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Multiple antennas can greatly increase the data rate and reliability of a wireless communication link in a
fading environment, but the practical success of using multiple antennas depends crucially on our ability to
design high-rate space-time constellations with low encoding and decoding complexity. It has been shown that
full transmitter diversity, where the constellation is a set of unitary matrices whose differences have nonzero
determinant, is a desirable property for good performance.

We use the powerful theory of fixed-point-free groups and their representations to design high-rate con-
stellations with full diversity. Furthermore, we thereby classify all full-diversity constellations that form a
group, for all rates and numbers of transmitter antennas. The group structure makes the constellations espe-
cially suitable for differential modulation and low-complexity decoding algorithms.

The classification also reveals that the number of different group-structures with full diversity is very
limited when the number of transmitter antennas is large and odd. We therefore also consider extensions of
the constellation designs to nongroups. We conclude by showing that many of our designed constellations
perform excellently on both simulated and real wireless channels.

Index Terms—Wireless communications, transmit diversity, receive diversity, space-time coding, fading
channels

1 Introduction

It is well known that multiple-antenna wireless communication links promise very high data rates with low

error probabilities, especially when the channel is known at the receiver [2, 3]. But the design of so-called

space-time codes that achieve these promises is still in its early stages. In [4] some trellis-based codes for

known channels are developed, and in [5] some block codes are designed. However, the assumption that the

channel is known is sometimes questionable, especially in a rapidly changing mobile environment or when



many transmitter antennas are employed and extensive training is required. In [6, 7], some information-

theoretic and signal constellation design issues are considered for channels that are known neither to the

transmitter nor the receiver. In particular, a class of signals calledunitary space-time signalsis developed

where the transmitted signal matrices that form a constellation are all unitary. Further justification for using

unitary space-time signals is given in [8], where it is shown that these signals can form their own channel code

and achieve arbitrary reliability over a single fading coherence interval with a large number of transmitter

antennas.

To help make unknown-channel multiple-antenna communication practical, a scheme usingdifferential

unitary space-timesignals is proposed in [1] that is well-tailored for unknown continuously varying Rayleigh

flat-fading channels. Differential unitary space-time signals are unitary matrix-valued signals that are a

multiple-antenna generalization of the standard differential phase-shift keying (DPSK) signals commonly

used with a single antenna over an unknown channel. A similar differential multiple-antenna scheme is also

described in [9]. A two-antenna differential scheme based on orthogonal designs is described in [10].

Although [1] describes, in full generality, the properties that a constellation of differential matrix-valued

signals should have, only so-called “diagonal” signals are analyzed in detail. Diagonal signals effectively

sequentially activate the antennas, one at a time and always in the same order. If we model the fading paths

from every transmitter antenna to the receiver antenna(s) as independent, then the diagonal differential space-

time signals provide full transmitter diversity and can lower error probability significantly. At low rates the

diagonal signals yield excellent performance. However, at higher rates it is conjectured in [1] that there exist

“fuller” matrices (no longer diagonal) that have the necessary unitary and full diversity properties, but would

perform even better. In this paper, we show how to design signal matrices satisfying these requirements.

As shown in [1], the design problem for unitary space time constellations is the following: letM be the

number of transmitter antennas andR the desired transmission rate (in bits/channel use). Construct a setV
of L = 2RM unitaryM �M matrices such that for any two distinct elementsA andB in V, the quantity

jdet (A�B)j is as large as possible. Any setV such thatjdet (A�B)j > 0 for all distinctA;B 2 V is said to

havefull diversity. Since both the objective cost (the determinant of the pairwise differences of the elements

of V), as well as the constraint set (the set ofL = 2RM unitary matrices) are nonconvex, finding an exact

solution to the design problem appears to be computationally intractable. Further confounding the problem is

the potential size of the constellation2RM .

Thus, to simplify the design problem it is necessary to introduce some structure on the constellation

setV. In this paper, we shall primarily focus on sets of unitary matrices that form a group with respect to
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matrix multiplication. The use of a group structure offers certain advantages. The first is its potential for

good performance. IfV is not a group,jdet (A � B)j generally may take onL(L � 1)=2 distinct values for

A 6= B 2 V. The minimum value (equivalent to the minimum distance of the constellation) may therefore be

quite small. But ifV is a group, the determinant takes on at mostL� 1 distinct values given byjdet (I �A)j
for I 6= A 2 V, yielding a possibly larger minimum distance. We show that many of the groups indeed have

large minimum distances and perform extremely well.

The second advantage is practical. Since differential space-time modulation multiplies matrices inV to

form the transmitted signal matrix, ifV is a group, every transmitted signal matrix is always an element ofV.

Therefore, explicit matrix multiplication is replaced by the simpler group table-lookup.

Because any abstract group has a representation in unitary matrices, we restrict our search to groups that

have representations with full diversity. In [1], full diversity setsV that form anAbelian(commutative) group

are considered. This is equivalent to constrainingV to be a cyclic group represented by a set of diagonal ma-

trices. The codes thereby generated are shown experimentally to have good performance at low rates (R < 2,

for example). Not explored in [1] are setsV that are noncommutative groups as potential candidates for good

performance at higher rates. One of our primary goals is to find good-performing high-rate noncommutative

groups.

In this paper, we completely characterize the class of unitary matrices that provide full diversity and form

a group. The characterization is derived using results in the theory of fixed-point-free groups. A fixed-point-

free group can be represented as a group of unitary matrices (for someM ) with full diversity. An early

reference for fixed-point-free groups is Burnside in [11] who shows that any group that is fixed-point-free

and has order that is a power of a prime number must be either cyclic or a generalized quaternion group with

a full-diversity representation forM = 2. These groups are used for differential modulation in [9] (there

the generalized quaternion groups are also called “dicyclic”). Another pioneer is Zassenhaus, who classifies

many more of these groups in [12]. However, the classification in [12] appears to be incomplete and contains

errors; we complete the classification in its entirety. While many of the results in this paper are motivated

with differential modulation in mind, we should note that the design problem of maximizingjdet (A � B)j
for distinctA; B 2 V is important also when the channel is known to the receiver [4, 7]. However, when

the channel is known it appears to be less important to have the group property of being able to multiply the

matrices inV without leaving the set.

Some of the groups that emerge as good signal sets are rather surprising. We show, for example, that

if M is odd, there is only a single class of possible groups. IfM = 2 or M = 4, some of the signal sets
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that are excellent performers involveSL2(F5 )—the special linear group in two dimensions over the field

F5 . In general, however, we find that full-diversity groups do not necessarily exist for allM andR. As a

consequence, we also consider setsV that have some of the properties of a group, but are not themselves

groups, and find that there are some simple design rules for generating nongroup constellations with good

performance. These allow us to construct good signal constellations for practically all values ofM andR.

The paper is organized as follows. The next section motivates and states the problem that we are solving

in detail. For ease of reference, and since the paper is rather lengthy, Section 3 contains a summary of the

principal results in this paper and a comparison with previous work. Section 4 introduces representation

theory and gives an example of a class of non-Abelian fixed-point-free groups. Section 5 classifies all full-

diversity or, equivalently, all fixed-point-free groups and gives their representations. Sections 6 and 7 give

some consequences of the classification for multiple-antenna constellations. Section 8 uses the structure

of the group constellations to generate some nongroup constellations. Section 9 tabulates some of the best

group and nongroup constellations and includes some illustrative performance curves for various numbers

of antennas and rates. Section 10 discusses fast decoding of the constellations. Section 11 provides the

conclusion. Appendices A–C develop most of the mathematical machinery required for the results of this

paper and prove the classification theorem.

2 Multiple antenna space-time modulation

2.1 The Rayleigh flat fading channel

Consider a communication link withM transmitter antennas andN receiver antennas operating in a Rayleigh

flat-fading environment. Thenth receiver antenna responds to the symbol sent on themth transmitter antenna

through a statistically independent multiplicative complex-Gaussian fading coefficienthmn. The received

signal at thenth antenna is corrupted at timet by additive complex-Gaussian noisewtn that is statistically

independent among the receiver antennas and also independent from one symbol to the next. We assume that

time is discrete,t = 0; 1; : : :.

It is convenient to group the symbols transmitted over theM antennas in blocks ofM channel uses. We

use� = 0; 1; : : : to index these blocks; within the� th block, t = �M; : : : ; �M +M � 1. The transmitted

signal is written as anM �M matrix S� whosemth column contains the symbols transmitted on themth

antenna as a function of time; equivalently, the rows contain the symbols transmitted on theM antennas at

any given time. The matrices are normalized so that the expected square Euclidean norm of each row is equal
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to one. Hence, the total transmitted power does not depend on the number of antennas. The fading coefficients

hmn are assumed to be constant over theseM channel uses.

Similarly, the received signals are organized inM � N matricesX� . Since we have assumed that the

fading coefficients are constant within the block ofM symbols, the action of the channel is given by the

simple matrix equation

X� =
p
�S� H� +W� for � = 0; 1; : : : : (1)

HereH� = fhmng andW� = fwtng areM � N matrices of independentCN (0; 1)-distributed random

variables. Because of the power normalization,� is the expected SNR at each receiver antenna.

2.2 Known Channel Modulation

We first discuss signal encoding and decoding when the receiver knows the channelH� . We assume that the

data to be transmitted is a sequencez0; z1; : : : with z� 2 f0; : : : ; L� 1g. The data then simply dictates which

matrix is transmitted:

S� = Vz� :

Each transmitted matrix occupiesM time samples of the channel, implying that transmitting at a rate ofR

bits per channel use requires a constellationV = fV1; : : : ; VLg of L = 2RM unitary signal matrices.

The receiver knowsH� and computes the maximum likelihood estimate of the transmitted data as1

ẑ� = arg min
`=0;:::;L�1

kX� � V`H�k ; (2)

where the matrix norm is the Frobenius norm

kAk2 = tr (AyA) = tr (AAy) =
X
i;j

jaijj2 : (3)

The quality of a constellationV is determined by the probability of error of mistaking one symbol ofV for

another. In [4, 7] it is shown that the Chernoff bound on the pairwise probability of mistakingV` for V`0 with

1To see that the scaling factor
p
� is not needed, collect the terms from expanding the squared-norm and use the fact thatV` is

unitary.
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a known channel (averaged over the statistics ofH) is given by

Pe 6
1

2

MY
m=1

h
1 +

�

4
�2m(V` � V`0)

i�N
; (4)

where�m(V` � V`0) is themth singular value of theM �M matrixV` � V`0 .

2.3 Differential unitary space-time modulation

When the receiver does not know the channel, one can communicate using multiple-antenna differential modu-

lation [1]. Multiple-antenna differential modulation is formally similar to standard single-antenna differential

phase-shift keying. In standard DPSK, the transmitted symbol has unit-modulus and is the product of the pre-

viously transmitted symbol and the current data symbol. The data symbol typically is one ofL equally-spaced

points on the complex unit circle. As a generalization,M -antenna differential unitary space-time modulation

differentially encodesM �M unitary matrix-valued signals. We transmit anM �M unitary matrix that is

the product of the previously transmitted matrix and a unitary data matrix taken from the constellation. In

other words,

S� = Vz� S��1; � = 1; 2; : : : ; (5)

with S0 = IM . We immediately see why it is useful in practice to haveV form a group under matrix

multiplication: from (5), ifV is a group then all the transmitted matricesS� also belong toV. Therefore, the

transmitter sends matricesS� from a finite set and does not need to explicitly multiplyS� = Vz�S��1, but

rather can use a group table-lookup.

If the fading coefficients are approximately constant over2M time samples (H� � H��1), the received

matrices turn out to obey

X� = Vz� X��1 +
p
2W 0

� ; (6)

whereW 0
� is aM �N matrix of additive independentCN (0; 1) noise [1], uncorrelated with the signalVz� .

As shown in [1], the maximum likelihood decoder has the simple structure

ẑ� = arg min
`=0;:::;L�1

kX� � V`X��1k ; (7)

and the Chernoff bound on the pairwise probability of error with differential modulation on an unknown
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channel is

Pe 6
1

2

MY
m=1

�
1 +

�2

4(1 + 2�)
�2m(V` � V`0)

��N
: (8)

At high SNR, both bounds (4) and (8) depend primarily on the product of the singular values, which is

the modulus of the determinant ofV` � V`0 . In other words, for high SNR we may write

Pe .
1

2

�
4�

�

�MN

� 1

jdet (V` � V`0)j2N ;

where� = 1 when the channel is known and� = 2 when the channel is unknown and used differentially.

Hence, there is a 3 dB advantage for knowing versus not knowing the channel, and we may measure the

quality of a constellationV by its so-calleddiversity product

�V =
1

2
min

06`<`0<L
jdet (V` � V`0)j

1
M : (9)

The scaling factor12 guarantees that0 6 �V 6 1. The exponent1M essentially gives the geometric mean of

theM singular values since the modulus of the determinant is the product of the singular values. Clearly, a

constellation with larger�V is superior. Any constellation with�V > 0 is said to have full diversity. When

�V > 0 and the SNR is high, we note that no two distinct transmitted signals can give the same received signal

X, for anyH. In this paper we consider only full-diversity constellations and, in particular, we try to find

constellations with diversity product�V as large as possible.

3 Summary of prior work and this paper

3.1 Prior work

We briefly review some of the unitary space-time constellations that have been considered in prior work.

Cyclic group codes In [1] cyclic groups are introduced for differential modulation. In this case,V` are

diagonalLth roots of unity. In particular,

V` = V `
1 ; where V1 = diag [ei2�u1=L � � � ei2�uM=L];
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andu1; : : : ; uM are taken from the setf0; : : : ; L � 1g. Without loss of generality, we can letu1 = 1. The

constellation is thus specified by the integersu2; : : : ; uM . Theum are generally chosen to maximize� as

defined in (9) and given by

�V = min
`=1;:::;L�1

�����
MY
m=1

sin
�ui`

L

�����
1
M

: (10)

In this constellation, the transmitter antennas are activated one at a time and always in the same order.

Orthogonal designs In [10] a two-antenna differential scheme is introduced that uses orthogonal designs.

A two-dimensional orthogonal design is a matrix parameterization given by [5]

OD(x; y) =
1p
2

2
4 x �y�

y x�

3
5 ; (11)

wherejxj2 = jyj2 = 1; observe thatOD(x; y) is unitary. Constellations of sizeL = Q2 are obtained by

lettingx andy range over theQth roots of unity1; e2�i=Q; : : : ; e2�i(Q�1)=Q, yielding

V =
n
OD(x; y) j x; y 2 f1; e2�i=Q; : : : ; e2�i(Q�1)=Qg

o
:

The diversity product of this constellation is

�V =
sin(�=Q)p

2
: (12)

These constellations do not generally form a group; thus, when used differentially, orthogonal designs transmit

potentially arbitrary symbols.

Generalized quaternion (also called dicyclic) codes In [9] constellations forM = 2 antennas are built

from cyclic groups, and also so-called “dicyclic” groups of the form

Qp = h�; � j �2p = 1; �2 = �2
p�1

; ����1 = ��1i; p > 1;

where the notationh�i refers to the group generated by the elements enclosed within the brackets. These are

commonly called generalized quaternion groups, and have orderL = 2p+1 or rateR = (p + 1)=2. They are
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equivalently generated by the two unitary matrices

*"
e2�i=2

p
0

0 e�2�i=2p

#
;

"
0 1

�1 0

#+
:

For comparison, Table 1 lists some cyclic groups, generalized quaternion groups, and orthogonal designs.

The cyclic groups are chosen to have the highest� found by searching overu2; : : : ; uM 2 f0; : : : ; L � 1g.
(For largeL andM this search was done randomly.) Only forR = 1:5 is the quaternion group better than the

best cyclic group. Some of the fractional-rate groups in this table are included for later comparison.

3.2 Summary of this paper

This paper classifiesall possible finite groups of matrices with�V > 0 for all numbers of antennasM

and all possible ratesR. The groups considered in [1] and [9] appear as special cases of our classification

theorems. Our classification includes many new groups that are neither cyclic nor quaternionic, with large�V

and excellent performance.

The classification is based on the theory of fixed-point-free groups. A group is defined to be fixed-point-

free if it has a representation inM �M matrices, for someM , that has positive�V . (Section 4 has a much

more detailed description of these group-theoretic concepts and terms.) An early partial classification of these

groups appears in a 1905 paper of Burnside [11] where he shows that all groups that are fixed-point-free with

order a power of a prime number must either be cyclic orQp for some integerp, with anM = 2 matrix

representation.

A 1936 paper by Zassenhaus [12] gives a more complete classification of the fixed-point-free groups.

After reviewing cyclic groups in some detail in Section 4.2, we examine a group described by Zassenhaus in

his classification and compute its representations in detail in Section 4.3. This new group turns out to allow

one to find all possible constellations for oddM .

