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Abstract

We present a framework for differential modulation with multiple antennas across a continuously
fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The frame-
work can be seen as a natural extension of standard differential phase shift keying (DPSK) commonly
used in single-antenna unknown-channel systems. We show how our differential framework links the
unknown-channel system with a known-channel system, and we develop performance design criteria.
As a special case, we introduce a class of diagonal signals where only one antenna is active at any time,
and demonstrate how these signals may be used to achieve full transmitter diversity and low probability
of error.

Index Terms—Multi-element antenna arrays, wireless communications, fading channels,
transmitter diversity, receiver diversity



1 Introduction

Recent advances in communicating across multiple-antenna wireless communication links show that these

links can support very high data rates with low error probabilities, especially when the wireless channel

response is known at the receiver [1, 2]. However, the assumption that the channel is known is questionable

in a rapidly changing mobile environment, or when multiple transmitter antennas are employed. In [3], a new

class of signals calledunitary space-timesignals is proposed that is well-tailored for Rayleigh flat-fading

channels where neither the transmitter nor the receiver knows the fading coefficients. In [4], a systematic

approach to designing unitary space-time signals is presented. The unitary space-time signals are suited

particularly well to piecewise-constant fading models. In this note, we show how to modify these signals

to work when the fading changes continuously. The modified signals, which we denotedifferential unitary

space-time modulation, are easily implemented and achieve full-antenna diversity.

Differential phase-shift keying (DPSK) has long been used in single-antenna unknown-channel links

when the channel has a phase response that is approximately constant from one time sample to the next.

Differential modulation encodes the transmitted information into phase differences from symbol to symbol.

The receiver decodes the information in the current symbol by comparing its phase to the phase of the

previous symbol. DPSK is widely used because many continuously fading channels change little between

successive time samples. In fact, many continuously fading channels are approximately constant for a time

intervalT often much larger than two samples.

Suppose that we transmit signals in blocks ofT time samples. We think of standard DPSK as employing

blocks ofT = 2 time samples, since information is essentially transmitted by first providing a reference

symbol and then a differentially phase-shifted symbol. Of course, after the starting symbol, each symbol

acts as a reference for the next symbol, so we really have signals that occupy two symbols but overlap by

one symbol. We wish to employ such an overlapping differential scheme withM > 1 transmitter antennas.

As our starting point, we use constellations ofT × M unitary space-time signals proposed in [3] for

piecewise-constant fading. Themth column of any signal contains the signal transmitted on antennam as a

function of time. Intuitive and theoretical arguments in [5] and [3] show that unitary space-time signals are

not only simple to demodulate, but also attain capacity when used in conjunction with coding in a multiple-

antenna Rayleigh fading channel when eitherT � M or the signal-to-noise ratio is reasonably large and

T > M .

As an extension of single-antenna DPSK, we show that there is a simple and general framework to differ-

entially overlap the multiple-antenna unitary space-time signals that allows them to be used for continuous

fading. ForM transmitter antennas, we assume thatT = 2M and design theT × M matrix signals so that
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they may be overlapped in time byM symbols. For example, if the fading is constant in blocks of, say,

ten symbols (often a reasonable assumption), this allows us to use differential modulation for at least five

transmitter antennas.

We also show how our differential framework allows us to intimately connect signal design for unknown

channels to design for channels that are known at the receiver [6, 7]. Using a few simple assumptions, we

are led naturally to constellations of matrices that form groups, and eventually to constellations of so-called

diagonal signals, where at any given time only one antenna is active. The diagonal signals fully utilize

the transmitter antenna diversity and can be optimized to achieve low error probability across a Rayleigh

flat-fading channel. Several examples and performance simulations are given.

2 Multiple antennas in unknown Rayleigh flat fading

In this section we present the channel model and summarize some known results for a multiple-antenna

communication link in Rayleigh flat fading. We first need to set some notation.

