivity of meshes describing geome-
try. DGP algorithms involving multiple models require a common
parameterization and a common sampling pattern. Computing a
global parameterization and remesh for a single model is a diffi-
cult problem in itself and has received considerable attention since
it is a fundamental step in many algorithms from texture mapping
and shape blending to physical simulation, compression, and data

analysis.
In this paper we will go beyond the usual parameterization prob-

lem and compute parameterizations for agroupof models. We call
a set of parameterizations consistent when they share the same base
domain and respect features. Note that this implies that all models
need to have the same genus. In this paper we will focus on the
genus zero, orientable manifold case, although many of the tech-
niques carry over to higher genus. Consider for example a set of
head scans; we say that their parameterizations are consistent if
they all use the same base domain, such as a low polygon-count
head model, and if all parameterizations respect previously defined
head features such as eyes, nose, mouth, etc.

Consistent parameterizations give immediate point correspon-
dences between all the models and allow us to remesh each model
with the sameconnectivity. Therefore, every vertex in one mesh
has auniquecorresponding vertex in every other mesh. This in turn
enables a whole series of applications ranging fromn-way shape
blending to the transfer of attributes, such as textures, details, or
animation controls, from one model to a whole set of models. Addi-
tionally a number of new geometry processing algorithms which in-
volve many models simultaneously, e.g., principal component com-
putations, become possible for the first time. This is illustrated in
Figure 2: multiple models, which may be geometrically quite dis-
similar, first get parameterized onto the same base domain and then
remeshed with identical connectivity for subsequent DGP process-
ing.

One of the problems of existing parameterization algorithms is
that even two very similar models can easily end up with different
base domains and hence inconsistent parameterizations. There is
no fundamental reason for this and our algorithm overcomes this
problem.

For our method, the base domain may be user specified or one
can be found automatically, for example, by applying an existing
method to one of the models. Each of the models needs to have
features outlined and annotated either manually or through auto-
matic feature identification. Once our algorithm computes consis-
tent parameterizations, all models can be remeshed using identi-
cal connectivity. Because of their obvious advantages such as sim-
ple data structures, easy filtering, wavelet transforms, and excellent
compressibility, we consider here onlysemi-regularmeshes, i.e,
meshes formed by recursive (possibly adaptive) regular refinement
from some base domain.

Contributions Given a base domain and a set of orientable
genus zero models with identified features, we present an algorithm
that computes a consistent parameterization for all of them. This is



Submitted for publication, January 2001

DGP applications

...

...

se
m

i-r
eg

ul
ar

 r
em

es
he

s
in

pu
t m

es
he

s 
w

ith
 fe

at
ur

es

base domain

Figure 2: Multiple models are parameterized with respect to the
same base domain using feature point (and edge) mappings. Sub-
sequent remeshing ensures consistent sampling patterns for down-
stream DGP applications.

done by tracing on each mesh a net of curves that is provably topo-
logically equivalent to the connectivity of the base domain. The
models are not required to be geometrically close. Subsequently
we use the parameterizations to compute remeshes with identical
connectivity and give examples of how such meshes can be used in
a variety of DGP applications.

Related Work Parameterization algorithms typically start with
a given model in the form of a triangle mesh with irregular con-
nectivity and construct a set of patches or a semi-regular mesh on
output (note that the two are equivalent). Eck and co-workers [2]
produced a semi-regular mesh fully automatically, while Krish-
namurthy and Levoy [7] gave the user responsibility for laying
out a set of NURBS patch boundaries. In contrast, Lee and co-
workers [9] employed mesh simplification with constraints to ac-
commodate any user supplied data in the construction of the pa-
rameterization during an otherwise fully automatic process.

