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Multiple antennas can greatly increase the data rate and reliability of a wireless communication link in a
fading environment, but the practical success of using multiple antennas depends crucially on our ability to
design high-rate space-time constellations with low encoding and decoding complexity. It has been shown that
full transmitter diversity, where the constellation is a set of unitary matrices whose differences have nonzero
determinant, is a desirable property for good performance.

We use the powerful theory of fixed-point-free groups and their representations to design high-rate con-
stellations with full diversity. Furthermore, we thereby classify all full-diversity constellations that form a
group, for all rates and numbers of transmitter antennas. The group structure makes the constellations espe-
cially suitable for differential modulation and low-complexity decoding algorithms.

The classification also reveals that the number of different group-structures with full diversity is very
limited when the number of transmitter antennas is large and odd. We therefore also consider extensions of
the constellation designs to nongroups. We conclude by showing that many of our designed constellations
perform excellently on both simulated and real wireless channels.

Index Terms-Wireless communications, transmit diversity, receive diversity, space-time coding, fading
channels

1 Introduction

It is well known that multiple-antenna wireless communication links promise very high data rates with low
error probabilities, especially when the channel is known at the receiver [2, 3]. But the design of so-called
space-time codes that achieve these promises is still in its early stages. In [4] some trellis-based codes for
known channels are developed, and in [5] some block codes are designed. However, the assumption that the

channel is known is sometimes questionable, especially in a rapidly changing mobile environment or when



many transmitter antennas are employed and extensive training is required. In [6, 7], some information-
theoretic and signal constellation design issues are considered for channels that are known neither to the
transmitter nor the receiver. In particular, a class of signals caltétry space-time signals developed
where the transmitted signal matrices that form a constellation are all unitary. Further justification for using
unitary space-time signals is given in [8], where it is shown that these signals can form their own channel code
and achieve arbitrary reliability over a single fading coherence interval with a large number of transmitter
antennas.

To help make unknown-channel multiple-antenna communication practical, a schemelitienegtial
unitary space-timaignals is proposed in [1] that is well-tailored for unknown continuously varying Rayleigh
flat-fading channels. Differential unitary space-time signals are unitary matrix-valued signals that are a
multiple-antenna generalization of the standard differential phase-shift keying (DPSK) signals commonly
used with a single antenna over an unknown channel. A similar differential multiple-antenna scheme is also
described in [9]. A two-antenna differential scheme based on orthogonal designs is described in [10].

Although [1] describes, in full generality, the properties that a constellation of differential matrix-valued
signals should have, only so-called “diagonal” signals are analyzed in detail. Diagonal signals effectively
sequentially activate the antennas, one at a time and always in the same order. If we model the fading paths
from every transmitter antenna to the receiver antenna(s) as independent, then the diagonal differential space-
time signals provide full transmitter diversity and can lower error probability significantly. At low rates the
diagonal signals yield excellent performance. However, at higher rates it is conjectured in [1] that there exist
“fuller” matrices (no longer diagonal) that have the necessary unitary and full diversity properties, but would
perform even better. In this paper, we show how to design signhal matrices satisfying these requirements.

As shown in [1], the design problem for unitary space time constellations is the followingy ket the
number of transmitter antennas aRdhe desired transmission rate (in bits/channel use). Constructla set
of L = 2°M ynitary M x M matrices such that for any two distinct elemedtsand B in V, the quantity
|det (A— B)| is as large as possible. Any 3ésuch thatdet (A— B)| > 0 for all distinctA, B € V is said to
havefull diversity. Since both the objective cost (the determinant of the pairwise differences of the elements
of V), as well as the constraint set (the setlof= 2fM unitary matrices) are nonconvex, finding an exact
solution to the design problem appears to be computationally intractable. Further confounding the problem is
the potential size of the constellati@f .

Thus, to simplify the design problem it is necessary to introduce some structure on the constellation

setV. In this paper, we shall primarily focus on sets of unitary matrices that form a group with respect to



matrix multiplication. The use of a group structure offers certain advantages. The first is its potential for
good performance. ¥ is not a group|det (A — B)| generally may take ol (L — 1)/2 distinct values for
A # B € V. The minimum value (equivalent to the minimum distance of the constellation) may therefore be
quite small. But ifV is a group, the determinant takes on at miost 1 distinct values given bydet (I — A)|
for I # A €V, yielding a possibly larger minimum distance. We show that many of the groups indeed have
large minimum distances and perform extremely well.

The second advantage is practical. Since differential space-time modulation multiplies mattictes in
form the transmitted signal matrix, ¥f is a group, every transmitted signal matrix is always an elemevit of
Therefore, explicit matrix multiplication is replaced by the simpler group table-lookup.

Because any abstract group has a representation in unitary matrices, we restrict our search to groups that
have representations with full diversity. In [1], full diversity s®tshat form anAbelian(commutative) group
are considered. This is equivalent to constrainlihtp be a cyclic group represented by a set of diagonal ma-
trices. The codes thereby generated are shown experimentally to have good performance at Idinwtees (
for example). Not explored in [1] are sétsthat are noncommutative groups as potential candidates for good
performance at higher rates. One of our primary goals is to find good-performing high-rate noncommutative
groups.

In this paper, we completely characterize the class of unitary matrices that provide full diversity and form
a group. The characterization is derived using results in the theory of fixed-point-free groups. A fixed-point-
free group can be represented as a group of unitary matrices (for &pmeith full diversity. An early
reference for fixed-point-free groups is Burnside in [11] who shows that any group that is fixed-point-free
and has order that is a power of a prime number must be either cyclic or a generalized quaternion group with
a full-diversity representation fak/ = 2. These groups are used for differential modulation in [9] (there
the generalized quaternion groups are also called “dicyclic”). Another pioneer is Zassenhaus, who classifies
many more of these groups in [12]. However, the classification in [12] appears to be incomplete and contains
errors; we complete the classification in its entirety. While many of the results in this paper are motivated
with differential modulation in mind, we should note that the design problem of maximjding A — B)|
for distinct A, B € V is important also when the channel is known to the receiver [4, 7]. However, when
the channel is known it appears to be less important to have the group property of being able to multiply the
matrices iny without leaving the set.

Some of the groups that emerge as good signal sets are rather surprising. We show, for example, that

if M is odd, there is only a single class of possible groupsM/ = 2 or M = 4, some of the signal sets



that are excellent performers involN#., (FF5 )—the special linear group in two dimensions over the field

F5. In general, however, we find that full-diversity groups do not necessarily exist faf alhd R. As a
consequence, we also consider sétthat have some of the properties of a group, but are not themselves
groups, and find that there are some simple design rules for generating nongroup constellations with good
performance. These allow us to construct good signal constellations for practically all valdearaf R.

The paper is organized as follows. The next section motivates and states the problem that we are solving
in detail. For ease of reference, and since the paper is rather lengthy, Section 3 contains a summary of the
principal results in this paper and a comparison with previous work. Section 4 introduces representation
theory and gives an example of a class of non-Abelian fixed-point-free groups. Section 5 classifies all full-
diversity or, equivalently, all fixed-point-free groups and gives their representations. Sections 6 and 7 give
some consequences of the classification for multiple-antenna constellations. Section 8 uses the structure
of the group constellations to generate some nongroup constellations. Section 9 tabulates some of the best
group and nongroup constellations and includes some illustrative performance curves for various numbers
of antennas and rates. Section 10 discusses fast decoding of the constellations. Section 11 provides the
conclusion. Appendices A—C develop most of the mathematical machinery required for the results of this

paper and prove the classification theorem.

2 Multiple antenna space-time modulation

2.1 The Rayleigh flat fading channel

Consider a communication link with! transmitter antennas arid receiver antennas operating in a Rayleigh
flat-fading environment. Theth receiver antenna responds to the symbol sent omthdransmitter antenna
through a statistically independent multiplicative complex-Gaussian fading coeffigignt The received
signal at thenth antenna is corrupted at tinteby additive complex-Gaussian noisg,, that is statistically
independent among the receiver antennas and also independent from one symbol to the next. We assume that
time is discretet =0, 1, ... ..

It is convenient to group the symbols transmitted overdh@ntennas in blocks of/ channel uses. We
user = 0,1,... to index these blocks; within theth block,t = 7M,...,7M + M — 1. The transmitted
signal is written as ail/ x M matrix S whosemth column contains the symbols transmitted on st
antenna as a function of time; equivalently, the rows contain the symbols transmitted hahiennas at

any given time. The matrices are normalized so that the expected square Euclidean norm of each row is equal



to one. Hence, the total transmitted power does not depend on the number of antennas. The fading coefficients
hmn are assumed to be constant over thi&sehannel uses.

Similarly, the received signals are organizeddMhx N matricesX,. Since we have assumed that the
fading coefficients are constant within the block Mdf symbols, the action of the channel is given by the
simple matrix equation

Xr=\pS-H+W, for 7=0,1,.... (2)
Here H, = {hy,} andW, = {wy,} are M x N matrices of independer@\ (0, 1)-distributed random
variables. Because of the power normalizatipis the expected SNR at each receiver antenna.
2.2  Known Channel Modulation

We first discuss signal encoding and decoding when the receiver knows the chanige assume that the
data to be transmitted is a sequengez, . .. with z; € {0, ..., L — 1}. The data then simply dictates which
matrix is transmitted:

S, =V,.

Each transmitted matrix occupidg time samples of the channel, implying that transmitting at a rat of
bits per channel use requires a constellativa: {V1, ..., V. } of L = 2#M unitary signal matrices.

The receiver know$7, and computes the maximum likelihood estimate of the transmitted data as

Z; = arg ezomh%_1 | X; —ViH;|, 2

where the matrix norm is the Frobenius norm

JAJ? = tr (ATA) = tr (447) = 3 Jay . (3)
]

The quality of a constellatioiv is determined by the probability of error of mistaking one symbaoydbr

another. In [4, 7] it is shown that the Chernoff bound on the pairwise probability of mistdkifay V,» with

170 see that the scaling factQfp is not needed, collect the terms from expanding the squared-norm and use the fagtishat
unitary.



a known channel (averaged over the statistic&/ pis given by

M
1 P 2 B
< _ — — /i
P, < 2m|_|1 1L ve-v)| 4)

whereo,,, (V; — Vi) is themth singular value of théd/ x M matrix V;, — Vp.

2.3 Differential unitary space-time modulation

When the receiver does not know the channel, one can communicate using multiple-antenna differential modu-
lation [1]. Multiple-antenna differential modulation is formally similar to standard single-antenna differential
phase-shift keying. In standard DPSK, the transmitted symbol has unit-modulus and is the product of the pre-
viously transmitted symbol and the current data symbol. The data symbol typically is brexjohlly-spaced
points on the complex unit circle. As a generalizatidfi-antenna differential unitary space-time modulation
differentially encodesd\ x M unitary matrix-valued signals. We transmit & x M unitary matrix that is
the product of the previously transmitted matrix and a unitary data matrix taken from the constellation. In
other words,

Sr =V, S:_1, T=1,2,..., (5)

with Sy = Ip;. We immediately see why it is useful in practice to havdorm a group under matrix
multiplication: from (5), ifV is a group then all the transmitted matricgsalso belong td/. Therefore, the
transmitter sends matrices from a finite set and does not need to explicitly multigly = V,_S;_;, but
rather can use a group table-lookup.
If the fading coefficients are approximately constant &/ time samplesf; ~ H. ), the received
matrices turn out to obey
X, =V, X, +V2 W, (6)

whereW! is aM x N matrix of additive independeri\ (0, 1) noise [1], uncorrelated with the signié]_.

As shown in [1], the maximum likelihood decoder has the simple structure

Zr = arg Z*Omir[lzfl HXT - WXT—IH ’ (7)

=U,...,

and the Chernoff bound on the pairwise probability of error with differential modulation on an unknown



channel is
M 2 —N

a<§ﬂ[uqﬁ5@%M—w> . ®)

m=1
At high SNR, both bounds (4) and (8) depend primarily on the product of the singular values, which is

the modulus of the determinant Bf — V. In other words, for high SNR we may write

MN
pe<1 do . 1
~2\p |det (Ve — Vi) [PV

wherea = 1 when the channel is known ard= 2 when the channel is unknown and used differentially.
Hence, there is a 3 dB advantage for knowing versus not knowing the channel, and we may measure the

quality of a constellatiory by its so-calleddiversity product

(=5 min |det (Vo Vp)|3 . ©)
<L

1
2 o<t

The scaling facto% guarantees thdt < {y < 1. The exponent]\% essentially gives the geometric mean of
the M singular values since the modulus of the determinant is the product of the singular values. Clearly, a
constellation with larget), is superior. Any constellation witly, > 0 is said to have full diversity. When

¢y > 0 and the SNR is high, we note that no two distinct transmitted signals can give the same received signal
X, for any H. In this paper we consider only full-diversity constellations and, in particular, we try to find

constellations with diversity produgt, as large as possible.

3 Summary of prior work and this paper

3.1 Prior work

We briefly review some of the unitary space-time constellations that have been considered in prior work.

Cyclic group codes In [1] cyclic groups are introduced for differential modulation. In this cdgeare

diagonalLth roots of unity. In particular,

V= Vlza where V; = diag [ei27ru1/L . ei27ruM/L],



andug, ..., uys are taken from the sd0, ..., L — 1}. Without loss of generality, we can lef = 1. The
constellation is thus specified by the integess. .., uy,. Theu,, are generally chosen to maximizZeas

defined in (9) and given by

L
M

Cy = £:1miri_1 (20)

1]\—/[[ . mul
sin
L

m=1

In this constellation, the transmitter antennas are activated one at a time and always in the same order.

Orthogonal designs In [10] a two-antenna differential scheme is introduced that uses orthogonal designs.

A two-dimensional orthogonal design is a matrix parameterization given by [5]

1 r -y
y xr

where|z|* = |y|* = 1; observe thaDD(z,y) is unitary. Constellations of sizé = Q2 are obtained by

letting = andy range over th&)th roots of unityl, e>™/@ ... 2™(Q@-1/Q yielding
Y = {OD(w,y) |2,y € {1, 2/9, . _’627@(@—1)/@}}

The diversity product of this constellation is

Cy = sin(7/Q) (12)

N

These constellations do not generally form a group; thus, when used differentially, orthogonal designs transmit

potentially arbitrary symbols.

Generalized quaternion (also called dicyclic) codes In [9] constellations forM = 2 antennas are built

from cyclic groups, and also so-called “dicyclic” groups of the form

Qp={(on| 0¥ =12 =0 "mon =01, p>1,

where the notation-) refers to the group generated by the elements enclosed within the brackets. These are

commonly called generalized quaternion groups, and have éréee?*! or rateR = (p + 1)/2. They are



equivalently generated by the two unitary matrices

627ri/2p 0 0 1
0 e/ |1 0]/

For comparison, Table 1 lists some cyclic groups, generalized quaternion groups, and orthogonal designs.
The cyclic groups are chosen to have the higljefstund by searching over,, ..., uy € {0,...,L — 1}.
(For largeL and M this search was done randomly.) Only #or= 1.5 is the quaternion group better than the

best cyclic group. Some of the fractional-rate groups in this table are included for later comparison.

3.2 Summary of this paper

This paper classifieall possible finite groups of matrices wityy > 0 for all numbers of antennasd/

and all possible rateR. The groups considered in [1] and [9] appear as special cases of our classification
theorems. Our classification includes many new groups that are neither cyclic nor quaternionic, with large
and excellent performance.