Zassenhaus’ classification, however, is not complete and contains errors and omissions. We therefore

complete the classification in Section 5. Theorem 1 is the main classification theorem. Its proof is long and

incorporates many of Zassenhaus’ techniques and appears in Appendix A. Having the groups does not mean

that we also automatically have the matrix representations with full diversity. Deriving these representations

is often tedious, but the result is the content of Theorem 2 and its proof is in Appendix B.

Armed with a complete classification, we explore in Section 6 some of the implications of the classification

theorems. Because of the practical interest inM = 2 transmitter antennas, Theorem 3 explicitly lists all of
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M L R � comments

2 4 1 0.7071 orthogonal design with�1
2 4 1 0.7071 cyclic groupu = (1; 1)
2 4 1 0.7071 quaternion groupQ1

2 8 1.5 0.5946 cyclic groupu = (1; 3)
2 8 1.5 0.7071 quaternion groupQ2

2 16 2 0.5000 orthogonal design with 4th-roots of unity
2 16 2 0.3827 cyclic groupu = (1; 7)
2 16 2 0.3827 quaternion groupQ3

2 32 2.5 0.2494 cyclic groupu = (1; 7)
2 32 2.5 0.1951 quaternion groupQ4

2 64 3 0.2706 orthogonal design with 8th-roots of unity
2 64 3 0.1985 cyclic groupu = (1; 19)
2 64 3 0.0980 quaternion groupQ5

2 121 3.46 0.1992 orthogonal design with 11th-roots of unity
2 120 3.45 0.1353 cyclic groupu = (1; 43)
2 128 3.5 0.0491 quaternion groupQ6

2 128 3.5 0.1498 cyclic groupu = (1; 47)
2 240 3.95 0.1045 cyclic groupu = (1; 151)
2 256 4 0.1379 orthogonal design with 16th-roots of unity
2 256 4 0.0988 cyclic groupu = (1; 75)
2 256 4 0.0245 quaternion groupQ7

3 8 1 0.5134 cyclic groupu = (1; 1; 3)
3 63 1.99 0.3301 cyclic groupu = (1; 17; 26)
3 64 2 0.2765 cyclic groupu = (1; 11; 27)

4 16 1 0.5453 cyclic groupu = (1; 3; 5; 7)
4 240 1.98 0.2145 cyclic groupu = (1; 31; 133; 197)
4 256 2 0.2208 cyclic groupu = (1; 25; 97; 107)

5 32 1 0.4095 cyclic groupu = (1; 5; 7; 9; 11)
5 1024 2 0.1787 cyclic groupu = (1; 31; 355; 425; 581)

6 64 1 0.3792 cyclic groupu = (1; 7; 15; 23; 25; 31)
6 4096 2 0.1428 cyclic groupu = (1; 599; 623; 1445; 1527; 1715)

7 128 1 0.3487 cyclic groupu = (1; 13; 17; 27; 29; 45; 49)
7 16384 2 0.1213 cyclic groupu = (1; 1875; 5207; 5551; 7687; 7827; 9013)

Table 1: Summary of some cyclic group andM = 2 quaternion and orthogonal design constellations
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the groups with full diversity forM = 2. For oddM , the possible types of groups are very limited and

are contained in Theorem 4. For some concrete examples, Section 7 lists the simplest (smallest) group of

each type classified. In this section, one non-obvious example of a fixed-point-free group that stands out is

SL2(F5), the group of2 � 2 matrices over the fieldF5 with determinant 1. This group has 120 elements

and anM = 2 matrix representation; its rate isR = log(120)=2 = 3:45. (In this paper, all logarithms are

base-two.) For this group�SL2(F5 ) = 0:3090, which far exceeds�V for any other constellation we have been

able to generate withM = 2 and comparable rateR.

Because the list of possible group structures that yield full diversity is limited, especially whenM is large

and odd, we explore the design of some nongroup constellations in Section 8. Although not groups, these

constellations have structures that are inspired by the groups and therefore share some of their properties.

Unlike group constellations, however, we make no attempt to exhaustively explore all nongroup alternatives.

In Section 9, the reader can find a list of some of the new constellations in Tables 3 and 4, along with their

performance on a wireless fading channel. For example, Figures 1 and 3 demonstrate the excellent perfor-

mance ofSL2(F5) for M = 2 transmitter antennas, and Figure 7 gives the performance a binary extension of

this group forM = 4 antennas. We also include the results of an experiment with three antennas in the hall-

ways of Bell Laboratories (Figure 6). There are also many other groups and nongroups whose performances

are evaluated. Comparisons are made with cyclic and quaternion groups, and orthogonal designs, when they

exist.

Maximum likelihood decoding of the group constellations requires a search over the constellation set

and can be cumbersome if the number of signals in the constellationL = 2RM is large. For example, with

M = R = 4, there areL = 65; 536 signals in the constellation set. To simplify decoding for largeL, we

therefore discuss fast approximate maximum likelihood algorithms in Section 10. These algorithms exploit

the constellation structures and are polynomial, rather than exponential, in the rateR.

Finally, Appendices A-C develop most of the group-theoretic machinery this paper requires. We have

also included Appendix D, which uses an information-theoretic argument to further motivate the design of

effective constellations of unitary matrices.

We now proceed with the paper.
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4 Group construction

4.1 Group representations

We wish to find a setV of L unitary matrices for which the diversity product�V in (9) is as large as possible.

In this section we constrainV to form a group under matrix multiplication. Recall that a setG together with a

binary multiplication operation is a group if it is closed under this operation, satisfies the associative law, has

an identity element1G, and contains a multiplicative inverse for each element. With the group requirement,

sincejdet (V` � V`0)j = jdet (I � V`V
�
`0 )j = jdet (I � V )j, whereV = V`V

�
`0 is another element inV, the

design problem becomes that of finding a group ofL unitaryM �M -matrices such that

�V =
1

2
min

I 6=V 2V
jdet (IM � V )j 1M

is as large as possible. (The matrixId denotes thed� d-identity matrix. We later omit the dimensiond if it is

clear from the context.)

Our construction uses the representation theory of finite groups. For readers who are not familiar with

this theory, we briefly review the main concepts. Two good references for more details are [14, 15]. Agroup

homomorphismis a mapping between two groups that respects group multiplication. AnM -dimensional

representationof a groupG is a group homomorphism�(�) from G to the groupGLM (C) of invertible

M �M complex matrices. For instance, the trivial map taking all group elements to theM �M identity

matrix IM is a representation of a group.

Two representations� and�0 of G are calledequivalentif there is an invertible matrixT 2 GLM (C)

such that�(g) = T�0(g)T�1 for all g 2 G. Thedirect sum� � �0 of two representations� and�0 of

dimensionsd andd0, respectively, is the(d+ d0)-dimensional representation whose value atg is the matrix

(���0)(g) =

2
4 �(g) 0d�d0

0d0�d �0(g)

3
5 ;

where0k�` denotes ak � ` matrix of zeros. A representation is calledreducible if it is equivalent to a

direct sum of two (or more) representations. Otherwise, it is calledirreducible. Any representation� of a

finite group can be represented as a direct sum of irreducible representations [14, Theorem 8.7], called the

irreducible constituentsof �.

In this paper we are particularly interested in representations using unitary matrices. The following stan-

12



dard argument shows that any representation is equivalent to a representation using only unitary matrices.

Choose a square matrixT that satisfies

T �T =
X
g2G

��(g)�(g):

The matrixT is invertible since each�(g) is invertible so that the sumT �T is positive definite. BecauseG is

a group, it follows that��(g)T �T�(g) = T �T , for anyg. Thus, we see thatT�(g)T�1 is a unitary matrix,

and the representationT�T�1 is a unitary representation.

We call a one-dimensional representation of a group acharacterof that group. Hence, a character is

a multiplicative mapping which maps elements of the group to complex roots of unity. A character that is

injective is calledprimitive; it maps only1G into 1.

Our strategy is to take certain groupsG and use unitary representations to build group constellationsV.

We denote this byV = �(G). The diversity product is then given by

��(G) =
1

2
min
1G 6=g

jdet (IM ��(g))j 1M : (13)

Equivalent representations have the same diversity products.

Although our aim is to maximize��(G), it is at this point not clear whether this quantity is ever nonzero for

a given groupG. From (13) it follows that��(G) is nonzero if and only if for anyg 2 G such thatg 6= 1G, the

matrix�(g) does not have an eigenvalue at unity. Such representations have been studied before and are called

fixed-point-free representations. We call a groupfixed-point-freeif it has a fixed-point-free representation.

Such groups arise in the investigation of near-fields [12], in geometry [16], and in the investigation of finite

subgroups of skew fields [17]. The present application of these groups, however, appears to be new.

4.2 Cyclic groups are fixed-point-free

We start out with a class of groups that are always fixed-point-free: the class of cyclic groups. We denote a

cyclic groupG, generated by an element�, asG = h�i. If G has orderL, thenG = f�` j ` = 0; : : : ; L� 1g.
In the following, we compute all fixed-point-free representations of this group. It suffices to determine all the

irreducible fixed-point-free representations, since the irreducible constituents of a fixed-point-free representa-

tion have to be fixed-point-free themselves. But fixed-point-free irreducible representations of cyclic groups

are trivial: irreducible representations of Abelian groups are one-dimensional [14, Theorem 9.8], i.e., they

13



are characters of the group. A character is fixed-point-free if and only if it is primitive (if it is not primitive,

it maps a non-identity element to one and thereofe has a unit eigenvalue at a non-identity element). Hence,

irreducible fixed-point-free representations of cyclic groups are exactly the primitive characters of the group,

and these are characters that map a generator of the group to a primitiveLth root of unity.

The Abelian groupG hasL characters given by�u(�`) = e2�iu`=L for u = 0; : : : ; L � 1, but not all

are primitive. The character�u is primitive if and only ifu andL are relatively prime, implying that there

are'(L) primitive characters, where'(L) is theEuler totient functionof L (which denotes the number of

positive integers less thanL that are relatively prime toL). AnM -dimensional representation� of G is built

as a direct sum ofM characters

�(�) =

0
BBBBBB@

�u1(�) 0 � � � 0

0 �u2(�) � � � 0
...

...
. ..

...

0 0 � � � �uM (�)

1
CCCCCCA

=

0
BBBBBB@

�u1 0 � � � 0

0 �u2 � � � 0
...

...
. . .

...

0 0 � � � �uM

1
CCCCCCA ; � = e2�i=L:

For the representation of�`, we use the fact that� is a multiplicative map. Hence, for allg 2 G �(g`) =

�(g)`. This implies that

�(�`) =

0
BBBBBB@

�`u1 0 � � � 0

0 �`u2 � � � 0
...

...
. . .

...

0 0 � � � �`uM

1
CCCCCCA : (14)

These reducible representations are identical to the diagonal code constructions given in [1], and they are

fixed-point-free if and only ifu1; : : : ; uM are relatively prime toL. As shown in [1], either an exhaustive or

random search can find theum with the highest diversity product��(G); see also Table 1.

We see that an Abelian group is fixed-point-free if and only if it has a primitive character. Recall that

a primitive character defines an injective map from the Abelian group into the group of nonzero complex

numbers. Hence, the image of this map is a subgroup of the nonzero complex numbers, isomorphic to the

14



original Abelian group. But subgroups of the nonzero complex numbers are necessarily cyclic. (This is a

well-known fact: all elements of a finite subgroup of ordern ofC are solutions toxn� 1, hence arenth roots

of unity.) We conclude thatan Abelian group has a nonzero diversity product if and only if it is cyclic.

As shown in [1], the performance of cyclic groups when used for multiple-antenna constellations is good

at low rates, whenR < 2, but degrades forR > 2. This is probably because the antennas are activated only

one at a time and always in the same order. Since we seek groups with superior performance, we necessarily

must consider non-Abelian groups.

4.3 A non-Abelian class of fixed-point-free groups

An early reference to fixed-point-free representations is a paper of Burnside [11]. An almost complete classifi-

cation of fixed-point-free groups appears in a paper of Zassenhaus [12]. We use the qualifier “almost” because

Zassenhaus’ description does not cover some classes of groups that are fixed-point-free. In this paper, we fix

the oversight and make the classification complete. The complete classification appears in Section 5.

In Section 5 we give the matrix representations of all the fixed-point-free groups. As it is often difficult

and tedious to compute these representations, we generally omit the details. In this section, we therefore

indicate how these computations are done by computing the fixed-point-free representations of a particular

class of fixed-point-free groups in detail. As shown in Section 5, this class is the only class of groups with

odd order, and the only class with irreducible representations in an odd dimensionM .

Let

Gm;r = h�; � j �m = 1; �n = �t; �� = �ri;

wheren is the order ofr modulom (i.e., n is the smallest positive integer such thatrn � 1 modm),

t = m= gcd(r� 1;m), and we havegcd(n; t) = 1. (We use the notation�� for �; � 2 G to mean the element

����1.) The groupGm;r has ordermn because it contains the subgrouph�i of orderm and indexn (the

term “index” refers to the number of cosets). Note that the class of groupsGm;r contains the class of cyclic

groups sinceGm;1 is cyclic of orderm.2 Appendices A and B show thatGm;r is fixed-point-free if and only

if all prime divisors ofn divide gcd(r � 1;m). WhenGm;r is cyclic, we have thatn = 1 and therefore all

cyclic groups are fixed-point-free; this just confirms what we already know from the previous section. We

now compute all the irreducible fixed-point-free representations ofGm;r.

The cyclic groupH = h�i is a normal subgroup ofGm;r. (A subgroupH is normal inG if ghg�1 2 H

2r = 1 impliesn = 1 andt = 1. Thus,� = � and soGm;1 = h�i.
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for all g 2 G andh 2 H.) We need to study how the representations ofGm;r interact withH. Denote the

restriction of a representation� toH by � # H. If � is fixed-point-free, so is� # H. BecauseH is cyclic

� # H has to be equivalent to a direct sum of primitive characters ofH (see Section 4.2).

Alternatively, representations on subgroups induce representations on the group itself. Suchinduced

representations(see, e.g. [15, Section 5.9]) can be computed from the restricted representation. LetF be an

irreducible representation of the cyclic groupH = h�i. The induction ofF to G is denotedF " G and, in

our case, is irreducible. For a representationF of H and� 2 G we consider the the representationF � with

F �(h) = F (�h��1). (Note that becauseH is a normal subgroup ofG, thenF � is a valid representation of

H.) Theinertia groupof F is the group of all� 2 G such thatF � is equivalent toF . It is easy to see that the

inertia group of the one-dimensional representationF of H is equal toH if F is primitive. Hence, by [15,

Theorem 5.20, Cor. 3]F " G is irreducible ifF is primitive, i.e., fixed-point-free. To get the representations

of G, we may thus compute the inductions toG of fixed-point-free representations ofH. We choose this route

because, as shown in Section 4.2, the fixed-point-free representations ofH are simple to compute whenH is

cyclic.

These inductions can be computed as follows; see, for example, [15, Section 5.9]. Note thatf1 � H; � �
H; : : : ; �n�1 �Hg is a set of representatives of the cosetsG=H. For the element� 2 G, we ask if� i���j 2 H,

for i; j = 0; : : : ; n � 1? If yes, then the(i; j)th block of (F " G)(�) is set equal toF (� i���j). If no, then

this block is set to zero. But� i���j 2 H if and only if i = j. Therefore,

(F " G)(�) =

0
BBBBBB@

F (�) 0 � � � 0

0 F (�)r � � � 0
...

...
. . .

...

0 0 � � � F (�)r
n�1

1
CCCCCCA : (15)

For the element� 2 G, we ask in a similar fashion whether� i���j 2 H, for i; j = 0; : : : ; n� 1? If yes,

then the(i; j)th block of (F " G)(�) is set equal toF (� i���j) = F (� i+1�j). If no, then this block is set

to zero. But� i+1�j 2 H if and only if j � i � 1 mod n. For i = 0; : : : ; n � 2, this holds ifj = i + 1,

and in this caseF (� i+1�j) = F (�0) = F (1). But for i = n � 1, this holds ifj = 0, and in this case
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F (� i+1�j) = F (�n) = F (�t). Therefore

(F " G)(�) =

0
BBBBBBBBB@

0 F (1) 0 � � � 0

0 0 F (1) � � � 0
...

...
...

. . .
...

0 0 0 � � � F (1)

F (�)t 0 0 � � � 0

1
CCCCCCCCCA
: (16)

SinceF is an irreducible representation of the cyclic subgroupH, it is in fact one-dimensional, i.e., it is a

character. BecauseF is a primitive character,F (�) = � where� is a primitivemth root of unity. Substituting

for F (�) into (15) and (16) gives the explicit representation� given by

�(Gm;r) =
n
(F " G)(�`)(F " G)(�k) j ` = 0; : : : ;m� 1; k = 0; : : : ; n� 1

o
; (17)

wheregcd(r � 1;m) = r0, r0t = m, gcd(n; t) = 1, n is the order ofr modulom, and where

�(�) =

0
BBBBBB@

� 0 � � � 0

0 �r � � � 0
...

