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Abstract

We present a framework for differential modulation with multiple antennas across a continuously
fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The frame-
work can be seen as a natural extension of standard differential phase shift keying (DPSK) commonly
used in single-antenna unknown-channel systems. We show how our differential framework links the
unknown-channel system with a known-channel system, and we develop performance design criteria.
As a special case, we introduce a class of diagonal signals where only one antenna is active at any time,
and demonstrate how these signals may be used to achieve full transmitter diversity and low probability
of error.

Index Terms-Multi-element antenna arrays, wireless communications, fading channels,
transmitter diversity, receiver diversity



1 Introduction

Recent advances in communicating across multiple-antenna wireless communication links show that these
links can support very high data rates with low error probabilities, especially when the wireless channel
response is known at the receiver [1, 2]. However, the assumption that the channel is known is questionable
in arapidly changing mobile environment, or when multiple transmitter antennas are employed. In [3], a new
class of signals callednitary space-timesignals is proposed that is well-tailored for Rayleigh flat-fading
channels where neither the transmitter nor the receiver knows the fading coefficients. In [4], a systematic
approach to designing unitary space-time signals is presented. The unitary space-time signals are suited
particularly well to piecewise-constant fading models. In this note, we show how to modify these signals
to work when the fading changes continuously. The modified signals, which we d#ffetential unitary
space-time modulatigrare easily implemented and achieve full-antenna diversity.

Differential phase-shift keying (DPSK) has long been used in single-antenna unknown-channel links
when the channel has a phase response that is approximately constant from one time sample to the next.
Differential modulation encodes the transmitted information into phase differences from symbol to symbol.
The receiver decodes the information in the current symbol by comparing its phase to the phase of the
previous symbol. DPSK is widely used because many continuously fading channels change little between
successive time samples. In fact, many continuously fading channels are approximately constant for a time
interval T' often much larger than two samples.

Suppose that we transmit signals in block§'dfme samples. We think of standard DPSK as employing
blocks of T' = 2 time samples, since information is essentially transmitted by first providing a reference
symbol and then a differentially phase-shifted symbol. Of course, after the starting symbol, each symbol
acts as a reference for the next symbol, so we really have signals that occupy two symbols but overlap by
one symbol. We wish to employ such an overlapping differential schemeMith 1 transmitter antennas.

As our starting point, we use constellations7ofx M unitary space-time signals proposed in [3] for
piecewise-constant fading. Theth column of any signal contains the signal transmitted on antenaa a
function of time. Intuitive and theoretical arguments in [5] and [3] show that unitary space-time signals are
not only simple to demodulate, but also attain capacity when used in conjunction with coding in a multiple-
antenna Rayleigh fading channel when eitlier>> M or the signal-to-noise ratio is reasonably large and
T > M.

As an extension of single-antenna DPSK, we show that there is a simple and general framework to differ-
entially overlap the multiple-antenna unitary space-time signals that allows them to be used for continuous

fading. ForM transmitter antennas, we assume fhat 2M and design th@ x M matrix signals so that



they may be overlapped in time by symbols. For example, if the fading is constant in blocks of, say,
ten symbols (often a reasonable assumption), this allows us to use differential modulation for at least five
transmitter antennas.

We also show how our differential framework allows us to intimately connect signal design for unknown
channels to design for channels that are known at the receiver [6, 7]. Using a few simple assumptions, we
are led naturally to constellations of matrices that form groups, and eventually to constellations of so-called
diagonal signals, where at any given time only one antenna is active. The diagonal signals fully utilize
the transmitter antenna diversity and can be optimized to achieve low error probability across a Rayleigh

flat-fading channel. Several examples and performance simulations are given.

2 Multiple antennas in unknown Rayleigh flat fading

In this section we present the channel model and summarize some known results for a multiple-antenna

communication link in Rayleigh flat fading. We first need to set some notation.

2.1 Notation

I is aM x M identity matrix,CA/ (0, 1) is the complex-normal zero-mean unit-variance distribution where
the real and imaginary components of each random variable are independent and each havely&iance
and’ denotes complex conjugate transpose of a vector or matrix. The Frobenius noffn-ofid matrix

A = {ay,} is given by

T M min(M,T)
JA]? = tr (ATA) = tr (AAT) =" “aml* = ) om(4), (1)
t=1 m=1 m=1

whereo,,,(A) is themth singular value ofd.

2.2 Rayleigh flat-fading channel model

Consider a communication link comprisidg transmitter antennas and receiver antennas that operates

in a Rayleigh flat-fading environment. Each receiver antenna responds to each transmitter antenna through
a statistically independent fading coefficient. The received signals are corrupted by additive noise that is
statistically independent among th&receiver antennas and the symbol periods. We use complex baseband

notation: at time: we transmit the complex symbads,, on antennasn = 1,..., M, and we receive:,



on receiver antennas= 1, ..., N. The action of the channel is modeled by

M
Tt =P Y MmnStm + W, t=0,1,..., n=1...N. 2)
m=1

Hereh:, is the complex-valued fading coefficient betweenstith transmitter antenna and théh receiver
antenna at time. The fading coefficients are assumed to be independent with respecanal»n (but not
t), and areCN (0, 1) distributed (Rayleigh amplitude, uniform phase). The additive noise at tiared
receiver antenna is denotedw;,, and is independent, with respect to bethndn, identically distributed
CN(0,1). The realizations of,,, m = 1,...,M,n =1,..., N are known neither to the transmitter nor