The classification is based on the theory of fixed-point-free groups. A group is defined to be fixed-point-
free if it has a representation ™ x M matrices, for somé/, that has positivé),. (Section 4 has a much
more detailed description of these group-theoretic concepts and terms.) An early partial classification of these
groups appears in a 1905 paper of Burnside [11] where he shows that all groups that are fixed-point-free with
order a power of a prime number must either be cycli€@grfor some integep, with an M = 2 matrix
representation.

A 1936 paper by Zassenhaus [12] gives a more complete classification of the fixed-point-free groups.
After reviewing cyclic groups in some detail in Section 4.2, we examine a group described by Zassenhaus in
his classification and compute its representations in detail in Section 4.3. This new group turns out to allow
one to find all possible constellations for odil.

Zassenhaus’ classification, however, is not complete and contains errors and omissions. We therefore
complete the classification in Section 5. Theorem 1 is the main classification theorem. Its proof is long and
incorporates many of Zassenhaus’ techniques and appears in Appendix A. Having the groups does not mean
that we also automatically have the matrix representations with full diversity. Deriving these representations
is often tedious, but the result is the content of Theorem 2 and its proof is in Appendix B.

Armed with a complete classification, we explore in Section 6 some of the implications of the classification

theorems. Because of the practical interestin= 2 transmitter antennas, Theorem 3 explicitly lists all of



M L R ¢ comments
2 4 1 0.7071 orthogonal design withl
2 4 1 0.7071 cyclic group = (1,1)
2 4 1 0.7071 quaternion group;
2 8 15 0.5946 cyclic group = (1,3)
2 8 1.5 0.7071 quaternion grodp,
2 16 2 0.5000 orthogonal design with 4th-roots of unity
2 16 2 0.3827 cyclic group = (1,7)
2 16 2 0.3827 quaternion groupy
2 32 25 0.2494 cyclic group = (1,7)
2 32 2.5 0.1951 quaternion grodp,
2 64 3 0.2706 orthogonal design with 8th-roots of unity
2 64 3 0.1985 cyclic group = (1,19)
2 64 3 0.0980 quaternion group
2 121 3.46 0.1992 orthogonal design with 11th-roots of unity
2 120 3.45 0.1353 cyclic group= (1,43)
2 128 3.5 0.0491 quaternion grogp
2 128 3.5 0.1498 cyclic group = (1,47)
2 240 3.95 0.1045 cyclic group= (1,151)
2 256 4 0.1379 orthogonal design with 16th-roots of unity
2 256 4 0.0988 cyclic group = (1,75)
2 256 4 0.0245 quaternion grodp,
3 8 1 0.5134 cyclic group = (1,1, 3)
3 63 1.99 0.3301 cyclic group= (1,17,26)
3 64 2 0.2765 cyclic group = (1,11,27)
4 16 1 0.5453 cyclic group = (1,3,5,7)
4 240 1.98 0.2145 cyclic group= (1,31,133,197)
4 256 2 0.2208 cyclic group = (1,25,97,107)
5 32 1 0.4095 cyclic group = (1,5,7,9,11)
5 1024 2 0.1787 cyclic group = (1, 31, 355, 425, 581)
6 64 1 0.3792 cyclic group = (1,7,15,23,25,31)
6 4096 2 0.1428 cyclic group = (1,599, 623, 1445, 1527, 1715)
7 128 1 0.3487 cyclic group = (1,13,17,27,29,45,49)
7 16384 2 0.1213 cyclic group = (1, 1875,5207,5551, 7687, 7827,9013)

Table 1. Summary of some cyclic group aimfl= 2 quaternion and orthogonal design constellations
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the groups with full diversity folMl = 2. For odd M, the possible types of groups are very limited and
are contained in Theorem 4. For some concrete examples, Section 7 lists the simplest (smallest) group of
each type classified. In this section, one non-obvious example of a fixed-point-free group that stands out is
SLo(F5), the group of2 x 2 matrices over the field; with determinant 1. This group has 120 elements
and anM = 2 matrix representation; its rate 8 = log(120)/2 = 3.45. (In this paper, all logarithms are
base-two.) For this grougx;,, ;) = 0.3090, which far exceeds, for any other constellation we have been
able to generate with/ = 2 and comparable ratg.

Because the list of possible group structures that yield full diversity is limited, especially Mhstharge
and odd, we explore the design of some nongroup constellations in Section 8. Although not groups, these
constellations have structures that are inspired by the groups and therefore share some of their properties.
Unlike group constellations, however, we make no attempt to exhaustively explore all nongroup alternatives.

In Section 9, the reader can find a list of some of the new constellations in Tables 3 and 4, along with their
performance on a wireless fading channel. For example, Figures 1 and 3 demonstrate the excellent perfor-
mance ofSL, (T ) for M = 2 transmitter antennas, and Figure 7 gives the performance a binary extension of
this group forM = 4 antennas. We also include the results of an experiment with three antennas in the hall-
ways of Bell Laboratories (Figure 6). There are also many other groups and nongroups whose performances
are evaluated. Comparisons are made with cyclic and quaternion groups, and orthogonal designs, when they
exist.

Maximum likelihood decoding of the group constellations requires a search over the constellation set
and can be cumbersome if the number of signals in the constellatien2”M is large. For example, with
M = R = 4, there arel. = 65,536 signals in the constellation set. To simplify decoding for lafgeve
therefore discuss fast approximate maximum likelihood algorithms in Section 10. These algorithms exploit
the constellation structures and are polynomial, rather than exponential, in tt rate

Finally, Appendices A-C develop most of the group-theoretic machinery this paper requires. We have
also included Appendix D, which uses an information-theoretic argument to further motivate the design of
effective constellations of unitary matrices.

We now proceed with the paper.

11



4 Group construction

4.1 Group representations

We wish to find a seY of L unitary matrices for which the diversity produgt in (9) is as large as possible.

In this section we constraivi to form a group under matrix multiplication. Recall that aGdbgether with a

binary multiplication operation is a group if it is closed under this operation, satisfies the associative law, has
an identity element, and contains a multiplicative inverse for each element. With the group requirement,
since|det (V; — V)| = |det (I — V, V)| = |det (I — V)|, whereV = V,V}; is another element i, the

design problem becomes that of finding a groug.afmitary M x M-matrices such that

1 1
== min |det (Iyy — V)|¥
=g i, ety = V)

is as large as possible. (The matfjxdenotes thd x d-identity matrix. We later omit the dimensiehif it is
clear from the context.)

Our construction uses the representation theory of finite groups. For readers who are not familiar with
this theory, we briefly review the main concepts. Two good references for more details are [14,gt6lipA
homomorphisnis a mapping between two groups that respects group multiplication.MAdimensional
representationof a groupG is a group homomorphism (-) from G to the groupGLj,(C) of invertible
M x M complex matrices. For instance, the trivial map taking all group elements tb/theM identity
matrix I, is a representation of a group.

Two representationd and A’ of G are calledequivalentif there is an invertible matrif€” € GLj,(C)
such thatA(g) = TA'(g)T~! for all ¢ € G. Thedirect sumA & A’ of two representationd and A’ of

dimensions/ andd’, respectively, is théd + d’)-dimensional representation whose valug & the matrix

A(g) Odxar
0gxa A'(g)

(Ao A)(g) =

where 0, denotes & x ¢ matrix of zeros. A representation is calleellucibleif it is equivalent to a

direct sum of two (or more) representations. Otherwise, it is calteducible Any representatiod\ of a

finite group can be represented as a direct sum of irreducible representations [14, Theorem 8.7], called the
irreducible constituentsf A.

In this paper we are particularly interested in representations using unitary matrices. The following stan-

12



dard argument shows that any representation is equivalent to a representation using only unitary matrices.

Choose a square matrixthat satisfies

T*T = A*(g)A(g).
9eG

The matrixT' is invertible since each (g) is invertible so that the suffi*T is positive definite. Becausg is
a group, it follows that\*(¢)T*TA(g) = T*T, for anyg. Thus, we see thafA(g)7 ! is a unitary matrix,
and the representatidRAT~! is a unitary representation.

We call a one-dimensional representation of a growgharacterof that group. Hence, a character is
a multiplicative mapping which maps elements of the group to complex roots of unity. A character that is
injective is calledorimitive; it maps onlyl into 1.

Our strategy is to take certain grou@sand use unitary representations to build group constellations

We denote this by = A(G). The diversity product is then given by

1 . L
Ca@) = 3 min |det (Tns — A(g))] 7. (13)

Equivalent representations have the same diversity products.
Although our aim is to maximizea ), it is at this point not clear whether this quantity is ever nonzero for
a given grougs. From (13) it follows that s ) is nonzero if and only if for any € G such thay # 1¢, the
matrix A(g) does not have an eigenvalue at unity. Such representations have been studied before and are called
fixed-point-free representationdVe call a groudixed-point-freeif it has a fixed-point-free representation.
Such groups arise in the investigation of near-fields [12], in geometry [16], and in the investigation of finite

subgroups of skew fields [17]. The present application of these groups, however, appears to be new.

4.2 Cyclic groups are fixed-point-free

We start out with a class of groups that are always fixed-point-free: the class of cyclic groups. We denote a
cyclic groupG, generated by an elementasG = (o). If G has ordet,, thenG = {0’ [ £ =0,...,L —1}.

In the following, we compute all fixed-point-free representations of this group. It suffices to determine all the
irreducible fixed-point-free representations, since the irreducible constituents of a fixed-point-free representa-
tion have to be fixed-point-free themselves. But fixed-point-free irreducible representations of cyclic groups

are trivial: irreducible representations of Abelian groups are one-dimensional [14, Theorem 9.8], i.e., they

13



are characters of the group. A character is fixed-point-free if and only if it is primitive (if it is not primitive,
it maps a non-identity element to one and thereofe has a unit eigenvalue at a non-identity element). Hence,
irreducible fixed-point-free representations of cyclic groups are exactly the primitive characters of the group,
and these are characters that map a generator of the group to a prihtiitiveot of unity.

The Abelian groupi hasL characters given by, (¢¢) = e?™¢/L for y = 0,...,L — 1, but not all
are primitive. The charactey,, is primitive if and only ifu and L are relatively prime, implying that there
are(L) primitive characters, wherg(L) is the Euler totient functionof L (which denotes the number of
positive integers less thanthat are relatively prime t@d). An M-dimensional representatiak of G is built

as a direct sum af#/ characters

Xui (0) 0 0
Aw) = 0 qu.(U) 0
0 0 Xu (0)
n"t 0 0
= 0 n® 0 : p——
0 0 UM

For the representation of, we use the fact thah is a multiplicative map. Hence, for ajl € G A(g*) =

A(g)t. This implies that

ntr 0 0
0 lus .0
agh=| . T (14)
0 0 nlar

These reducible representations are identical to the diagonal code constructions given in [1], and they are
fixed-point-free if and only ifuy, ..., us are relatively prime td.. As shown in [1], either an exhaustive or
random search can find thg, with the highest diversity produch ); see also Table 1.

We see that an Abelian group is fixed-point-free if and only if it has a primitive character. Recall that
a primitive character defines an injective map from the Abelian group into the group of nonzero complex

numbers. Hence, the image of this map is a subgroup of the nonzero complex numbers, isomorphic to the

14



original Abelian group. But subgroups of the nonzero complex numbers are necessarily cyclic. (This is a
well-known fact: all elements of a finite subgroup of ordesf C are solutions ta:” — 1, hence arexth roots
of unity.) We conclude thadn Abelian group has a nonzero diversity product if and only if it is cyclic

As shown in [1], the performance of cyclic groups when used for multiple-antenna constellations is good
at low rates, wherk < 2, but degrades foR > 2. This is probably because the antennas are activated only
one at a time and always in the same order. Since we seek groups with superior performance, we necessarily

must consider non-Abelian groups.

4.3 A non-Abelian class of fixed-point-free groups

An early reference to fixed-point-free representations is a paper of Burnside [11]. An almost complete classifi-
cation of fixed-point-free groups appears in a paper of Zassenhaus [12]. We use the qualifier “almost” because
Zassenhaus’ description does not cover some classes of groups that are fixed-point-free. In this paper, we fix
the oversight and make the classification complete. The complete classification appears in Section 5.

In Section 5 we give the matrix representations of all the fixed-point-free groups. As it is often difficult
and tedious to compute these representations, we generally omit the details. In this section, we therefore
indicate how these computations are done by computing the fixed-point-free representations of a particular
class of fixed-point-free groups in detail. As shown in Section 5, this class is the only class of groups with
odd order, and the only class with irreducible representations in an odd dimédsion

Let

n t

Gy = (0,7 | o™ =11"=0"0" =0"),

)

wheren is the order ofr modulom (i.e., n is the smallest positive integer such th&t = 1 mod m),

t =m/ged(r —1,m), and we havegcd(n, t) = 1. (We use the notatioa” for o, 7 € G to mean the element
ror~!.) The groupG,,, has ordermn because it contains the subgro( of orderm and indexn (the

term “index” refers to the number of cosets). Note that the class of grGyps contains the class of cyclic
groups sinces,, 1 is cyclic of orderm.?2 Appendices A and B show thét,, , is fixed-point-free if and only

if all prime divisors ofn divide ged(r — 1,m). WhenG,, , is cyclic, we have that = 1 and therefore all
cyclic groups are fixed-point-free; this just confirms what we already know from the previous section. We
now compute all the irreducible fixed-point-free representatior(s,of .

The cyclic groupH = (o) is a normal subgroup ¥, ,. (A subgroupH is normal inG if ghg~! € H

2p = 1 impliesn = 1 andt = 1. Thus,r = ¢ and S0G,,.,1 = (o).
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forallg € G andh € H.) We need to study how the representationg€of . interact withH. Denote the
restriction of a representatiah to H by A | H. If A is fixed-point-free, so i\ | H. BecauséH is cyclic
A | H has to be equivalent to a direct sum of primitive characteild ¢éee Section 4.2).

Alternatively, representations on subgroups induce representations on the group itselfincdiwe
representationgsee, e.g. [15, Section 5.9]) can be computed from the restricted representatidnbéetn
irreducible representation of the cyclic groib= (o). The induction ofF’ to G is denotedF' T G and, in
our case, is irreducible. For a representationf H andy € G we consider the the representatibf with
Fr(h) = F(uhp~'). (Note that becausH is a normal subgroup a¥, then F* is a valid representation of
H ) Theinertia groupof F'is the group of all, € G such thatF'* is equivalent taF. It is easy to see that the
inertia group of the one-dimensional representatioof H is equal toH if F' is primitive. Hence, by [15,
Theorem 5.20, Cor. 3F 1 G isirreducible if F' is primitive, i.e., fixed-point-free. To get the representations
of G, we may thus compute the inductionsiof fixed-point-free representations Hf. We choose this route
because, as shown in Section 4.2, the fixed-point-free representatiéharefsimple to compute wheid is
cyclic.