2.1 Notation

IM is aM×M identity matrix,CN (0, 1) is the complex-normal zero-mean unit-variance distribution where

the real and imaginary components of each random variable are independent and each have variance1/2,

and† denotes complex conjugate transpose of a vector or matrix. The Frobenius norm of aT × M matrix

A = {atm} is given by

‖A‖2 = tr (A†A) = tr (AA†) =
T∑

t=1

M∑
m=1

|atm|2 =
min(M,T )∑

m=1

σm(A)2, (1)

whereσm(A) is themth singular value ofA.

2.2 Rayleigh flat-fading channel model

Consider a communication link comprisingM transmitter antennas andN receiver antennas that operates

in a Rayleigh flat-fading environment. Each receiver antenna responds to each transmitter antenna through

a statistically independent fading coefficient. The received signals are corrupted by additive noise that is

statistically independent among theN receiver antennas and the symbol periods. We use complex baseband

notation: at timet we transmit the complex symbolsstm on antennasm = 1, . . . ,M , and we receivextn
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on receiver antennasn = 1, . . . ,N . The action of the channel is modeled by

xtn =
√

ρ
M∑

m=1

htmnstm + wtn, t = 0, 1, . . . , n = 1 . . . N. (2)

Herehtmn is the complex-valued fading coefficient between themth transmitter antenna and thenth receiver

antenna at timet. The fading coefficients are assumed to be independent with respect tom andn (but not

t), and areCN (0, 1) distributed (Rayleigh amplitude, uniform phase). The additive noise at timet and

receiver antennan is denotedwtn, and is independent, with respect to botht andn, identically distributed

CN (0, 1). The realizations ofhtmn, m = 1, . . . ,M , n = 1, . . . ,N are known neither to the transmitter nor

the receiver. The transmitted symbols are normalized to obey

E
M∑

m=1

|stm|2 = 1, (3)

whereE denotes expectation. Equations (2) and (3) ensure thatρ is the expected signal-to-noise ratio (SNR)

at each receiver antenna, independently of the number of transmitter antennasM . Equivalently, the total

transmitted power does not depend onM .

We assume that the fading coefficients change continuously according to a model such as Jakes’ [8].

While the exact model for the continuous fading is unimportant, we require the fading coefficients to be

approximately constant for overlapping blocks ofT > 2 symbol periods. We have some freedom to choose

T , but it generally can be no larger than the approximate coherence time (in symbols) of the fading process.

In one block ofT successive symbols the time index of the fading coefficients can be dropped, and sent

and received signals can be combined intoT -vectors. Equation (2) can then be written compactly as

X =
√

ρSH + W (4)

whereX is theT ×N complex matrix of received signalsxtn, S is theT ×M matrix of transmitted signals

stm, H is theM ×N matrix of Rayleigh fading coefficientshmn (assumed time-invariant within the block),

andW is theT × N matrix of additive receiver noisewtn. In this notation, theM columns ofS represent

the signals sent on theM transmitter antennas as functions of time.

2.3 Unitary Space Time Modulation

We now consider how to choose a constellation ofL signalsS0, . . . , SL−1, each aT ×M matrix, to transmit

data across this multi-antenna wireless channel. We use unitary space-time signalsS0 =
√

T/MΦ0, . . . , SL−1 =
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√
T/MΦL−1, where theT × M matricesΦ` obeyΦ†

0Φ0 = . . . = Φ†
L−1ΦL−1 = IM . The normalization√

T/M ensures that the matrix-signals satisfy the energy constraint (3).

For a piecewise-constant fading channel, it is argued in [5] and [3] that the capacity-achieving distri-

bution for reasonably largeT or ρ is S =
√

T/MΦ, whereΦ†Φ = IM andΦ is isotropically distributed.

BecauseΦ†
`Φ` = IM , we are implicitly assuming thatM 6 T ; as shown in [5], this assumption is not

restrictive because there is no gain in capacity by makingM > T .