None of these approaches considered building parameterizations
for multiple models simultaneously. This problem arises naturally
in the context of morphing when a mapping correspondence be-
tween two models is the explicit goal. Lee and co-workers [8] use
their previous MAPS work to independently establish parameter-
izations for two models followed by solving the correspondence
problem on the base domains. The two parameterizations are not
consistent as the base domains are different. This creates the need
for a common “meta-mesh” able to realize the simultaneous param-

eterization of the two original models. Unfortunately this algorithm
does not scale, since the meta-mesh typically has much higher com-
plexity (a reported10�) than either original mesh. Additionally it
is not clear how it might generalize ton-way simultaneous param-
eterizations.

Marschner and co-workers [10] confront a problem very close to
our setting when they seek to animate a number of different faces
via a single, prototype patch layout. Since their prototype face, i.e.,
the embeddingof the prototype layout, is already very close to a
given face they report a simple least squares fitting procedure to
work well. In contrast we aim to concurrently parameterize models
which may be fairly different geometrically, for example a horse
and a human body. In that case there is no embedding of some
prototype layout that is simultaneously close to both shapes. Hence
a simple least squares matching procedure will likely not succeed.

2 Algorithms
We begin by establishing terminology. A triangle meshM is a
pair (P;K), whereP is a set ofN point positionsP = fpi =
(xi; yi; zi) 2 R3 j 1 � i � Ng, andK is an abstract sim-
plicial complexwhich contains all the topological, i.e., adjacency
information. The complexK is a set of subsets off1; : : : ; Ng.
These subsets come in three types: verticesfig, edgesfi; jg,
and facesfi; j; kg. Two verticesfig and fjg are neighborsif
fi; jg 2 K. The 1-ring neighbors of a vertexfig form a set
V(i) = fj j fi; jg 2 Kg.

As argued above we will work with semi-regular meshes. For
concreteness we will further assume that such meshes are built
by repeated triangle quadrisection starting from a coarse irregu-
lar meshN0 = (Q0;L0) with the finer meshes denotedNj =
(Qj ;Lj). Nothing in the method prevents the use of quadrilater-
als instead of triangles or regular refinement procedures other than
quadrisection.

A typical remeshing procedure starts from an irregular input
meshM and computes a base domain with connectivityL0 as well
as a bijective mapping between the base domain andM. This map-
ping is subsequently used to build the remeshesNj for j > 0. Note
that this can be done in an adaptive fashion if needed.

In our setting, we are given asetof meshesS = fMm j 0 �
m < Mg. The purpose is to compute a semi-regular remeshing
for all of them with acommonbase domain connectivityL0 (see
Figure 2 top). We also need to ensure that the individual parame-
terizations respect features as desired. As an example, consider a
set of heads. Typically one would seek mappings that will respect
features such as eyes, nose, ears, etc.

For convenience, we treat the common base domain as a special
meshB = (P;L0). Since this base domain does not have associ-
ated geometry, its vertex locations do not need to be inR3. To each
of theF feature verticesbf we simply give canonical locations in
RF . Letbf be thef -th basis vector, i.e., thef -th component is one
and all others are zero.

Basic Setup Assume we have identified, either by hand or
through some feature detection algorithm,F feature points in each
of the meshes, withpmf denoting thef -th feature point in them-th
mesh. (We only discuss feature points although feature lines can
be treated similarly.) Furthermore the connectivityL0 between the
feature points is also given. Each triangle inL0 corresponds to a
patch on each of the meshesMm, while edges inL0 correspond
to patch boundaries (middle part of Figure 2). We will refer to the
layout of patch boundaries on the meshesMm as “nets.” The task
now is to trace these patch boundaries on each of the meshesMm

between the pointspmf in a manner such that the resulting net is
(1) topologically equivalent toL0 and (2) outlines fair patches. The
first constraint is easy to state and our algorithm guarantees that it
is satisfied (Section 2.1). The second condition is more difficult to

2



Submitted for publication, January 2001

capture in an objective criterion and our algorithm uses a number
of heuristics that produce fair patches in practice (Section 2.2).