These inductions can be computed as follows; see, for example, [15, Section 5.9]. Ndte-tiitr -
H,...,7 '.H}is a set of representatives of the coggfd?. For the element € G, we askifrior™7 € H,
fori,j =0,...,n —1? If yes, then théi, j)th block of (F 1 G)(o) is set equal td”(7'or—7). If no, then

this block is set to zero. But'or—7 € H if and only if i = j. Therefore,

F(o) 0 0
0 F(o) - 0
(F1G)(o) = : R : : (15)
0 0 F(o)™™

For the element € G, we ask in a similar fashion whethetr—/ € H,fori,j =0,...,n — 1? If yes,
then the(i, j)th block of (F 1 G)(7) is set equal ta"(rir7=7) = F(r**1=7). If no, then this block is set
to zero. Butr't'=J ¢ Hifandonly ifj —i = 1 modn. Fori = 0,...,n — 2, this holds ifj = i + 1,

and in this case’(r'*'=7) = F(r°) = F(1). Butfori = n — 1, this holds ifj = 0, and in this case
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F(rit17J) = F(r™) = F(o?). Therefore

0 F(1) 0 0
0 0 F(1) 0
(F1G)(r)= E : S (16)
0 0 0 F(1)
Fle)f 0 0 0

SinceF is an irreducible representation of the cyclic subgréligt is in fact one-dimensional, i.e., itis a
character. Becaude€ is a primitive charactet’ (o) = n wheren is a primitivernth root of unity. Substituting

for F(o) into (15) and (16) gives the explicit representatiirgiven by
AGr) = {(F1G))F T G)(*) |£=0,...,m =1, k=0,....n~1}, (17)

whereged(r — 1,m) = ry, 7ot = m, ged(n, t) = 1, n is the order of- modulom, and where

0 10 0
n 0 0
0 01 0
0 n - 0 . .
Ao) = L _ , A1) = O I (18)
. 0 00 1
0 0 0"
nt 0 0 0

These matrices are suitable for transmission With= n antennas because they are unitary and have dimen-
sionn.

In computing the fixed-point-free irreducible representatiod/of G, ,, we have not explicitly chosen
the primitivernth root of unityn. But it is easy to see that the choiceradoes not change the group generated
by A(c) andA(7). Any such choice makes the representatidrirreducible and fixed-point-free and does
not affect the diversity producty (-

Even though the constellation (taken in its entirety) does not depend on the chgjthefepresentations
obtained from different) are not necessarily equivalent. There are, in faftn)/n pairwise inequivalent
fixed-point-free irreducible representations(®f, , and they are obtained by choosingse?™2/™ wherez
runs over a set of representativeq 8 mZ)* modulo the subgroup of ordergenerated by mod m. To see

this, let 7' be the irreducible representation Bf= (o) mappinge to n, and letF'* be another representation
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mappingo to . ThenF 1 G andF*? 1 G are equivalent if and only if there exists an invertible n-matrix
T such that
T(F1G)(o)=F"1G)(o)T, TF1TG)(r)=(F1G)(7)T. (19)

LetT = {t;;}. The equality on the left involving implies thattijn’"j*1 = tijn"i*l for all 4, 5. Hence, if
s is not in the group generated bymod m, thent;; = 0 for all 7, j, and the representatiods and F* are
inequivalent. On the other hand,sf= r* mod m for somea, then setting;; = 0 for i # j 4+ a mod m,
andt;; = 1 otherwise, satisfies both the above relations and showdtlaaid /* are equivalent. A similar
argument applies to the equality on the right side of (19) involvingThus, there are(m)/n pairwise
inequivalent fixed-point-free irreducible representation&/gf, .

The value of5 ) for the representations characterized in this section can be computed via the following

lemma.

Lemma 1. For any fixed-point-free representatiadh = F' 1+ G of G = G, -, we have

S=

q )
¢ L 1T | et (20)
AG) 92 tefo,...,m—1} ’
ke{0,...,n—1} 7j=1
(¢£,k)#(0,0)

whereq = ged(n, k) andny = e2™i/™,

Proof. We need to compute the determinantlof— (F 1t G)(g) for all g € Gy, or, equivalently, the
determinant off, — ((F 1+ G)(0))*((F 1 G)(7))¥forall ¢ = 0,...,m —1,k = 0,...,n — 1, such that
(¢,k) # (0,0). This is done using the matrix representations (18) and Lemma 6 in Appendix C. O

We now present a few examples of the fixed-point-free graeps.

Example 1 (3 antennas).Letn = 3 and taker = 4 andm = 21. Then we have, = 3,t = 7, gcd(n, t) =
ged(3,7) = 1, and all prime divisors of: (i.e., the prime3) divide ry. Hence,G3 4 is a fixed-point-free

group. Thus, if we sef = e2™/2! and

n 0 O 0 1 0
A= 40 , B=1 0 01
7,’16 7,’7 0 0
then the63 matricesA‘B*, ¢ = 0,...,20, k = 0, 1,2, form a group under matrix multiplication. We have
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CA(G21.4) ~ 0.3851. This3-antenna63-element constellation is one element shy of having kate 2.

Example 2 (9 antennas).Letn = 9 and taker = 4 andm = 57. Then we have, = 3 and¢ = 19,
ged(n,t) = 1, and all prime divisors ot divide ry. HenceGsy 4 is fixed-point-free. Thus, if we sgt=

e2mi/57 and

. 0 Ig
A = diag (n,n",7'%, 0", 0”0 0" 0 n®), B= :
,’719 0
wherediag (a4, ..., a,) denotes the diagonal matrix with diagonal entries. . . , a,, then the513 matrices

A*B* wheret = 0,...,56,andk = 0, ..., 8 form a group under matrix multiplication. We hayg cs;.4) ~

0.361. This9-antenna513-element constellation exceeds ratby one element.

5 A classification of fixed-point-free groups

In this section we classify all fixed-point-free groups and compute all the irreducible fixed-point-free repre-
sentations of these groups.
5.1 The group types

One type of fixed-point-free group is presented in Section 4.3, but there are five more types. Since the groups
Gm, are an important part of the classification theorem, the following convention is introduced. Given a pair
of integers(m, r), we implicitly definen to be the order of modulom; we definery = ged(r — 1,m); and

t = m/ry. We call the paif(m, r) admissibleif gcd(n,t) = 1, and all prime divisors of. divide ry. The six

group types are:

1. Gy,,r (These appear in Section 4.3.):
Gy = (0,7 | o™ =1L1"=0"0" =0"),

)

where(m, r) is admissible. The order @, , is L = mn.

2. Dm’r,gi

_ m __ n__ t 17 _ 1 _ U/ _ 4 2 _ _nro/2
Dype=(0,1,7y 0" =11"=0" 0" =0",0" =0", 77 =17 =71 o/ )
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wherenr is even,(m,r) is admissible/? = 1 mod m, £ = 1 mod n, and? = —1 mod s, wheres is

the highest power d dividing mn. The order ofD,,, ., is L = 2mn.

r gm/t o gm/t

Lo =o",u7"" =p,y""" =1,

Em?" = <0777M77|0m:17Tn:O-

pt =12 =0 = pmhpm = y,97 = ),

where(m, r) is admissibleynn is odd, andury is divisible by3. The order ofE,, , is 8mn.

. Fm,r,gl

m/t o

m/t
aUTZUTa/J'U _/J"’YU /

t

Fore = (o py,v|om=11"=0 =y,u" =7v,9 =,

-1 .2

pt=1p> =% p = p ' v? = p?, 0" = o

7V =1t =Ty =),

where(m,r) is admissibleynn is odd, ry is divisible by 3, n is not divisible by3, 2 = 1 mod m,

¢ =1 mod n, and/ = —1 mod 3. The order ofF;,, , , is 16mn.

I

b

Jm,r = SL?(F5) X Gm,ra
where(m,r) is admissibleged(mn, 120) = 1, andSLy(TF5) is the group of2 x 2-matrices oveifs

with determinantl. SLy(F5) has the generators and relations

SLa(F5) = (u, v | u? =7° = (u7)°,u" = 1).

The order ofJ,, , is 120mn.

. Km,,,.7g1

Km,r,l = <Jm,ra V>

with the relations

2 2

v =P " = ()" (yp)*y(yw)®, " =y, 0" = o

v _ /L
’T _T’

wherey andy are as iy, and where? = 1 mod m, ¢ = 1 mod n. The order ofK,, 10 IS 240mn.

We can now state our first main result.
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Theorem 1. A finite group is fixed-point-free if and only if it is isomorphic to eitli@y, ., Dy, o, Epmrs

Fm,r,éa Jm,ra or Km,r,l-

The proof that a fixed-point-free group must be one of these types appears in Appendix A. Next, we
concentrate on showing that the above groups are fixed-point-free and computing their fixed-point-free repre-
sentations. In all cases, all the inequivalent irreducible representations of the same group yield the exact same
set of matrices (in different order). Hence, the signal constellations produced by inequivalent representations

of the same group are identical. We therefore present only one of the inequivalent representations.

Theorem 2. (1) G, for admissible(rm, r) has an irreduciblen-dimensional fixed-point-free representa-

tion given by
E 0 0 - 0 010 ---0
o¢& o0 -+ 0 0 01 ---0
o A=|0 0 ¢ .- 0 , T—DB= ;
0o 00 --- 1
00 0 - ¢ & 00 - 0

and¢ = ¢2™/™_ The corresponding constellation is given by the matridé®*, s = 0,...,m — 1,
k = 0,...,n — 1. We note here (and omit in the remaining descriptions) that, implicitly, in this
representation the matrid becomes a scalar an® becomes undefined when= 1 because,, ; is

cyclic.

(2) Dy, e With admissible(m, r) has an irreducible2n-dimensional fixed-point-free representation given

by
€0 0 0
0 & 0 0
AO 0 2
oA = , A=10 0 ¢ 0 ,
0 Af
00 0 g
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0 01 0
By 0 S :
T— B = , Bp= S
0 B§
0 00 1
ft 00 --- 0
0 I,
n—R = ;
I, O

where¢ = e2™/™_ The corresponding constellation is given BYB*R/, s = 0,...,m — 1, k =

0,....n—1,5=0,1,

(3) E,, for admissible(m, ) has an irreducible2n-dimensional fixed-point-free representation given by

Ay, 0 0 - 0
0 Aj o - 0
| 0,z | ) 4 e10mi/8 j2miz/m 1 1
— — 0 0 r S 0 y _ = 9
oA, 0 | 02 V2 i i
0 0 0 Ay
0O I, 0 --- 0
0 0 I 0
T B, = : S A I
0 0 O I
A, 0 0 - 0
FrF 0 0 O 0
0 F, 0 O 0
0 0 F O 0
p— P = )
0 0 0 Fpy 0
0 0 0 0 - F(nfl mod 3)
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Frb 0 0 O 0

0 F, 0 O 0

0 0 Fy O 0

Y= Q = ;

0O 0 0 F 0

00 0 0 0 - Fumoas

1 0 0 1 0 2

F[) = ) FIZ ) F2: )

0 —2 -1 0 1 0

wherez = 1 if 9 dividesm, and z = 3 otherwise. The corresponding constellation is given by

ASBkPiQr,s=0,....m—1,k=0,...,n—1,5=0,...,3,p=0,1.

(4) If n > 1 or ¢ # 1 mod (m/3), thenF,, , , with admissible(m, r) has an irreducibletn-dimensional

representation given by

A, 0 B, 0
o= A= , T— B =

0o A 0 B!

P 0 Q 0
p— P = ; Y= Q= ;

0 Q! 0 P!

0 I
v— R = 2 ,

—I, 0

whereA,, B, P, Q are the matrices defined for the grolfy, ., andz = 1 if 9 dividesm, andz = 3
otherwise. Ifr = 1 and/ = 1 mod (m/3), thenF,, ; , has an irreducible 2-dimensional fixed-point-
free representation given by
1 —i 1
O'HAZAO’:),,B:IQ, w— P =Fpy, 7>—>Q:F1, v— R=— ,
V2 1 g
whereA, 3, Fy, and F; are the matrices defined fdt,, .. The corresponding constellation is given by

A*B*PiQPRY, wheres =0,...,m —1,k=0,...,n—1,7=0,...,3,p=0,1,¢ =0, 1.
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(5) Jm, has an irreducible2rn-dimensional fixed-point-free representation given by

&0 0 0
0 & 0 - 0
oA = Lelo o & - 0 ,
00 0 g
0 1 0 0
0 0 1 0
T— B = IQ@ R
0 0 0 1
ft 00 --- 0

1 2 .3 4
peP o= R, p=—» """ "77"1,
S\ n—nt nP-n?

1 [ n—n* n*—-1
’Y'_>Q = Q0®Ina QOZ_ )
S\ 1-n* pt—pp

wheren = ¢%m/5 ¢ = ¢?™/™ and® denotes Kronecker-product. The corresponding constellation
consists of the matriced®*B*(PQ)'X, s = 0,...,m — 1,k =0,...,n— 1,5 = 0,...,9, and

X runs over the sefls,, P, Q, QP, QPQ, QPQP, QPQ? QPQPQ, QPQPQ? QPQPQ?P,
QPQPQ*PQ, QPQPQ*PQP}.

(6) K, e has anirreduciblein-dimensional fixed-point-free representation given by

£ 0 0 0
0 & 0 0
AO 0 2
oy A = , Ag=L®| 0 0o ¢ 0 ,
0 Af
00 0 g
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0 0 1 0
By 0 L. .
T—B = , Bo=Le| : o 0|,
0 B§
0 0 0 1
&0 0 0
P, 0 1 2_p3 —nt - 0 —1
M}_)P - 0 ~ ®In7 P[):_ 7 7 7 7 ) 0 — )
0 P AN 1 0
Qo O 1 [ n—n* n*-1
’7'_>Q = ®In7 Qozﬁ 3 4 3 ;
0 Qo L—=n> n°—n
0 I
v—R = an ,
Iy, 0

wheren = ¢2m/5 ¢ = ¢?™/™ and® denotes Kronecker-product. The corresponding constellation
is given byA*B*(PQ)XRP,s = 0,....m -1,k =0,....n—1,5 =0,...,9,p = 0,1, and

X runs over the sefly,, P, Q, QP, QPQ, QPQP, QPQ? QPQPQ, QPQPQ? QPQPQ?P,
QPQPQ*PQ, QPQPQ*PQP}.

A proof of this theorem can be found in Appendix B. Table 2 summarizes the results of this section.
The first column indicates the type of the group, the second its order, and the third the dimension of its

representation.

Remark 1. Theorems 8 and 16 in Zassenhaus’ paper [12] classify the fixed-point-free groups. Although the
proof techniques in the paper are novel and essentially correct, the final assertions contain errors and short-
comings which make them unsuitable for the present application. For instance, Zassenhaus’ classification
does not cover the groups,, ,, for oddn, nor does it cover some subtypes of the grobips, and F,,, ;. ,.
The explicit description of the groups in Part (E) of Theorem 7 on page 203 of [12] appears to be incorrect,
sinceR? = P (in his terminology) andRAR~! = A’ are incompatible requirements. Furthermore, only
necessary conditions are proven for a group to be fixed-point-free, although it is hinted that these necessary
conditions are also sufficient.

Despite these shortcomings, we emphasize that our classification closely follows Zassenhaus’ elegant

technigues and would not have been possible without his work.
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Group type L M Comments

1. Gppy mn n

2. Dyry 2mn 2n

3. En, 8mn 2n

4. Forg 16mn 4n ifn>10rf#1modm/3
Foie 16mn 2 if£=1modm/3

5. Jmr 120mn  2n

6. Ky, 240mn  4n

Table 2: There are 6 types of fixed-point-free groups: For each giupis the order ofG (the size of the
constellation) anad is the dimension of the representationt®{number of transmitter antennas).