It is also shown in [3] that the maximum likelihood demodulator for a constellation of unitary space-time

signals is a matrix noncoherent correlation receiver

Φml = arg max
Φ`=Φ0,...,ΦL−1

∥∥∥X†Φ`

∥∥∥ , (5)

and that the two-signal probability of mistakingS` for S`′ or vice-versa is (see Appendix B of [3])

Pe =
1
4π

∫ ∞

−∞
dω

1
ω2 + 1/4

M∏
m=1

[
1 +

(ρT/M)2(1 − d2
``′m)(ω2 + 1/4)

1 + ρT/M

]−N

(6)

where1 > d``′1 > . . . > d``′M > 0 are the singular values of theM × M correlation matrixΦ†
`Φ`′

(d``′m = σm(Φ†
`Φ`′)). The pairwise probability of errorPe decreases as anyd``′m decreases, and has

Chernoff upper bound

Pe 6
1
2

M∏
m=1

[
1 +

(ρT/M)2(1 − d2
``′m)

4(1 + ρT/M)

]−N

. (7)

For the noncoherent receiver, the pairwise probability of error is lowest when the two matrix-valued signals

are as orthogonal as possible, and is highest when the signals are as parallel as possible. Hence, the prob-

ability of error is lowest whend``′1 = . . . = d``′M = 0 and highest whend``′1 = . . . = d``′M = 1. We

obtaind``′1 = . . . = d``′M = 0 when the columns ofS` are all orthogonal to all the columns ofS`′ . The

ideal constellationS0, . . . , SL−1 therefore has all the columns ofS` orthogonal to all the columns ofS`′ for

`′ 6= ` = 0, . . . , L − 1. However, because the columns of eachS` are within themselves orthogonal to one

another, all the pairwised``′1, . . . , d``′M cannot all be made zero ifL > T/M .

In general, we strive to build constellations which make the pairwise probability of errorPe between

any two signalsS` andS`′ as small as possible. Optimizing the exact probability of error (6) or its Chernoff

upper bound (7) is awkward because they depend on the SNRρ. Rather than picking a particularρ, we

design constellations that work well for all sufficiently largeρ, where the Chernoff upper bound onS` and

S`′ depends dominantly on the product
M∏

m=1

(1 − d2
``′m).
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As shown in [9, Sec. 12.4.3] one can think ofd``′m as the cosine of the principal angleθ``′m between the

subspaces spanned by the columns ofΦ` andΦ`′ . The above expression can therefore be interpreted as the

product of the squares of the sines of them principal angles. To obtain a quantity that can be compared for

differentM , we defineζ``′ as the geometric mean of the sines of them principal angles1

ζ``′ =
M∏

m=1

sin(θ``′m)
1
M =

[
M∏

m=1

(1 − d2
``′m)

] 1
2M

. (8)

Because0 6 d``′m 6 1, we have0 6 ζ``′ 6 1, and, in particular, ifζ``′ is small the pairwise probability of

error is large, and ifζ``′ is large the probability of error is small. Define now thediversity productζ as

ζ = min
06`<`′6L−1

ζ``′ , (9)

In this paper, we choose constellations that maximize the diversity productζ. In particular, any constellation

with non zero diversity product is said to have full transmitter diversity.

In [4], constellations are chosen that minimizeδ where

δ = max
06`<`′6L−1

1√
M

∥∥∥Φ†
`Φ`′

∥∥∥ =

√√√√ 1
M

M∑
m=1

d2
``′m. (10)

We have0 6 δ 6 1 and, by (7), smallδ implies small probability of error. For smalld``′m,

ζ2
``′ = 1 − 1

M

M∑
m=1

d2
``′m + O(d4

``′m) = 1 − 1
M

∥∥∥Φ†
`′Φ`

∥∥∥2
+ O(d4

``′m).

Thusζ2 ≈ 1 − δ2 and smallδ in general implies largeζ. We find that maximizing the diversity product

ζ to be more useful than minimizingδ because minimizingδ does not guarantee full diversity. Note that

maximizingζ is fundamentally different from maximizing Euclidean distance; two signals that have large

Euclidean distance can have small diversity productζ. In fact, diametrically opposite signalsS`′ = −S`

haveζ``′ = 0.