2.1 Topologically Equivalent Patch Boundaries
Given that bothB andM are assumed to be orientable manifolds,
two conditions need to be satisfied for the patch boundaries to be
topologically equivalent withL0:

1. Two patch boundaries may only intersect at a feature vertex.

2. Each feature vertex has a consistent rotational ordering of its
edges in bothB andM [1].

It is tempting to simply trace shortest paths onM for each edge
in L0 (e.g., by employing a standard “brush fire” algorithm [6]).
Unfortunately this can lead to intersecting patch boundaries and
may not respect the vertex edge ordering (see Figures 3 and 8).
Therefore we use arestrictedbrush fire algorithm to trace a path

a

b
c

d a

b
c

d

Figure 3: Example patch boundaries of a sphere with four fully
connected feature vertices. A na¨ıve shortest path strategy does not
lead to a topologically correct net (left), violating both the crossing
property and the vertex edge ordering. On the right is a topologi-
cally correct net.

between two feature vertices in a topologically equivalent manner.
Patch boundary crossings are avoided by making sure that the brush
fire never crosses a previously traced path. Once a feature vertex is
incident to at least two traced paths, we also have to make sure that
any new paths respect the rotational ordering of edges at that ver-
tex, i.e., new paths need to be attached in the appropriate sector at
both vertices. This is ensured by starting the brush fire in the cor-
rect sector at the source and only terminating when it reaches the
destination in the correct sector, see Figure 4.

i

j

i

j

Figure 4:To find a curve for edgefi; jg 2 L0 a brush fire is started
at fig. When it reachesfjg a check is performed to see whether it
reachesfjg in the correct sector (not true in the example shown
on the left). The brush fire continues and will eventually reachfjg
in the correct sector defining a topologically equivalent curve from
fig tofjg (right side). Already drawn paths act as fire walls during
the brush fire propagation.

Additionally, the order in which paths are traced is important.
For a random ordering, even the restricted brush fire algorithm does
not guarantee termination. For example, it is possible to “encircle”
a vertex with paths, making it unreachable (see Figure 5 for an ex-
ample).

To solve the encircling problem, we do not trace any paths that
would complete cycles until a spanning tree ofL0 has been traced.
This guarantees that no vertex can be encircled during tree build-
ing. Once we have a tree, we can complete the net by adding the
remaining patch boundaries in any order. To prove this claim we
only need to show that the completion algorithm cannot get stuck.

a

d c

e

ba

d c

e

b

Figure 5: An example of encircling. On the left the desired base
domain connectivity. On the right an intermediate stage of the net
construction. Because of the mesh geometry, it is possible that ver-
texfeg gets encircled inside the patchfa; b; dg, before any curves
are attached to it.

Proof of Correctness We prove by contradiction that comple-
tion of the net after building a spanning tree always terminates and
produces a topologically equivalent net. Assume that one of the
invocations of the brush fire algorithm, say for edgefa; bg 2 L0,
could not complete; let this be the first such occurrence. This im-
plies the existence of a cycleC of paths on the model separating
fag from fbg (i.e., the fire gets caught). Given that the model and
base domain are both genus zero,C also splits the base domain in
two regions. Since the set of already traced curves contains a span-
ning tree ofL0, it forms a connected graph, and therefore must con-
tain a pathP from fag to fbg. Sincefag andfbg are in different
model regions,P and the cycleC have to cross. Curves can only
cross at vertices, soP andC must cross at a subset of the vertices
of P . Follow P vertex by vertex and at every intersection vertex,
record whether the base domain or model region change. Given
that neighborhood ordering has to be the same on the base domain
and model at each vertex, region changes have to occur simultane-
ously on the base domain and model. Sincefag andfbg are in the
same region on the base domain (fa; bg 2 L0), they have to be
in the same region on the model. This contradicts our assumption
and proves our claim: we are assured that the brush fire can always
terminate in the correct sector and the net can be completed.