the receiver. The transmitted symbols are normalized to obey

M
ED  [sml” =1, (3)
m=1

whereE denotes expectation. Equations (2) and (3) ensureptisdhe expected signal-to-noise ratio (SNR)
at each receiver antenna, independently of the number of transmitter anf@nngguivalently, the total
transmitted power does not depend/an
We assume that the fading coefficients change continuously according to a model such as Jakes’ [8].
While the exact model for the continuous fading is unimportant, we require the fading coefficients to be
approximately constant for overlapping blocksiot> 2 symbol periods. We have some freedom to choose
T, but it generally can be no larger than the approximate coherence time (in symbols) of the fading process.
In one block ofI" successive symbols the time index of the fading coefficients can be dropped, and sent

and received signals can be combined ifitgectors. Equation (2) can then be written compactly as
X = pSH+W (4)

whereX is theT x N complex matrix of received signals,,, S is theT x M matrix of transmitted signals
sem, H istheM x N matrix of Rayleigh fading coefficients,,,, (assumed time-invariant within the block),
andW is theT x N matrix of additive receiver noise,. In this notation, theé\/ columns ofS represent

the signals sent on thil transmitter antennas as functions of time.

2.3 Unitary Space Time Modulation

We now consider how to choose a constellatiod afignalsSy, . . ., S;,_1, each & x M matrix, to transmit

data across this multi-antenna wireless channel. We use unitary space-timeSigralg 7 /M @, ..., S—1 =



VT/M®;,_,, where thel' x M matrices®, obey®®, = ... = ®! &, | = I,;. The normalization
\/T/—M ensures that the matrix-signals satisfy the energy constraint (3).

For a piecewise-constant fading channel, it is argued in [5] and [3] that the capacity-achieving distri-
bution for reasonably larg& or pis S = \/T/—M@, where®'® = I, and® is isotropically distributed.
Because@}@g = I, we are implicitly assuming that/ < T'; as shown in [5], this assumption is not
restrictive because there is no gain in capacity by maRihg- 7.

Itis also shown in [3] that the maximum likelihood demodulator for a constellation of unitary space-time

signals is a matrix noncoherent correlation receiver

XT®,|, (5)

P, = arg max
$,=>0,..., P11

and that the two-signal probability of mistakitsgy for Sy or vice-versa is (see Appendix B of [3])

M —-N
L[ 1 T/M)%(1 - d2, 241/4
Pom i [ L T [ A0 e 21/ ©
Am ) o WA 1/4 22 1+ pT/M
wherel > dyn > ... > dgeps > 0 are the singular values of thel x M correlation matrixrb}bé,

(oo = am(cbzcbg/)). The pairwise probability of erroP. decreases as anjy,, decreases, and has

Chernoff upper bound
M

P<: I1 [1 | /My - dﬁf’m)} _N. 7)

2 4(1 + pT/M)

m=1

For the noncoherent receiver, the pairwise probability of error is lowest when the two matrix-valued signals
are as orthogonal as possible, and is highest when the signals are as parallel as possible. Hence, the prob-
ability of error is lowest whenlyy = ... = dyrpr = 0 and highest whedy,; = ... = dpppy = 1. We
obtaindy, = ... = dypyy = 0 when the columns of, are all orthogonal to all the columns 6§f.. The
ideal constellatiorby, . . ., S;,_1 therefore has all the columns 8f orthogonal to all the columns & for
¢ #¢=0,...,L— 1. However, because the columns of eaghare within themselves orthogonal to one
another, all the pairwiséy 1, . .., dgp; cannot all be made zeroif > T'/M.

In general, we strive to build constellations which make the pairwise probability of &rbetween
any two signalsS, and.S,s as small as possible. Optimizing the exact probability of error (6) or its Chernoff
upper bound (7) is awkward because they depend on the SNRather than picking a particular, we
design constellations that work well for all sufficiently largewhere the Chernoff upper bound 6f and

Sy depends dominantly on the product

M
[T dn
m=1
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As shown in [9, Sec. 12.4.3] one can thinkdf,,, as the cosine of the principal andlg.,,, between the
subspaces spanned by the column®pand®,.. The above expression can therefore be interpreted as the
product of the squares of the sines of therincipal angles. To obtain a quantity that can be compared for

different M, we define(,, as the geometric mean of the sines of th@rincipal angle

M ) M 2M
Coor = [ sin(Oeorm)™ = [H (1- d%e/m)] : (8)
m=1

m=1

Becausd < dgr., < 1, we haved < (v < 1, and, in particular, i, is small the pairwise probability of

error is large, and i€, is large the probability of error is small. Define now ttligersity product, as

¢= _min  Cpr, 9)

0<b<l/<L—1

In this paper, we choose constellations that maximize the diversity prgdircparticular, any constellation
with non zero diversity product is said to have full transmitter diversity.

In [4], constellations are chosen that minimizeshere

‘cb}%(

1
§ = S ‘ 10
ogeineagXLq v M (10)

We haveld < 6 < 1 and, by (7), smalb implies small probability of error. For smally,,,,

M
1 1 2
Cgél — ]. - M Z d%élm + O(déélm) — ]. - M H@T/q)[H + O(déélm)
m=1

Thus(¢? ~ 1 — §2 and smalls in general implies largé. We find that maximizing the diversity product
¢ to be more useful than minimizing because minimizing does not guarantee full diversity. Note that
maximizing ¢ is fundamentally different from maximizing Euclidean distance; two signals that have large
Euclidean distance can have small diversity productn fact, diametrically opposite signaly: = —S;
have(y = 0.