In constructing a constellation of signals, we note that the probability of error of the entire constellation

(not just the pairwise error) is invariant to two types of signal transformations: 1) left-multiplication by a

commonT ×T unitary matrix,Φ` → ΨΦ`, ` = 0, · · · , L−1; 2) right-multiplication by individualM ×M

unitary matrices,Φ` → Φ`Υ`, ` = 0, · · · , L − 1. We can intuitively understand these transformations by

1The original March 1999 version of this paper definedζ``′ as the square of its current definition. However, the current definition
is more amenable to interpretation, especially when the channel is known.
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viewing the left-multiplication as a simultaneous permutation in time of all the signals, and the individual

right-multiplications as permutations of the antennas. The ordering of the antennas is immaterial because

all of the antennas are statistically equivalent; see [3, Section 6.2].

3 Standard Single-Antenna Differential Modulation

In this section we give a short review of standard single-antenna differential phase-shift keying (DPSK)

[10, 11]. While we do not offer any new material here, we present DPSK in an unusual framework that

ultimately makes our transition to multiple antennas easier.

DPSK is traditionally used when the channel changes the phase of the symbol in an unknown, but con-

sistent or slowly varying way. The data information is sent in the difference of the phases of two consecutive

symbols. For a data rate ofR bits per channel use, we needL = 2R symbols; the most common techniques

use symbols that areLth roots of unity

ϕ` = e2πi`/L, ` = 0, . . . , L − 1. (11)

Suppose we want to send a data sequence of integersz1, z2, . . . with zt ∈ {0, . . . , L−1}. The transmitter

sends the symbol streams1, s2, . . .




s0

s1

s2

...




where st = ϕztst−1, t = 1, 2, . . . (s0 = 1).

(In the matrices and sequences shown in this paper we always represent the time axis vertically.) The initial

symbols0 = 1 does not carry any information and can be thought of as a training symbol. The received

datax1, x2, . . ., are processed by computing the differential phases

θt = arg x∗
t−1xt, t = 1, 2, . . .

which are quantized to form an estimate of the integer sequence

ẑt = bθtL/(2π) + 1/2c mod L, t = 1, 2, . . . . (12)
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The received and transmitted symbols are related by the equation

xt =
√

ρhtst + wt, t = 0, 1, . . . .

This is the single-antenna version of the model (2), whereht is the complex valued fading coefficient which

is either constant or varies slowly witht. There are two sources of possible errors (ẑt 6= zt): the additive

noise, and time-variations in the phase of the fading coefficient. The demodulation rule (12) does not

depend on earlier demodulation decisions, but only on the received symbolsxt−1 andxt; demodulation

errors therefore do not propagate.

There is a slightly different way to look at DPSK modulation and demodulation that fits into our

multiple-antenna model (4) withM = N = 1. Since DPSK demodulation requires two successive sym-

bols, we consider the transmitted signals as occupying overlapping intervals of lengthT = 2 and consider

modulation and demodulation using the maximum likelihood receiver given in Section 2. One can view the

signal constellation as containing two-dimensional vectors of the type

Φ` =
1√
2


 ϕ`(1)

ϕ`(2)


 =

1√
2


 e2πi`(1)/L

e2πi`(2)/L


 ` = 0, . . . , L − 1. (13)

(Recall in Section 2.3 that the transmitted signalS` is Φ` multiplied by
√

T/M =
√

2.) The signals form an

equivalence class invariant under phase shifts; i.e.,Φ` andeiθΦ` are indistinguishable to the receiver for all

θ. A phase shift can be seen as a right-multiplication by the1× 1 unitary matrixeiθ, which does not change

the constellation (see the last paragraph of Section 2.3). Therefore, one has a canonical representation

Φ` =
1√
2


 1

ϕ`


 , (14)

whereϕ` is given in (11).