...
. . .

...

0 0 � � � �r
n�1

1
CCCCCCA ; �(�) =

0
BBBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

.. .
...

0 0 0 � � � 1

�t 0 0 � � � 0

1
CCCCCCCCCA
: (18)

These matrices are suitable for transmission withM = n antennas because they are unitary and have dimen-

sionn.

In computing the fixed-point-free irreducible representation ofG = Gm;r, we have not explicitly chosen

the primitivemth root of unity�. But it is easy to see that the choice of� does not change the group generated

by �(�) and�(�). Any such choice makes the representation� irreducible and fixed-point-free and does

not affect the diversity product��(G).

Even though the constellation (taken in its entirety) does not depend on the choice of�, the representations

obtained from different� are not necessarily equivalent. There are, in fact,'(m)=n pairwise inequivalent

fixed-point-free irreducible representations ofGm;r and they are obtained by choosing� ase2�iz=m wherez

runs over a set of representatives of(Z=mZ)�modulo the subgroup of ordern generated byr mod m. To see

this, letF be the irreducible representation ofH = h�i mapping� to �, and letF s be another representation
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mapping� to �s. ThenF " G andF s " G are equivalent if and only if there exists an invertiblen�n-matrix

T such that

T (F " G)(�) = (F s " G)(�)T; T (F " G)(�) = (F s " G)(�)T: (19)

Let T = ftijg. The equality on the left involving� implies thattij�r
j�1

= tij�
sri�1 for all i; j. Hence, if

s is not in the group generated byr mod m, thentij = 0 for all i; j, and the representationsF andF s are

inequivalent. On the other hand, ifs � ra modm for somea, then settingtij = 0 for i 6� j + a modm,

andtij = 1 otherwise, satisfies both the above relations and shows thatF andF s are equivalent. A similar

argument applies to the equality on the right side of (19) involving� . Thus, there are'(m)=n pairwise

inequivalent fixed-point-free irreducible representations ofGm;r.

The value of��(G) for the representations characterized in this section can be computed via the following

lemma.

Lemma 1. For any fixed-point-free representation� = F " G ofG = Gm;r, we have

��(G) =
1

2
min

`2f0;:::;m�1g
k2f0;:::;n�1g
(`;k)6=(0;0)

������
qY

j=1

�
1� �

k
q
t+`rj�1 r

n�1
rq�1

�������
1
n

; (20)

whereq = gcd(n; k) and� = e2�i=m.

Proof. We need to compute the determinant ofIn � (F " G)(g) for all g 2 Gm;r or, equivalently, the

determinant ofIn � ((F " G)(�))`((F " G)(�))k for all ` = 0; : : : ;m � 1, k = 0; : : : ; n � 1, such that

(`; k) 6= (0; 0). This is done using the matrix representations (18) and Lemma 6 in Appendix C.

We now present a few examples of the fixed-point-free groupsGm;r.

Example 1 (3 antennas).Letn = 3 and taker = 4 andm = 21. Then we haver0 = 3, t = 7, gcd(n; t) =

gcd(3; 7) = 1, and all prime divisors ofn (i.e., the prime3) divide r0. Hence,G21;4 is a fixed-point-free

group. Thus, if we set� = e2�i=21, and

A =

0
BBB@

� 0 0

0 �4 0

0 0 �16

1
CCCA ; B =

0
BBB@

0 1 0

0 0 1

�7 0 0

1
CCCA :

then the63 matricesA`Bk, ` = 0; : : : ; 20, k = 0; 1; 2, form a group under matrix multiplication. We have
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��(G21;4) � 0:3851. This3-antenna,63-element constellation is one element shy of having rateR = 2.

Example 2 (9 antennas).Let n = 9 and taker = 4 andm = 57. Then we haver0 = 3 and t = 19,

gcd(n; t) = 1, and all prime divisors ofn divide r0. HenceG57;4 is fixed-point-free. Thus, if we set� =

e2�i=57, and

A = diag (�; �4; �16; �7; �28�55; �49; �25; �43); B =

0
@ 0 I8

�19 0

1
A ;

wherediag (a1; : : : ; an) denotes the diagonal matrix with diagonal entriesa1; : : : ; an, then the513 matrices

A`Bk, where` = 0; : : : ; 56, andk = 0; : : : ; 8 form a group under matrix multiplication. We have��(G57;4) �
0:361. This9-antenna,513-element constellation exceeds rate1 by one element.

5 A classification of fixed-point-free groups

In this section we classify all fixed-point-free groups and compute all the irreducible fixed-point-free repre-

sentations of these groups.

5.1 The group types

One type of fixed-point-free group is presented in Section 4.3, but there are five more types. Since the groups

Gm;r are an important part of the classification theorem, the following convention is introduced. Given a pair

of integers(m; r), we implicitly definen to be the order ofr modulom; we definer0 = gcd(r � 1;m); and

t = m=r0. We call the pair(m; r) admissible, if gcd(n; t) = 1, and all prime divisors ofn divide r0. The six

group types are:

1. Gm;r (These appear in Section 4.3.):

Gm;r = h�; � j �m = 1; �n = �t; �� = �ri;

where(m; r) is admissible. The order ofGm;r isL = mn.

2. Dm;r;`:

Dm;r;` = h�; �; 
 j �m = 1; �n = �t; �� = �r; �
 = �`; �
 = � `; 
2 = �nr0=2i;
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wherenr0 is even,(m; r) is admissible,̀ 2 � 1 mod m, ` � 1 mod n, and` � �1 mod s, wheres is

the highest power of2 dividingmn. The order ofDm;r;` isL = 2mn.

3. Em;r:

Em;r = h�; �; �; 
 j �m = 1; �n = �t; �� = �r; ��
m=t

= �; 
�
m=t

= 
;

�4 = 1; �2 = 
2; �
 = ��1; �� = 
; 
� = �
i;

where(m; r) is admissible,mn is odd, andnr0 is divisible by3. The order ofEm;r is 8mn.

4. Fm;r;`:

Fm;r;` = h�; �; �; 
; � j �m = 1; �n = �t; �� = �r; ��
m=t

= �; 
�
m=t

= 
; �� = 
; 
� = �
;

�4 = 1; �2 = 
2; �
 = ��1; �2 = �2; �� = �`; �� = � `; �� = 
�1; 
� = ��1i;

where(m; r) is admissible,mn is odd,r0 is divisible by3, n is not divisible by3, `2 � 1 modm,

` � 1 mod n, and` � �1 mod 3. The order ofFm;r;` is 16mn.

5. Jm;r:

Jm;r = SL2(F5)�Gm;r;

where(m; r) is admissible,gcd(mn; 120) = 1, andSL2(F5) is the group of2 � 2-matrices overF5

with determinant1. SL2(F5) has the generators and relations

SL2(F5) = h�; 
 j �2 = 
3 = (�
)5; �4 = 1i:

The order ofJm;r is 120mn.

6. Km;r;`:

Km;r;` = hJm;r; �i

with the relations

�2 = �2; �� = (�
)7(
�)2
(
�)2; 
� = 
; �� = �`; �� = � `;

where� and
 are as inJm;r, and wherè 2 � 1 mod m, ` � 1 mod n. The order ofKm;r;` is 240mn.

We can now state our first main result.
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Theorem 1. A finite group is fixed-point-free if and only if it is isomorphic to eitherGm;r, Dm;r;`, Em;r,

Fm;r;`, Jm;r, or Km;r;`.

The proof that a fixed-point-free group must be one of these types appears in Appendix A. Next, we

concentrate on showing that the above groups are fixed-point-free and computing their fixed-point-free repre-

sentations. In all cases, all the inequivalent irreducible representations of the same group yield the exact same

set of matrices (in different order). Hence, the signal constellations produced by inequivalent representations

of the same group are identical. We therefore present only one of the inequivalent representations.

Theorem 2. (1) Gm;r for admissible(m; r) has an irreduciblen-dimensional fixed-point-free representa-

tion given by

� 7! A =

0
BBBBBBBBB@

� 0 0 � � � 0

0 �r 0 � � � 0

0 0 �r
2 � � � 0

...
...

...
. . .

...

0 0 0 � � � �r
n�1

1
CCCCCCCCCA
; � 7! B =

0
BBBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

.. .
...

0 0 0 � � � 1

�t 0 0 � � � 0

1
CCCCCCCCCA
;

and � = e2�i=m. The corresponding constellation is given by the matricesAsBk, s = 0; : : : ;m � 1,

k = 0; : : : ; n � 1. We note here (and omit in the remaining descriptions) that, implicitly, in this

representation the matrixA becomes a scalar andB becomes undefined whenr = 1 becauseGm;1 is

cyclic.

(2) Dm;r;` with admissible(m; r) has an irreducible2n-dimensional fixed-point-free representation given

by

� 7! A =

0
@ A0 0

0 A`
0

1
A ; A0 =

0
BBBBBBBBB@

� 0 0 � � � 0

0 �r 0 � � � 0

0 0 �r
2 � � � 0

...
...

...
. . .

...

0 0 0 � � � �r
n�1

1
CCCCCCCCCA
;
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� 7! B =

0
@ B0 0

0 B`
0

1
A ; B0 =

0
BBBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1

�t 0 0 � � � 0

1
CCCCCCCCCA
;

� 7! R =

0
@ 0 In

�In 0

1
A ;

where� = e2�i=m. The corresponding constellation is given byAsBkRj, s = 0; : : : ;m � 1, k =

0; : : : ; n� 1, j = 0; 1.

(3) Em;r for admissible(m; r) has an irreducible2n-dimensional fixed-point-free representation given by

� 7! Az =

0
BBBBBBBBB@

A0;z 0 0 � � � 0

0 Ar
0;z 0 � � � 0

0 0 Ar2
0;z � � � 0

...
...

...
.. .

...

0 0 0 � � � Arn�1
0;z

1
CCCCCCCCCA
; A0;z =

e10�i=8e2�iz=mp
2

0
@ 1 1

i �i

1
A ;

� 7! Bz =

0
BBBBBBBBB@

0 I2 0 � � � 0

0 0 I2 � � � 0
...

...
...

. ..
...

0 0 0 � � � I2

At
0;z 0 0 � � � 0

1
CCCCCCCCCA
;

� 7! P =

0
BBBBBBBBBBBB@

F0 0 0 0 � � � 0

0 F1 0 0 � � � 0

0 0 F2 0 � � � 0

0 0 0 F0 � � � 0
...

...
...

...
. ..

...

0 0 0 0 � � � F(n�1 mod 3)

1
CCCCCCCCCCCCA
;
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 7! Q =

0
BBBBBBBBBBBB@

F1 0 0 0 � � � 0

0 F2 0 0 � � � 0

0 0 F0 0 � � � 0

0 0 0 F1 � � � 0
...

...
...

...
. ..

...

0 0 0 0 � � � F(n mod 3)

1
CCCCCCCCCCCCA
;

F0 =

0
@ i 0

0 �i

1
A ; F1 =

0
@ 0 1

�1 0

1
A ; F2 =

0
@ 0 i

i 0

1
A ;

wherez = 1 if 9 dividesm, and z = 3 otherwise. The corresponding constellation is given by

As
zB

k
zP

jQp, s = 0; : : : ;m� 1, k = 0; : : : ; n� 1, j = 0; : : : ; 3, p = 0; 1.

(4) If n > 1 or ` 6� 1 mod (m=3), thenFm;r;` with admissible(m; r) has an irreducible4n-dimensional

representation given by

� 7! A =

0
@ Az 0

0 A`
z

1
A ; � 7! B =

0
@ Bz 0

0 B`
z

1
A

� 7! P =

0
@ P 0

0 Q�1

1
A ; 
 7! Q =

0
@ Q 0

0 P�1

1
A ;

� 7! R =

0
@ 0 I2n

�I2n 0

1
A ;

whereAz; Bz; P;Q are the matrices defined for the groupEm;r, andz = 1 if 9 dividesm, andz = 3

otherwise. Ifr = 1 and` � 1 mod (m=3), thenFm;1;` has an irreducible 2-dimensional fixed-point-

free representation given by

� 7! A = A0;3; B = I2; � 7! P = F0; 
 7! Q = F1; � 7! R =
1p
2

0
@ �i 1

�1 i

1
A ;

whereA0;3, F0, andF1 are the matrices defined forEm;r. The corresponding constellation is given by

AsBkP jQpRq, wheres = 0; : : : ;m� 1, k = 0; : : : ; n� 1, j = 0; : : : ; 3, p = 0; 1, q = 0; 1.
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(5) Jm;r has an irreducible2n-dimensional fixed-point-free representation given by

� 7! A = I2 


0
BBBBBBBBB@

� 0 0 � � � 0

0 �r 0 � � � 0

0 0 �r
2 � � � 0

...
...

...
.. .

...

0 0 0 � � � �r
n�1

1
CCCCCCCCCA
;

� 7! B = I2 


0
BBBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1

�t 0 0 � � � 0

1
CCCCCCCCCA
;

� 7! P = P0 
 In; P0 =
1p
5

0
@ �2 � �3 � � �4

� � �4 �3 � �2

1
A ;


 7! Q = Q0 
 In; Q0 =
1p
5

0
@ � � �2 �2 � 1

1� �3 �4 � �3

1
A ;

where� = e2�i=5, � = e2�i=m, and
 denotes Kronecker-product. The corresponding constellation

consists of the matricesAsBk(PQ)jX, s = 0; : : : ;m � 1, k = 0; : : : ; n � 1, j = 0; : : : ; 9, and

X runs over the setfI2n; P , Q, QP , QPQ, QPQP , QPQ2, QPQPQ, QPQPQ2, QPQPQ2P ,

QPQPQ2PQ, QPQPQ2PQPg.

(6) Km;r;` has an irreducible4n-dimensional fixed-point-free representation given by

� 7! A =

0
@ A0 0

0 A`
0

1
A ; A0 = I2 


0
BBBBBBBBB@

� 0 0 � � � 0

0 �r 0 � � � 0

0 0 �r
2 � � � 0

...
...

...
.. .

...

0 0 0 � � � �r
n�1

1
CCCCCCCCCA
;
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� 7! B =

0
@ B0 0

0 B`
0

1
A ; B0 = I2 


0
BBBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

.. .
...

0 0 0 � � � 1

�t 0 0 � � � 0

1
CCCCCCCCCA
;

� 7! P =

0
@ P0 0

0 ~P0

1
A
 In; P0 =

1p
5

0
@ �2 � �3 � � �4

� � �4 �3 � �2

1
A ; ~P0 =

0
@ 0 �1

1 0

1
A ;


 7! Q =

0
@ Q0 0

0 Q0

1
A
 In; Q0 =

1p
5

0
@ � � �2 �2 � 1

1� �3 �4 � �3

1
A ;

� 7! R =

0
@ 0 I2n

�I2n 0

1
A ;

where� = e2�i=5, � = e2�i=m, and
 denotes Kronecker-product. The corresponding constellation

is given byAsBk(PQ)jXRp, s = 0; : : : ;m � 1, k = 0; : : : ; n � 1, j = 0; : : : ; 9, p = 0; 1, and

X runs over the setfI4n; P , Q, QP , QPQ, QPQP , QPQ2, QPQPQ, QPQPQ2, QPQPQ2P ,

QPQPQ2PQ, QPQPQ2PQPg.

A proof of this theorem can be found in Appendix B. Table 2 summarizes the results of this section.

The first column indicates the type of the group, the second its order, and the third the dimension of its

representation.

Remark 1. Theorems 8 and 16 in Zassenhaus’ paper [12] classify the fixed-point-free groups. Although the

proof techniques in the paper are novel and essentially correct, the final assertions contain errors and short-

comings which make them unsuitable for the present application. For instance, Zassenhaus’ classification

does not cover the groupsDm;r;` for oddn, nor does it cover some subtypes of the groupsEm;r andFm;r;`.

The explicit description of the groups in Part (E) of Theorem 7 on page 203 of [12] appears to be incorrect,

sinceR2 = P (in his terminology) andRAR�1 = A` are incompatible requirements. Furthermore, only

necessary conditions are proven for a group to be fixed-point-free, although it is hinted that these necessary

conditions are also sufficient.

Despite these shortcomings, we emphasize that our classification closely follows Zassenhaus’ elegant

techniques and would not have been possible without his work.
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Group type L M Comments

1. Gm;r mn n

2. Dm;r;` 2mn 2n

3. Em;r 8mn 2n

4. Fm;r;` 16mn 4n if n > 1 or ` 6� 1 mod m=3

Fm;1;` 16mn 2 if ` � 1 mod m=3

5. Jm;r 120mn 2n

6. Km;r;` 240mn 4n

Table 2: There are 6 types of fixed-point-free groups: For each groupG, L is the order ofG (the size of the
constellation) andM is the dimension of the representation ofG (number of transmitter antennas).