In constructing a constellation of signals, we note that the probability of error of the entire constellation
(not just the pairwise error) is invariant to two types of signal transformations: 1) left-multiplication by a
commonT x T unitary matrix,®, — v, £ =0,---, L —1; 2) right-multiplication by individualM x M

unitary matrices®, — ®,Y,, £ = 0,---, L — 1. We can intuitively understand these transformations by

The original March 1999 version of this paper defiged as the square of its current definition. However, the current definition
is more amenable to interpretation, especially when the channel is known.



viewing the left-multiplication as a simultaneous permutation in time of all the signals, and the individual
right-multiplications as permutations of the antennas. The ordering of the antennas is immaterial because

all of the antennas are statistically equivalent; see [3, Section 6.2].

3 Standard Single-Antenna Differential Modulation

In this section we give a short review of standard single-antenna differential phase-shift keying (DPSK)
[10, 11]. While we do not offer any new material here, we present DPSK in an unusual framework that
ultimately makes our transition to multiple antennas easier.

DPSK is traditionally used when the channel changes the phase of the symbol in an unknown, but con-
sistent or slowly varying way. The data information is sent in the difference of the phases of two consecutive
symbols. For a data rate & bits per channel use, we neéd= 2* symbols; the most common techniques

use symbols that arkth roots of unity

oo =™l p=0,...,L—1. (11)
Suppose we want to send a data sequence of integers . .. with z; € {0,..., L—1}. The transmitter
sends the symbol stream, ss, . . .
50
51
where s, = ¢,,s.-1, t=1,2,... (sg=1).
52

(In the matrices and sequences shown in this paper we always represent the time axis vertically.) The initial
symbolsy = 1 does not carry any information and can be thought of as a training symbol. The received

datazq, xo, .. ., are processed by computing the differential phases

0, = arg x4, t=1,2,...

which are quantized to form an estimate of the integer sequence



The received and transmitted symbols are related by the equation
:):t:\/ﬁhtst—l—wt, t:(),l,

This is the single-antenna version of the model (2), wlkeiis the complex valued fading coefficient which

is either constant or varies slowly with There are two sources of possible erraiis=£ z;): the additive

noise, and time-variations in the phase of the fading coefficient. The demodulation rule (12) does not
depend on earlier demodulation decisions, but only on the received symbglsand z;; demodulation

errors therefore do not propagate.

There is a slightly different way to look at DPSK modulation and demodulation that fits into our
multiple-antenna model (4) with/ = N = 1. Since DPSK demodulation requires two successive sym-
bols, we consider the transmitted signals as occupying overlapping intervals of length and consider
modulation and demodulation using the maximum likelihood receiver given in Section 2. One can view the
signal constellation as containing two-dimensional vectors of the type

1 ve) 1 e2mil(1)/L

B — — S , 0(=0,...L—1. (13)
\/§ Co@) \/§ 627rz€(2)/L

(Recall in Section 2.3 that the transmitted sigals ®, multiplied by /7 /M = /2.) The signals form an
equivalence class invariant under phase shifts;®gande’ ®, are indistinguishable to the receiver for all
6. A phase shift can be seen as a right-multiplication byltlxel unitary matrixe??, which does not change

the constellation (see the last paragraph of Section 2.3). Therefore, one has a canonical representation
(14)

whereypy is given in (11).
Effectively, to generate a DPSK signal, the transmitter preprocesses the signhaldgbtorotating®,
until its first symbol equals the symbol previously sent. The transmitter then sends only the (hormalized)
second symbol of the rotatebl,, thus representing, by only one sent symbol. The receiver is aware of
this preprocessing and demodulates the current received symbol by combining it with the previous received

symbol to form a two-symbol vector again. More formally, the transmitter computes the cumulative sum

Yyt = (Yyt—1 + z) mod L, t=1,2,... with yo = 0.



The very first signal sent i ¢.,]7 = [¢y, ©4:]7, and we now wish to send the sigrial ¢.,]”. Instead
of sending both components of this signal, we rotate this signal to another element of its equivalence class,
obtained by multiplying by the scalar,, = ¢.,, namely[v., ¢ ¢z]7 = [Py ¢y]T. The transmitter

then sends only,,. Figure 1 schematically displays differential modulation.

e ] Lo Lo ]
|

[s0] — [%

Py ] [ Py

51 _ ]
52 Pya [ Py ]
S3 Pys

Figure 1. Schematic representation of differential phase modulation. Along the top, from left to right, are
the symbolg1 ¢.,]7 one wants to send. These are multiplieddy , so that they can overlap, as shown
diagonally downward. The overlapped signals are then transmitted ¢, ) on the channel.

The receiver now groups received symbols in (overlapping) vectors of length two

Tt—1
X pu—

€Tt

and computes the noncoherent maximum likelihood demodulation according to (5)

(3¢)m1 = arg ,_mmax | D) X |

-----

This corresponds to DPSK demodulation given in (12) because
arg max | X | = arg max |ze—1 + e = arg max |y +ai g w .

The termx;_,x; computes the phase difference between successive received symbols, and maximizing

{w + x;llxt\ finds they, whose phase matches this difference most closely.



4 Multiple-Antenna Differential Modulation

The previous section shows that standard differential modulation effectively uses a block of length two that
overlaps by one symbol, where one symbol acts as a reference for the next. Information is delivered in the
phase difference between symbols. When we havé&ransmitter antennas we need a blockMéfx M
space-time symbols to act as a reference for the next block. Hence, we consider signal®.&f siz&f

that we overlap byl samples, and effectively deliver information in the matrix quotient of the two blocks.