6 Consequences of the classification fav/ = 2 and M odd

We present some immediate consequences of the main classification theorem.

The most elementary consequence (that we already know from Section 4.2) is that cyclic groups are fixed-
point-free, because in our classification a cyclic group of ordegorresponds t@,, ;: in this casen = 1
because the order ¢fmod m is 1.

A class of fixed-point-free groups that appears in [9] as a constellation for differential multiple antenna

modulation is the generalized quaternion groups, reviewed in Section 3 and defined as

Qp=(onlo” =1 =" 0" =0"").
In our classification, we hav@, = D.» 1 ;. In [9] it is proved that ifG is a fixed-point-free group that
has2P*! elements for some integer and has a fixed-point-free representation of dimengiothen G is
either cyclic or a generalized quaternion group (also called a “dicyclic group” in that paper). This theorem
is actually quite old, going back to Burnside [11] in a more general form (see Theorem 7 in Appendix A). It
is also consistent with our classification, and we may make a stronger conclusion: assume dslysthat
fixed-point-free group of orde?”*! (do not impose any restriction on the dimension of its representation);
thend is either aGy, » or aD,, 0. (It cannot be of the,, , or F}, ., types since they require thain be

odd, which contradicts the assumption that the number of elentenisand16mn be powers of two. It also
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cannot beJ,, , or K, ., since the number of elements0mn and240mn can never be powers of 2.) If
G = Gp,,, thenmn has to be a power ¢f. Suppose bothn andn are even. Then, singgd(t,n) =1,
must be odd. But sincé = ged(r — 1,m), this can only happen if — 1 is odd. This, on the other hand,
contradicts-™ = 1 mod (m) since both- andm are even. Thusy andn cannot be simultaneously even, and
so eitherm = 1, orn = 1. Sincem = 1 contradicts the admissibility dfn, ) (all prime divisors ofn have

to dividery and hencen), this implies that» = 1. This means thatr is cyclic.

If G = Dy, 0, thenn = 1 andm = 2P, hence/ = —1 mod m, which shows thaty is a generalized
guaternion group and therefore hag-dimensional irreducible representation. Note that we did not need to
assume anything about the dimension of the representatiah; filve dimension came as a conclusion.

Our classification shows that all non-Abelian fixed-point-free groups of dii¢érave their irreducible
fixed-point-free representations in two dimensions. Because it is often practical to use two transmitter anten-
nas, one may ask more generally for a classification of all fixed-point-free groups whose irreducible fixed-

point-free representations @alimensional. The following result answers this question.

Theorem 3. Any fixed-point-free group that has an irreducilieimensional fixed-point-free representation

is isomorphic to one of the following:
1) Gy, such that(m,r) is admissible and the order efmodulorm is 2.
2) Dy
3) Ep1.
4) Fp 1 forf =1 mod m/3.
5) Jm1-
Conversely, any of these groups has an irreduchtémensional fixed-point-free representation.

Proof. The proof follows by noting that, the order of- modulom, is 1 if and only if » = 1, and comparing

with Table 2. O

Using the classification in this paper, we can also produce constellations for an odd number of antennas
M.

Theorem 4. Any group with a fixed-point-free representation of odd dimensaiois isomorphic toG, , for

some admissiblén, ).
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Proof. If G has a fixed-point-free representatidnof odd dimension, then it has an irreducible fixed-point-
free representation. Since all irreducible fixed-point-free representatidgiiade the same dimensidnsee
Table 2), the dimension @A is a multiple ofd. Hence, if the dimension oA is odd, thend must be odd.

It therefore suffices to consider only grou@sthat have an irreducible fixed-point-free representation of odd

dimension. A look at Table 2 reveals thGithas to be isomorphic t@', . O

7 Some explicit simple constellations

In this section we produce simple examples of some of the classes of fixed-point-free groups. For reasons of
simplicity, we will identify the groups with images of their fixed-point-free representations computed in the
pervious sections, and list the group elements as matrices.

Using Theorem 3, we start with groups that have an irreducible fixed-point-free representafiér=f@r

transmitter antennas.

1. The smallest example of@,, , having a2-dimensional irreducible fixed-point-free representation is

Gs,—1. The corresponding constellation consists of tRematricesA*B*, s = 0,...,5, k = 0,1,

£ 0 0 1
A= ,B: )
(051) (10)

and¢ = e?™/% Its rate isR = log(12)/2 = 1.79, and its diversity product i&;, _, = 0.5. This value

where

for ( is not particularly impressive because, as we see from Table 1, the orthogonal designs (although

they are not a group) have the sagmdut with R = 2.

2. The smallest example of the grob, ¢ is the quaternion grou@Q, = Dy, of order8 given as the

set of matrice?’Q”,j = 0,...,3,p =0, 1, where

=(0n) e n)

We have(q, = v/2/2 ~ 0.7071. This group appears in Table 1.

3. The smallest example of a grouf, ; is the groupEs ; of order24. This group is isomorphic to

SLo(F3) [12], the group of two-dimensional matrices o¥&rwith determinant 1. The constellation is
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given by the24 matricesA® P/ QP, wheres = 0,1,2, 5 =0,...,3,p =0, 1, and

el0mi/8 [ 1 1 1 0 0 1

A= , Q
V2 o\ 0 —i ~1 0

Its rate isR = 2.29, and(g, , = 0.5, which outperforms all constellations wiff > 2 in Table 1.

. The smallest example of a grouy, 1 , is the groupFs ;,_; which has48 elements. It consists of the
matricesA*P/QPRY, wheres = 0,1,2,j = 0,...,3,p = 0,1, ¢ = 0,1, and A, P, Q are as above
while

1 —i 1

R=—
V2 \ -1

Becausen = 1, the matrix B does not appear. The constellation has fate- 2.79, and(p,, , =

V2 —/2/2 =~ 0.3868.

. The smallest example of,, , is J;,; which is isomorphic tdSLy(F5). This constellation ha$20

elements given by the matricé®Q)’ X, wherej = 0,...,9, X runs over the sell, P, Q, QP,
QPQ,QPQP,QPQ* QPQPQ,QPQPQ* QPQPQ*P,QPQPQ*PQ,QPQPQ*PQP}, and

p_ Lm0 oL n—n’ 7’1
VB gt g VB 1P gt

wheren = e*™/5. It has rateR = 3.45, and (g1, w;) = 31/ (3 — v/5)/2 ~ 0.3090. This group

performs remarkably, as described in Section 9.

. The simplest example of a fixed-point-free group with irreducible fixed-point-free representations for

M = 3 is the groupG's 3 described in Section 4.3.

. The smallest example of a fixed-point-free group with an irreducikdénensional fixed-point-free
representation i®g 1, 1. It has 24 elements, with rat8 = log(24)/4 = 1.15, and¢p, _, , =
0.5. This performance is not very impressive since the gr&up _; with L = 240 elements (rate

R = 1.98) has(k,, _, = 0.5. The elements of this constellation are given(#Q)’ X R?, where
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j=0,...,9,p=0,1, X runs over the same set as in 5), but with

n?—n® n-—nt

0 0
1| n=n* *=0* 0 0
P = — ,
Vb 0 0 0 -5
0 0 Vb 0
7]—772 772—1 0 0
Q 1 1_7,’3 774—773 0 0
V5 0 0 n-n -1 |
0 0 1_n3 7]4—773
0 0 10
0 0 0 1
R =
-1 0 0 0
0 -1 0 0

We defer a detailed description of the performance of these multiple-antenna constellations until Section 9.

8 Group-inspired constellations

Theorems 1 and 2 are key because they allow us to compute all fixed-point-free groups of finite order. For
many combinations o/ and R these groups result in constellations with excellg@ind performance, as
shown in Section 9. For other combinationsMfand R, groups with irreducible fixed-point-free represen-
tations do not exist, especially whéd is large and odd. We can consider reducible representations, but
then the groups can have large cyclic components and sparse matrix representations, which do not necessarily
perform well. For example, Theorem 1 shows that it is not possible to construct irreducible constellations
with R = 1 for matrix dimensions\/ = 5 andM = 7, since there exist no irreducible fixed-point-free group
representations fak/ = 5 with L ~ 32, or M = 7 with L ~ 128.

To construct constellations for arbitrafy’ and R, it appears that we need to consider also nongroups.
We are therefore once again considering the problem of constructidged@ment set of\/ x M unitary
matrices with largeg —but we do not start from scratch. We show how the group constellations can suggest

simple nongroup constellations that perform well.
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We consider three specific structures. The first, called Hamiltonian constellations, works ably-$o2
and has some similarities with the orthogonal designs described in Section 2. These exist for Any tegte
second is a nongroup generalization of the gréyp,. These yield constellations, for arbitrafy and R
that effectively boost the size of any diagonal constellation by the fadtavithout decreasing. The rate
of the diagonal constellation is increasedlﬁ%ﬂ. The third is a constellation based on the matrix product
of two different representations of any finite fixed-point-free group. This doubles the rate of the constellation
and appears to yield excellent high rate constellations. These three constructions just scratch the surface of

the problem of designing nongroup constellations from groups.

8.1 Hamiltonian constellation

A Hamiltonian constellation is defined to be a seRof 2 unitary matrices that can be built from points on

the unit sphere ilR*. We start with the parameterization o a 2 unitary matrix

wherez, y € C and|z|* + |y|> = 1. Unlike with orthogonal designs, the constrafiat = |y is not imposed.
These matrices form the (infinite) group of Hamiltonian quaternions of norm 1. The pairwise diversity product

between two such matrices is given by

C(H(a,y). W' )) = fle =o'+ by — o'l (21)

Consider the natural embedding@? in R*. Then(z,y) and(z’,y') are points on the unit sphereRi* and
the pairwise diversity product betwe@t(x, y) and? (z', ) is simply one half their Euclidean distance. The
Hamiltonian constellation is formed by building the unitary matrices from a set of points on the spRete in

It immediately follows that the behavior of the diversity product for the Hamiltonian constellation is given by

C(Vn) = O(L™V%)
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for large L. If we impose the constraint:| = |y|, we are effectively restricted to a two-dimensional torus,

and the asymptotic behavior of the orthogonal design (OD) is given in (12):

(o) = OB, _ (4% < v

Hence, for large rates orthogonal designs underperform Hamiltonian constellations.

Some references for large-minimum-distance packings of points on a spiRtdriolude [18, 19]. Any
of the packings immediately builds a Hamiltonian constellation. Thus Hamiltonian constellations essentially
exist for any rate. The Hamiltonian constellations, like the orthogonal designs, in general do not form a group.
The only exceptions are the ones mentioned in Theorem 3.

Decoding Hamiltonian constellations is simple because we need to choose a point from our constellation
with least Euclidean distance R* from our measurement. Given that the points are well separated, a standard

technique such as bucketing [20] does this in constant time as a function of th rate

8.2 Nongroup generalization ofG/,, .

As shown in Theorem 2, the groudp,, , has a fixed-point-free representation of dimensipwheren is the

order ofr modulom. We now letn, be arbitrary, and ley and be primitivemth andsth roots of unity, and

letuy,...,u, be integers. Consider thex n matrices
0 10 0
n“t 0 0
0 01 0
- 000 - 1
0 0 nn
B 00 -+ 0

and the setS,, ; consisting of the matriced‘B* where? = 0,...,m — 1 andk = 0,...,p — 1, where
p = min(s,n). Note that if we takeu; = r*~!, fori = 0,...,n — 1, ands = ged(r — 1,m) > n,
where(m, r) is any admissible pair, then we obtain the graup . In general, the sef,, ; is not a group.
Nonetheless, the structure 6F, ; allows ¢ to be computed in closed-form. We can therefore determine

whether the resulting constellation is fully diverse or not.
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Since the matriced and B are unitary, it follows that

det (A BF1 — A Bk2)

= [det (1 — A gy

= [det (A% 2 — pr2 k)

Furthermore, since the matricég A4, ..., A™~! form a group{s is given by

For0 < k < p, we have
Bk _ On—kyxk  L(n—k)x(n—k) |
Blkxk Ok (n—k)
and for—p < —k <0,
Bk = g-ipnk

sinceB*B"~* = gI,,. Thus, for0 < k < p, we may write

O(n—k)xk diag (nlul, . ,nlun—k)

det (I, — A*B¥) = det [ I, —
diag (Bnn—k+1, ..., Bylin) Ok (n—k)

kot
= H (1 — Bin 2o “1q+J> , q=gcd(n,n—k)=ged(n,k)
7=1
and, for-p < —k <0,

ka(n—k) dla‘g (ﬁilnluh s aﬁillrllmc)

dla‘g (nuk+17 s 777un) O(n—k)xk

q x %_1
= II(1- gty =hiun),
j=1

det (I, — A*B*) = det | I, —

where in the second step of both equalities we have used Lemma 6 in Appendix C.

We thus have the following result.

Lemma 2 (¢ for S, ). Letn and 3 be primitivem-th ands-th roots of unity, respectively, and lef, . . . , u,

be integers. Denote b¥,, , the set of matricest! B¥ where/ = 0,....,m — 1,k = 0,...,p — 1 and
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p = min(s,n), with A and B given by (22). Then

3=

(1 _ ﬁfn@i";l Uiq+j> : (23)

e
V)
Il
N | =
~
II
O
's
|
-
.
Il <
—

AR

whereq = ged(n, |k]).

Remarks

1. The nongroup constellatios,,, ; hasL = mp elements. From (9), we observe that for a general
nongroup constellatiory is the minimum ofL (L — 1)/2 pairwise distances between the elements of
the constellation. However, (23) shows ti#&t ; has at mostn(2p — 1) = 2L — m distinct pairwise
differences. Hence, even thougdh, ; is not necessarily a group, it exhibits a considerable amount of
symmetry. Compare the maximumaf — m pairwise distances with the maximumbf 1 distances

found in a group.

2. Lemma 2 allows us to construct constellations for any number of antebhasd any target rate
R = ﬁ log L. We need only to se/ = n and decomposé as L. = mp, with p < n, and then use
equation (23) to maximize the value ¢f by performing a search over the integess. . ., u, (all of

which lie betweer® andn — 1) ands < p. In practice, one can always take= n.

3. Note that we may write (23) more explicitly as

S|=

1 T (1= 0™) k=0
(s = 2 [_Om' 1 k Z%—l - : (24)
=i ...,m _ L3 e L u; )
kf([ k);é’('é"o) ‘H (1 Ban 0 q+]> ‘ 0< |k| <p
The expression fok = 0 is the( for a diagonal constellation witla, . . . , u,, (See Sec. 4.2). Thus, if
1 1
n . n q x ez%_l n
. oy < . _ak T i
z:o{?,l,rr}lf1 H (1 " ]> S H (1 pan o ]>
]:1 k=—p+1,..., p—1 =1
(€)£(0.0)

then (s is determined by the of the diagonal constellation. Since this can often be arranged by
choosingg appropriately, we conclude that with our construction it is possible to boost the size of the

diagonal constellatiod A’} by the factorn while keeping¢ unchanged. This is effectively done by
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post-multiplying the constellation big*.