Effectively, to generate a DPSK signal, the transmitter preprocesses the signal vectorΦ` by rotatingΦ`

until its first symbol equals the symbol previously sent. The transmitter then sends only the (normalized)

second symbol of the rotatedΦ`, thus representingΦ` by only one sent symbol. The receiver is aware of

this preprocessing and demodulates the current received symbol by combining it with the previous received

symbol to form a two-symbol vector again. More formally, the transmitter computes the cumulative sum

yt = (yt−1 + zt) mod L, t = 1, 2, . . . with y0 = 0.
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The very first signal sent is[1 ϕz1 ]
T = [ϕy0 ϕy1 ]

T , and we now wish to send the signal[1 ϕz2 ]
T . Instead

of sending both components of this signal, we rotate this signal to another element of its equivalence class,

obtained by multiplying by the scalarϕy1 = ϕz1 , namely[ϕz1 ϕz1ϕz2 ]
T = [ϕy1 ϕy2 ]

T . The transmitter

then sends onlyϕy2 . Figure 1 schematically displays differential modulation.

[
1

ϕz1

] [
1

ϕz2

] [
1

ϕz3

]
· · ·

[
ϕy0

ϕy1

]
[

ϕy1

ϕy2

]
[

ϕy2

ϕy3

]

.. .




s0

s1

s2

s3

...




Figure 1: Schematic representation of differential phase modulation. Along the top, from left to right, are
the symbols[1 ϕzt ]T one wants to send. These are multiplied byϕyt−1 so that they can overlap, as shown
diagonally downward. The overlapped signals are then transmitted (st = ϕyτ ) on the channel.

The receiver now groups received symbols in (overlapping) vectors of length two

X =


 xt−1

xt


 ,

and computes the noncoherent maximum likelihood demodulation according to (5)

(ẑt)ml = arg max
`=0,...,L−1

|Φ∗
`X|

This corresponds to DPSK demodulation given in (12) because

arg max
`

|Φ∗
`X| = arg max

`
|xt−1 + ϕ∗

`xt| = arg max
`

∣∣ϕ` + x∗
t−1xt

∣∣ .
The termx∗

t−1xt computes the phase difference between successive received symbols, and maximizing∣∣ϕ` + x∗
t−1xt

∣∣ finds theϕ` whose phase matches this difference most closely.
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4 Multiple-Antenna Differential Modulation

The previous section shows that standard differential modulation effectively uses a block of length two that

overlaps by one symbol, where one symbol acts as a reference for the next. Information is delivered in the

phase difference between symbols. When we haveM transmitter antennas we need a block ofM × M

space-time symbols to act as a reference for the next block. Hence, we consider signals of size2M × M

that we overlap byM samples, and effectively deliver information in the matrix quotient of the two blocks.

4.1 Signal requirements for differential modulation

With multiple antennas, we accomplish differential modulation by overlapping theT × M matrix signals

Φ` by T/2 symbols. We therefore chooseT = 2M . We now explore the structure thatΦ0, . . . ,ΦL−1 must

have to permit overlapping. Using a notation similar to (13), we let each signalΦ` have the form

Φ` =
1√
2


 V`1

V`2


 , ` = 0, . . . , L − 1,

whereV`1 andV`2 are, for the moment, arbitraryM × M complex matrices2. BecauseΦ†
`Φ` = IM , it

follows that

V †
`1V`1 + V †

`2V`2 = 2IM . (15)

In Section 2.3 it is shown thatΦ` andΦ`Υ`, ` = 0, . . . , L−1 are indistinguishable for arbitrary unitaryM×
M matricesΥ`. To help overlap the signals in a fashion similar to Section 3, we therefore have the freedom

to “preprocess” each signalΦ` to be sent by right-multiplying by a unitary matrix so that its firstM × M

matrix block equals the second matrix block of the previously (also possibly preprocessed) sent symbol, say

Φ`′ (see the rules for signal manipulation at the end of Section 2.3). AfterΦ` is preprocessed, because its first

block equals the second block of the signal already sent, we then need to send only its (normalized) second

block. For this overlapping to succeed, we therefore require that a unitary transformation exist between the

first block ofΦ` and the second block ofΦ`′ ; i.e., for any` and`′, the equation

V`′2Υ`′` = V`1, (16)

should have a solution for some unitaryΥ`′`.