6 Consequences of the classification forM = 2 andM odd

We present some immediate consequences of the main classification theorem.

The most elementary consequence (that we already know from Section 4.2) is that cyclic groups are fixed-

point-free, because in our classification a cyclic group of orderm corresponds toGm;1: in this casen = 1

because the order of1 modm is 1.

A class of fixed-point-free groups that appears in [9] as a constellation for differential multiple antenna

modulation is the generalized quaternion groups, reviewed in Section 3 and defined as

Qp = h�; � j �2p = 1; �2 = �2
p�1

; �� = ��1i:

In our classification, we haveQp = D2p;1;�1. In [9] it is proved that ifG is a fixed-point-free group that

has2p+1 elements for some integerp, and has a fixed-point-free representation of dimension2, thenG is

either cyclic or a generalized quaternion group (also called a “dicyclic group” in that paper). This theorem

is actually quite old, going back to Burnside [11] in a more general form (see Theorem 7 in Appendix A). It

is also consistent with our classification, and we may make a stronger conclusion: assume only thatG is a

fixed-point-free group of order2p+1 (do not impose any restriction on the dimension of its representation);

thenG is either aGm;r or aDm;r;`. (It cannot be of theEm;r or Fm;r;` types since they require thatmn be

odd, which contradicts the assumption that the number of elements,8mn and16mn be powers of two. It also
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cannot beJm;r or Km;r;` since the number of elements,120mn and240mn can never be powers of 2.) If

G = Gm;r, thenmn has to be a power of2. Suppose bothm andn are even. Then, sincegcd(t; n) = 1, t

must be odd. But sincet = gcd(r � 1;m), this can only happen ifr � 1 is odd. This, on the other hand,

contradictsrn � 1mod (m) since bothr andm are even. Thus,m andn cannot be simultaneously even, and

so eitherm = 1, or n = 1. Sincem = 1 contradicts the admissibility of(m; r) (all prime divisors ofn have

to divider0 and hencem), this implies thatn = 1. This means thatG is cyclic.

If G = Dm;r;`, thenn = 1 andm = 2p, hencè � �1 mod m, which shows thatG is a generalized

quaternion group and therefore has a2-dimensional irreducible representation. Note that we did not need to

assume anything about the dimension of the representation forG; the dimension came as a conclusion.

Our classification shows that all non-Abelian fixed-point-free groups of order2p have their irreducible

fixed-point-free representations in two dimensions. Because it is often practical to use two transmitter anten-

nas, one may ask more generally for a classification of all fixed-point-free groups whose irreducible fixed-

point-free representations are2-dimensional. The following result answers this question.

Theorem 3. Any fixed-point-free group that has an irreducible2-dimensional fixed-point-free representation

is isomorphic to one of the following:

1) Gm;r such that(m; r) is admissible and the order ofr modulom is 2.

2) Dm;1;`.

3) Em;1.

4) Fm;1;` for ` � 1 modm=3.

5) Jm;1.

Conversely, any of these groups has an irreducible2-dimensional fixed-point-free representation.

Proof. The proof follows by noting thatn, the order ofr modulom, is 1 if and only if r = 1, and comparing

with Table 2.

Using the classification in this paper, we can also produce constellations for an odd number of antennas

M .

Theorem 4. Any group with a fixed-point-free representation of odd dimensionM is isomorphic toGm;r for

some admissible(m; r).
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Proof. If G has a fixed-point-free representation� of odd dimension, then it has an irreducible fixed-point-

free representation. Since all irreducible fixed-point-free representations ofG have the same dimensiond (see

Table 2), the dimension of� is a multiple ofd. Hence, if the dimension of� is odd, thend must be odd.

It therefore suffices to consider only groupsG that have an irreducible fixed-point-free representation of odd

dimension. A look at Table 2 reveals thatG has to be isomorphic toGm;r.

7 Some explicit simple constellations

In this section we produce simple examples of some of the classes of fixed-point-free groups. For reasons of

simplicity, we will identify the groups with images of their fixed-point-free representations computed in the

pervious sections, and list the group elements as matrices.

Using Theorem 3, we start with groups that have an irreducible fixed-point-free representation forM = 2

transmitter antennas.

1. The smallest example of aGm;r having a2-dimensional irreducible fixed-point-free representation is

G6;�1. The corresponding constellation consists of the12 matricesAsBk, s = 0; : : : ; 5, k = 0; 1,

where

A =

0
@ � 0

0 ��1

1
A ; B =

0
@ 0 1

�1 0

1
A ;

and� = e2�i=6. Its rate isR = log(12)=2 = 1:79, and its diversity product is�G6;�1 = 0:5. This value

for � is not particularly impressive because, as we see from Table 1, the orthogonal designs (although

they are not a group) have the same�, but withR = 2.

2. The smallest example of the groupDm;1;` is the quaternion groupQ2 = D4;1;�1 of order8 given as the

set of matricesP jQp, j = 0; : : : ; 3, p = 0; 1, where

P =

0
@ i 0

0 �i

1
A ; Q =

0
@ 0 1

�1 0

1
A :

We have�Q2 =
p
2=2 � 0:7071. This group appears in Table 1.

3. The smallest example of a groupEm;1 is the groupE3;1 of order 24. This group is isomorphic to

SL2(F3) [12], the group of two-dimensional matrices overF3 with determinant 1. The constellation is
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given by the24 matricesAsP jQp, wheres = 0; 1; 2, j = 0; : : : ; 3, p = 0; 1, and

A =
e10�i=8p

2

0
@ 1 1

i �1

1
A ; P =

0
@ i 0

0 �i

1
A ; Q =

0
@ 0 1

�1 0

1
A :

Its rate isR = 2:29, and�E3;1 = 0:5, which outperforms all constellations withR > 2 in Table 1.

4. The smallest example of a groupFm;1;` is the groupF3;1;�1 which has48 elements. It consists of the

matricesAsP jQpRq, wheres = 0; 1; 2, j = 0; : : : ; 3, p = 0; 1, q = 0; 1, andA;P;Q are as above

while

R =
1p
2

0
@ �i 1

�1 i

1
A :

Becausen = 1, the matrixB does not appear. The constellation has rateR = 2:79, and�F3;1;�1 =p
2�p

2=2 � 0:3868.

5. The smallest example ofJm;r is J1;1 which is isomorphic toSL2(F5 ). This constellation has120

elements given by the matrices(PQ)jX, wherej = 0; : : : ; 9, X runs over the setfI2; P;Q;QP;
QPQ;QPQP;QPQ2; QPQPQ;QPQPQ2; QPQPQ2P;QPQPQ2PQ;QPQPQ2PQPg; and

P =
1p
5

0
@ �2 � �3 � � �4

� � �4 �3 � �2

1
A ; Q =

1p
5

0
@ � � �2 �2 � 1

1� �3 �4 � �3

1
A ;

where� = e2�i=5. It has rateR = 3:45, and�SL2(F5 ) = 1
2

q
(3�p

5)=2 � 0:3090. This group

performs remarkably, as described in Section 9.

6. The simplest example of a fixed-point-free group with irreducible fixed-point-free representations for

M = 3 is the groupG21;3 described in Section 4.3.

7. The smallest example of a fixed-point-free group with an irreducible4-dimensional fixed-point-free

representation isD6;�1;�1. It has 24 elements, with rateR = log(24)=4 = 1:15, and�D6;�1;�1 =

0:5. This performance is not very impressive since the groupK1;1;�1 with L = 240 elements (rate

R = 1:98) has�K1;1;�1 = 0:5. The elements of this constellation are given by(PQ)jXRp, where
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j = 0; : : : ; 9, p = 0; 1, X runs over the same set as in 5), but with

P =
1p
5

0
BBBBBB@

�2 � �3 � � �4 0 0

� � �4 �3 � �2 0 0

0 0 0 �p5

0 0
p
5 0

1
CCCCCCA ;

Q =
1p
5

0
BBBBBB@

� � �2 �2 � 1 0 0

1� �3 �4 � �3 0 0

0 0 � � �2 �2 � 1

0 0 1� �3 �4 � �3

1
CCCCCCA ;

R =

0
BBBBBB@

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

1
CCCCCCA :

We defer a detailed description of the performance of these multiple-antenna constellations until Section 9.

8 Group-inspired constellations

Theorems 1 and 2 are key because they allow us to compute all fixed-point-free groups of finite order. For

many combinations ofM andR these groups result in constellations with excellent� and performance, as

shown in Section 9. For other combinations ofM andR, groups with irreducible fixed-point-free represen-

tations do not exist, especially whenM is large and odd. We can consider reducible representations, but

then the groups can have large cyclic components and sparse matrix representations, which do not necessarily

perform well. For example, Theorem 1 shows that it is not possible to construct irreducible constellations

with R � 1 for matrix dimensionsM = 5 andM = 7, since there exist no irreducible fixed-point-free group

representations forM = 5 with L � 32, orM = 7 with L � 128.

To construct constellations for arbitraryM andR, it appears that we need to consider also nongroups.

We are therefore once again considering the problem of constructing anL-element set ofM �M unitary

matrices with large�—but we do not start from scratch. We show how the group constellations can suggest

simple nongroup constellations that perform well.
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We consider three specific structures. The first, called Hamiltonian constellations, works only forM = 2

and has some similarities with the orthogonal designs described in Section 2. These exist for any rateR. The

second is a nongroup generalization of the groupGm;r. These yield constellations, for arbitraryM andR

that effectively boost the size of any diagonal constellation by the factorM without decreasing�. The rate

of the diagonal constellation is increased bylogM
M . The third is a constellation based on the matrix product

of two different representations of any finite fixed-point-free group. This doubles the rate of the constellation

and appears to yield excellent high rate constellations. These three constructions just scratch the surface of

the problem of designing nongroup constellations from groups.

8.1 Hamiltonian constellation

A Hamiltonian constellation is defined to be a set of2 � 2 unitary matrices that can be built from points on

the unit sphere inR4. We start with the parameterization of a2� 2 unitary matrix

H(x; y) =

2
4 x �y�

y x�

3
5 :

wherex; y 2 C andjxj2 + jyj2 = 1. Unlike with orthogonal designs, the constraintjxj = jyj is not imposed.

These matrices form the (infinite) group of Hamiltonian quaternions of norm 1. The pairwise diversity product

between two such matrices is given by

�(H(x; y);H(x0; y0)) =
1

2

q
jx� x0j2 + jy � y0j2: (21)

Consider the natural embedding ofC2 inR4. Then(x; y) and(x0; y0) are points on the unit sphere inR4 and

the pairwise diversity product betweenH(x; y) andH(x0; y0) is simply one half their Euclidean distance. The

Hamiltonian constellation is formed by building the unitary matrices from a set of points on the sphere inR
4.

It immediately follows that the behavior of the diversity product for the Hamiltonian constellation is given by

�(VH) = O(L�1=3)
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for largeL. If we impose the constraintjxj = jyj, we are effectively restricted to a two-dimensional torus,

and the asymptotic behavior of the orthogonal design (OD) is given in (12):

�(VOD) = sin(�=
p
L)p

2
= O(L�1=2) < �(VH):

Hence, for large rates orthogonal designs underperform Hamiltonian constellations.

Some references for large-minimum-distance packings of points on a sphere inR
4 include [18, 19]. Any

of the packings immediately builds a Hamiltonian constellation. Thus Hamiltonian constellations essentially

exist for any rate. The Hamiltonian constellations, like the orthogonal designs, in general do not form a group.

The only exceptions are the ones mentioned in Theorem 3.

Decoding Hamiltonian constellations is simple because we need to choose a point from our constellation

with least Euclidean distance inR4 from our measurement. Given that the points are well separated, a standard

technique such as bucketing [20] does this in constant time as a function of the rateR.

8.2 Nongroup generalization ofGm;r

As shown in Theorem 2, the groupGm;r has a fixed-point-free representation of dimensionn, wheren is the

order ofr modulom. We now letn be arbitrary, and let� and� be primitivemth andsth roots of unity, and

let u1; : : : ; un be integers. Consider then� n matrices

A =

0
BBBBBB@

�u1 0 � � � 0

0 �u2 � � � 0
...

...
.. .

...

0 0 � � � �un

1
CCCCCCA ; B =

0
BBBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1

� 0 0 � � � 0

1
CCCCCCCCCA

(22)

and the setSm;s consisting of the matricesA`Bk where` = 0; : : : ;m � 1 andk = 0; : : : ; p � 1, where

p = min(s; n). Note that if we takeui = ri�1, for i = 0; : : : ; n � 1, ands = gcd(r � 1;m) > n,

where(m; r) is any admissible pair, then we obtain the groupGm;r. In general, the setSm;s is not a group.

Nonetheless, the structure ofSm;s allows � to be computed in closed-form. We can therefore determine

whether the resulting constellation is fully diverse or not.
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Since the matricesA andB are unitary, it follows that

���det (A`1Bk1 �A`2Bk2)
��� = ���det (A`1�`2 �Bk2�k1)

��� = ���det (I �A`2�`1Bk2�k1)
��� :

Furthermore, since the matricesIn; A; : : : ; Am�1 form a group,�S is given by

�S =
1

2
min

`=0;:::;m�1
k=�p+1;:::;p�1

(`;k) 6=(0;0)

���det (In �A`Bk)
��� 1n :

For0 6 k < p, we have

Bk =

0
@ 0(n�k)�k I(n�k)�(n�k)

�Ik�k 0k�(n�k)

1
A ;

and for�p < �k 6 0,

B�k = ��1Bn�k

sinceBkBn�k = �In. Thus, for0 6 k < p, we may write

det (In �A`Bk) = det

0
@In �

0
@ 0(n�k)�k diag (�lu1 ; : : : ; �lun�k)

diag (��lun�k+1 ; : : : ; ��lun) 0k�(n�k)

1
A
1
A

=

qY
j=1

�
1� �

k
q �l
Pn

q �1

i=0 uiq+j

�
; q = gcd(n; n� k) = gcd(n; k)

and, for�p < �k 6 0,

det (In �A`Bk) = det

0
@In �

0
@ 0k�(n�k) diag (��1�lu1 ; : : : ; ��1�luk)

diag (�uk+1 ; : : : ; �un) 0(n�k)�k

1
A
1
A

=

qY
j=1

�
1� ��

k
q �l
Pn

q �1

i=0 uiq+j

�
;

where in the second step of both equalities we have used Lemma 6 in Appendix C.

We thus have the following result.

Lemma 2 (� for Sm;s). Let� and� be primitivem-th ands-th roots of unity, respectively, and letu1; : : : ; un

be integers. Denote bySm;s the set of matricesA`Bk where` = 0; : : : ;m � 1, k = 0; : : : ; p � 1 and
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p = min(s; n), withA andB given by (22). Then

�S =
1

2
min

`=0;:::;m�1
k=�p+1;:::;p�1

(`;k)6=(0;0)

������
qY

j=1

�
1� �

k
q �l
Pn

q �1

i=0 uiq+j

�������
1
n

; (23)

whereq = gcd(n; jkj).

Remarks

1. The nongroup constellationSm;s hasL = mp elements. From (9), we observe that for a general

nongroup constellation,� is the minimum ofL(L � 1)=2 pairwise distances between the elements of

the constellation. However, (23) shows thatSm;s has at mostm(2p � 1) = 2L �m distinct pairwise

differences. Hence, even thoughSm;s is not necessarily a group, it exhibits a considerable amount of

symmetry. Compare the maximum of2L�m pairwise distances with the maximum ofL� 1 distances

found in a group.

2. Lemma 2 allows us to construct constellations for any number of antennasM and any target rate

R = 1
M logL. We need only to setM = n and decomposeL asL = mp, with p 6 n, and then use

equation (23) to maximize the value of�S by performing a search over the integersu1; : : : ; un (all of

which lie between0 andn� 1) ands 6 p. In practice, one can always takep = n.

3. Note that we may write (23) more explicitly as

�S =
1

2
min

`=0;:::;m�1
k=�p+1;:::;p�1

(`;k)6=(0;0)

8>><
>>:

���Qn
j=1

�
1� �`uj

���� 1n k = 0����Qq
j=1

�
1� �

k
q �`
Pn

q �1

i=0 uiq+j

�����
1
n

0 < jkj < p

: (24)

The expression fork = 0 is the� for a diagonal constellation withu1; : : : ; un (see Sec. 4.2). Thus, if

min
`=0;:::;m�1

������
nY
j=1

�
1� �`uj

�������
1
n

6 min
`=0;:::;m�1

k=�p+1;:::;p�1
(`;k)6=(0;0)

������
qY

j=1

�
1� �

k
q �`
Pn

q �1

i=0 uiq+j

�������
1
n

;

then �S is determined by the� of the diagonal constellation. Since this can often be arranged by

choosing� appropriately, we conclude that with our construction it is possible to boost the size of the

diagonal constellationfA`g by the factorn while keeping� unchanged. This is effectively done by
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post-multiplying the constellation byBk.