4.1 Signal requirements for differential modulation

With multiple antennas, we accomplish differential modulation by overlappin@'thheM matrix signals
®, by T'/2 symbols. We therefore chooge= 2)/. We now explore the structure th@p, ..., P, must

have to permit overlapping. Using a notation similar to (13), we let each signa@ve the form

1 Vo
V2 | Vi

whereV,; andV;, are, for the moment, arbitrary/ x M complex matrices Becauseb}cbg = Iy, it
follows that
Vi Vi + VihVie = 21y (15)

In Section 2.3 it is shown thak, and®,Y,, £ = 0,..., L—1 are indistinguishable for arbitrary unitafy x

M matricesY,. To help overlap the signals in a fashion similar to Section 3, we therefore have the freedom
to “preprocess” each signdl, to be sent by right-multiplying by a unitary matrix so that its fikgt x M

matrix block equals the second matrix block of the previously (also possibly preprocessed) sent symbol, say
d . (see the rules for signal manipulation at the end of Section 2.3). &ftexpreprocessed, because its first
block equals the second block of the signal already sent, we then need to send only its (normalized) second
block. For this overlapping to succeed, we therefore require that a unitary transformation exist between the

first block of ®, and the second block df,/; i.e., for any/ and/’, the equation
Vo Yoy = Vi, (16)

should have a solution for some unitéfy,.

The most general set &f; andV;, matrices that satisfy (15) and (16) is described by Peter Oswald in

2The /2 normalization may seem odd, but it ultimately allows us to choosé&theatrices to be unitary Whilé} Dy = I



[12], where he shows that the best diversity produ, in general, obtained by choosiff; andVy, to
be unitary. We therefore restrict ourselves to this caséylfandV;, are unitary for all¢ then (15) holds
trivially, and (16) has the unitary solutioif,, = V}2V41. With this choice, becausé, and CI)ZVJI are

indistinguishable at the receiver, we have a canonical representation

1 Iy
(bﬁ = = 9 (17)
V2 | v,

whereV, = V@VJI is unitary. Without loss of generality, we can thus assume the following:
Assumption 1 The signalsb, are of the form (17) wher&, is a unitary matrix.

Observe the formal similarity with (14).

4.2 Differential transmission

In standard single-antenna DPSK, Section 3 shows that the equivlesignals can be thought of as
two-dimensional vectors whose first components are 1, and whose second components are used to form
the transmitted signal. Similarly, in equation (17), the signals. .., ®;_1, areT x M matrices whose
first halves ardl,;, and whose second halves are used to form the transmission matrix i -@mtenna
differential modulation scheme. Therefore the channel is used in blodksef7"/2 symbols. Let us use
to index blocks of\/ consecutive symbols; the running time index of channel uses isthenM +m — 1
with m = 1,..., M. A transmission data rate d® bits per channel use requires a constellation with
L = 28M gignals; thud. distinctV, matrices are needed. We again have an integer data sequenge . .
with z; € {0,...,L — 1}.

Figure 2 schematically displays multiple-antenna differential modulation. Her&/thelumns of each
S; (which areM x M matrices) represent what is transmitted on Aieantennas as functions of time for
M symbols. The first transmission {g7/M®,, = \/2®,,; that is, an identity matrixS, = I, is sent,
followed byS; = V. Next, we wish to send/2®.,. To make the identity block ob., overlap with the
last sent block/,, , we postmultiply®., by V.,. The second block ob., then become¥’,,V,, and, hence

Sy =V, V., = V,,S1. In general, the differential transmission scheme sends the matrices
Sr=V,. S8 T=12,.... (18)

This is thefundamental differential transmission equatiddlearly, all the transmitted matrices will be

unitary.

10
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Figure 2: Schematic representationMfantenna differential modulation. Along the top, from left to right,

are the symbol®._one wants to send. These are right-multiplied by the previously transmitted block so
that they can overlap, as shown diagonally downward. The overlapped signals, whicl.obey, S,_1,

are then transmitted on the channel. Compare Figure 1, which shows the overlapping scheme for standard
single-antenna differential phase modulation.

4.3 Differential reception

With N receiver antennas, the demodulator receives a stream

whereX’; is anM x N matrix. Demodulation requires looking at two successive matrices to form a matrix

with T' = 2M rows,

We assume that the fading coefficients are constant acrosk the2 M time samples represented in the

rows of X. Then the relationship with the sent stream is

X1 = \/ﬁsrflﬂ"’_wffl (19)
X = \/ESTH—i_WT? (20)

11



whereW; is aM x N matrix of additive independert\V (0, 1) receiver noise. The maximum likelihood

demodulator (5) is

; (21)

: | |
z = ar max d,X|| =ar max
(Z7)m & -1 H ¢ & 0=0,...,[—1

where the norm is as defined in (1).
Substituting the fundamental differential transmitter equafipr= V,_S,_; into (20) and applying (19)
yield
Xy =V, X 4+ Wy =V, Wi 1.

Because the noise matrices are independent and statistically invariant to multiplication by unitary matrices,
we may write this as
Xr =V, X1 +V2W, (22)

whereW. is aM x N matrix of additive independedt\ (0, 1) noise. This is théundamental differential
receiver equation

Remarkably, the matrix of fading coefficiem&does not appear in the fundamental differential receiver
equation (22). In fact, formally, this equation shows that the siffbalappears to be transmitted through
a channel with fading responsg._;, which isknownto the receiver, and corrupted by noise with twice
the variance. This corresponds to the well known result that standard single-antenna differential modulation
suffers from approximately a 3 dB performance loss in effective SNR when the channel is unknown versus

when it is known.