The most general set ofV`1 andV`2 matrices that satisfy (15) and (16) is described by Peter Oswald in

2The
√

2 normalization may seem odd, but it ultimately allows us to choose theV matrices to be unitary whileΦ†
`Φ` = IM .
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[12], where he shows that the best diversity productζ is, in general, obtained by choosingV`1 andV`2 to

be unitary. We therefore restrict ourselves to this case. IfV`1 andV`2 are unitary for all̀ then (15) holds

trivially, and (16) has the unitary solutionΥ`′` = V †
`′2V`1. With this choice, becauseΦ` andΦ`V

†
`1 are

indistinguishable at the receiver, we have a canonical representation

Φ` =
1√
2


 IM

V`


 , (17)

whereV` = V`2V
†
`1 is unitary. Without loss of generality, we can thus assume the following:

Assumption 1 The signalsΦ` are of the form (17) whereV` is a unitary matrix.

Observe the formal similarity with (14).

4.2 Differential transmission

In standard single-antenna DPSK, Section 3 shows that the equivalentΦ` signals can be thought of as

two-dimensional vectors whose first components are 1, and whose second components are used to form

the transmitted signal. Similarly, in equation (17), the signalsΦ0, . . . ,ΦL−1, areT × M matrices whose

first halves areIM , and whose second halves are used to form the transmission matrix in ourM -antenna

differential modulation scheme. Therefore the channel is used in blocks ofM = T/2 symbols. Let us useτ

to index blocks ofM consecutive symbols; the running time index of channel uses is thent = τM + m− 1

with m = 1, . . . ,M . A transmission data rate ofR bits per channel use requires a constellation with

L = 2RM signals; thusL distinctV` matrices are needed. We again have an integer data sequencez1, z2, . . .

with zτ ∈ {0, . . . , L − 1}.

Figure 2 schematically displays multiple-antenna differential modulation. Here theM columns of each

Sτ (which areM × M matrices) represent what is transmitted on theM antennas as functions of time for

M symbols. The first transmission is
√

T/MΦz1 =
√

2Φz1; that is, an identity matrixS0 = IM is sent,

followed byS1 = Vz1 . Next, we wish to send
√

2Φz2. To make the identity block ofΦz2 overlap with the

last sent blockVz1 , we postmultiplyΦz2 by Vz1 . The second block ofΦz2 then becomesVz2Vz1 and, hence

S2 = Vz2Vz1 = Vz2S1. In general, the differential transmission scheme sends the matrices

Sτ = Vzτ Sτ−1 τ = 1, 2, . . . . (18)

This is thefundamental differential transmission equation. Clearly, all the transmitted matricesSτ will be

unitary.
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Φz1 Φz2 Φz3[
I

Vz1

] [
I

Vz2

] [
I

Vz3

]
· · ·

[
IM

Vz1

]
[

Vz1

Vz2Vz1

]
[

Vz2Vz1

Vz3Vz2Vz1

]

. . .




S0

S1

S2

S3

...




Figure 2: Schematic representation ofM -antenna differential modulation. Along the top, from left to right,
are the symbolsΦzτ one wants to send. These are right-multiplied by the previously transmitted block so
that they can overlap, as shown diagonally downward. The overlapped signals, which obeySτ = VzτSτ−1,
are then transmitted on the channel. Compare Figure 1, which shows the overlapping scheme for standard
single-antenna differential phase modulation.

4.3 Differential reception

With N receiver antennas, the demodulator receives a stream




X0

X1

X2

...




,

whereXτ is anM × N matrix. Demodulation requires looking at two successive matrices to form a matrix

with T = 2M rows,

X =


 Xτ−1

Xτ


 .