4. Whenn is prime, the expressions simplify considerably sinceq = n whenk = 0, andq = 1 otherwise.

In this case, (24) reduces to

�S =
1

2
min

`=0;:::;m�1
k=�p+1;:::;p�1

(`;k)6=(0;0)

8><
>:

���Qn
j=1

�
1� �`uj

���� 1n k = 0���1� �k�`
Pn�1

i=0 ui+1
��� 1n 0 < jkj < p

: (25)

This expression simplifies further if we assume

n�1X
i=0

ui+1 � 0 mod m; (26)

in which case

�S =
1

2

2
4min

0
@ min

0<jkj<p

���1� �k
��� ; min

0<`<m

������
nY
j=1

�
1� �`uj

�������
1
A
3
5

1
n

: (27)

The first of the above expressions depends only on�, while the second depends only on�. Thus, it is

always possible to choose� so that the minimum is provided by the second term and the constellation

inherits the same� as a diagonal constellation withm elements.

We have observed that the constraint (26), does not affect the performance of the diagonal constellation

adversely. Therefore, in searching for good constellations we have found this constraint useful, even

for nonprimen.

5. The increase in the constellation size by the factorn =M over the diagonal constellation increases the

rate by 1
M logM .

8.3 Products of group representations

The constellations described above have the advantage that they can be constructed for anyM andR =

1
M logL, and that they areM times larger than an equivalent diagonal constellation. However, the matrices

in the constellations are sparse (only one transmit antenna is active at any given time). We seek constellations

that achieve better performance at high rates by employing more “full” matrices.

As has been noted earlier, one reason why the group constellations have excellent performance is that,

because of their symmetry, they reduce theL(L� 1)=2 pairwise distances between the elements of the con-
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stellation to at mostL � 1 distinct distances. Since our performance measure� is the minimum of these

pairwise distances, the group is likely to have a larger minimum distance, all other properties being equal.

Therefore, although we shall relax the group requirement, we will still insist that the constellation exhibit

symmetries with respect to the� cost. Thus, consider two fixed-point-free groups,GA andGB , and letVA =

fA1; : : : ; ALAg andVB = fB1; : : : ; BLBg beM �M unitary representations of these groups. Assume that

A0 = B0 = I.

Consider the set of pairwise products

SA;B = fAjBk; j = 1; : : : ; LA; k = 1; : : : ; LBg : (28)

Clearly, SA;B has at mostL = LALB distinct elements. This results in a constellation of rate at most

R = RA +RB , whereRA = (1=M) log LA andRB = (1=M) log LB. The diversity product for this set is

�S =
1

2
min

(j;k)6=(j0;k0)

��det (AjBk �Aj0Bk0)
�� 1M

=
1

2
min

(j;k)6=(j0;k0)

���det (A�1j0 Aj �Bk0B
�1
k )
��� 1M (Aj0 andBk are unitary)

=
1

2
min

(`;`0)6=(0;0)
jdet (A` �B`0)j

1
M (GA andGB are groups)

One concludes that even thoughSA;B is not necessarily a group, it has the desirable property of having at most

L�1, rather thanL(L�1)=2, distinct pairwise distances. In particular,�S depends only on the “co-distance”

between the elements of the constellationsVA andVB.

It remains to choose the constellationsVA andVB. AssumeGA = GB; we are therefore doubling the rate

of the original group constellation. The case whereGA 6= GB can be treated in a similar fashion and is omitted

for brevity. We also assume thatVA andVB are equivalent representations, i.e., there exists a unitary matrix

T such that

Bj = TAjT
�; j = 1; : : : LA: (29)

In particular,

�S =
1

2
min

(j;k)6=(0;0)
jdet (Aj � TAkT

�)j 1M : (30)

By lettingA0 = In we see that for�S to be nonzero the groupGA must be fixed-point-free. Thus, we may

use any of the groups of Theorem 1 as a candidate forGA. However, the next result shows that the only

representations ofGA that can lead to a nonzero�S arereduciblerepresentations.
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Theorem 5 (Products of Group Representations).LetVA = fAjg be anM -dimensional representation of

the fixed-point-free finite groupGA. Assume that there exists some unitaryT such that

�S =
1

2
min

(j;k)6=(0;0)
jdet (Aj � TAkT

�)j 1M > 0:

Then the representationVA must be reducible, andjGAj must be odd.

Proof: Note that if the representationfAjg has an element that is a scalar, i.e.,Aj = ei�I for somej and

� 6= 0, then�S must be zero since

Aj � TAjT
� = ei�I � ei�TT � = 0;

for any unitaryT . We show that the fixed-point-free representations of Theorem 2, all of which are irre-

ducible representations, have scalar elements. In addition, we show that if the group has even order, thenall

irreducible fixed-point-free representations of the group contain the negative of the identity matrix. Thus, any

representation that leads to a nonzero�S must be reducible, and the size of the group must be odd. In the

following, I will denote an identity matrix of appropriate dimension.

1. Gm;r: We show thatAt is scalar. Note thatGm;1 is cyclic, since the smallest integern such that

rn = 1n � 1 mod m is n = 1, and all one-dimensional fixed-point-free groups are cyclic. Moreover,

all elements of its representation are scalar and so�S is zero. Thus, letr > 1 andn > 1. Since all

prime divisors ofn must divider0 = gcd(m; r � 1), we conclude thatr0 > 1 andt = m=r0 < m.

Now

At = diag(�t; �rt; : : : ; �r
n�1t) = diag(�t; �(r�1)t+t; : : : ; �(r

n�1�1)t+t):

But for all k = 1; : : : n� 1, the quantity(rk � 1)t is a multiple ofm because

(rk � 1)t = (rk�1 + : : :+ 1)(r � 1)t = (rk�2 + : : : + 1)
r � 1

r0
r0t = (rk�1 + : : :+ 1)

r � 1

r0
m;

and hence�(r
k�1)t = 1. ThereforeAt = �tI. Furthermore, ifmn is even, thenm is even since(m; r)

is admissible. In that caseAm=2 = �m=2I = �I for any choice of� as a primitivemth root of unity.

2. Dm;r;`: We show thatAm=2 = �I. We first assert thatr0 = gcd(r � 1;m) is even. Sincenr0 must be

even, this is true whenn is odd. It is also true whenn is even since all prime divisors ofnmust divider0.

Thus,m = r0t must also be even. On the other hand,` must be odd, sincè2 � 1 mod m. Consider
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now Am=2 = diag(Am=2
0 ; A

`m=2
0 ). Sincem is the smallest integer, such that�m = 1, it is also the

smallest integer such thatAm
0 = I = e2�iI. ThereforeAm=2 = diag(e

2�i
2 I; e

2�i`
2 I) = diag(�In;�In)

becausè is odd.

3. Em;r: P 2 = �I.

4. Fm;r;`: P 2 = �I.

5. Jm;r: (PQ)5 = �I.

6. Km;r;l: R2 = �I.

Thus, we are left only with the possibility of using reducible representations of fixed-point-free groups.

These are essentially obtained by forming a direct sum of two (or more) inequivalent representations of any

of the irreducible representations of Theorem 2. In what follows, we shall, for simplicity, focus on reducible

representations of cyclic groups.

As noted in Section 4.2,M -dimensional reducible representations of cyclic groups take the form

Ak = Ak = diag (�u1k; �u2k; : : : ; �uMk); k = 0; : : : ; LA � 1

where� is a primitiveLA-th root of unity andu1; : : : uM are integers between1 andLA � 1. The next result

gives us the family of cyclic groups that yield nonzero�S .

Theorem 6 (Products of Cyclic Group Representations).LetA0; : : : ; ALA�1 be anM -dimensional reducible

representation of a cyclic group:

Ak = Ak = diag (�u1k; �u2k; : : : ; �uMk); k = 0; : : : ; LA � 1:

Then there exists a unitary matrixT such that

�S =
1

2
min

(j;k)6=(0;0)

���det (Aj � TAkT �)
��� 1M > 0 (31)

if and only if, for allK > M=2, there exists noK-tuple(uj1 ; : : : ujK ) such that

gcd
�juj1 � ujK j; : : : ; jujK�1

� ujK j; LA
�
> 1: (32)
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Moreover, if (32) holds, then (31) holds generically for all unitaryT .

Proof: Let us partition the identity matrixI and the unitary matrixT into its columns:

I =
�
e1 : : : eM

�
and T =

�
t1 : : : tM

�
:

Then we may write

Ak � TA`T
� =

MX
i=1

�uikeie
�
i �

MX
i=1

�ui`tit
�
i

=
MX
i=1

�uikeie
�
i �

M�1X
i=1

�ui`tit
�
i � �uM `

 
MX
i=1

eie
�
i �

M�1X
i=1

tit
�
i

!

=

MX
i=1

(�uik � �uM `)eie
�
i �

M�1X
i=1

(�ui` � �uM `)tit
�
i ;

where in the second step we useTT � = I.

Since the2M � 1 rank-one matricesfe1e�1; : : : ; eMe�M ; t1t
�
1; : : : ; tM�1t�M�1g are (generically) linearly

independent,Ak � TAlT
� is singular if and only if at leastK1 > M of the 2M � 1 coefficientsf�u1k �

�uM l; : : : ; �uMk � �uM l; �u1l � �uM l; : : : ; �uM�1l � �uM lg are zero. This can happen if, and only if, at least

K > M=2 of theM scalars(�u1k; : : : ; �uMk) orK > M=2 of theM scalars(�u1`; : : : ; �uM `) are identical.

Assuming, without loss of generality, that this is true of the first set ofM scalars means that there must exist

someK-tuple(ui1 ; : : : uiK ) such that

�ui1k = �ui2k = : : : = �uiK k;

or, equivalently,ui1k � ui2k � : : : � uiKk mod L. This last condition can be written as

(ui1 � uiK )k � (ui2k � uiK ) � : : : � (uiK�1
� uiK )k � 0 mod LA;

which is equivalent to

gcd (jui1 � uiK j; : : : ; juiK�1 � uiK j; LA) > 1:

This establishes the first claim of the theorem. The second claim follows from the fact that all our claims

about rank and nonsingularity are generic in terms of the unitary matrixT .
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Remarks

� The condition (32) essentially states that�S is nonzero if and only if no element of the cyclic group has

K > M=2 equal diagonal entries.

� A simple sufficient condition that guarantees nonzero�S is thatL be prime.

� Once we have found a cyclic group for which�S is nonzero we can optimize the value of�S by per-

forming a search over the set ofM �M unitary matricesT and using (30). Intuitively, the matrixT

should be a “full” matrix with the property that the constellationsfAjg andfBj = TAjT
�g be “spread

apart” from one another, since�S depends on the co-distance between these two constellations. Since

the search space is small (it is a singleM �M unitary matrix), methods such as random search can be

used to find a goodT .

� WhenGA is not cyclic, one can use reducibleM �M representations:

Ai =

0
BBB@

�1(gi)

. . .

�k(gi)

1
CCCA ;

where�1 to�k are irreducible fixed-point-free representations ofGA whose dimensions add up toM .

� It is also possible to use representations of two different groupsGA andGB .

9 Constellations and their performance

In this section, we display the performance of some of the group and nongroup constellations derived in the

previous sections. To evaluate the performance, we use the differential transmission framework described in

Section 2.3, with a receiver that does not know the channel and decodes using the metric (7).

Most of the constellations were computer-simulated with fading coefficients that were chosen randomly

but held constant for two consecutive matrix-valued signals, as described in Section 2.3. In one exceptional

case described below, the constellation was transmitted over a functional three-transmitter-antenna wireless

channel. The resulting figures plot the block probability of decoding a matrix incorrectly, denotedPe.
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9.1 Group constellations

Figure 1 displays the simulated performance of the groupSL2(F5 ) which has 120 elements, and therefore has

rateR = log(120)=2 � 3:45. We also compare the best Abelian group we could find (which is necessarily

cyclic), and the orthogonal design with 121 elements obtained by filling the matrix (11) with 11th-roots of

unity. The excellent performance ofSL2(F5 ) is evidenced by the approximately 2.5 dB improvement over

the orthogonal design (which is not a group), the 6.5 dB improvement over the Abelian group, and the 13 dB

improvement over the quaternion group. Table 3 in Section 9 and Table 1 in Section 2 list more details about

these constellations.

Figure 2 is the same as Figure 1 except that the receiver is assumed to know the channel and demodu-

late coherently. The constellation performances all gain approximately 3 dB over the unknown channel, as

explained in Section 2.3.

Figure 3 is also the same as Figure 1 except that we now assumeN = 2 receive antennas. The difference

in performance of the various constellations becomes more pronounced, and there is a clear advantage of

having two receivers over one receiver.

Figure 4 compares the performances of various constellations withR � 4. The group constellation is

F15;1;11 with L = 240 elements (R = 3:95). The other constellations are the best orthogonal design, diagonal

constellation and quaternion groups of comparable rate.

Figure 5 shows the performance advantage of theM = 3 antenna 63-element (R = 1:99) groupG21;4

compared with the best three-antenna 63-element diagonal constellation. We were also able to transmit this

constellation over a wireless apparatus located within a hallway at Bell Laboratories, Murray Hill. The three

transmit antennas were separated from the one receive antenna by approximately 10 meters around a bend in

the hallway lined with metal walls and equipment, thus creating a quasi-static scattering environment. Figure

6 shows the performance.

Figure 7 shows the performance ofK1;1;�1, the binary extension ofSL2(F5) for M = 4 transmitter

antennas, and compares it with the best Abelian group we found. Again, the performance gain of this group

over the Abelian group is evident.

Table 3 collects together some of the group constellations that we have found with high� for different

numbers of antennasM and ratesR. The list includes many of the constellations that are also described in

other sections of this paper, but it is not exhaustive. There are many other groups within our classification that

we have not explored and are therefore not on the list.
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Figure 1: Block-error rate performance of the groupSL2(F5) compared with constellations from previous
constructions forM = 2 transmitter antennas andN = 1 receiver antenna. The solid line isSL2(F5 ), which
hasL = 120 unitary matrices (R � 3:45). The dashed line is an orthogonal design with 11th roots of unity
(R � 3:46). The dashed-dotted line is the best diagonal (Abelian group) construction (R � 3:45). The dotted
line is the quaternion group withL = 128 matrices (R = 3:5). (The latter three constellations are listed in
Table 1).
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Figure 2: Same as in Figure 1, except the receiver is assumed to know the channel perfectly and demodulate
coherently. The performance gain is approximately 3 dB over the unknown channel.
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Figure 3: Same as in Figure 1, except withN = 2 receiver antennas. The coding advantage of the group
SL2(F5) becomes more pronounced as the number of receiver antennas increases.
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Figure 4: Block-error rate performance of the groupF15;1;11 for M = 2 transmitter antennas andN = 1
receiver antenna. The solid line isF15;1;11, which hasL = 240 unitary matrices (R � 3:95). The dashed line
is an orthogonal design with 16th roots of unity (R = 4). The dashed-dotted line is the best diagonal (Abelian
group) construction (R � 3:95). The dotted line is the quaternion group withL = 256 matrices (R = 4).
(The latter three constellations are listed in Table 1).
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Figure 5: Block-error rate performance of the groupG21;4, which has an irreducible representation ofL = 63
matrices forM = 3 antennas (R � 1:99), and best diagonal (Abelian group) constellation with the same rate,
described in Table 1, forN = 1 receiver antenna.
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Figure 6: Block-error rate performance of the groupG21;4 (as in Figure 5) transmitted over wireless apparatus
in a Bell Laboratories hallway.
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Figure 7: Block-error rate performance of the groupK1;1;�1 compared with the best diagonal code forM = 4
transmitter antennas andN = 1 receiver antenna. The solid line isK1;1;�1 the binary extension of the group
SL2(F5) havingL = 240 unitary matrices (R � 1:98). The dashed line is the diagonal construction with the
same rate, described in Table 1.
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M L R � Comments Reference

- 2 - 1 fI;�Ig for anyM

2 24 2.29 0.5000 E3;1 = SL2(F3 ) pg. 28
2 48 2.79 0.3868 F3;1;�1 = SL2(F3) pg. 29
2 120 3.45 0.3090 J1;1 = SL2(F5) pg. 29 & Figs. 1 & 3
2 240 3.95 0.2257 F15;1;11 Fig. 4

3 9 1.06 0.6004 cyclic groupG9;1 with u = (1; 2; 5)
3 63 1.99 0.3851 G21;4 pg. 18 & Fig. 5
3 513 3.00 0.1353 G171;64 (t = 19)
3 4095 4.00 0.0361 G1365;16 (t = 91)
3 32445 5.00 0.0131 G10815;46 (t = 721)

4 240 1.98 0.5000 K1;1;�1 Fig. 7

5 1025 2.00 0.1679 G205;16 (t = 41)
5 33825 3.01 0.0503 G6765;16 (t = 451)
5 1021025 3.99 0.0037G204205;21 (t = 40841)

7 16513 2.00 0.0955 G2359;8 (t = 337)

9 513 1.00 0.3610 G57;4 pg. 19

Table 3: Summary of some group constellations and their diversity products.