4. Whenn is prime, the expressions simplify considerably sigece n whenk = 0, andg = 1 otherwise.

In this case, (24) reduces to

1
n

1 ‘HL (1 —n") k=0
(s = 3 lzomign_l 3 . (25)
k:&i‘;‘;’(a’g’)—l ‘1 — 5kn42i:o Uit1 0< |k| <p
This expression simplifies further if we assume
n—1
Z uit1 = 0 mod m, (26)
i=0
in which case
s = min |, i 16t i ﬁ(l—nm> . 27)
2 0<|k|<p T0<l<m e}

The first of the above expressions depends only owhile the second depends only gnThus, it is
always possible to choogeso that the minimum is provided by the second term and the constellation

inherits the samé as a diagonal constellation with elements.

We have observed that the constraint (26), does not affect the performance of the diagonal constellation
adversely. Therefore, in searching for good constellations we have found this constraint useful, even

for nonprimen.

5. The increase in the constellation size by the fagter M over the diagonal constellation increases the

rate by log M.

8.3 Products of group representations

The constellations described above have the advantage that they can be constructedMoramady? =
ﬁ log L, and that they ar@/ times larger than an equivalent diagonal constellation. However, the matrices
in the constellations are sparse (only one transmit antenna is active at any given time). We seek constellations
that achieve better performance at high rates by employing more “full” matrices.
As has been noted earlier, one reason why the group constellations have excellent performance is that,

because of their symmetry, they reduce Ii{é — 1)/2 pairwise distances between the elements of the con-
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stellation to at mosf, — 1 distinct distances. Since our performance meaguiethe minimum of these
pairwise distances, the group is likely to have a larger minimum distance, all other properties being equal.

Therefore, although we shall relax the group requirement, we will still insist that the constellation exhibit
symmetries with respect to thliecost. Thus, consider two fixed-point-free grou@g,andGg, and lety, =
{Ai,..., A, }andVp = {By,..., Bz, } be M x M unitary representations of these groups. Assume that
Ap=By=1.

Consider the set of pairwise products

Sap={AjBr,j=1,....,La, k=1,...,Lp}. (28)

Clearly, Sy p has at mostL. = L4Lp distinct elements. This results in a constellation of rate at most

R=R4s+ Rp,whereRy = (1/M)log Lo andRp = (1/M) log L. The diversity product for this set is

1 L

= - det (A;Br — A+ Bpr)| M

(s 2 G )ml(n,k,) et (A By, — Aj By)

1 . o .

= - min |det (4} 'Aj — BBy A, and By, are unitar
2 G 11 #BED| T (Ay andBy Y
1 1

= = det (Ap — Bp)| M andGpg are groups
2(“31;? |det (Ag )| (Ga ] groups)

One concludes that even thoudh g is not necessarily a group, it has the desirable property of having at most
L —1, rather thar(L — 1) /2, distinct pairwise distances. In particulgg depends only on the “co-distance”
between the elements of the constellatidhsandVg.

It remains to choose the constellations andVg. Assumej 4 = Gg; we are therefore doubling the rate
of the original group constellation. The case whgie# Gp can be treated in a similar fashion and is omitted

for brevity. We also assume thaly and)Vg are equivalent representations, i.e., there exists a unitary matrix

T such that
B =TA;T*, j=1,...La. (29)
In particular,
1 1
= — in |det (A; — TART™)| ™ . 30
Cs =5, min  Idet o) (30)

By letting Ay = I,, we see that fos to be nonzero the grou§4 must be fixed-point-free. Thus, we may
use any of the groups of Theorem 1 as a candidat&; for However, the next result shows that the only

representations @ 4 that can lead to a nonze(g arereduciblerepresentations.
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Theorem 5 (Products of Group Representations)LetV, = {A4;} be an}M-dimensional representation of

the fixed-point-free finite grou@4. Assume that there exists some unitarguch that

G =5, min = [det (4; —TATY)| 7 > 0.

n
(7,k)#(0,0

N | =

Then the representatiory must be reducible, ani@ 4| must be odd.

Proof: Note that if the representatiopd;} has an element that is a scalar, i4;, = ¢'“I for some; and

a # 0, then(s must be zero since
Aj —TAT* =T — “TT* =0,

for any unitaryT’. We show that the fixed-point-free representations of Theorem 2, all of which are irre-
ducible representations, have scalar elements. In addition, we show that if the group has even oralér, then
irreducible fixed-point-free representations of the group contain the negative of the identity matrix. Thus, any
representation that leads to a nonzégomust be reducible, and the size of the group must be odd. In the

following, I will denote an identity matrix of appropriate dimension.

1. Gt We show thatA! is scalar. Note tha€,, ; is cyclic, since the smallest integersuch that
r” = 1" = 1 mod m isn = 1, and all one-dimensional fixed-point-free groups are cyclic. Moreover,
all elements of its representation are scalar angssis zero. Thus, let > 1 andn > 1. Since all
prime divisors ofn must divider, = gcd(m,r — 1), we conclude that, > 1 andt = m/ro < m.
Now

A = diag(n', ", ... 0" ") = diag(y', n" D, (T E0E,
Butforallk =1,...n — 1, the quantity(~* — 1)¢ is a multiple ofm because

r—1

r—1
rot = (r* =1 4. 4 1)

(rF =Dt = D - Dt=F2 4 41 - -

m7
and hence)™" ~Vt = 1. Therefored! = 5'I. Furthermore, ifnn is even, thenn is even sincém, r)
is admissible. In that cas¢”/2 = y™/2] = —J for any choice of; as a primitivemth root of unity.

2. Dy, 0. We show thatd™/2 = —I. We first assert thaty = gcd(r — 1,m) is even. Sincewry must be
even, this is true whenis odd. It is also true whenis even since all prime divisors afmust divider.

Thus,m = rot must also be even. On the other haAdyust be odd, sincé&® = 1 mod m. Consider
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now A™/2 — diag(A(’)”/Z,Agm/Z). Sincem is the smallest integer, such thg® = 1, it is also the
2mil

smallest integer such thaf = I = ¢>™I. ThereforeA™/? = diag(e%l,e z ) =diag(— I, —I)

because is odd.

3. E,,. P?=—1I.

)

4. Fpry: P2 = —1.

[L)

5. Jmrt (PQ)® = —1.

]

Thus, we are left only with the possibility of using reducible representations of fixed-point-free groups.
These are essentially obtained by forming a direct sum of two (or more) inequivalent representations of any
of the irreducible representations of Theorem 2. In what follows, we shall, for simplicity, focus on reducible
representations of cyclic groups.

As noted in Section 4.2\/-dimensional reducible representations of cyclic groups take the form
Ay, = AF = diag (p™F, g2k o optmk) B =0,..., Ly —1

wheren is a primitive L 4-th root of unity andu,, . .. uas are integers betweenandZ 4 — 1. The next result

gives us the family of cyclic groups that yield nonzéw
Theorem 6 (Products of Cyclic Group Representations)LetAy,..., A, be anM-dimensional reducible
representation of a cyclic group:

Ay, = AF = diag (™, g2k o pemk) k=0,... L, — 1.

Then there exists a unitary matrix such that

1
>0 (31)

(s = min |det (47 — TAFT™)
(0,0)

(G:k)

N | =

if and only if, for all K > M2, there exists nd<-tuple (u;,, ... u;, ) such that

ng (|U,j1 — qu|7 ce |qu_1 — u]'K|,LA) > 1. (32)

38



Moreover, if (32) holds, then (31) holds generically for all unit&ry

Proof: Let us partition the identity matrix and the unitary matrig” into its columns:

I:<€1 6M> andT=<t1 tM>-

Then we may write

M M
A, —TAT* = Z n“ikeief — Z n“iltitf

= > (" —n"heze; — Y (" —n vy,
i=1 i=1
where in the second step we UBg&™ = 1.

Since the2M — 1 rank-one matricese;ej, ..., emey,, tits, ..., tar—1t3,_,} are (generically) linearly
independentA, — T'A;T* is singular if and only if at leask; > M of the2M — 1 coefficients{n*1¥ —
puml ek gl gl el el pumly gre zero. This can happen if, and only if, at least
K > M/2 of the M scalarg(n®t*, ... n“mF) or K > M/2 of the M scalars(nt, ..., n* ") are identical.
Assuming, without loss of generality, that this is true of the first sé¥/o$calars means that there must exist

someK -tuple (u;, , . .. u;, ) such that

Uik — puisk = puich,
or, equivalentlyu;, k = u;,k = ... = u;, k mod L. This last condition can be written as
(i, — uip )k = (uiyk —uiy ) = ... = (Wi, — Ui )k = 0 mod Ly,
which is equivalent to
ged (Jugy, — Wige |y ooy |Uig—1 — Uiy |s La) > 1.

This establishes the first claim of the theorem. The second claim follows from the fact that all our claims

about rank and nonsingularity are generic in terms of the unitary nigtrix
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Remarks

e The condition (32) essentially states thiatis nonzero if and only if no element of the cyclic group has

K > M/2 equal diagonal entries.
¢ A simple sufficient condition that guarantees nonzgras that L be prime.

e Once we have found a cyclic group for whi¢h is nonzero we can optimize the value@f by per-
forming a search over the set &f x M unitary matricesI” and using (30). Intuitively, the matriX
should be a “full” matrix with the property that the constellatidos; } and{B; = T'A,;T*} be “spread
apart” from one another, singg depends on the co-distance between these two constellations. Since
the search space is small (it is a singlex M unitary matrix), methods such as random search can be

used to find a good'.

e Wheng 4 is not cyclic, one can use reduciblé x M representations:

Aq(gi)

Ag(gi)
whereA; to A, are irreducible fixed-point-free representations; @fwhose dimensions add up id.

e Itis also possible to use representations of two different gréiypandGp.

9 Constellations and their performance

In this section, we display the performance of some of the group and nongroup constellations derived in the
previous sections. To evaluate the performance, we use the differential transmission framework described in
Section 2.3, with a receiver that does not know the channel and decodes using the metric (7).

Most of the constellations were computer-simulated with fading coefficients that were chosen randomly
but held constant for two consecutive matrix-valued signals, as described in Section 2.3. In one exceptional
case described below, the constellation was transmitted over a functional three-transmitter-antenna wireless

channel. The resulting figures plot the block probability of decoding a matrix incorrectly, deRated
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9.1 Group constellations

Figure 1 displays the simulated performance of the giug[F5 ) which has 120 elements, and therefore has
rate R = log(120)/2 ~ 3.45. We also compare the best Abelian group we could find (which is necessarily
cyclic), and the orthogonal design with 121 elements obtained by filling the matrix (11) with 11th-roots of
unity. The excellent performance 81.,(F5) is evidenced by the approximately 2.5 dB improvement over

the orthogonal design (which is not a group), the 6.5 dB improvement over the Abelian group, and the 13 dB
improvement over the quaternion group. Table 3 in Section 9 and Table 1 in Section 2 list more details about
these constellations.

Figure 2 is the same as Figure 1 except that the receiver is assumed to know the channel and demodu-
late coherently. The constellation performances all gain approximately 3 dB over the unknown channel, as
explained in Section 2.3.

Figure 3 is also the same as Figure 1 except that we now aslume receive antennas. The difference
in performance of the various constellations becomes more pronounced, and there is a clear advantage of
having two receivers over one receiver.

Figure 4 compares the performances of various constellationsRvith 4. The group constellation is
Fi5,1,11 with L = 240 elements R = 3.95). The other constellations are the best orthogonal design, diagonal
constellation and quaternion groups of comparable rate.

Figure 5 shows the performance advantage offthe= 3 antenna 63-elemenf(= 1.99) groupG'a1 4
compared with the best three-antenna 63-element diagonal constellation. We were also able to transmit this
constellation over a wireless apparatus located within a hallway at Bell Laboratories, Murray Hill. The three
transmit antennas were separated from the one receive antenna by approximately 10 meters around a bend in
the hallway lined with metal walls and equipment, thus creating a quasi-static scattering environment. Figure
6 shows the performance.

Figure 7 shows the performance Af ; _;, the binary extension dLy(F5) for M = 4 transmitter
antennas, and compares it with the best Abelian group we found. Again, the performance gain of this group
over the Abelian group is evident.

Table 3 collects together some of the group constellations that we have found with) fogldifferent
numbers of antennak/ and ratesk. The list includes many of the constellations that are also described in
other sections of this paper, but it is not exhaustive. There are many other groups within our classification that

we have not explored and are therefore not on the list.
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Figure 1: Block-error rate performance of the grdsip,(IF5) compared with constellations from previous
constructions folM/ = 2 transmitter antennas ad = 1 receiver antenna. The solid line3$.,(F5 ), which
hasZ = 120 unitary matrices R ~ 3.45). The dashed line is an orthogonal design with 11th roots of unity
(R = 3.46). The dashed-dotted line is the best diagonal (Abelian group) constru@tiend.45). The dotted
line is the quaternion group with = 128 matrices R = 3.5). (The latter three constellations are listed in
Table 1).
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Figure 2: Same as in Figure 1, except the receiver is assumed to know the channel perfectly and demodulate
coherently. The performance gain is approximately 3 dB over the unknown channel.
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Figure 3: Same as in Figure 1, except with= 2 receiver antennas. The coding advantage of the group
SLy(FF5) becomes more pronounced as the number of receiver antennas increases.
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Figure 4: Block-error rate performance of the grokig, 1,11 for M = 2 transmitter antennas amd = 1
receiver antenna. The solid line#%s ; 11, which hasL = 240 unitary matrices g ~ 3.95). The dashed line

is an orthogonal design with 16th roots of unify & 4). The dashed-dotted line is the best diagonal (Abelian
group) constructionR ~ 3.95). The dotted line is the quaternion group with= 256 matrices R = 4).
(The latter three constellations are listed in Table 1).
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Figure 5: Block-error rate performance of the grakip 4, which has an irreducible representation.of 63
matrices forM = 3 antennasR =~ 1.99), and best diagonal (Abelian group) constellation with the same rate,

described in Table 1, faV = 1 receiver antenna.
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Figure 6: Block-error rate performance of the graiip 4 (as in Figure 5) transmitted over wireless apparatus
in a Bell Laboratories hallway.
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Figure 7: Block-error rate performance of the grdkip; —; compared with the best diagonal code #dr= 4
transmitter antennas ad = 1 receiver antenna. The solid lines; ; _; the binary extension of the group
SLs(F5) having L = 240 unitary matrices R ~ 1.98). The dashed line is the diagonal construction with the
same rate, described in Table 1.
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M L R ¢ Comments Reference
- 2 - 1 {I,—I} for any M
24 229 0.5000 E3; = SLa(F3) pg. 28
48 2.79 0.3868 F3; 1 = SLo(F3) pg. 29
120 3.45 0.3090 J1,1 = SLQ(F{,) pg. 29 & FigS. 1&3
240 3.95 0.2257 Fi51,11 Fig. 4
9 1.06 0.6004 cyclic grou@y; withu = (1,2,5)
63 1.99 0.3851 Gyi4 pg. 18 & Fig. 5

513 3.00 0.1353 G714 (t = 19)
4095 4.00 0.0361 Gise5,16 (t = 91)
32445 5.00 0.0131 Giogis46 (t = 721)

240 1.98 0.5000 Kl,l,—l Flg 7

1025 2.00 0.1679 Gaps 16 (t = 41)
33825 3.01 0.0503 Geres.16 (t = 451)
1021025 3.99 0.0037 Gogaps,21 (£ = 40841)

16513 2.00 0.0955 Gass9,8 (t = 337)
513 1.00 0.3610 G574 pg. 19

© N O 001 A WWWWWMNNDNDN

Table 3: Summary of some group constellations and their diversity products.