We assume that the fading coefficients are constant across theT = 2M time samples represented in the

rows ofX. Then the relationship with the sent stream is

Xτ−1 =
√

ρSτ−1H + Wτ−1 (19)

Xτ =
√

ρSτH + Wτ , (20)
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whereWτ is aM × N matrix of additive independentCN (0, 1) receiver noise. The maximum likelihood

demodulator (5) is

(ẑτ )ml = arg max
`=0,...,L−1

∥∥∥Φ†
`X

∥∥∥ = arg max
`=0,...,L−1

∥∥∥Xτ−1 + V †
` Xτ

∥∥∥ , (21)

where the norm is as defined in (1).

Substituting the fundamental differential transmitter equationSτ = VzτSτ−1 into (20) and applying (19)

yield

Xτ = VzτXτ−1 + Wτ − VzτWτ−1.

Because the noise matrices are independent and statistically invariant to multiplication by unitary matrices,

we may write this as

Xτ = VzτXτ−1 +
√

2W ′
τ , (22)

whereW ′
τ is aM × N matrix of additive independentCN (0, 1) noise. This is thefundamental differential

receiver equation.

Remarkably, the matrix of fading coefficientsH does not appear in the fundamental differential receiver

equation (22). In fact, formally, this equation shows that the signalVzτ appears to be transmitted through

a channel with fading responseXτ−1, which is knownto the receiver, and corrupted by noise with twice

the variance. This corresponds to the well known result that standard single-antenna differential modulation

suffers from approximately a 3 dB performance loss in effective SNR when the channel is unknown versus

when it is known.

5 Connection between Unknown and Known Channel

Equation (22) demonstrates that our multiple-antenna differential setting appears to turn the original unknown-

channel communication problem into a known channel problem. In this section we explore this connection

further. We first review some facts about the known channel.

5.1 Known channel

We consider signals that areM × M matrices. The action of the channel is

Xτ =
√

ρSτH + Wτ , (23)
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whereH is known to the receiver. We assume that the constellation consists ofL = 2RM signalsΨ` that

are unitary. The transmission matrix is then

Sτ = Ψzτ .

BecauseH is known at the receiver, the maximum likelihood demodulator is the coherent receiver

(ẑτ )ml = arg min
`=0,...,L−1

‖Xτ −√
ρΨ`H‖ . (24)

and has pairwise probability of error Chernoff upper bound given by [6], [3]

Pe 6
1
2

M∏
m=1

[
1 +

ρT

4M
σ2

m(Ψ`′ − Ψ`)
]−N

. (25)

Hence, good constellationsΨ1, . . . ,ΨL have singular values

σm(Ψ`′ − Ψ`), m = 1, . . . ,M

that are as large as possible for`′ 6= `. For large SNR, the probability of error depends dominantly on the

product
M∏

m=1

σm(Ψ` − Ψ`′) = |det (Ψ` − Ψ`′)| . (26)

In particular, a larger product equates to a smaller error probability.

5.2 Connection between signal designs

Recall in Section 2.3 that the unknown-channel signalsΦ` areT ×M matrices obeyingΦ†
`Φ` = I, and that

a good constellationΦ1, . . . ,ΦL has singular values

d``′m = σm(Φ†
`′Φ`), m = 1, . . . ,M

that are as small as possible for`′ 6= `. If we view the identity block of the differential unitary space-time

signal construction ofΦ` as training to learn the matrix channelH, we may buildΦ` as

Φ` =
1√
2


 IM

Ψ`


 ,

13



whereΨ` are unitary matrices taken from a constellation of known-channel signals. Then

Φ†
`′Φ` = (IM + Ψ†

`′Ψ`)/2,

which implies that

σ2
m(Φ†

`′Φ`) =
1
4
σ2

m(IM + Ψ†
`′Ψ`) =

1
4
λm(2IM + Ψ†

`′Ψ` + Ψ†
`Ψ`′), (27)

whereλm(·) is themth eigenvalue of the matrix(·). Hence

1 − σ2
m(Φ†

`′Φ`) =
1
4
λm(2IM − Ψ†

`′Ψ` − Ψ†
`Ψ`′) =

1
4
σ2

m(IM − Ψ†
`′Ψ`) =

1
4
σ2

m(Ψ`′ − Ψ`). (28)