9.2 Nongroup constellations

For comparison, Table 4 collects some of the nongroup constellations with high�.

Figure 8 shows the performance of the nongroupM = 5, R = 1 constellationS11;3 compared with the

best group constellation. The only group constellation withM = 5 andR = 1 is a reducible (diagonal)

representation of an Abelian (cyclic) group, since the closest nondiagonal group isG25;6 which has 125

elements and corresponds toR � 1:39. We can see the performance advantage of the non-diagonal nongroup

constellation over the diagonal constellation.

Figure 9 shows the performance ofR = 4 nongroup constellations of Table 4 forM = 2; 3; 4 transmitter

antennas andN = 1 receiver antenna. We see the diversity gain of increasing the number of transmit antennas.
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R = 1. The solid line is the nongroupS11;3 having 33 elements (R � 1:01). The dashed line is the best
R = 1 group construction: in this case the best 32-element diagonal constellation.
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Figure 9: Block-error rate performance forM = 2; 3; 4 transmitter antennas and rateR = 4. The constella-
tions are described in Table 4.
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M L R � Comments Ref.

2 81 3.17 0.2417 product of groups,LA = 9, u = (1; 2)
2 289 4.09 0.1625 product of groups,LA = 17, u = (1; 12) Fig. 9
2 1089 5.04 0.0794 product of groups,LA = 33, u = (1; 26)
2 4225 6.02 0.0436 product of groups,LA = 65, u = (1; 19)
2 16641 7.01 0.0212 product of groups,LA = 129, u = (1; 80)
2 66049 8.01 0.0106 product of groups,LA = 257, u = (1; 186)

3 57 1.94 0.4845 S57;3, u = (1; 7; 11)
3 529 3.02 0.1863 product of groups,LA = 23, u = (1; 13; 19)
3 4225 4.01 0.0933 product of groups,LA = 65, u = (1; 17; 23) Fig. 9
3 34969 5.03 0.0458 product of groups,LA = 187, u = (1; 30; 114)

4 289 2.04 0.3105 product of groups,LA = 17, u = (1; 3; 4; 11)
4 4225 3.01 0.1539 product of groups,LA = 65, u = (1; 14; 21; 34)
4 66049 4.00 0.0678 product of groups,LA = 257, u = (1; 148; 160; 229) Fig. 9

5 33 1.01 0.5580 S11;3, u = (1; 3; 4; 5; 9) Fig. 8
5 1369 2.08 0.2307 product of groups,LA = 37, u = (1; 6; 8; 14; 27)
5 34969 3.02 0.1065 product of groups,LA = 187, u = (1; 23; 37; 91; 135)
5 1054729 4.00 0.0557 product of groups,LA = 1027, u = (1; 239; 350; 439; 986)

6 72 1.03 0.5000 S12;6, u = (1; 1; 7; 7; 7; 1)
6 3969 1.99 0.2723 doubling theM = 3, L = 63 constellationG21;4

6 4225 2.01 0.2084 product of groups,LA = 65, u = (1; 9; 21; 51; 53; 57)

7 133 1.01 0.4900 S19;7, u = (1; 3; 6; 7; 15; 17; 8)
7 16513 2.00 0.1802 product of groups,LA = 131, u = (1; 8; 9; 42; 48; 68; 101)

Table 4: Summary of nongroup constellations with best diversity product.

10 Fast decoding

As shown in Section 2.3, a constellationV consist ofL = 2RM symbolsV` and the maximum likelihood

(ML) decoder is given by

ẑML
� = arg min

`=0;:::;L�1
kX� � V`X��1k :

The ML decoder can be computed by simply trying allV0; : : : ; VL�1 and retaining the one that minimizes

the above expression, but the search time of this naive algorithm is exponential both in the rateR and the

number of antennaM . Therefore, for largeM or R it is important in practical applications to look for a

faster, i.e. polynomial time, algorithm, even if the algorithm is only approximate. We touch briefly upon such

algorithms.
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10.1 Cyclic groups

In [21] a fast approximate ML algorithm for decoding cyclic groups is proposed, which we briefly review and

then adapt for our noncyclic constellations. For simplicity, we focus onN = 1 receive antenna.

The received signals form a lengthM vectorX� whose elements we denote asx� ;m. The maximum

likelihood decoder for diagonal codes can be written as

ẑML
� = arg min

`
kX� � V`X��1k2 = arg min

`

MX
m=1

���x� ;m � ei2�um`=Lx��1;m
���2 :

The summands are equal to

jx� ;mj2 + jx��1;mj2 � 2 jx� ;m x��1;mj cos(arg x� ;m � arg x��1;m � 2�um`=L):

Given that only the cosine depends on` the maximum likelihood decoder is equivalent to

ẑML
� = arg max

`

MX
m=1

A2
m cos((um`� 'm) 2�=L); (33)

whereAm = jx� ;m x��1;mj1=2 and'm = arg (x� ;m=x��1;m)L=2�.

From this we see thatM -dimensional representations of cyclic groups can be thought of asM -dimensional

lattices. The cosine function in (33) is2� periodic and the arguments thus can be reduced to the interval

[0; 2�); the argument of themth term can be written as

[(um`� 'm) mod L] 2�=L:

If we define theM -vectoru = [u1 � � � uM ]t, then the vectors̀u mod L for ` = 0; : : : ; L � 1 form the

part of a lattice which lies in[0; L)M . The cosine can be approximated ascos� � 1 � �2=2. Hence we

can approximate the maximization of(33) by a minimizing of the sum of the squares of the arguments of the

cosines. Then the expression becomes the square of a Euclidean distance:

min
`

X
m

Am ((um`� 'm) mod L)2 :

The vectors with componentsAmum` modAmL form a lattice where each dimensionm has been scaled by

Am. Approximating the maximum likelihood decoding with a problem involving the closest point in a lattice
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does not immediately lead to fast decoding because finding the closest point in a lattice is NP-hard inM .

However, there is a well-known approximation algorithm introduced by Lenstra, Lenstra, and Lov´asz in [22]

and commonly referred to as “the LLL algorithm.” Its complexity is polynomial inM and hence polylog inL

(log� L for some� > 0). The LLL algorithm relies on the observation that when a lattice has an orthogonal

basis, the closest point can be found trivially by rounding each component to the closest lattice component.

Thus for a given lattice the LLL algorithm attempts to find the “most orthogonal” basis, or more precisely

the basis with the shortest vectors, and then use component wise rounding to approximate the closest lattice

point. Finding the basis with the shortest vectors itself is a NP-hard problem; LLL tries to find a basis with

reasonably short vectors. In [21] it is shown that for constellations with over 16 elements, lattice decoding

is much faster than a complete ML search and has comparable performance. Lattice decoding can be easily

implemented on digital signal processors (DSP’s).

10.2 Non Abelian groups

Most of the non Abelian groups discussed in this paper have large cyclic subgroups and we can apply fast

lattice decoding within these subgroups and use a naive method across subgroups. We illustrate this using the

Gm;r groups introduced in Section 4.3. From (17), we see that the constellation is given by

V = fA`Bk j ` = 0; : : : ;m� 1; k = 0; : : : ; n� 1; A = (F " G)(�); B = (F " G)(�)g:

HereA is a diagonal matrix withmth roots of unity on the diagonal. ML decoding is

min
`=0;:::;m�1
k=0;:::;n�1




X� �A`BkX��1



 :

If we defineX 0
k;��1 to beBkX��1, then the problem can be written as

min
k=0;:::;n�1

min
`=0;:::;m�1




X� �A`X 0
k;��1




 :
For eachk the inner minimization can approximated using the fast lattice decoding for cyclic groups described

above, while the outer minimization can be solved naively. Because the dimension of the representation (n)

is equal to the number of transmitter antennas (M = n), the resulting algorithm is still polynomial inM .

A similar algorithm works for the non group generalizations ofGm;r described in Section 8.2. We omit

the details.
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10.3 Hamiltonian constellations

As mentioned in Section 8.1, decoding theM = 2 Hamiltonian constellations has constant complexity in the

rateR.

10.4 Products of groups

We next consider decoding the products of groups introduced in Section 8.3. The constellation is given by

V = AjTAkT � j j; k = 0; : : : ; LA � 1;

whereA is a diagonal matrix withLAth roots of unity on the diagonal andT is an artfully chosen unitary

matrix. ML decoding is

min
(j;k)




X� �AjTAkT �X��1



 : (34)

Using the fast lattice decoding for cyclic codes, the problem (34) can be solved approximately for a fixedj

with complexity polylog inLA. By checking everyj an approximate answer can be found inO(LA log� LA) =

O(
p
L log� L) sinceL = L2A.

11 Conclusion and future work

Future wireless communication systems will probably incorporate multiple antennas to boost system capacity

and lower error probability, but the use of multiple transmit antennas requires effective full-diversity space-

time signals. Prior studies have indicated that groups of unitary matrices could serve as effective space-time

signals. In this paper, we have completely characterized all groups of full-diversity unitary space-time signals.

In the process, we have found many nontrivial groups with excellent performance at high rates, especially for

four or fewer transmitter antennas. We hope that these groups will have practical significance, especially since

many of them can be decoded quickly using algorithms that can be easily implemented on DSP’s.

We have also found that groups with full-diversity irreducible representations do not exist for all combina-

tions ofM andR. This led to the design of some nongroup constellations with good high-rate performance.

These nongroups have some of the symmetry properties inspired by the group constellations, but they do not

generally have the size or dimension constraints. Nevertheless, our proposed designs of nongroup constel-

lations for all numbers of antennas and rates sometimes require trial and error. It is therefore still an open
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problem to find a systematic design of nongroup constellations for all rates and for which decoding is not a

burden whenM >> 2.

There are many other aspects to the unitary signal design problem that we have only touched upon. For

example, while we have characterized all the groups, we have not tested them all for performance, and, specif-

ically, we have not examined all possiblereduciblerepresentations that have these groups as constituents. The

diagonal constellations represent the simplest form of a reducible representation, but there may be others that

may perform much better.

In this paper, our classification considered only finite fixed-point-free groups. The unitary group (in any

dimension) is infinite but clearly does not have full diversity. We may ask, is it possible to classify the infinite

subgroups of the unitary group that have full diversity? This is another possible area for future work.
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A A classification of fixed-point-free groups

Our aim in this section is to give a proof of “half of” Theorem 1: We show that ifG is fixed-point-free, then

it is isomorphic to one of the groups classified in Section 5.1. The converse statement is proven, along with

Theorem 2, in Appendix B.

We start our classification of fixed-point-free groups by recalling several useful theorems. Since subgroups

of fixed-point-free groups are fixed-point-free themselves, it makes sense to classify the Sylow subgroups of

fixed-point-free groups. The following theorem is due to Burnside [11] (see also [23, Th. 18.1]).

Theorem 7. LetG be a fixed-point-freep-group. If p is odd, thenG is cyclic. If p is even, thenG is either

cyclic, or a generalized quaternion group.

A group in which all Sylow subgroups are cyclic is called aZ-group. Note that the previous theorem

implies that all fixed-point-free groups ofoddorder are Z-groups. By [12, Satz 5] any Z-group is isomorphic

to aGm;r for somem and somer. Not all Z-groups are fixed-point-free, however. A classification of all

fixed-point-free Z-groups is given in the following [23, Th. 18.2]

Theorem 8. Any Z-group is isomorphic toGm;r. Moreover, it is fixed-point-free if and only if(m; r) is

admissible.

Later, we compute all the fixed-point-free representations ofGm;r.

The next step is to classify allsolvablefixed-point-free groups. For this, we need the following theorem

of Zassenhaus [12, Satz 6].

Theorem 9. LetG be a solvable fixed-point-free group. ThenG has a normal subgroupG1 which is a Z-

group such thatG=G1 is isomorphic to either the trivial group, or a cyclic group of order2, or the alternating

groupA4 on four elements, or the symmetric groupS4 on four elements.

For a proof of a weaker version of this theorem we refer the reader to [23, Th. 18.2]. We now use the

above theorem to derive descriptions of solvable fixed-point-free groups in terms of generators and relations.

This has already been essentially done in Zassenhaus’ paper [12, Satz 7,8], and we use most of his proof

techniques.

Given(m; r), we freely refer ton as the order ofr modulom, to r0 asgcd(r � 1;m), and tot asm=r0.

The following remark is quite useful. For a proof see [17, pp. 362].

Remark 2. Let (m; r) be an admissible pair. Thengcd(r0; t) = 1.
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Theorem 10. Any solvable fixed-point-free group is isomorphic toGm;r, Dm;r;`, Em;r, or Fm;r;`.

Proof. We use Theorem 9. LetG be a fixed-point-free group andG1 be the normal subgroup ofG with the

properties stated in that theorem.

(1) If G=G1 is the trivial group, thenG = G1 = Gm;r is a Z-group and we are done.

(2) Suppose thatG=G1 is isomorphic to a cyclic group of order2. We may assume thatG is not a Z-group

itself, since we are done otherwise. IfG1 has odd order, then all the Sylow subgroups ofG are cyclic, andG

is a Z-group. We may therefore suppose thatG1 has even order. From Theorem 8G1 is isomorphic toGm;r

for some admissible(m; r). We want to show thatt is odd. Suppose on the contrary, thatt is even. Then

r is odd (otherwisern � 1 is odd, hence is not congruent to1 modulot), and1 = gcd(r � 1; t) is even, a

contradiction. Hence,t is odd, and since the order ofG1 which is equal tonm is even, we have thatnr0 is

even.

SinceG1 is a Z-group, its2-Sylow subgroup is cyclic, and generated by an element� of order2p, say.

SinceG is not a Z-group, its2-Sylow subgroup is a generalized quaternion group by Theorem 7. Therefore,

G contains an element
 of order4 that is not inG1. SinceG=G1 is of order2, 
2 is an element inG1, hence

it equals�nr0=2 which is in the center ofG1. So, conjugation with
 defines an automorphism of order2 of

G1. It is easily seen that the only cyclic subgroup ofG1 of orderm is the group generated by the element�.

Hence,�
 = �q for some integerq such thatq2 � 1 mod m. The only subgroups of ordernr0 of G1 are

generated by conjugates of� . These areh�i; h��i; : : : ; h��t�1i. Since their number ist, which is odd, and

since conjugation with
 is an automorphism of order2 onG1, at least one of these groups of ordernr0 is

fixed under conjugation with
. Hence, there is some element� 0 conjugate to� in G1, such that(� 0)
 = (� 0)q
0

for someq0. Without loss of generality, let� 0 = � . Note that


����1��1 = 
�r
�1 = �qr:

Further,


����1��1 = 
�
�1
�
�1
��1��1 = � q
0
�q��q

0
= �qr

q0

:

This shows thatrq
0�1 � 1 mod m, henceq0 � 1 mod n. Observe that

(�t)
 = (�n)
 = �nq
0
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and

(�t)
 = �tq = �nq:

This shows thatq � q0 mod r0. Chinese remaindering shows that we can find` such that̀ � q mod m and

` � q0 mod n. It follows that` � 1 mod n and`2 � 1 mod m, and�
 = �`, �
 = � `.

To prove thatG is isomorphic toDm;r;`, we are left with showing that̀ � �1 mod s, wheres is the

highest power of2 dividing mn. To this end, consider the2-Sylow subgroup ofG1 contained in the cyclic

group h�i, and assume that it is generated byx = �a, say. x together with an element
0 of order 4 of

G generate a2-Sylow subgroup ofG, which is a generalized quaternion group. We may without loss of

generality assume that
 is 
0. Thenx
 = x�1, andx
 = (�a)
 = (�a)` = x`. Hence,̀ � �1 mod s.

(3) Suppose now thatG=G1 is isomorphic toA4. In [12, pp. 203] it is proved thatG contains a normal

subgroupG2 of odd order which commutes with a2-Sylow subgroup�2 of G, such thatN = �2 � G2 is a

normal subgroup of index3 of G, and such that there exists an elementx 2 GnN of odd order withx3 2 G2.