9.2 Nongroup constellations

For comparison, Table 4 collects some of the nongroup constellations witlg high

Figure 8 shows the performance of the nongradp= 5, R = 1 constellationS;; 3 compared with the
best group constellation. The only group constellation with= 5 and R = 1 is a reducible (diagonal)
representation of an Abelian (cyclic) group, since the closest nondiagonal graeg iswhich has 125
elements and correspondsRox 1.39. We can see the performance advantage of the non-diagonal nongroup
constellation over the diagonal constellation.

Figure 9 shows the performance Bf= 4 nongroup constellations of Table 4 f&f = 2, 3, 4 transmitter

antennas andy = 1 receiver antenna. We see the diversity gain of increasing the number of transmit antennas.
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Figure 8: Block-error rate performance f&f = 5 transmitter antennagy = 1 receiver antenna, and rate
R = 1. The solid line is the nongroug; 3 having 33 elementsH ~ 1.01). The dashed line is the best
R = 1 group construction: in this case the best 32-element diagonal constellation.
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Figure 9: Block-error rate performance fbf = 2,3, 4 transmitter antennas and rage= 4. The constella-
tions are described in Table 4.
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L R ¢ Comments Ref.
81 3.17 0.2417 product of groupsy =9, u = (1,2)
289 4.09 0.1625 product of grougsy = 17, u = (1,12) Fig. 9
1089 5.04 0.0794 product of groudsy = 33, u = (1,26)
4225 6.02 0.0436 product of groudsy = 65, u = (1,19)
16641 7.01 0.0212 product of groudsy = 129, u = (1, 80)
66049 8.01 0.0106 product of groudsy = 257, u = (1, 186)

57 1.94 0.4845 Ssr3,u = (1,7,11)
529 3.02 0.1863 product of grougsy = 23, v = (1,13, 19)
4225 4.01 0.0933 product of groudsy = 65, u = (1,17, 23) Fig. 9
34969 5.03 0.0458 product of grouds; = 187, u = (1,30, 114)
289 2.04 0.3105 product of groupgsy =17, u = (1,3,4,11)
4225 3.01 0.1539 product of groudsy = 65, u = (1,14, 21, 34)
66049 4.00 0.0678 product of groudsy = 257, u = (1, 148, 160, 229) Fig. 9
33 1.01 0.5580 Si13,u=(1,3,4,5,9) Fig. 8
1369 2.08 0.2307 product of grougsy = 37, u = (1,6,8,14,27)
34969 3.02 0.1065 product of grouds; = 187, u = (1,23,37,91, 135)
1054729 4.00 0.0557 product of groups, = 1027, u = (1,239, 350, 439, 986)
72 1.08 0.5000 Siz6,u=(1,1,7,7,7,1)
3969 1.99 0.2723 doubling the = 3, L = 63 constellationG»; 4
4225 2.01 0.2084 product of grouds,; = 65, u = (1,9,21,51,53,57)
133 1.01 0.4900 Sig7,u = (1,3,6,7,15,17,8)
16513 2.00 0.1802 product of groudsy = 131, u = (1,8,9,42,48,68,101)

\lwmmmmmmmhbhwwwwmmmmmmi

Table 4: Summary of nongroup constellations with best diversity product.

10 Fast decoding

As shown in Section 2.3, a constellatidbhconsist of L = 2#M symbolsV, and the maximum likelihood
(ML) decoder is given by

M —arg _min X, — VX, .

The ML decoder can be computed by simply tryingél ..., Vz_1 and retaining the one that minimizes
the above expression, but the search time of this naive algorithm is exponential both in tRearadethe
number of antennd/. Therefore, for largeV or R it is important in practical applications to look for a

faster, i.e. polynomial time, algorithm, even if the algorithm is only approximate. We touch briefly upon such

algorithms.
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10.1 Cyclic groups

In [21] a fast approximate ML algorithm for decoding cyclic groups is proposed, which we briefly review and
then adapt for our noncyclic constellations. For simplicity, we focusvos 1 receive antenna.
The received signals form a lengfif vector X, whose elements we denote &s,,. The maximum

likelihood decoder for diagonal codes can be written as

. 2
- ezZﬂuml/L

r = xT;m */I;T—l;m

M
~ML . 2 _ .
2 = arg min | X, — V; X, |’ = arg min
m=1
The summands are equal to
|:1:T;m|2 + |5E771;m|2 — 2 |Trym Tr—1;m]| cos(arg oy, — arg Ty 1;m — 2mupml/L).

Given that only the cosine dependsiine maximum likelihood decoder is equivalent to

r =

M
AML — arg max Z A2 cos((tml — m) 27/ L), (33)
¢ m=1
whereA,, = |2+, xT,l;m|1/2 andy,, = arg (rym/Tr—1;m) L/2m.
From this we see thai/-dimensional representations of cyclic groups can be thoughtaf-dgnensional
lattices. The cosine function in (33) &r periodic and the arguments thus can be reduced to the interval

[0, 27); the argument of theauth term can be written as
[(umf — @m) mod L] 27/ L.

If we define theM-vectoru = [u; --- uy]?, then the vectorgu mod L for £ = 0,...,L — 1 form the
part of a lattice which lies if0, L). The cosine can be approximatedcasa ~ 1 — «?/2. Hence we
can approximate the maximization @&3) by a minimizing of the sum of the squares of the arguments of the

cosines. Then the expression becomes the square of a Euclidean distance:
i A ‘- dL)?.
HIZIH; m ((um ¢m) mod L)

The vectors with component$,, v,/ mod A,, L form a lattice where each dimensianhas been scaled by

A,,. Approximating the maximum likelihood decoding with a problem involving the closest point in a lattice
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does not immediately lead to fast decoding because finding the closest point in a lattice is NP#ard in
However, there is a well-known approximation algorithm introduced by Lenstra, Lenstra, aadz.ioM22]

and commonly referred to as “the LLL algorithm.” Its complexity is polynomialdrand hence polylog ik

(log” L for someg > 0). The LLL algorithm relies on the observation that when a lattice has an orthogonal
basis, the closest point can be found trivially by rounding each component to the closest lattice component.
Thus for a given lattice the LLL algorithm attempts to find the “most orthogonal” basis, or more precisely
the basis with the shortest vectors, and then use component wise rounding to approximate the closest lattice
point. Finding the basis with the shortest vectors itself is a NP-hard problem; LLL tries to find a basis with
reasonably short vectors. In [21] it is shown that for constellations with over 16 elements, lattice decoding
is much faster than a complete ML search and has comparable performance. Lattice decoding can be easily

implemented on digital signal processors (DSP’s).

10.2 Non Abelian groups

Most of the non Abelian groups discussed in this paper have large cyclic subgroups and we can apply fast
lattice decoding within these subgroups and use a naive method across subgroups. We illustrate this using the

G, groups introduced in Section 4.3. From (17), we see that the constellation is given by
V={A'B¥|01=0,....m—-1,k=0,....n—1,A=(F1G)(0),B=(F1G)(r)}.

Here A is a diagonal matrix withnth roots of unity on the diagonal. ML decoding is

If we defineX, | to be B¥X,_;, then the problem can be written as

i in ||x, — Ax] H .
ofmin i [[ X — A%
For eachk the inner minimization can approximated using the fast lattice decoding for cyclic groups described
above, while the outer minimization can be solved naively. Because the dimension of the represerijtation (
is equal to the number of transmitter antenn®s € n), the resulting algorithm is still polynomial i/ .

A similar algorithm works for the non group generalizationsGf . described in Section 8.2. We omit

the details.
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10.3 Hamiltonian constellations

As mentioned in Section 8.1, decoding the= 2 Hamiltonian constellations has constant complexity in the

rate RR.

10.4 Products of groups

We next consider decoding the products of groups introduced in Section 8.3. The constellation is given by
V= ATAT* | jk=0,...,L  — 1,

where A is a diagonal matrix with 4th roots of unity on the diagonal arid is an artfully chosen unitary
matrix. ML decoding is

min HXT . AjTA’“T*XT_IH . (34)
]7

Using the fast lattice decoding for cyclic codes, the problem (34) can be solved approximately for ja fixed
with complexity polylog inL 4. By checking every an approximate answer can be foundifl. 4 log”® L 4) =

O(VLlog’ L) sinceL = L?.

11 Conclusion and future work

Future wireless communication systems will probably incorporate multiple antennas to boost system capacity
and lower error probability, but the use of multiple transmit antennas requires effective full-diversity space-
time signals. Prior studies have indicated that groups of unitary matrices could serve as effective space-time
signals. In this paper, we have completely characterized all groups of full-diversity unitary space-time signals.
In the process, we have found many nontrivial groups with excellent performance at high rates, especially for
four or fewer transmitter antennas. We hope that these groups will have practical significance, especially since
many of them can be decoded quickly using algorithms that can be easily implemented on DSP’s.

We have also found that groups with full-diversity irreducible representations do not exist for all combina-
tions of M and R. This led to the design of some nongroup constellations with good high-rate performance.
These nongroups have some of the symmetry properties inspired by the group constellations, but they do not
generally have the size or dimension constraints. Nevertheless, our proposed designs of hongroup constel-

lations for all numbers of antennas and rates sometimes require trial and error. It is therefore still an open
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problem to find a systematic design of nongroup constellations for all rates and for which decoding is not a
burden when\/ >> 2.

There are many other aspects to the unitary signal design problem that we have only touched upon. For
example, while we have characterized all the groups, we have not tested them all for performance, and, specif-
ically, we have not examined all possileluciblerepresentations that have these groups as constituents. The
diagonal constellations represent the simplest form of a reducible representation, but there may be others that
may perform much better.

In this paper, our classification considered only finite fixed-point-free groups. The unitary group (in any
dimension) is infinite but clearly does not have full diversity. We may ask, is it possible to classify the infinite

subgroups of the unitary group that have full diversity? This is another possible area for future work.
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A A classification of fixed-point-free groups

Our aim in this section is to give a proof of “half of” Theorem 1: We show thét i fixed-point-free, then
it is isomorphic to one of the groups classified in Section 5.1. The converse statement is proven, along with
Theorem 2, in Appendix B.

We start our classification of fixed-point-free groups by recalling several useful theorems. Since subgroups
of fixed-point-free groups are fixed-point-free themselves, it makes sense to classify the Sylow subgroups of

fixed-point-free groups. The following theorem is due to Burnside [11] (see also [23, Th. 18.1)).

Theorem 7. Let G be a fixed-point-fre@-group. Ifp is odd, thenG is cyclic. Ifp is even, ther is either

cyclic, or a generalized quaternion group.

A group in which all Sylow subgroups are cyclic is calle@aroup Note that the previous theorem
implies that all fixed-point-free groups ofldorder are Z-groups. By [12, Satz 5] any Z-group is isomorphic
to aGy,, for somem and somer. Not all Z-groups are fixed-point-free, however. A classification of all

fixed-point-free Z-groups is given in the following [23, Th. 18.2]

Theorem 8. Any Z-group is isomorphic t67,, ,. Moreover, it is fixed-point-free if and only {in,r) is

admissible.

Later, we compute all the fixed-point-free representations,gf..
The next step is to classify ablvablefixed-point-free groups. For this, we need the following theorem

of Zassenhaus [12, Satz 6].

Theorem 9. Let G be a solvable fixed-point-free group. Th&hhas a normal subgroug:; which is a Z-
group such that7 /G is isomorphic to either the trivial group, or a cyclic group of ordzror the alternating

group A4 on four elements, or the symmetric grasipon four elements.

For a proof of a weaker version of this theorem we refer the reader to [23, Th. 18.2]. We now use the
above theorem to derive descriptions of solvable fixed-point-free groups in terms of generators and relations.
This has already been essentially done in Zassenhaus’ paper [12, Satz 7,8], and we use most of his proof
techniques.

Given (m,r), we freely refer tau as the order of modulom, tory asged(r — 1, m), and tot asm/ry.

The following remark is quite useful. For a proof see [17, pp. 362].

Remark 2. Let(m,r) be an admissible pair. Theted(ry,t) = 1.

56



Theorem 10. Any solvable fixed-point-free group is isomorphiadg, ., Dy, ¢, Ep ry OF Frpy -

Proof. We use Theorem 9. L&¥ be a fixed-point-free group ar@,; be the normal subgroup @f with the

properties stated in that theorem.
(1) If G/G, is the trivial group, theld = G = G, is a Z-group and we are done.

(2) Suppose that//G; is isomorphic to a cyclic group of ord€& We may assume that is not a Z-group
itself, since we are done otherwise df has odd order, then all the Sylow subgroupg-dadre cyclic, ands
is a Z-group. We may therefore suppose tiathas even order. From Theoren@g is isomorphic toG,,
for some admissiblém, r). We want to show that is odd. Suppose on the contrary, thas even. Then
r is odd (otherwise-™ — 1 is odd, hence is not congruent tanodulot), and1 = ged(r — 1,¢) is even, a
contradiction. Hence, is odd, and since the order Gf; which is equal towm is even, we have thatr is
even.

Since(G, is a Z-group, it2-Sylow subgroup is cyclic, and generated by an elenaeat order2?, say.
Since@ is not a Z-group, it2-Sylow subgroup is a generalized quaternion group by Theorem 7. Therefore,
G contains an elementof order4 that is not inG;. SinceG/G, is of order2, 42 is an element iz, hence
it equalsr™0/2 which is in the center off;. So, conjugation withy defines an automorphism of ordzof
G,. Itis easily seen that the only cyclic subgroupf of orderm is the group generated by the element
Hence,o” = o9 for some integer such thaty? = 1 mod m. The only subgroups of orderr, of G; are
generated by conjugates of These ardr), (77),..., (T"H). Since their number i, which is odd, and
since conjugation withy is an automorphism of ord& on (G1, at least one of these groups of ordey, is
fixed under conjugation with. Hence, there is some elemefitonjugate ta-in G, such tha{r')” = (/)¢

for someq’. Without loss of generality, let’ = 7. Note that

1

yror ol = yoty !

=og?.

Further,

1

YTOT™ ol = 777_1707_177_1

ol =19 glr4 = quq"
This shows that? ! = 1 mod m, hencey’ = 1 mod n. Observe that

!

(@) = (") = 71
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and

(') = o' = 7™,

This shows tha = ¢’ mod ry. Chinese remaindering shows that we can firstich that? = ¢ mod m and

L l

¢ = ¢’ mod n. It follows that/ = 1 mod n and¢? = 1 mod m, ando” = of, 77 = 7¢.
To prove thatG is isomorphic toD,, , ,, we are left with showing that = —1 mod s, wheres is the

highest power of dividing mn. To this end, consider th&Sylow subgroup of7; contained in the cyclic

group (7), and assume that it is generated by= 7°, say. z together with an elemen{’ of order4 of

G generate 2-Sylow subgroup of7, which is a generalized quaternion group. We may without loss of

generality assume thatisy’. Thenz? = z~ !, andz? = (1) = (r%)¢ = z*. Hence/ = —1 mod s.