5 Connection between Unknown and Known Channel

Equation (22) demonstrates that our multiple-antenna differential setting appears to turn the original unknown-
channel communication problem into a known channel problem. In this section we explore this connection

further. We first review some facts about the known channel.

5.1 Known channel

We consider signals that afd x M matrices. The action of the channel is

X, = /pS-H + W, (23)

12



where H is known to the receiver. We assume that the constellation consigts=02%M signals¥, that

are unitary. The transmission matrix is then

BecauseH is known at the receiver, the maximum likelihood demodulator is the coherent receiver

(&')ml = arg (:()miri 1 HXT - \/E\IJZHH : (24)

and has pairwise probability of error Chernoff upper bound given by [6], [3]

-N
|: + mO’m \I/gl — \I/g) . (25)

| M
<31l

m=1

Hence, good constellations,, . .. , ¥, have singular values
Om(Wy — Wy), m=1,...,.M

that are as large as possible for£ ¢. For large SNR, the probability of error depends dominantly on the

product
M

H Jm(\I/g — \I/g/) = \det (\I/g — \I/g/)’ . (26)

m=1

In particular, a larger product equates to a smaller error probability.

5.2 Connection between signal designs

Recall in Section 2.3 that the unknown-channel sigiglareT x M matrices obeyin@}q)g = I, and that

a good constellatio®, . .., ®;, has singular values
dyprn = 0 (), @), m=1,...,M

that are as small as possible #r£ ¢. If we view the identity block of the differential unitary space-time

signal construction ob, as training to learn the matrix channél we may build®, as



whereV, are unitary matrices taken from a constellation of known-channel signals. Then
q’z/q)f - (I]\/[ + \Ilz,\llg)/Q,
which implies that
02(<I>T<1>)—12(I +\1/T\1/)—1A (200 + W0, + UIw,) 27)
mg/é—4UmM glé—4mM VA X))
where\,,(-) is themth eigenvalue of the matrik). Hence
1 i i 1 s f L o
1— 02, (®],3,) = 4)\m(21M — UV, — UU,) = Zam(IM — U 0y) = Zo—m(\pg, —Wy). (28)

Equation (28) says that minimizing the singular values of the correlations of the unknown-channel signals is
equivalent to maximizing the singular values of the differences of the known-channel signals. We can now
write (g in (8) as

M
1

CM’: H(l—o’ ((I)T(I)g 2M =

m=1

M 1 1 1
H (Vo = W) = o |det (Tpr — Wy) |77 (29)

wlv—*

As argued in Section 2.3, largg, equates to small pairwise error probability wheis large and the channel

is unknown. On the other hand, equation (26) states that Jaeg€¥), — ¥,)| also equates to small pairwise
error probability when the channel is known. Thus, a constellation of good known-channel matrix signals
can be augmented with an identity matrix block to form a constellation of good unknown-channel matrix
signals. Conversely, a constellation of good unknown-channel signals of the form (117) masrices that

form a constellation of good known-channel signals. Intuitively, the identity block can be viewed as training
from which the channel is learned before the second block carrying data is sent. Differential modulation, of
course, lets the training and data blocks overlap. The diversity product for differential modulation can now
be written as ,

L
C= 5 peein, ldet (Ve = Vi) or (30)

By comparing the Chernoff bounds (7) and (25), and using (26) we see from the fdetor (29) that the

performance advantage for knowing versus not knowing the channel is approximately 3 dB in SNR.

14



5.3 Connection between demodulation strategies

The fundamental differential receiver equation (22) is
Xy = ‘/;JTXT—I + \/§W7/.

As we have remarkedt;_; can be viewed as a known channel through which the signal niariis sent.

We may demodulate, using (24) to obtain

o= arg  min X — WXl
= arg _min_tr (XA + Xlx —xl vix - xlea, )
= arg _max ftr (X! wix + xiwx, )

This estimate is exactly the maximum likelihood demodulator for the unknown channel (21):

=arg max tr (X:fl\ll;XT + X:\Ilgé\,’f,l).

5 )l = X +0lx
(37)m1 = arg  _max 1” T—1t s 0=0,..,[—1

(=0,....—

These connections imply that the differential scheme can use existing constellations and demodulation
methods from the known channel such as, for example, the orthogonal designs of [7].
6 Group constellations

LetV be the set of. distinct unitary matrices
V={Vo,...,Vr_1}.

We have not yet imposed any structure on thelsein this section, we assume thdtforms a group. We

show how this assumption simplifies the transmission scheme and the constellation design.

6.1 Group conditions

In order for a se®d’ to form a group under matrix multiplication, we need to impose four conditions: in-
ternal composition, associativity, existence of an identity element, and existence of an inverse element for
each element. We briefly discuss these conditions and show that imposing internal composition essentially

imposes the remaining three.

15



Internal composition: In standard single-antenna scalar DPSK With= 2 (reviewed in Section 3), the
product of any two symbolsp, and s, is another symbol. In a similar fashion, we impose an internal

composition rule onV. For any/, ¢’ € {0,..., L — 1}, itis required that

ViVie = Vir (31)
for some?” € {0,..., L — 1}. We may define an equivalent (isomorphic) additive operation on the indices
as

=1/l

Associativity:  Follows immediately from the associativity of matrix multiplication.