2.2 Tracing Fair Boundary Curves
The above algorithm guarantees a topologically equivalent mapping
of the base domain to the desired model, however, it could still be
greatly distorted. We now present a modified algorithm that has the
same correctness guarantee and attempts to ensure a fair mapping.
In general we want the following quality criteria:

1. equal distribution of surface area amongst patches;

2. smooth patch boundaries;

3. fair patch boundaries; in particular they should not “swirl.”

The first two criteria are easy to understand and intuitively clear
and can be achieved through relaxation [3]. The third one is more
difficult. In essence we want to avoid unnecessary “winding” or
“swirling” of the curves. The swirling phenomenon leads to par-
ticularly nasty patches that cannot be fixed through relaxation. To
illustrate this we consider the “swirl” operator, a bijective map from
a mesh onto itself (see Figure 6). Consider two feature pointsa and
b. Let a be the center of the swirl and now gradually letb rotate
arounda counterclockwise, thereby pushing any patch boundaries
it encounters ahead so that the boundary curves remain topolog-
ically equivalent. Do this untilb is back in its original position.
This new arrangement is still topologically equivalent, though the
patches now have very awkward, stretched shapes. Imagine what
could happen if we apply this operator a number of times to all
feature vertices.

Clearly we want to avoid swirling and choose the least distorted
or fairest amongst all topologically equivalent nets. Such a net can

3



Submitted for publication, January 2001

a

b

ab

b

a

Figure 6:An example of the swirl operator:b turns arounda push-
ing patch boundaries ahead of itself untilb comes back to its origi-
nal position (left to right).

be defined as the one which achieves a global minimum of the fair-
ness functional

X
C2N

Z
s2C

kg0k + kg00k ds;

where the summation is over all curvesC in the netN, and the
integrandg is the arc length parameterization ofC. This leads to
a non-convex, mixed discrete-continuous global optimization prob-
lem, which seems to be intractable at this point. Instead we exploit
a number of heuristics that do not require a global solve and lead to
good patch layouts in practice.

We discuss each of these algorithm modifications in turn. Note
that none impact the correctness guarantee.

Parameterization In preparation for path tracing we compute a
parameterization of the model. Traced curves will try to follow the
iso-parameter lines of this parameterization rather than the shortest
paths. This has the advantage that the patch boundaries naturally
repel each other making swirling very unlikely. Each vertex of the
meshM is parameterized onto the base domainB. The parameter
value of a vertexfig is �i, which is anF -vector onB. The feature
pointspf are already associated with the coarsest level verticesbf .
Parameter values for the other vertices ofM are computed by solv-
ing a linear system:

�i =
X

j2V(i)

wij�j ;

where �f = bf . The weightswij are given by the Floater
scheme [3]. Because these weights form a convex combination,
the components of�i are positive and sum to 1. The linear system
is solved using conjugate gradients.

Tracing Curves Assume we want to trace the curve between
feature pointsf andf 0. The main idea is to set an objective func-
tion and trace a curve along the local maximum of the objective
function. The objective function at a vertexfjg is given by

Kj = �j [f ] + �j [f
0]

where [f ] denotes thef -th component of anF -vector. Clearly
Kf = K0

f = 1 while 0 � Kj < 1 for j a non feature vertex.
The algorithm is the same as before but only withKj as the pri-
ority in the queue. This is similar to choosing a variable speed of
propagation in the brush fire algorithm [6].

Priority Queues and Spanning Tree Construction For all
the edges ofL0 we first trace corresponding tentative curves us-
ing the constrained brush fire algorithm described earlier. The con-
straints are given by the curves that have already been inserted into
the net (initially, none). We record the tentative length and path
of these curves and insert them into the priority queue based on
length. Upon removal from the priority queue—during spanning
tree construction—we check to see if the recorded (tentative) path is
still valid and does not violate constraints provided by other curves
recently inserted into the net. If it is not topologically valid, we re-
trace the curve and update its priority. If it is topologically valid, we
run the swirl detector (Figure 7) from both adjacent patches. If at
least one fails, we put the edge back into the queue with a penalty.
If both pass we add the curve to the net.