(3) Suppose now that’/G; is isomorphic toA4. In [12, pp. 203] it is proved thaf/ contains a normal
subgroupG, of odd order which commutes with2aSylow subgroupss of G, such thatV = ¥, x Gs is a
normal subgroup of indeXof G, and such that there exists an elememt G'\ N of odd order withz® € Gs.
We may assume thal, is a generalized quaternion group since otherdiseould be isomorphic to a Z-group
and we would be done. We will first show thas is in fact a quaternion group of ord&r Conjugation with
x defines an automorphism of ordeon 3, because:® € G andX, andG, commute. By [24, Aufgabe 56,
p. 94] we know that the automorphism group of a generalized quaternion group of order larg@islz
group, whereas the automorphism group of the quaternion group of®h#24 elements. This shows that
¥, is a quaternion group of ord&r and there arg andy such thatsy = (u,y | p* = 1, u% = 42, 47 = p=1).
One automorphism of ord@rof 3, is given byu — v, v — u, as is easily checked. It can be shown tay
automorphism of ordes of 3, is conjugate (in the automorphism groupXof) to either this automorphism,
or to its square. Thus, by replacingvith 2 if necessary, and by replacinpgandy with two other appropriate
generators of-, we may assume that® = v andvy® = u-.

SinceG5, is a normal subgroup aF, conjugation withr leavesG, invariant, so(G,, x) is a subgroup of
G of odd order3|G»|. Hence,G> andz generate a group isomorphic €, , for some admissiblém, r):
t

(Go,z) = (0,7 | 6™ =1,7" = 0,07 =0").

We want to show that ¢ Gy ando™/t € Gy. If 7 € zGs, this would show tha” = ~,77 =
iy, 1™ = ™ = 5, sinceGs and S, commute. Ifr € 22Gs, this would show thay™ = py, and
~™ = pu, so interchanging: and~ would take us back to the previous case, and hence to the description of

Suppose first that™/* ¢ G,. Then3 does not dividen /t, so3 dividest, since3 dividesmn, the order
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of G,,-. By Remark 2, we see thdtdoes not dividenry. This shows that € G. So,u?" = pu°, since
¥, andG, commute. On the other hand?” = 17", which shows that = 1 mod 3. This contradicts the
assumptiorged(r — 1,¢) = 1, and proves that™/ is in G.

Suppose now that € G. This shows thatr € G, since otherwisé,,,, = G». Therefore,3 divides
m/t, sinces™/t € Gy. Butr” = ot ¢ (G4, which contradicts the assumption. Therefarez G5, and we are

done.

(4) Suppose that’/G; is isomorphic to the symmetric grougy. Obviously,G contains a normal subgroup
G of index2 such thati /G is isomorphic tad,. Hence G, is either of typeG,, . or of type £, .. If G
is of typeG,, -, then we are back in case (2), SinG¢G’, is cyclic of order2. So, we may suppose th@t is
of type E,, .. We denote the generators of this groupoby, 1, v. In [12, pp. 204] itis proved that there is an
elementr of order4 in G\ G such that conjugation with leavesH = (o, 7) fixed. Since fixed-point-free
groups have at most one element of or2lewe see that? = uz. Hence 2 commutes with all the elements
of H, and conjugation with/ is an automorphism of ord& on H. In the same way as in (2), it can now
be shown that” = of and7” = ¢, where/? = 1 mod m and/ = 1 mod n. Conjugation withv is an

automorphism of ordet of X5, the2-Sylow subgroup of~ (this is becaus&, is a characteristic subgroup).

As in part (3), we may w.l.o.g. thai” = v~ andy” = p~!'. To see tha? = —1 mod 3, we compute
the quantity,™ = u™" = p*™ " = (0 )7)” = (v"1)) = (v 'u!)” = py. Note thaty” = 7,
p™ =y, andp™ = p, sop™ = pyif and onlyZ = —1 mod 3. Sincel = 1 mod n, we also conclude

that3 does not divide:. On the other hand} dividesnrg sinceG contains the grour; of type E,,, .. As a
result,3 dividesry.
U

The next step of the classification theorem consists of identifying the non-solvable fixed-point-free groups.
As it turns out, the prototype of non-solvable fixed-point-free groups is given by the §ioyp’; ) of 2 x 2-
matrices of determinarit over the fieldGF(5). This group has the following generators and relations [12,
pp. 210]:
SLa(Fs) = (u,7 | p* =7 = (u7)°,u* = 1). (A.1)

We gather some basic useful facts about this group.

Lemma 3. (1) The right cosets &L, (5 ) modulo the cyclic subgrouff of order10 generated by.y are

given byl, u, v, i, vy, (V)% ey s (vw) 2y, () 292, (v) 92, (yi)* 2 ey, (y) 2y (ype)
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(2) The group generated by and A = (uy)" (vi)?y(yu)? is a 2-Sylow subgroup FLy(F5) and it is

isomorphic to a quaternion group.

Proof. (1) This assertion can be proved using any of the usual coset counting algorithms like the Todd-Coxeter

algorithm. We have used the computer algebra package GAP [25] to compute the cosets.

(2) The 2-Sylow subgroups 6fL.»(F5) are of orde®. Further, it is easily checked that = (uy)®yu~y?. This
shows thap* = p~'. Further,\2 = 12, as can be checked directly. Hen¢g, )\) is a generalized quaterion

group and the assertion is proved. O

The following theorem classifies all non-solvable fixed-point-free groups. It has been essentially proved
in [12, Satz 16] and [23, Th. 18.6]. Our contribution is the derivation of the group description in terms of

generators and relations.

Theorem 11. Let G be a non-solvable fixed-point-free group. Th&ms isomorphic to one of the following

groups.

(1) The group
Jm,r = SLQ(F5) X Gm,ra

with admissiblgm, r) such thatged(mn, 120) = 1.

(2) The group
Km,r,l = <Jm,ra V>

with the relations

Vi =% 1" = (uy) () *y(yp)?, Y = y,0" = ot 0 =1,

where/2 =1 mod m,? =1 mod nand? = —1 mod s.

Proof. By [23, Th. 18.6]G contains a normal subgroup of index1 or 2 whereN = SLy(F5) x G, With
(m,r) admissible angcd(mn, 120) = 1. If G = N, then we are in case (1) and are done. Otherwises let
denote a 2-Sylow subgroup 6f. Since any 2-Sylow subgroup of is a2-Sylow subgroup oLy (), S is
a quaternion group of ord&rby Lemma 3(2). By the same lemma, we may téke- (i, \), wherey is the

generator oBLy(IF5) as given in (A.1), and is, as before, the element= (1y)7 (yu) 2y (vu)?.
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Hence, the 2-Sylow subgroups Gfare generalized quaternion groups of ortér Let S’ be a 2-Sylow
subgroup of5 such thats’N N = S. ThenS’ has two generators, 3 such that® = 1, o* = 32,0 = o 1,
andu = 3, and\ = o?3. The element = o3 € §' satisfiesu” = X\, \ = p, andv? = 2. To compute
7" we proceed as follows. Lat = v. Then we have:? = (v3)” = (u2?)” = u? = 3. Further, using the
definition of \, we see that

=\ = \z)"(z))%z(z))>

We search over all20 elements 051y ([F5) to find an element satisfying the above equality together with
z3 = ~3. This reveals that there are only two possibilities for: = v or z = y~!. Both these choices lead
to isomorphic groups; namely, if = !, then replacey by (7). This preserves the relations amqng
and-~, and additionally implies” = . (All these steps require calculations in the gr&lip (F;) which we
did using GAP [25].)

This explains the action of on the characteristic subgroi.»(Fs) of N. SinceG,,, is also a char-
acteristic subgroup oV, v together withG,,, , generate a group of typP,, ,,, and we obtain the relations

2 =1 mod m and? = 1 mod n. O

B Irreducible representations of the fixed-point-free groups

In this section we prove Theorem 2 which will also provide the proof of the second half of Theorem 1.

The fixed-point-free representations of the grodjs, are computed in Section 4.3. We briefly sum-
marize the method. The cyclic groug generated by is a normal subgroup off = Sy, ,. If Ais an
irreducible fixed-point-free representation®fthenA | N is a direct sum of primitive characters &f. On
the other hand, if is a primitive character, then its inertia groupNs which means that the induction gf
to NV is irreducible. Hence, all irreducible fixed-point-free representatioris afe obtained as inductions of
primitive characters olV. Two such inductions only differ by a Galois conjugation (since any two primitive
characters ofV differ only by a Galois conjugation), hence either they are all fixed-point-free, or none of
them is fixed-point-free. Invoking [12, Satz 9] or Lemma C.1, we see that indeed all these representations are
fixed-point-free.

Our strategy for computing the fixed-point-free representations of the classified groups is similar to the
above. For solvable groups, we study restrictions of fixed-point-free representations to normal subgroups,
compute their inertia groups, and then extend and/or induce those representations. For non-solvable groups,

the strategy is more ad hoc and is explained below.
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The first part of this appendix considers solvable groups.
Proof of Theorem 2—Solvable groups:this part we prove items (1)—(4) of Theorem 2.
(1) Let A be a fixed-point-free representation @f= G, ,. The restriction ofA to N = (o) is a direct
sum of primitive characters d¥. On the other hand, it is easily shown that the inertia group of any primitive
character ofV coincides withV. Hence, by Frobenius reciprocity [26, XVIII, Th. 6.1], all irreducible fixed-
point-free representations 6f are obtained as inductions of primitive charactergvofThese inductions are
given in the statement of the theorem and are derived in Section 4.3. We only need to show that all of them
are indeed fixed-point-free. Note that Theorem 10 implies that the conditiém of) being admissible is
necessary fo: to be fixed-point-free. Hence, we are left with proving the sufficiency of this condition. To
do this, we need to show that for amy= 0,...,m — 1l andk = 0,...,n — 1, (z,k) # (0,0) the matrix
I, — A* B¥ is invertible, whered and B are defined in the statement of Theorem 2. The assertion is obviously

clear fork = 0. Hence, we may suppose ttkat>- 0. Now we invoke the determinant formula (C.1) to obtain

q-1 nf/g—1
det (I, — A:L‘Bk) _ H 1— §tk/q H §mrJQ+z ’ (B.2)
i=0 G=0

whereq = ged(n — k,n) = ged(n, k). Itis required to show that this determinant is nonzero. This is the case

if
r—1

gmri 71(171~|»t]€/(] # 1’

or, equivalently, if

k " ~

A zr' Z 0 mod m

q ri—1
foralli=0,...,q—1,k=1,...,n—1andz = 0,...,m — 1. But by Lemma 5 (which is proven later)

this is true sincém, r) is admissible.

(2) Let N = (o,7) = Gy,. We first prove that the induction of a fixed-point-free representatioN o

G = Dy, is irreducible. By [15, Theorem 5.20, Cor. 3] it is sufficient to show that there is no invertible
matrix T such thatT' F(6?)T~! = F(o) andTF(r7)T~! = F(7). This is left to the reader. This shows
that the inertia group of' is N, hence the induction of’ to G is irreducible. On the other hand, the
restriction of any fixed-point-free representationtbto NV is a direct sum of fixed-point-free representations
of N. Invoking the Frobenius reciprocity [26, XVIII, Th. 6.1], we see that all irreducible fixed-point-free
representations af are obtained from inductions of irreducible fixed-point-free representations. ofhe

representations given in the statement of the theorem are precisely these inductions. We only need to prove
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now that the representations computed are in fact fixed-point-free. For this, we need to show that for any
r=0,....m—1,y=0,....n—1,2=0,1, (z,y,2) # (0,0,0), the matrixl,, — A* BY R* is invertible,
where A, B, R are as in the statement of the theoremz K 0, then this follows from the previous part by

noting that(m, r) is admissible. Hence, we may suppose that 1. In this case we immediately obtain
det (I, — A*BYR) = det (I,, + A" BYY AZBY).
SinceB{™/? = —I,, it suffices to show that
det (I, — By™/* AL BY Az BY) + 0.
In view of the previous patrt, this is equivalent to showing that
7ro/2 gt by y # 1.
Equivalently, we need to show that

Ulm ,I_lyo_m -’ 7& ,’_nro/2 )

Leta = o®7¥. Then, the latter condition is equivalentd@a # 2, or (ya)? # 1. Suppose thatya)? = 1.
Since all elements ob,, ., commute with7™70/2  this condition shows thatya) and 770/2 generate an
abelian group of ordetd which is not cyclic. But this is a contradiction, since tk&Sylow subgroups of
D,, ,, are generalized quaternion groups and they do not contain a non-cylic subgroup af.order

(3) We compute the irreducible fixed-point-free representations ef E,, , , by considering the tower of
normal subgroups

N = (u,7) CH=(o,p,7) CG.

First, observe thalV = D, ; ;. Hence, using the previous step, we see fdtas exactly one irreducible

fixed-point-free representatiafi given by

1 0 0 1
0 — -1 0

F' can be extended to an irreducible representatioff gfvhich we denote by’ as well). Indeed, it can be
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shown that any matrig’ for whichCF?C~! = F is a multiple of

We may thus sef'(0) = ¢T for some constant which can be determined using the identifyo™) =

I,. Because3 dividesm, we have(cT)™ = ¢m2m/2¢m/3], where¢ = ¢>™/8. This shows that: =
e?miz/med /2, wherez andm,/3 are coprime (otherwise there is a powerc@f other thanm which is the
identity matrix). It is easy to check that the inertia grougrois equal toH, so that the induction of' to G is
irreducible. This induction has been given in the statement of the theorem. Conversely, any fixed-point-free
representation af restricted toH is a direct sum of irreducible fixed-point-free representationd aéind by
Frobenius reciprocity we see that all irreducible fixed-point-free representations are inductions of irreducible
fixed-point-free representations Hf.

To show that the representations computed are in fact fixed-point-free, we proceed as follows. We first
show that the restriction of the representationMo= (o, 11,) is fixed-point-free. We recall that= 1 if 9
dividesm and is3 otherwise. First, we show the assertion in the daser) = (3, 1). Here we have to check
the eigenvalues of th&4 matrices generated by

¢ 11 i 0 0 1

Ag3 = == , Fo= N
V2 \ i 0 —i ~1 0

We leave this simple calculation to the reader.

Next, note that, for any, we have the following:

2

5 1 1 5 1 1
3%k 3k Skl 3k+1 S sk+2  aka2 [ §
A[)’Z =« , Ay, =« = =« =

0 1 ! v\ ) T V2 i o ’
wherea = e?™#/™_ We will now have to show thad§ , i F1* does not have eigenvalueif it is not the
identity matrix. Letz = 3k. ThenA§ ,FF\* = o3*U, whereU = F{ F{". Note that the eigenvalues bfare
roots of unity of even order ¥ is not the identity matrix, since the groypy, F;) has ordeg. On the other
hand,o>* is a root of unity of odd order (sinae is a root of unity of odd order). Hene€’*U has eigenvalue
1ifand only if «** = 1 andU is the identity matrix, i.e., if and only iﬁfgyngFfL is the identity matrix. Next

suppose that = 3k + 1. ThenA§  F{'F* = o®*! M, whereM is a matrix inEs ;. SinceFs  has orde@4,

64



all matrices in this group have eigenvalues which 2t roots of unity. So, iix3**1 M has eigenvalue one,
thena?¥*1 is a24th root of unity, i.e.24z(3k + 1) = 0 mod m. If 9 dividesm, thenz = 1, and this implies
that3k + 1 = 0 mod m/3, which is a contradiction. 19 does not dividen, thenz = 3, and the condition is
3k 4+ 1 = 0 mod (m/3), which impliesa 1 = 1. In that caseM has to be the identity matrix, since we
know thatE; ; is fixed-point-free and**! M has eigenvalué by assumption. Altogether, this shows that
A‘g’ZFé/Ff‘ has eigenvalué only if it is the identity matrix. The case = 3k + 2 is handled analogously. This
completes the proof of the fact that the restriction of the representation given in the statement of the theorem
to N is fixed-point-free.