Identity element: In Section 2.3 it is mentioned that every sigdalin the constellation may be premul-
tiplied by the same fixed x T" unitary matrix without changing the error performance of the constellation.

The first element of the constellation is

1 I

=7 Ve

We now premultiply every member of the constellation with the unitary matrix

Ing Op
Op V)

This gives an equivalent constellation whose first element has two identity matrices. Thus without loss of

generality we can always assume a constellation Wijte- 1, € V.

Inverse element: We show that because we impose internal composition, any elemerif; saytomati-
cally has an inverse il. Sincel comprises unitary matrices, the matrix produét¥y, ViVva, ..., ViV 4
are all distinct, and are all again ¥; they consequently form a permutation of the element¥ .ofin
particular, there is an indeksuch thatl; V, = V) = 1. Hence,Vl‘1 =V,
Of the four requirements that a group must satisfy, we have shown that imposing internal composition

automatically imposes the remaining three.

Assumption 2 The set of unitary matricel forms a group.
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Note that since) is a finite group of sizd., its elements must all béth roots of unity: VgL = Iy for
(=0,...,L—1.
6.2 Advantages of group constellations

Differential modulation as in Section 4.2 can now be written more succinctly by letting
yT:ZT@yT*h 7—21727’"7 3/0:0 (32)

so that
VyT = ‘/ZT VyT—l .

The transmitted matrix is
ST: y-,—:VZT‘STfl t:1,2,

Thus, unlike the general case, whiris a group each transmitted matrix is an elemeny of

One advantage of a group constellation is that the transmitter never has to explicitly multiply matri-
ces, but only needs to compute (32) using a lookup table. Another advantage is simplified design. Good
constellations are often found by searching over large candidate sets. Compfdaireygeneral candidate

Conste”ation requires CheCkim@ — 1)L/2 Correlations Of the fOI‘III
o y4 2 ( M v Z) . ( )

However, wherV is a group it suffices to check only — 1 correlations; in particular, one may check the
singular values oﬁ%@e = (1/2)(Ip + Vi). Figure 3 schematically displays multiple-antenna differential

modulation when the constellation forms a group.
6.3 Abelian group constellations
We now impose the requirement that the product of any two matrick'scommutes.

Assumption 3 The groupy is Abelian.

Imposing commutativity has some appealing consequences. ®jnce, V7,1 are unitary, they are normal
matrices, and can be written B = PgAng, where the matrix of eigenvector’ obeyng P, = Png =1,
andA, is a matrix of eigenvalues df; [13]. But becausé, . .., V_1 commute, they share a common set
of eigenvectors,P def Py = P = ... = Pr_q; see [13, p. 420]. Consequently, this constellation of

matrices can be diagonalized into a new constellation comprising diagonal matrices of eigenvalues using
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Figure 3: Schematic representation di-antenna differential modulation when the constellation forms a
group. Along the top, from left to right, are the symbols one wants to send. These are right-multiplied by
the previously transmitted blocdK, _, so that they can overlap, as shown diagonally downward. Unlike in
Figure 2, the transmitted signals are always members of the constellation, just as in standard scalar DPSK.

one fixed/-independent similarity transfori, — P~'V,P. The similarity transform does not effect the
error performance of the constellation because it is equivalent to postmultiplying every &igbglthe

unitary M x M matrix P and premultiplying®, by the unitary2M x 2M matrix

p1! O
Ons p!

Thus, assumind’ is Abelian is equivalent to assuming that all of its elements are diagonal matrices. If all
the 1, are diagonal, then the signals consist of two diagonal blocks (the first of which is identity). This

implies that at any given time only one antenna is active. We call these sitjagtmal

6.3.1 Cyclic construction

A simple way to build the commutative grodpwith L elements is to make it cyclic. Théi is of the form
Vi=V{, ¢=0,...,L—1
where the generator matri% is an Lth root of the unity. Addition on the indices

g//zg@el
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then becomes
" =0+ /¢ (modL).

Hence, the transmitter does not even need a lookup table to compute the differential transmission scheme.

The matrixV; is diagonal and can be written as
0 , Um €40,...,L—1}, m=1,..., M.
ei%uM
With this cyclic construction, theM x M signals®, are given by
oy = 0" @y, (34)

where
Ing Op 1 Iy

The/th signal in the constellation therefore has the form

o1 0 e
0 0
P L 0 ! £=0 L—1 35
Z_E ei%ule 0 3 = Uy v — L. ( )
0 0
| 0 eiQ%UA{Z_

These signals have a very simple interpretation. At any time, only one transmitter antenna is active and
transmitting either a reference symbol (which in differential modulation is actually the previously sent sym-
bol) or a phase-shifted symbol. Thus, within thiéh block, antennan transmits at tim¢ = 7M + m a
symbol that is differentially phase shifted 9 /L)u,, ¢ relative to its previous transmission. The value
of / is determined by the data. It is important to note that the phase shifts are potentially different for each
antenna. Whed/ = 1, the signals reduce to standard DPSK.

Signal matricesV, with low pairwise probability of demodulation error form correlations (33) with

singular values that are small for &l ¢. The singular values dft /2)(I1y; + V) are

dogm = (1/2) |1 + ei2”mf/L( = /1/2 + (1/2) cos(2muml/L) = |cos(mu,l/L)] . (36)
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Thus

M A7
Coe = | [] sin(rumt/L) (37)
m=1
Our maximin design requirement is to fing, . . . , u,, satisfying
1
M g
= i i /L
{ur, o} = are Our o <L—1 f=ToL—1 ml_—Il sin(rumt/L)
One can see that if{,...,uy; and L share a common factor, thérn,...,V;_1 are not distinct. Our

maximin design requirement ensures that the signals are distinct.