Swirl Detection Consider tracing a path forfa; bg 2 L0 (Fig-
ure 7) withfa; b; cg andfa; d; bg in L0. To detect a possible swirl,
we parametrically trace a line fromfcg to the closest point on the
image offa; bg, i.e., the first point that the brush fire meets on the
path fromfag to fbg. This path should arrive on the left side of
the oriented path fromfag to fbg (Figure 7, right). If it arrives on
the wrong side, then the mapping of the trianglefa; b; cg appears
flipped. Consequently, one of the traced edgesfa; bg, fb; cg or
fc; ag would have to be routed around an opposing vertex (the fig-
ure showsfc; ag “taking the detour”). These three configurations
are equivalent to each other under a sequence of swirls. We can
only decide which configuration is the most fair after more curves
linking fag, fbg, andfcg to the rest of the net have been added.
Therefore, we postpone tracing offa; bg by introducing it back into
the priority queue with a penalty. The same test is applied starting
from fdg.

c

b a

c

a b

Figure 7: Swirl detector: If the shortest path fromfcg to fa; bg
falls on the wrong side (left) the trianglefa; b; cg is considered
flipped and may lead to swirls. Adding the pathfa; bg to the net is
postponed. On the right the trace reachesfa; bg on the correct side
and the path is accepted.

Complete Net After the spanning tree has been constructed we
complete the net as before except that a priority queue based on
length is used.

Edge Straightening After tracing the patch boundaries we ob-
tain a net of curves topologically equivalent toL0. These curves
are composed of segments residing on the mesh edges. The next
step is to straighten the curves, allowing them to cross the interior
of triangles, and ensuring that all patches have approximately equal
area.

For all feature verticesfig all incident curvesfi; jg are straight-
ened in a single operation. First, gather all triangles on the mesh
which are interior to the image of allfi; j; kg 2 L0. This submesh
of the model is parameterized onto a convex region in the plane
as follows. Map the feature verticesfjg belonging toV(i) to the
vertices of a planarn-gon inscribed in the unit circle. The angles
subtended by each sidefj; kg of then-gon are proportional to the
length of the corresponding net curves. Boundary curvesfj; kg
are mapped to straight lines, assigning coordinates for the interior
curve points as convex combinations of the curve endpoints. Fi-
nally, we solve for the coordinates as before using the weights of
Floater’s scheme based on 3D geometry of the model. Once we
have this 2D parameterization we can replace the curvesfi; jg in-
cident tofig, by mapping the respective 2D line segments back
onto the 3D model. In general these lines will cut across existing
triangles which must be split accordingly to maintain a valid trian-
gulation.

Implementation Note For efficiency, we run our net tracing
algorithm on a simplified version of the model and later transfer the
net to the original model. For the examples in this paper, we take a
simplified model with approximately one thousand vertices.

During path tracing we must allow multiple paths to traverse the
same edge and impose an ordering on them. We do this with a spe-
cial “lane” data structure which allows several paths to pass through
the same mesh edge, while maintaining a conceptual epsilon in-
terval separation between them. In effect an edge is treated as a

4



Submitted for publication, January 2001

Figure 8:Patch boundary curves from the star connectivity mapped
onto the horse. The star has one vertex on its back connecting to all
other vertices. On the left the na¨ıve algorithm. Note how several
curves intersect. The white curves which are supposed to be on the
belly end up using the shortest path across the back of the horse.
On the right the result of our algorithm, which properly traces the
white curves across the chest of the horse.

highway with many ordered lanes. This requires a modification of
the queue in the brush fire graph traversal. Ordinarily this queue
controls which vertex is visited next. In our setting we must also
maintain a notion of which lane the fire is traveling on to properly
respect fire walls. Thus, the priority queue maintains not just ver-
tices but vertices and their associated lanes.