Next, we studyly, — AZPYQ"B} forx =0,...,m—1,y=0,...,3,v=0,1,andu =0,...,n — 1.
We may suppose that > 0, since we have already shown that the restriction of the representatigrido

fixed-point-free. A slight generalization of Lemma C.1 shows that
q—1 n/q—1
qj+i t
det (Iop — AZPYQB) = H det (IQ a H (AS,Z IF(Z;'qH) mod 3F(ujq+z'+1) mod 3)A01,Lz/q>’
i=0 j=0

whereq = ged(n,u). Let M = A®. Note thatM*UM—* € (P, Q) for U € (P, Q) and anyk, since(P, Q)

is a normal subgroup of the constellation. Collecting terms, we see that

n/q—1

aj+i tu/q _ tu/q+(rm—1)/(r1—1)art

I — H (AS,z xF(yqu) mod 3F€qu+i+1) mod 3)A01fzq =1 - UA(fzq ' ' . )
Jj=0

for someU € (P, Q). Since we have shown that the restriction of the representatidhisdixed-point-free,
we know that the matrix above is invertible if it is nonzero. But since the ordet,ofis odd and that of
U is a power of2, the matrix is nonzero if and only #fu/q + (r™ — 1)/(r9 — 1)zr® # 0 mod m for any
1=0,...,.g—1L,u=1,....,.n—1,andxz = 0,...,m — 1. Lemma 5 proves that the latter condition is
satisfied if(m, ) is admissible, and we are done.

(4) G = F, ,, has the normal subgroup = (o, 7,p,v) of type E,, , of index2. Let A be one of the
irreducible fixed-point-free representations l6fas computed in the previous part of the proof. It is easily
checked that\” is not equivalent ta\ if n > 1, by consideringA () = A(7%). In this case, the induction
of A to G is irreducible, and it has been computed in the assertion of the theorems= If, thenA may or
may not be extendable 8. To see when it is and when it is not, we first look/stt(x.) and A¥ (). From
this, we easily check that any matrix for which TAYT—! = A has to be a multiple oR. By checking
the conditionT A” (o)T~! = A(o), we arrive atRoAﬁyz = Ay, Rp. This shows that(¢ — 1) = 0 mod m,
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and sincez andm/3 are coprime, we see thét= 1 mod m/3, which also shows that./3 # 0 mod 3,
since/ = —1 mod 3. Hence,z = 0 mod 3. Altogether, this shows that in caée= 1 mod m/3 andn = 1,
representationa mappingo to A, with z divisible by 3 are extendable t&'; and if 3 does not dividez, then
the induction of this representation is irreducible.

If A can be extended, theh(v) = c¢R for some constant which is determined by the requirements
A(W?) = Inp, A(V?) # Iy,. SinceR? = —Iy,, this leaves the choices= 1 andc = —1 of which we choose
c=1.

The proof that the computed representations are indeed fixed-point-free is similar to part (3). O

Next we concentrate on computing the irreducible fixed-point-free representations of the non-solvable

groups of the previous section. We need the following isolated result.

Lemma 4. The only fixed-point-free representationsSdf, (F5) are the two2-dimensional representations

given by
1 [ =7 n—-n
’7'_>P = = )
VB -t Py
1 [ n—n* n*-1
VHQ = —F= )
N 1= gt =P

wheren € {e2m/5 —etmi/5Y,

Proof. It can be easily verified that the given maps are indeed fixed-point-free representations of the group
G = SLy(FF5). One needs to check thB? = Q® = (PQ)° andP* = 1. Further, it is easily checked that the
two representations given are inequivalent.

Showing that these representations are the only fixed-point-free representati@ins sdightly involved.
Basically, we need to compute all the irreducible representatiogs ahd test whether they are fixed-point-
free. We sketch an alternative to this method by using the character tafdleadier than all the representa-
tions. Thecharacterof a representation at a given group element is the trace of the representation evaluated
at that element. Characters are obviously constant on conjugacy clagseJloé character table @¥ is an
h x h-matrix whereh is the number of conjugacy classes®@fwhose rows are indexed by the irreducible
representations af and whose columns are indexed by the conjugacy classes. Pdsitjorof this matrix
contains the value of the character of éhieirreducible representation 6f at an arbitrary element of thigh

conjugacy class.
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Let x denote the character of a representatidrand suppose thak is d-dimensional. Then, for any
elements in G the eigenvalues oA (o) can be recovered from(o), x(0?),. .., x(c?) (up to permutation).
To see this, note that(c*) equalsw} + --- + wfj, wherews, ... ,wy are the eigenvalues @ (o). Hence, if
we know the character table 6f, and, for each element, the conjugacy class of, o2, ..., o%, then we can
compute for each irreducible representation the eigenvalues of that representation on the group elements and
test whether we encounter the eigenvalue

The character table @ can be found in [27, p. 155]. Applying the procedure outlined above, we see that

the only fixed-point-free representations@fare the ones given above. O

Proof of Theorem 2—Non-solvable groug®ere, we concentrate on proving items (5) and (6) of Theo-
rem 2. The assertions on the explicit form of the constellations follows from Lemma 3(1).
(5) The irreducible representations $f.(F5) x G, are of the formA ® F', whereA and F' run over
a set of pairwise inequivalent irreducible representation§' ahd G, ., respectively. Clearly, foA @ F
to be fixed-point-free, botl\ and F' have to be fixed-point-free. This necessary condition is also sufficient

if ged(|S], |G,

) = 1. (To see this, note that the eigenvaluesdo® B are products of the eigenvalues

of A andB. If A andB have eigenvalues that are roots of unity of coprime orders, the products of these
eigenvalues cannot be one.) So, the irreducible fixed-point-free representatRingBf) x G, , are given
byo— ILb® Ay, 71— 1o ® By, v — Py ® I,, v — Qo ® I,,, with the matricesdy, By, Py, Qo given above.

(6) SLy(FF5) x Gy, is @ normal subgroup ok, ,, of index 2. It is easily seen that the inertia groups

of the representations computed in the previous part coincideSkikF; ) x G, ,; hence their induction is
irreducible, and all irreducible fixed-point-free representations are obtained this way. The representation given
in the statement of the theorem is an induction of a fixed-point-free representattor=08Ly (F5) x Gy,

along the cosetd/, v N. Itis easy to show that the representations given are in fact fixed-point-free. The proof
can be accomplished along the lines of the other proofs of this type outlined in the paper, and is left to ther
reader. O

We close this section by stating and proving a lemma that has been used extensively above.

Lemma 5. Let(m,r) be an admissible pair of integers,be the order of- modulom, ry = ged(m,r — 1),
t = m/ro, k € {1,...,n— 1}, andz € {0,...,m — 1}. Furthermore, lety = gcd(k,n) andi €

{0,...,q —1}. Then we have
r"—1

zr® £ 0 mod m.
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Proof. We first transform the statement of the theorem into a simpler form. Sire€0,...,m — 1}, we

can replacerr’ with 2, so that we may assume w.l.0.g. that 0. Further, it is well-known and easy to
prove that an equatioa + by = 0 mod m has a solution foy if and only if gcd(b, m) dividesa. Hence,
denoting byd the valueged(m, (r™ — 1)/(r? — 1)), we see that the statement of the theorem is equivalent to
tk/q # 0 mod d. We now prove that any primedividing n/q also dividesd. This proves the desired result,
since the prime cannot dividet (sinceged(n,t) = 1), it also cannot dividé: /g (sinceq = ged(n, k)), and

sod cannot dividetk/q (otherwise any prime factor ef would have to divide either or k£/q). Letp be a
prime dividingn/q. Since(m, r) is admissible, any prime divisor af dividesged(m, r — 1), which implies

thatr = 1 mod p. Now

n
—1
r :1+7’~q++7"(n/q_1)qEﬁEOm0dp,
rd—1 q
which proves the desired assertion. O

C The determinant of doubly-banded matrices

Lemma 6. Letay,...,an, by,..., by be arbitrary, and lett < K < M. Define thelM x M doubly-banded

matrix
al 0 . 0 _bl 0 . 0 0 0 . 0
0 a2 0 0 —b 0 0 0 0
0 0 as—1 O 0 —bs—1 O 0 0
0 0 0 G 0 0 —bs 0 0
0 0 0 0 as 0 0 —bs 0
D(M, K) _ .+1 +1

0 0 0 0 0 QK _1 0 0 —bK_1

—bx 0 0 0 0 0 GK 0 0
0 —bxri 0 0 0 0 0 axi1 0
0 0 —by O 0 0 0 0 an
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Then

q M _q M _q
q q
det D(M,K) = H H Gjg+i — H bigri | » (C.H
i=1 \ j=0 j=0

whereq = ged(M, K — 1). In particular, wheng = 1, we have

det D(M,K) = a1 ---ap — by -+ bas. (C.2)

Proof. We first prove the result fay = 1, using induction onV/. For M = 2, we have

ay —b1
det = ajaz — biby,
—by az
as desired. Assume now that for all matrix dimensions less Miawhenevery = 1, equation (C.2) holds.
We shall show that (C.2) holds for matrices of dimensidnLet K be chosen such thgtd(M, K —1) =1
and assume, without loss of generality, that- 1 < M — K + 1 (we can always arrange this by considering

the transpose ab (M, K)). PartitionD (M, K) as

D D
D(M, K) = 11 12 ’
Dy1 Dy
where
D11 = diag (al, e ,aKfl), D12 = < 0(K71)><(M72K+2) dia,g (—bl, ey —b[(_l) )
and
aK
diag (—b[(, ceey —bQK,Q)
Dy = s Do2= | —byp

O(M—2K+2)x (K -1)

—bunr an
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We have

detD(M,K) = detDHdet (DQZ_DQID;11D12)
diag (ag,-.., a0k dia —ble,...,—ibK’leK’Z
— det (Dy;)det 8 (ax- -, 02k —2) 8 (=" a1 )
diag (—bax—1,...,—bm) diag (a2k—1,--.,an)

. /

D

Note thatD isa(M — K + 1) x (M — K + 1) doubly-banded matrix and thg¢d(M — K +1,K —1) = 1.
Thus,
bi...bym

detD:aK...aM—i,
ay...aK_—1

so that

detD(M,K) :al"'aM_bl"'bM,

which is the desired result.

Whenged(M, K — 1) = q, D(M, K) can be partitioned intg x ¢ diagonal blocks, as follows:

Ay —B
A_—l _B_—l
D(M,K) = ! S I
—Bu Au
q q

where

A; = diag (a‘(i—l)q—l—la e 7a(i—1)q+q) ,  Bi=diag (b(i—l)q-i—la e 7b(i—1)q+q) .

Repeating the arguments fpe= 1, to the above block diagonal matrix (sirgmi(%, %) = 1 and diagonal

matrices commute), we have:
det D(M, K) = det (Al...AM —Bl...BM> ,
q q

which yields the desired result (C.1). O
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D Information-theoretic aspects of differential modulation

We briefly justify the design of good constellations of unitary-space time signals by computing the information
rates theoretically achievable with differential modulation. We show that, for lrgdifferential modulation
as presented in Section 2.3 can theoretically achieve rates of approximvatielyl + p/2), only slightly less
than the space-time autocapacity of the chahélg(1 + p) [8] (achievable ad/ — oo). Thus, differential
modulation can attain a significant fraction of the channel capacity without further channel coding. To save

space, our reasoning is intuitive and physical and avoids extensive rigor.

D.1 Mutual information for differential unitary space-time modulation

We refer to the model (1) and employ differential modulation (5), where the channel is consta2d/btiene

() (3 ()
= H+ : (D.1)
X2 Sz W2

where H, Wy, and W, are M x N matrices of independer®\ (0, 1)-distributed random variables. We

samples. Thus,

assume that our constellation of differential signals is well approximated by a constellation of randomly
chosen isotropically distributed unitary matrices. An isotropically distributed random matrix has a probability
distribution that does not change when the matrix is pre- or post-multiplied by a deterministic unitary matrix
(see, e.g., [6, 8]). Therefore, the matricgs and .S, are M x M and unitary and are independent and
isotropically distributed.

In [8] it is proven that there is a space-tiraatocapacitygiven by C,, = N log(1 + p) associated with
transmitting information in a singld/ x 2M block of symbols, asV/ — oo. We therefore consider the
mutual information within a differential modulation block and compare it to the autocapacity. The mutual

information between the transmitted signéls , S»} and the received signafs\;, X} is

1
I(X1, X2;51,8) = oM [h (X1, X2) — h(X1, X2[571,52)], (D.2)

whereh(-) denotes entropy. (We normalize the mutual information by the fagtak/ for convenience, since

2M is the number of time samples) Note tHat;, X»}, conditioned on{ S, S2}, are zero-mean Gaussian
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distributed random matrices. Computing the covariance matrXaf X, } shows that

[ s
h(X1,X3]S1,S2) = 2NM logme + N logdet IQM“F,O( ' > ( ST S5 )]
Sa

S
= 2NM logme + N logdet IM+p(Sik S;)( 1)]
Sa

= 2NM logme + N logdet [Inr + 2pIp]

= 2NM logme + NM log(1 + 2p). (D.3)

SinceH is M x N complex Gaussian, if we perform the QR decomposifiba- QR, thenQ is M x N

isotropically distributed and independent®fwhich isN x N upper triangular. We may write

X1 51Q 1 241 S| 1 Wi
— /oM —_R — /pM —_R . (D4
()= ) o () = () e (32) - e

whereS] = 51Q andS}, = S»Q areM x N independent isotropically unitary random matrices. Furthermore,

1
—hX X = X1, X
IM ( 1 2) ( 1,22

) st ()

= —h(X)|—R|+—I—R;X,X,),
M(1|’_M>2M<#M 12>

where the second step uses the conditional independence and identical distribugrenofXs.

We focus on this expression whéi grows butN remains fixed, for then\/l—MR converges (with proba-
bility one) to anN x N identity matrix. We therefore han}WI (\/LMR|X1, X2> — 0. On the other hand, in
this regimev/M S| behaves as & x N matrix of independenf A/ (0, 1) random variables. Thus(; has the

lim h X]| R —_N1g716+N1 g(]_-f—p)
_ [ 0 O .
Ml—)OO M vV [\/1

Combining this result with (D.3) yields

1
lim (X, Xs;S1,52) = [log(l +p) — 2 log(1+2p)| . (D.5)

M—o0
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Because two consecutivi&\d x M signals are overlapped in differential space-time modulation, the

maximum achievable rate is twice (D.5), or

2
: p
lim Iy = N [2log(1 + p) —log(1 + 2p)] = Nlog ( 1 :
Jim Ty [21og(1 4 p) —log(1 + 2p)] Og( +1+2p>

At high SNR this mutual information i$V log(1 + p/2), which is approximately 3 dB less in SNR than
Nlog(1 + p), the space-time autocapacity of this channel. (It suffices to say that the autocapacity is the rate
theoretically achievable in one channel uselas— oo [8].) Thus, for constellations that are composed of
approximately independent isotropically distributed random matrices, differential modulation can achieve a

significant fraction of the channel capacity.
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