We may assume that�2 is a generalized quaternion group since otherwiseGwould be isomorphic to a Z-group

and we would be done. We will first show that�2 is in fact a quaternion group of order8. Conjugation with

x defines an automorphism of order3 on�2 becausex3 2 G2 and�2 andG2 commute. By [24, Aufgabe 56,

p. 94] we know that the automorphism group of a generalized quaternion group of order larger than8 is a2-

group, whereas the automorphism group of the quaternion group of order8 has24 elements. This shows that

�2 is a quaternion group of order8, and there are� and
 such that�2 = h�; 
 j �4 = 1; �2 = 
2; �
 = ��1i.
One automorphism of order3 of �2 is given by� 7! 
, 
 7! �
, as is easily checked. It can be shown thatany

automorphism of order3 of �2 is conjugate (in the automorphism group of�2) to either this automorphism,

or to its square. Thus, by replacingxwith x2 if necessary, and by replacing� and
 with two other appropriate

generators of�2, we may assume that�x = 
 and
x = �
.

SinceG2 is a normal subgroup ofG, conjugation withx leavesG2 invariant, sohG2; xi is a subgroup of

G of odd order3jG2j. Hence,G2 andx generate a group isomorphic toGm;r for some admissible(m; r):

hG2; xi = h�; � j �m = 1; �n = �t; �� = �ri.
We want to show that� 62 G2 and�m=t 2 G2. If � 2 xG2, this would show that�� = 
; 
� =

�
; ��
m=t

= �; 
�
m=t

= 
, sinceG2 and�2 commute. If� 2 x2G2, this would show that�� = �
, and


� = �, so interchanging� and
 would take us back to the previous case, and hence to the description of

Em;r.

Suppose first that�m=t 62 G2. Then3 does not dividem=t, so3 dividest, since3 dividesmn, the order
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of Gm;r. By Remark 2, we see that3 does not dividenr0. This shows that� 2 G2. So,��
�
= ��, since

�2 andG2 commute. On the other hand,��
�
= ��

r
, which shows thatr � 1 mod 3. This contradicts the

assumptiongcd(r � 1; t) = 1, and proves that�m=t is inG2.

Suppose now that� 2 G2. This shows that� 62 G2, since otherwiseGm;r = G2. Therefore,3 divides

m=t, since�m=t 2 G2. But �n = �t 62 G2, which contradicts the assumption. Therefore,� 62 G2, and we are

done.

(4) Suppose thatG=G1 is isomorphic to the symmetric groupS4. Obviously,G contains a normal subgroup

G2 of index2 such thatG2=G1 is isomorphic toA4. Hence,G2 is either of typeGm;r or of typeEm;r. If G2

is of typeGm;r, then we are back in case (2), sinceG=G2 is cyclic of order2. So, we may suppose thatG2 is

of typeEm;r. We denote the generators of this group by�; �; �; 
. In [12, pp. 204] it is proved that there is an

element� of order4 in G n G2 such that conjugation with� leavesH = h�; �i fixed. Since fixed-point-free

groups have at most one element of order2, we see that�2 = �2. Hence,�2 commutes with all the elements

of H, and conjugation with� is an automorphism of order2 onH. In the same way as in (2), it can now

be shown that�� = �` and�� = � `, where`2 � 1 mod m and` � 1 mod n. Conjugation with� is an

automorphism of order2 of �2, the2-Sylow subgroup ofG (this is because�2 is a characteristic subgroup).

As in part (3), we may w.l.o.g. that�� = 
�1 and
� = ��1. To see that̀ � �1 mod 3, we compute

the quantity��
`
= ��

�
= ����

�1
= ((��

�1
)� )� = ((
�1)� )� = (
�1��1)� = �
. Note that�� = 
,

��
2
= �
, and��

3
= �, so��

`
= �
 if and only ` � �1 mod 3. Since` � 1 mod n, we also conclude

that3 does not dividen. On the other hand,3 dividesnr0 sinceG contains the groupG2 of typeEm;r. As a

result,3 dividesr0.

The next step of the classification theorem consists of identifying the non-solvable fixed-point-free groups.

As it turns out, the prototype of non-solvable fixed-point-free groups is given by the groupSL2(F5 ) of 2� 2-

matrices of determinant1 over the fieldGF(5). This group has the following generators and relations [12,

pp. 210]:

SL2(F5 ) = h�; 
 j �2 = 
3 = (�
)5; �4 = 1i: (A.1)

We gather some basic useful facts about this group.

Lemma 3. (1) The right cosets ofSL2(F5) modulo the cyclic subgroupH of order10 generated by�
 are

given by1; �; 
; 
�; 
�
; (
�)2 ; 
�
2; (
�)2
; (
�)2
2; (
�)2
2�; (
�)2
2�
; (
�)2
(
�)2.
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(2) The group generated by� and � = (�
)7(
�)2
(
�)2 is a 2-Sylow subgroup ofSL2(F5 ) and it is

isomorphic to a quaternion group.

Proof. (1) This assertion can be proved using any of the usual coset counting algorithms like the Todd-Coxeter

algorithm. We have used the computer algebra package GAP [25] to compute the cosets.

(2) The 2-Sylow subgroups ofSL2(F5 ) are of order8. Further, it is easily checked that�
 = (�
)5
�
2. This

shows that�� = ��1. Further,�2 = �2, as can be checked directly. Hence,h�; �i is a generalized quaterion

group and the assertion is proved.

The following theorem classifies all non-solvable fixed-point-free groups. It has been essentially proved

in [12, Satz 16] and [23, Th. 18.6]. Our contribution is the derivation of the group description in terms of

generators and relations.

Theorem 11. LetG be a non-solvable fixed-point-free group. ThenG is isomorphic to one of the following

groups.

(1) The group

Jm;r = SL2(F5)�Gm;r;

with admissible(m; r) such thatgcd(mn; 120) = 1.

(2) The group

Km;r;` = hJm;r; �i

with the relations

�2 = �2; �� = (�
)7(
�)2
(
�)2; 
� = 
; �� = �`; �� = � `;

where`2 � 1 mod m, ` � 1 mod n and` � �1 mod s.

Proof. By [23, Th. 18.6]G contains a normal subgroupN of index1 or 2 whereN = SL2(F5 )�Gm;r with

(m; r) admissible andgcd(mn; 120) = 1. If G = N , then we are in case (1) and are done. Otherwise, letS

denote a 2-Sylow subgroup ofG. Since any 2-Sylow subgroup ofN is a2-Sylow subgroup ofSL2(F5), S is

a quaternion group of order8 by Lemma 3(2). By the same lemma, we may takeS = h�; �i, where� is the

generator ofSL2(F5 ) as given in (A.1), and� is, as before, the element� = (�
)7(
�)2
(
�)2.
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Hence, the 2-Sylow subgroups ofG are generalized quaternion groups of order16. Let S0 be a 2-Sylow

subgroup ofG such thatS0\N = S. ThenS0 has two generators�; � such that�8 = 1, �4 = �2, �� = ��1,

and� = �, and� = �2�. The element� = �� 2 S0 satisfies�� = �, �� = �, and�2 = �2. To compute


� we proceed as follows. Letx = 
� . Then we havex3 = (
3)� = (�2)� = �2 = 
3. Further, using the

definition of�, we see that

� = �� = (�x)7(x�)2x(x�)2:

We search over all120 elements ofSL2(F5) to find an elementx satisfying the above equality together with

x3 = 
3. This reveals that there are only two possibilities forx: x = 
 or x = 
�1. Both these choices lead

to isomorphic groups; namely, ifx = 
�1, then replace
 by (�
)6�. This preserves the relations among�

and
, and additionally implies
� = 
. (All these steps require calculations in the groupSL2(F5) which we

did using GAP [25].)

This explains the action of� on the characteristic subgroupSL2(F5 ) of N . SinceGm;r is also a char-

acteristic subgroup ofN , � together withGm;r generate a group of typeDm;r;`, and we obtain the relations

`2 � 1 mod m and` � 1 mod n.

B Irreducible representations of the fixed-point-free groups

In this section we prove Theorem 2 which will also provide the proof of the second half of Theorem 1.

The fixed-point-free representations of the groupsGm;r are computed in Section 4.3. We briefly sum-

marize the method. The cyclic groupN generated by� is a normal subgroup ofG = Sm;r. If � is an

irreducible fixed-point-free representation ofG, then� # N is a direct sum of primitive characters ofN . On

the other hand, if� is a primitive character, then its inertia group isN , which means that the induction of�

toN is irreducible. Hence, all irreducible fixed-point-free representations ofG are obtained as inductions of

primitive characters ofN . Two such inductions only differ by a Galois conjugation (since any two primitive

characters ofN differ only by a Galois conjugation), hence either they are all fixed-point-free, or none of

them is fixed-point-free. Invoking [12, Satz 9] or Lemma C.1, we see that indeed all these representations are

fixed-point-free.

Our strategy for computing the fixed-point-free representations of the classified groups is similar to the

above. For solvable groups, we study restrictions of fixed-point-free representations to normal subgroups,

compute their inertia groups, and then extend and/or induce those representations. For non-solvable groups,

the strategy is more ad hoc and is explained below.
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The first part of this appendix considers solvable groups.

Proof of Theorem 2—Solvable groups:in this part we prove items (1)–(4) of Theorem 2.

(1) Let � be a fixed-point-free representation ofG = Gm;r. The restriction of� to N = h�i is a direct

sum of primitive characters ofN . On the other hand, it is easily shown that the inertia group of any primitive

character ofN coincides withN . Hence, by Frobenius reciprocity [26, XVIII, Th. 6.1], all irreducible fixed-

point-free representations ofG are obtained as inductions of primitive characters ofN . These inductions are

given in the statement of the theorem and are derived in Section 4.3. We only need to show that all of them

are indeed fixed-point-free. Note that Theorem 10 implies that the condition of(m; r) being admissible is

necessary forG to be fixed-point-free. Hence, we are left with proving the sufficiency of this condition. To

do this, we need to show that for anyx = 0; : : : ;m � 1 andk = 0; : : : ; n � 1, (x; k) 6= (0; 0) the matrix

In�AxBk is invertible, whereA andB are defined in the statement of Theorem 2. The assertion is obviously

clear fork = 0. Hence, we may suppose thatk > 0. Now we invoke the determinant formula (C.1) to obtain

det (In �AxBk) =

q�1Y
i=0

0
@1� �tk=q

n=q�1Y
j=0

�xr
jq+i

1
A ; (B.2)

whereq = gcd(n�k; n) = gcd(n; k). It is required to show that this determinant is nonzero. This is the case

if

�xr
i r
n�1
rq�1

+tk=q 6= 1;

or, equivalently, if

t
k

q
+
rn � 1

rq � 1
xri 6� 0 modm

for all i = 0; : : : ; q � 1, k = 1; : : : ; n � 1 andx = 0; : : : ;m � 1. But by Lemma 5 (which is proven later)

this is true since(m; r) is admissible.

(2) LetN = h�; �i = Gm;r. We first prove that the induction of a fixed-point-free representation ofN to

G = Dm;r;` is irreducible. By [15, Theorem 5.20, Cor. 3] it is sufficient to show that there is no invertible

matrix T such thatTF (�
)T�1 = F (�) andTF (�
)T�1 = F (�). This is left to the reader. This shows

that the inertia group ofF is N , hence the induction ofF to G is irreducible. On the other hand, the

restriction of any fixed-point-free representation ofG toN is a direct sum of fixed-point-free representations

of N . Invoking the Frobenius reciprocity [26, XVIII, Th. 6.1], we see that all irreducible fixed-point-free

representations ofG are obtained from inductions of irreducible fixed-point-free representations ofN . The

representations given in the statement of the theorem are precisely these inductions. We only need to prove
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now that the representations computed are in fact fixed-point-free. For this, we need to show that for any

x = 0; : : : ;m � 1, y = 0; : : : ; n � 1, z = 0; 1, (x; y; z) 6= (0; 0; 0), the matrixI2n � AxByRz is invertible,

whereA;B;R are as in the statement of the theorem. Ifz = 0, then this follows from the previous part by

noting that(m; r) is admissible. Hence, we may suppose thatz = 1. In this case we immediately obtain

det (I2n �AxByR) = det (In +A`x
0 B

`y
0 A

x
0B

y
0 ):

SinceBnr0=2
0 = �In it suffices to show that

det (In �B
nr0=2
0 A`x

0 B
`y
0 A

x
0B

y
0 ) 6= 0:

In view of the previous part, this is equivalent to showing that

�nr0=2�`x� `y�x�y 6= 1:

Equivalently, we need to show that

�`x� `y�x�y 6= �nr0=2:

Let � = �x�y. Then, the latter condition is equivalent to�
� 6= 
2, or (
�)2 6= 1. Suppose that(
�)2 = 1.

Since all elements ofDm;r` commute with�nr0=2, this condition shows that(
�) and �nr0=2 generate an

abelian group of order4 which is not cyclic. But this is a contradiction, since the2-Sylow subgroups of

Dm;r;` are generalized quaternion groups and they do not contain a non-cylic subgroup of order4.

(3) We compute the irreducible fixed-point-free representations ofG = Em;r;` by considering the tower of

normal subgroups

N = h�; 
i � H = h�; �; 
i � G:

First, observe thatN = D4;1;�1. Hence, using the previous step, we see thatN has exactly one irreducible

fixed-point-free representationF given by

F (�) =

0
@ i 0

0 �i

1
A ; F (
) =

0
@ 0 1

�1 0

1
A :

F can be extended to an irreducible representation ofH (which we denote byF as well). Indeed, it can be
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shown that any matrixC for whichCF �C�1 = F is a multiple of

T =

0
@ 1 1

i �i

1
A :

We may thus setF (�) = cT for some constantc which can be determined using the identityF (�m) =

I2. Because3 dividesm, we have(cT )m = cm2m=2�m=3I2, where� = e2�i=8. This shows thatc =

e2�iz=m�5=
p
2, wherez andm=3 are coprime (otherwise there is a power ofcT other thanm which is the

identity matrix). It is easy to check that the inertia group ofF is equal toH, so that the induction ofF toG is

irreducible. This induction has been given in the statement of the theorem. Conversely, any fixed-point-free

representation ofG restricted toH is a direct sum of irreducible fixed-point-free representations ofH, and by

Frobenius reciprocity we see that all irreducible fixed-point-free representations are inductions of irreducible

fixed-point-free representations ofN .

To show that the representations computed are in fact fixed-point-free, we proceed as follows. We first

show that the restriction of the representation toN = h�; �; 
i is fixed-point-free. We recall thatz = 1 if 9

dividesm and is3 otherwise. First, we show the assertion in the case(m; r) = (3; 1). Here we have to check

the eigenvalues of the24 matrices generated by

A0;3 =
�5p
2

0
@ 1 1

i �i

1
A ; F0 =

0
@ i 0

0 �i

1
A ; ; F1 =

0
@ 0 1

�1 0

1
A :

We leave this simple calculation to the reader.

Next, note that, for anyk, we have the following:

A3k
0;z = �3k

0
@ 1 0

0 1

1
A ; A3k+1

0;z = �3k+1
�5p
2

0
@ 1 1

i �i

1
A ; A3k+2

0;z = �3k+2

0
@ �5p

2

0
@ 1 1

i �i

1
A
1
A2

;

where� = e2�iz=m. We will now have to show thatAx
0;zF

y
0 F

u
1 does not have eigenvalue1 if it is not the

identity matrix. Letx = 3k. ThenAx
0;zF

y
0 F

u
1 = �3kU , whereU = F y

0 F
u
1 . Note that the eigenvalues ofU are

roots of unity of even order ifU is not the identity matrix, since the grouphF0; F1i has order8. On the other

hand,�3k is a root of unity of odd order (since� is a root of unity of odd order). Hence�3kU has eigenvalue

1 if and only if�3k = 1 andU is the identity matrix, i.e., if and only ifAx
0;zF

y
0 F

u
1 is the identity matrix. Next

suppose thatx = 3k+1. ThenAx
0;zF

y
0 F

u
1 = �3k+1M , whereM is a matrix inE3;1. SinceE3;1 has order24,
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all matrices in this group have eigenvalues which are24th roots of unity. So, if�3k+1M has eigenvalue one,

then�3k+1 is a24th root of unity, i.e.,24z(3k + 1) � 0 mod m. If 9 dividesm, thenz = 1, and this implies

that3k + 1 � 0 mod m=3, which is a contradiction. If9 does not dividem, thenz = 3, and the condition is

3k + 1 � 0 mod (m=3), which implies�3k+1 = 1. In that case,M has to be the identity matrix, since we

know thatE3;1 is fixed-point-free and�3k+1M has eigenvalue1 by assumption. Altogether, this shows that

Ax
0;zF

y
0 F

u
1 has eigenvalue1 only if it is the identity matrix. The casex = 3k+2 is handled analogously. This

completes the proof of the fact that the restriction of the representation given in the statement of the theorem

toN is fixed-point-free.