2.3 Examples
Figure 8 shows the layout of a very simple star-like patch network
onto the horse. On the left is the result of the na¨ıve curve tracing
algorithm. Several curves intersect and others pass on the wrong
side of the horse. On the right is the result of the modified algo-
rithm. This example also shows that we can transfer patch layouts
between very dissimilar objects.

Figure 9 shows a more realistic example with a more detailed
patch layout which is shown on the top left. It is transferred to a
human, a horse, and a cow.

Figure 9:Another mapping of a patch layout (top left) applied onto
the human figure, the horse, and the cow models.

All the examples presented here take about the same time to pro-
cess. On a 900Mhz Pentium III machine, tracing the curve net on
the coarse mesh (1000 triangles) takes around 5 seconds, transfer-
ring to the original mesh (100K triangles) takes 2 seconds, smooth-

ing 1.5 minutes, and remeshing to 43K triangles 6 minutes. Se-
lecting 54 feature vertices on the human figure, for example, takes
around 10 minutes of user time.

3 Applications
Once a consistent parameterization has been established for several
meshes, we can use the resulting correspondences for many differ-
ent DGP tasks. Here we sketch a few exemplary applications to
indicate the variety of possible algorithms.

Principal Mesh Components This application is motivated
by the use of principal component analysis for images. For ex-
ample, given a number of images of faces that are aligned and
illumination-equalized one can compute “eigenfaces,” i.e., a set
of orthogonal images which are eigenvectors of the variance/co-
variance matrix of the set of face images. We can perform a similar
computation with meshes. Figure 1 shows a number of head meshes
that are all aligned through rigid body motion and scaled to equal
volume. The rightmost mesh represents the mean. Figure 10 shows
the three main eigenheads, each visualized in a sum with the mean.
Each mesh in the original set can be characterized by its eigende-

Figure 10:The first three principal component meshes for the heads
in Figure 1. The first eigenhead seems to indicate hair on the front
of the skull, the second hair on the back of the skull, and the third
whether the face carries a smile.

composition. Such feature vectors can be useful in compression,
recognition or database search. Figure 11 shows how eigenheads
can be used in filtering applications. The middle image shows the
result of tripling the third eigenmode of the leftmost head. The right
image is the result of doubling all but the mean eigenmode.

Figure 11:Left: original head. Middle: the third eigenmode was
tripled. Right: all the eigenmodes (except the mean) were doubled.

Transfer of Textures Given the vertex-wise correspondence
between two meshes it is trivial to transfer attributes from one
model to another through direct parametric mapping. Figure 12
shows a simple example. The texture of one human body scan is ap-
plied to another human body scan and, for fun, to the horse model.

Transfer of Wavelet Details A more interesting transfer of at-
tribute data can be performed in the wavelet domain. For example,
one can compute a wavelet transform of two models with consistent
parameterizations and then perform scale dependent blending. To
illustrate this idea we combine the base domain (coarsest level scale
coefficients or lowest frequencies) of one model with the wavelet

5



Submitted for publication, January 2001

Figure 12:Texture transfer from one model to others.

coefficients (higher frequencies) from another model. For this pro-
cedure Loop-based wavelets as described by [5] were used. Fig-
ure 13 shows the result of applying the cow wavelet coefficients to
the horse coarsest level control mesh and vice versa. Such map-
pings can also be the basis for morphs with scheduled transitions in
the scale domain (similar to scheduled Fourier morphing [4]).

Figure 13: Application of details from one model to the coarsest
control mesh of another (cow onto horse and vice versa).

Shape Blending Establishing a mapping between different
shapes, which may be quite dissimilar, is the first step in any morph-
ing application. Our algorithm can establish the necessary mapping
even when there are multiple models to be blended. Consequently
n-way blends of free-form models are greatly facilitated. Figure 14
shows an whimsical example of various affine combinations of a
cow, a horse, and a human figure.