6.3.2 Multi-cyclic construction

In general, ifL is not prime, a finite Abelian group of size may be written as a cross product of cyclic
groups [14, p. 109]. A corresponding signal construction that is multi-index and systematic may be defined.

Consider a factorization of given by

K
L=]]L
k=1
Using a multi-index notatioi = (¢4, {2, - - -, £k ) with 0 < ¢ < Ly, the group elements are given by

K
V=[] A%
k=1

Here A, is a diagonal matrix with diagonal elemenits,, = exp(2miu,,,/Ly). The diagonal elements of

Vp are thusexp (icy,, ) with

K
Qpm =270 el /L, m=1,..., M.
k=1
and the singular values of the correlation matricesdage= |1 + vg,| /2 = |cos(aym)|-

When theL,, are pairwise relatively prime, the group is cyclic, otherwise it is multi-cyclic. For a multi-
cyclic group at least two of th&; share a factor; it therefore uses an alphabet with less thelements.
Thus, for anym there are two diagonal matrices with the samth diagonal element. The difference
between these two matrices therefore is zero imrith column, its determinant is zero, and thus= 0.

Multi-cyclic groups cannot have full diversity and we do not consider them any further.
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7 Design and Performance of Constellations

7.1 Constellation design

In this section, we give the performance of constellations of diagonal signals designed forl, ... .5
transmitter antennas. In the search for good constellations, we may employ some simplifying rules that

cause no loss of generality, regardless of the performance criterion used:

1) Because every antenna is statistically equivalent to every other, we may impose the aigeging

2) We may assume that,, > 0, because iti,, = 0, then themth antenna can only transmit the symbol

1 and is effectively rendered inoperative.

3) The constellations generated by, . .., uy) andauy,...,...,auys are identical for alkx relatively
prime to L. From equation (34), we see that multiplication dysimply reorders the signals in in-
creasing/ ( mod L) instead of increasing.

7.2 Search method

In Section 4, we mention that constellations of differential unitary space-time signals can be designed with

a maximin procedure: find the,, ..., uy € {0,..., L — 1} that maximize the diversity product
1
M g
¢ = 46{1T?,%—1} 11 sin(mu,, ¢/ L) (38)

We do not know of explicit solutions to this procedure, and we therefore resort to exhaustive computer
searches. We consider only single-index cyclic constructifns= 1. Candidates for the best set of
u,...,up €40,...,L—1} are generated exhaustively, tested for performance by computing the diversity
product, and kept if they exceed the previously best candidate.

The search space can be reduced using the following rules:

a) Equation (38) does not changeujf, is replaced byl — u,,,. We may therefore restrict our search to

Um € {0,...,L/2} (assumingl is even).

b) If u,, shares a factor witli. then there is af € {1,..., L — 1} for which u,,¢ = 0 ( mod L); this
implies that the diversity product is zero. Thus, we can restrict the seareh) that are relatively

prime toL.

21



M R L 0 ¢ [u1 uz -+ un P. union bound f = 20 dB)
1 1 2 0 1 [1] (standard DBPSK) 9.9e-3
2 1 4 0.7071 0.7071 [11] 1.7e-3
3 1 8 0.7860 0.5134 [113] 4.6e-4
4 1 16 0.7071 0.5453 1[357] 6.7e-5

5 1 32 0.8179 0.4095 1[57911] 3.0e-5

1 2 4 0.7071 0.7071 [1] (standard DQPSK) 4.9e-2
2 2 16 0.9239 0.3826 [17] 3.4e-2
3 2 64 0.9389 0.2765 [11127] 2.6e-2
4 2 256 0.9335 0.2208 [12597107] 1.7e-2
5 2 1024 0.9389 0.1999 [1157 283415 487] 9.1e-3

Table 1: Systematic antenna constellationsifbr= 1, 2, 3,4 and 5 transmitter antennas and r&te= 1,2

that maximize the diversity productin (9). The number of signals in the constellationZis= 2", and

0 is defined in (10). The&’, upper bound is a union bound on block error rate obtained by summing over
¢ # ¢ the Chernoff bounds (7) with = 20 dB.

c) By Rule b), we may assume that is relatively prime toL. But then there exists am such that
auy; = 1 (mod L). By multiplying us, ..., uys by this samev, and using Rule 3) above, we may
assume that; = 1.

d) In equation (38), the product férand L — ¢ is the same; it is 1 fof = L/2 (assumingL is even).
Thus, the minimum may be taken owvee {1,...,L/2 — 1}.

Table 1 shows the results of our searches for constellatiots -of 2/** that maximize¢. For com-
parison, we also include the values®fout no attempt to minimizé was made. Becaudeis a power of
two, only oddu,,, appear. Fo\/ = 1 transmitter antenna, the search naturally produces differential BPSK
(R = 1) and differential QPSKR = 2). Also included is an upper bound on the block error rate obtained
by summing ove¥ # ¢’ the Chernoff bounds (7) with = 20 dB.

Comments:

1. We choose to maximiz&in (38) rather than minimizé in (10) because, for example, there are two
M = 2, R = 1 constellations that have the saméut very different(’s and performances. The
poorer performing constellation has= [1 2], for whiché = 0.7071, { = 0, and union bound
P, <1.1e-2 atp = 20 dB. The better performing constellation has= [1 1] (see also Table 1), for
whiché = 0.7071, ¢ = 0.7071, and union bound®, <1.7e-3.