Next, we studyI2n � Ax
zP

yQvBu
z for x = 0; : : : ;m � 1, y = 0; : : : ; 3, v = 0; 1, andu = 0; : : : ; n � 1.

We may suppose thatu > 0, since we have already shown that the restriction of the representation toN is

fixed-point-free. A slight generalization of Lemma C.1 shows that

det (I2n �Ax
zP

yQvBu
z ) =

q�1Y
i=0

det

 
I2 �

n=q�1Y
j=0

(Arqj+ix
0;z F y

(jq+i) mod 3F
u
(jq+i+1) mod 3)A

tu=q
0;z

!
;

whereq = gcd(n; u). LetM = Ax. Note thatMkUM�k 2 hP;Qi for U 2 hP;Qi and anyk, sincehP;Qi
is a normal subgroup of the constellation. Collecting terms, we see that

I2 �
n=q�1Y
j=0

(Arqj+ix
0;z F y

(jq+i) mod 3F
u
(jq+i+1) mod 3)A

tu=q
0;z = I2 � UA

tu=q+(rn�1)=(rq�1)xri
0;z ;

for someU 2 hP;Qi. Since we have shown that the restriction of the representation toN is fixed-point-free,

we know that the matrix above is invertible if it is nonzero. But since the order ofA0;z is odd and that of

U is a power of2, the matrix is nonzero if and only iftu=q + (rn � 1)=(rq � 1)xri 6� 0 mod m for any

i = 0; : : : ; q � 1, u = 1; : : : ; n � 1, andx = 0; : : : ;m � 1. Lemma 5 proves that the latter condition is

satisfied if(m; r) is admissible, and we are done.

(4) G = Fm;r;` has the normal subgroupE = h�; �; �; 
i of typeEm;r of index 2. Let � be one of the

irreducible fixed-point-free representations ofE as computed in the previous part of the proof. It is easily

checked that�� is not equivalent to� if n > 1, by considering�(��) = �(� `). In this case, the induction

of � to G is irreducible, and it has been computed in the assertion of the theorem. Ifn = 1, then� may or

may not be extendable toG. To see when it is and when it is not, we first look at��(�) and��(
). From

this, we easily check that any matrixT for which T��T�1 = � has to be a multiple ofR. By checking

the conditionT��(�)T�1 = �(�), we arrive atR0A
`
0;z = A0;zR0. This shows thatz(` � 1) � 0 modm,
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and sincez andm=3 are coprime, we see that` � 1 mod m=3, which also shows thatm=3 6� 0 mod 3,

since` � �1 mod 3. Hence,z � 0 mod 3. Altogether, this shows that in case` � 1 mod m=3 andn = 1,

representations� mapping� toAz with z divisible by3 are extendable toG; and if3 does not dividez, then

the induction of this representation is irreducible.

If � can be extended, then�(�) = cR for some constantc which is determined by the requirements

�(�4) = I2n, �(�2) 6= I2n. SinceR2 = �I2n, this leaves the choicesc = 1 andc = �1 of which we choose

c = 1.

The proof that the computed representations are indeed fixed-point-free is similar to part (3).

Next we concentrate on computing the irreducible fixed-point-free representations of the non-solvable

groups of the previous section. We need the following isolated result.

Lemma 4. The only fixed-point-free representations ofSL2(F5) are the two2-dimensional representations

given by


 7! P =
1p
5

0
@ �2 � �3 � � �4

� � �4 �3 � �2

1
A ;

� 7! Q =
1p
5

0
@ � � �2 �2 � 1

1� �3 �4 � �3

1
A ;

where� 2 fe2�i=5;�e4�i=5g.

Proof. It can be easily verified that the given maps are indeed fixed-point-free representations of the group

G = SL2(F5 ). One needs to check thatP 2 = Q3 = (PQ)5 andP 4 = 1. Further, it is easily checked that the

two representations given are inequivalent.

Showing that these representations are the only fixed-point-free representations ofG is slightly involved.

Basically, we need to compute all the irreducible representations ofG, and test whether they are fixed-point-

free. We sketch an alternative to this method by using the character table ofG rather than all the representa-

tions. Thecharacterof a representation at a given group element is the trace of the representation evaluated

at that element. Characters are obviously constant on conjugacy classes ofG. The character table ofG is an

h � h-matrix whereh is the number of conjugacy classes ofG, whose rows are indexed by the irreducible

representations ofG and whose columns are indexed by the conjugacy classes. Position(i; j) of this matrix

contains the value of the character of theith irreducible representation ofG at an arbitrary element of thejth

conjugacy class.
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Let � denote the character of a representation� and suppose that� is d-dimensional. Then, for any

element� in G the eigenvalues of�(�) can be recovered from�(�); �(�2); : : : ; �(�d) (up to permutation).

To see this, note that�(�k) equals!k1 + � � � + !kd , where!1; : : : ; !d are the eigenvalues of�(�). Hence, if

we know the character table ofG, and, for each element�, the conjugacy class of�; �2; : : : ; �d, then we can

compute for each irreducible representation the eigenvalues of that representation on the group elements and

test whether we encounter the eigenvalue1.

The character table ofG can be found in [27, p. 155]. Applying the procedure outlined above, we see that

the only fixed-point-free representations ofG are the ones given above.

Proof of Theorem 2—Non-solvable groups:here, we concentrate on proving items (5) and (6) of Theo-

rem 2. The assertions on the explicit form of the constellations follows from Lemma 3(1).

(5) The irreducible representations ofSL2(F5) � Gm;r are of the form� 
 F , where� andF run over

a set of pairwise inequivalent irreducible representations ofS andGm;r, respectively. Clearly, for� 
 F

to be fixed-point-free, both� andF have to be fixed-point-free. This necessary condition is also sufficient

if gcd(jSj; jGm;rj) = 1. (To see this, note that the eigenvalues ofA 
 B are products of the eigenvalues

of A andB. If A andB have eigenvalues that are roots of unity of coprime orders, the products of these

eigenvalues cannot be one.) So, the irreducible fixed-point-free representations ofSL2(F5 )�Gm;r are given

by � 7! I2 
A0, � 7! I2 
B0, 
 7! P0 
 In, � 7! Q0 
 In, with the matricesA0; B0; P0; Q0 given above.

(6) SL2(F5) � Gm;r is a normal subgroup ofKm;r;` of index 2. It is easily seen that the inertia groups

of the representations computed in the previous part coincide withSL2(F5 )�Gm;r; hence their induction is

irreducible, and all irreducible fixed-point-free representations are obtained this way. The representation given

in the statement of the theorem is an induction of a fixed-point-free representation ofN = SL2(F5 ) � Gm;r

along the cosetsN; �N . It is easy to show that the representations given are in fact fixed-point-free. The proof

can be accomplished along the lines of the other proofs of this type outlined in the paper, and is left to ther

reader.

We close this section by stating and proving a lemma that has been used extensively above.

Lemma 5. Let (m; r) be an admissible pair of integers,n be the order ofr modulom, r0 = gcd(m; r � 1),

t = m=r0, k 2 f1; : : : ; n � 1g, and x 2 f0; : : : ;m � 1g. Furthermore, letq = gcd(k; n) and i 2
f0; : : : ; q � 1g. Then we have

t
k

q
+
rn � 1

rq � 1
xri 6� 0 mod m:
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Proof. We first transform the statement of the theorem into a simpler form. Sincex 2 f0; : : : ;m � 1g, we

can replacexri with x, so that we may assume w.l.o.g. thati = 0. Further, it is well-known and easy to

prove that an equationa + by � 0 mod m has a solution fory if and only if gcd(b;m) dividesa. Hence,

denoting byd the valuegcd(m; (rn � 1)=(rq � 1)), we see that the statement of the theorem is equivalent to

tk=q 6� 0 mod d. We now prove that any primep dividing n=q also dividesd. This proves the desired result,

since the primep cannot dividet (sincegcd(n; t) = 1), it also cannot dividek=q (sinceq = gcd(n; k)), and

sod cannot dividetk=q (otherwise any prime factor ofd would have to divide eithert or k=q). Let p be a

prime dividingn=q. Since(m; r) is admissible, any prime divisor ofn dividesgcd(m; r � 1), which implies

thatr � 1 mod p. Now

rn � 1

rq � 1
= 1 + rq + � � �+ r(n=q�1)q � n

q
� 0 mod p;

which proves the desired assertion.

C The determinant of doubly-banded matrices

Lemma 6. Leta1; : : : ; aM , b1; : : : ; bM be arbitrary, and let1 6 K 6M . Define theM �M doubly-banded

matrix

D(M;K) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

a1 0 � � � 0 �b1 0 � � � 0 0 0 � � � 0

0 a2 � � � 0 0 �b2 � � � 0 0 0 � � � 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 � � � as�1 0 0 � � � �bs�1 0 0 � � � 0

0 0 � � � 0 as 0 � � � 0 �bs 0 � � � 0

0 0 � � � 0 0 as+1 � � � 0 0 �bs+1 � � � 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 � � � 0 0 0 � � � aK�1 0 0 � � � �bK�1
�bK 0 � � � 0 0 0 � � � 0 aK 0 � � � 0

0 �bK+1 � � � 0 0 0 � � � 0 0 aK+1 � � � 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 � � � �bM 0 0 � � � 0 0 0 � � � aM

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:
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Then

detD(M;K) =

qY
i=1

0
B@

M
q
�1Y

j=0

ajq+i �
M
q
�1Y

j=0

bjq+i

1
CA ; (C.1)

whereq = gcd(M;K � 1). In particular, whenq = 1, we have

detD(M;K) = a1 � � � aM � b1 � � � bM : (C.2)

Proof. We first prove the result forq = 1, using induction onM . ForM = 2, we have

det

0
@ a1 �b1

�b2 a2

1
A = a1a2 � b1b2;

as desired. Assume now that for all matrix dimensions less thanM , wheneverq = 1, equation (C.2) holds.

We shall show that (C.2) holds for matrices of dimensionM . LetK be chosen such thatgcd(M;K � 1) = 1

and assume, without loss of generality, thatK � 1 < M �K +1 (we can always arrange this by considering

the transpose ofD(M;K)). PartitionD(M;K) as

D(M;K) =

0
@ D11 D12

D21 D22

1
A ;

where

D11 = diag (a1; : : : ; aK�1); D12 =
�

0(K�1)�(M�2K+2) diag (�b1; : : : ;�bK�1)
�

and

D21 =

0
@ diag (�bK ; : : : ;�b2K�2)

0(M�2K+2)�(K�1)

1
A ; D22 =

0
BBBBBBBBBB@

aK
. . .

�b2K�1 .. .
. . . . . .

�bM aM

1
CCCCCCCCCCA
:
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We have

detD(M;K) = detD11det
�
D22 �D21D

�1
11 D12

�
= det (D11)det

0
@ diag (aK ; : : : ; a2K�2) diag (� b1bK

a1
; : : : ;� bK�1b2K�2

aK�1
)

diag (�b2K�1; : : : ;�bM ) diag (a2K�1; : : : ; aM )

1
A

| {z }
�D

:

Note that�D is a(M �K +1)� (M �K +1) doubly-banded matrix and thatgcd(M �K +1;K � 1) = 1.

Thus,

det �D = aK : : : aM � b1 : : : bM
a1 : : : aK�1

;

so that

detD(M;K) = a1 � � � aM � b1 � � � bM ;

which is the desired result.

Whengcd(M;K � 1) = q,D(M;K) can be partitioned intoq � q diagonal blocks, as follows:

D(M;K) =

0
BBBBBBBBBBBBB@

A1 �B1

. . . . . .

AK�1
q

�BK�1
q

�BK�1
q

+1 AK�1
q

+1

. . . . . .

�BM
q

AM
q

1
CCCCCCCCCCCCCA
;

where

Ai = diag
�
a(i�1)q+1; : : : ; a(i�1)q+q

�
; Bi = diag

�
b(i�1)q+1; : : : ; b(i�1)q+q

�
:

Repeating the arguments forq = 1, to the above block diagonal matrix (sincegcd(Mq ;
K�1
q ) = 1 and diagonal

matrices commute), we have:

detD(M;K) = det
�
A1 : : : AM

q
�B1 : : : BM

q

�
;

which yields the desired result (C.1).
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D Information-theoretic aspects of differential modulation

We briefly justify the design of good constellations of unitary-space time signals by computing the information

rates theoretically achievable with differential modulation. We show that, for largeM , differential modulation

as presented in Section 2.3 can theoretically achieve rates of approximatelyN log(1+�=2), only slightly less

than the space-time autocapacity of the channelN log(1 + �) [8] (achievable asM !1). Thus, differential

modulation can attain a significant fraction of the channel capacity without further channel coding. To save

space, our reasoning is intuitive and physical and avoids extensive rigor.

D.1 Mutual information for differential unitary space-time modulation

We refer to the model (1) and employ differential modulation (5), where the channel is constant over2M time

samples. Thus, 0
@ X1

X2

1
A =

p
�

0
@ S1

S2

1
AH +

0
@ W1

W2

1
A ; (D.1)

whereH, W1, andW2 areM � N matrices of independentCN (0; 1)-distributed random variables. We

assume that our constellation of differential signals is well approximated by a constellation of randomly

chosen isotropically distributed unitary matrices. An isotropically distributed random matrix has a probability

distribution that does not change when the matrix is pre- or post-multiplied by a deterministic unitary matrix

(see, e.g., [6, 8]). Therefore, the matricesS1 andS2 areM � M and unitary and are independent and

isotropically distributed.

In [8] it is proven that there is a space-timeautocapacitygiven byCa = N log(1 + �) associated with

transmitting information in a singleM � 2M block of symbols, asM ! 1. We therefore consider the

mutual information within a differential modulation block and compare it to the autocapacity. The mutual

information between the transmitted signalsfS1; S2g and the received signalsfX1;X2g is

I(X1;X2;S1; S2) =
1

2M
[h(X1;X2)� h(X1;X2jS1; S2)] ; (D.2)

whereh(�) denotes entropy. (We normalize the mutual information by the factor1=2M for convenience, since

2M is the number of time samples) Note thatfX1;X2g, conditioned onfS1; S2g, are zero-mean Gaussian

71



distributed random matrices. Computing the covariance matrix offX1;X2g shows that

h(X1;X2jS1; S2) = 2NM log �e+N log det

2
4I2M + �

0
@ S1

S2

1
A� S�1 S�2

�35

= 2NM log �e+N log det

2
4IM + �

�
S�1 S�2

�0@ S1

S2

1
A
3
5

= 2NM log �e+N log det [IM + 2�IM ]

= 2NM log �e+NM log(1 + 2�): (D.3)

SinceH isM �N complex Gaussian, if we perform the QR decompositionH = QR, thenQ isM �N

isotropically distributed and independent ofR, which isN �N upper triangular. We may write

0
@ X1

X2

1
A =

p
�M

0
@ S1Q

S2Q

1
A 1p

M
R+

0
@ W1

W2

1
A =

p
�M

0
@ S01

S02

1
A 1p

M
R+

0
@ W1

W2

1
A ; (D.4)

whereS01 = S1Q andS02 = S2Q areM�N independent isotropically unitary random matrices. Furthermore,

1

2M
h(X1;X2) =

1

2M
h

�
X1;X2j 1p

M
R

�
+

1

2M
I

�
1p
M
R;X1;X2

�

=
1

M
h

�
X1j 1p

M
R

�
+

1

2M
I

�
1p
M
R;X1;X2

�
;

where the second step uses the conditional independence and identical distributions ofX1 andX2.

We focus on this expression whenM grows butN remains fixed, for then 1p
M
R converges (with proba-

bility one) to anN �N identity matrix. We therefore have12M I
�

1p
M
RjX1;X2

�
! 0. On the other hand, in

this regime
p
MS01 behaves as aM �N matrix of independentCN (0; 1) random variables. Thus,X1 has the

same entropy as a zero-mean complex GaussianM �N random matrix with variance1 + �, implying that

lim
M!1

1

M
h

�
X1j 1p

M
R

�
= N log �e+N log(1 + �):

Combining this result with (D.3) yields

lim
M!1

I(X1;X2;S1; S2) = N

�
log(1 + �)� 1

2
log(1 + 2�)

�
: (D.5)
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Because two consecutive2M � M signals are overlapped in differential space-time modulation, the

maximum achievable rate is twice (D.5), or

lim
M!1

Idi� = N [2 log(1 + �)� log(1 + 2�)] = N log

�
1 +

�2

1 + 2�

�
:

At high SNR this mutual information isN log(1 + �=2), which is approximately 3 dB less in SNR than

N log(1 + �), the space-time autocapacity of this channel. (It suffices to say that the autocapacity is the rate

theoretically achievable in one channel use asM ! 1 [8].) Thus, for constellations that are composed of

approximately independent isotropically distributed random matrices, differential modulation can achieve a

significant fraction of the channel capacity.

73