4 Conclusion and Future Work
We have presented an algorithm for the simultaneous, consistent
parameterization of multiple shapes. The algorithm is guaranteed to
lay out patch boundaries in a topologically equivalent way and we
have developed a suite of heuristics to ensure that the layout is fair.
Such a parameterization forms the basis of consistent semi-regular
samplings of the input shapes which in turn form the foundation for
a wide variety of Digital Geometry Processing algorithms. A few
examples of such algorithms were presented.

As digital geometry becomes more widespread the need for a ge-
ometry processing toolbox of efficient algorithms with a well devel-
oped mathematical apparatus continues to increase. Construction of
“good” parameterizations is the first step to enable a whole host of
DGP algorithms. Interesting areas for future study include:
� extending the method to handle higher-genus models, bound-

aries, missing feature point specifications, and additional con-
straints;

� applications in animation and transfer of animation controls
from one shape to another;

� computing principal components for a large database of models
and using them for search and recognition;

Figure 14:Affine combinations of the human figure, the cow, and
the horse models. Top left: average. Top right: 50% cow, 25%
human, 25% horse. Bottom left: 50% horse, 25% human, 25%
cow. Bottom right: 50% human, 25% horse, 25% cow.

� code design for efficient compression of multiple shapes;

� consistent watermarking and authentication.

Acknowledgments The research reported here was supported
in part by NSF (DMS-9874082, DMS-9872890, ACI-9982273),
AliasjWavefront, Microsoft, Intel, Lucent Technologies, and the
Packard Foundation. Special thanks to Matthieu Ferrant and Silvain
Jaume for discussions motivating this research, the TigGraph re-
viewers for feedback, Adam Finkelstein for support, Tony DeRose
for insightful discussions, and Igor Guskov for his remeshing code.
Models used are courtesy Cyberware, Stanford University, Max
Planck Institut für Computer Graphik, and the University of Wash-
ington.

References
[1] A KLEMAN , E., AND CHEN, J. Guaranteeing 2-Manifold Property for Meshes.

In Proceedings of Shape Modeling International, 18–25, 1999.

[2] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND

STUETZLE, W. Multiresolution Analysis of Arbitrary Meshes.Proceedings of
SIGGRAPH 95(1995), 173–182.

[3] FLOATER, M. S. Parameterization and Smooth Approximation of Surface Tri-
angulations.Computer Aided Geometric Design 14(1997), 231–250.

[4] HUGHES, J. F. Scheduled Fourier Volume Morphing.Computer Graphics (Pro-
ceedings of SIGGRAPH 92) 26, 2 (1992), 43–46.

[5] K HODAKOVSKY, A., SCHRÖDER, P.,AND SWELDENS, W. Progressive Geom-
etry Compression.Proceedings of SIGGRAPH 2000(2000), 271–278.

[6] K IMMEL , R., AND SETHIAN, J. Fast Marching Method on Triangulated Do-
mains. InProceedings of the National Academy of Science, vol. 95, 8341–8435,
1998.

[7] K RISHNAMURTHY, V., AND LEVOY, M. Fitting Smooth Surfaces to Dense
Polygon Meshes.Proceedings of SIGGRAPH 96(1996), 313–324.

[8] L EE, A., DOBKIN, D., SWELDENS, W., AND SCHRÖDER, P. Multiresolution
Mesh Morphing.Proceedings of SIGGRAPH 99(1999), 343–350.

[9] L EE, A. W. F., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN,
D. MAPS: Multiresolution Adaptive Parameterization of Surfaces.Proceedings
of SIGGRAPH 98(1998), 95–104.

[10] MARSCHNER, S., GUENTER, B., AND RAGHUPATHY, S. Modeling and Ren-
dering for Realistic Facial Animation.Rendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering(2000), 231–242.

6