2. We did not search for constellations with more tt4H” signals from which we would employ a
subset.
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7.3 Constellation performance

In our models, we assume that the channel remains approximately const@ht=f@)\/ symbols. In real
communication systems, our model is therefore accurate when the coherence time of the fading process
between the two terminals is at least this long. In our simulations, the fading is assumed to be independent
between antennas but correlated in time according to Jakes’ model [8]. A typical physical scenario where
such a model is appropriate is a base station antenna array communicating with a mobile. If we assume
that the mobile is traveling at approximately 25 m/s (55 mph) and operating at 900 MHz, the Doppler shift
is approximatelyfp = 75 Hz. The Jakes correlation between two fading coefficietiime samples apart
is Jo(27 fpTst), whereTy is the sampling period and is the zero-order Bessel function of the first kind.
We assume thdl; = 1/30,000 soTsfp = 0.0025. The Jakes correlation function has its first zero at
t ~ 153. This means that fading samples separated by much less than 153 symb@ls=say symbols,
are approximately equal and our model is accuratd fat 15 or M < 7.

We suppose that binary data are to be transmitted, and we therefore have to assign the bits to the constel-

lation signals. We do not yet know how to make an effective gray-code type of assignment, but we observe

that, in our simulations, = 2% is always even. Therefore,, ..., u,; are all odd (see Rule 3), hence
VlL/2 = —1I and @}@HL/Q = 0. Hence, signals offset by;/2 are maximally separated and are given

complementary bit assignments.

Figures 4 and 5 show the bit error performanceMdf= 1, 2, 3, 4, and 5 transmitter antennas and
one receiver antenna f&@ = 1 and R = 2. We see that the differential unitary space-time signals are
especially effective at high SNR. This is not inconsistent with claims in [3] that unitary space-time signals
are best suited for high SNR. We also note that the block error union bounds presented in Table 1 give
rough indications of the bit error performances shown in the figures. Because the fading is continuous, the
effects of variations in the fading coefficients should be more apparent with large blockIEngiince
T = 2M, the effects equivalently should be apparent for lar§eThis perhaps explains the limited gain in
performance folM/ = 5 over M = 4 whenR = 1, and the slight appearance of an error floor at very high
SNR’s.

8 Concluding remarks

An advantage of our diagonal signals (35) is their simplicity. Because only one antenna transmits at any
given time, one power amplifier can be switched among the antennas. But this amplifier must/deliver
times the power it would otherwise deliver if there were an array/aimplifiers simultaneously driving the

other antennas. Consequently, this amplifier needs to have a larger linear operating range than an amplifier
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Figure 4: Performance off = 1, 2, 3, 4, and 5 transmitter antennas asd= 1 receiver antenna as a
function of SNRp. The channel has unknown Rayleigh fading that is changing continuously according to
Jakes’ model with parametgp T, = 0.0025. The data rate i$ = 1, and the signal constellations used are
given in Table 1.

array would. Amplifiers with a large linear range are often expensive to design and build. It may therefore
occasionally be desirable to have &ll antennas transmitting simultaneously at lower power. In this case,
we may modify the constellation by post-multiplying our signals by a fixéck M unitary matrix such as
a discrete Fourier transform matrix. This has the effect of smearing the transmitted symbol on any active
antenna across all of the antennas. On the other hand, the entire constellation may be premultiplied by a
common? x T unitary matrix, smearing the symbols in time. As is mentioned in Section 2.3, neither
constellation modification affects its error performance in any way.

The diagonal signals are the natural consequence of three assumptions. The first assumption, which

appears in Section 4.1, gives the block-unitary structur@,odind is essentially unrestrictive. The second
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Bit probability of error
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Figure 5: Performance off = 1, 2, 3, 4, and 5 transmitter antennas asd= 1 receiver antenna as a
function of SNRp. The channel has unknown Rayleigh fading that is changing continuously according to
Jakes’ model with parametgp T, = 0.0025. The data rate i$ = 2, and the signal constellations used are
given in Table 1.

assumption, which appears in Section 6.1, requires the signal matrices to form a group, and is appealing
because it simplifies signal design and generation. We do not know how restrictive this assumption is
and how much constellation performance suffers by considering only groups. The final assumption, which
appears in Section 6.3, requires the group to be Abelian. We have experimentally found this assumption to
be fairly restrictive and the performance of diagonal signal to degrade significantly fof¥ate.

The general differential framework we have described is a natural extension of standard DPSK to more
than one transmitter antenna. It is flexible and can accommodate all rates and any number of antennas. The
framework allows broad classes of unitary matrix-valued signals to be chained together differentially; a class

of diagonal signals was given as a simple special case. Maximum likelihood decoding was shown to be a
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simple matrix noncoherent receiver, and pairwise error performance was measured with a diversity product.
It remains a rich open problem to find other classes of group and non-group high-rate constellations with

large diversity products.
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After finishing this work, we learned of an differential modulation scheme proposed by Tarokh and
Jafarkhani [15]. While similar in its transmission of signal matrices that depend differentially on the input
data, their approach is based specifically on orthogonal designs. We also learned of an approach by Hughes
[16] who has a differential construction similar to the construction in our paper. Hughes focuses on group

codes, and two-antenna codes with cyclic and quaternionic structures are explicitly designed.
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