Equation (28) says that minimizing the singular values of the correlations of the unknown-channel signals is

equivalent to maximizing the singular values of the differences of the known-channel signals. We can now

write ζ``′ in (8) as

ζ``′ =
M∏

m=1

(1 − σ2
m(Φ†

`′Φ`))
1

2M =
1
2

M∏
m=1

σm(Ψ`′ − Ψ`)
1

M =
1
2
|det (Ψ`′ − Ψ`)|

1
M . (29)

As argued in Section 2.3, largeζ``′ equates to small pairwise error probability whenρ is large and the channel

is unknown. On the other hand, equation (26) states that large|det (Ψ′
` − Ψ`)| also equates to small pairwise

error probability when the channel is known. Thus, a constellation of good known-channel matrix signals

can be augmented with an identity matrix block to form a constellation of good unknown-channel matrix

signals. Conversely, a constellation of good unknown-channel signals of the form (17) hasV` matrices that

form a constellation of good known-channel signals. Intuitively, the identity block can be viewed as training

from which the channel is learned before the second block carrying data is sent. Differential modulation, of

course, lets the training and data blocks overlap. The diversity product for differential modulation can now

be written as

ζ =
1
2

min
06`<`′6L−1

|det (V` − V`′)|
1
M . (30)

By comparing the Chernoff bounds (7) and (25), and using (26) we see from the factor1/2 in (29) that the

performance advantage for knowing versus not knowing the channel is approximately 3 dB in SNR.
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5.3 Connection between demodulation strategies

The fundamental differential receiver equation (22) is

Xτ = VzτXτ−1 +
√

2W ′
τ .

As we have remarked,Xτ−1 can be viewed as a known channel through which the signal matrixVzτ is sent.

We may demodulatezτ using (24) to obtain

ẑτ = arg min
`=0,...L−1

‖Xτ − Ψ`Xτ−1‖

= arg min
`=0,...,L−1

tr (X †
τ Xτ + X †

τ−1Xτ−1 −X †
τ−1Ψ

†
`Xτ −X †

τ Ψ`Xτ−1)

= arg max
`=0,...,L−1

tr (X †
τ−1Ψ

†
`Xτ + X †

τ Ψ`Xτ−1)

This estimate is exactly the maximum likelihood demodulator for the unknown channel (21):

(ẑτ )ml = arg max
`=0,...,L−1

∥∥∥Xτ−1 + Ψ†
`Xτ

∥∥∥ = arg max
`=0,...,L−1

tr (X †
τ−1Ψ

†
`Xτ + X †

τ Ψ`Xτ−1).

These connections imply that the differential scheme can use existing constellations and demodulation

methods from the known channel such as, for example, the orthogonal designs of [7].

6 Group constellations

Let V be the set ofL distinct unitary matrices

V = {V0, . . . , VL−1}.

We have not yet imposed any structure on the setV. In this section, we assume thatV forms a group. We

show how this assumption simplifies the transmission scheme and the constellation design.

6.1 Group conditions

In order for a setV to form a group under matrix multiplication, we need to impose four conditions: in-

ternal composition, associativity, existence of an identity element, and existence of an inverse element for

each element. We briefly discuss these conditions and show that imposing internal composition essentially

imposes the remaining three.
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Internal composition: In standard single-antenna scalar DPSK withT = 2 (reviewed in Section 3), the

product of any two symbols,ϕ` andϕ`′ , is another symbol. In a similar fashion, we impose an internal

composition rule onV. For any`, `′ ∈ {0, . . . , L − 1}, it is required that

V`V`′ = V`′′ (31)

for some`′′ ∈ {0, . . . , L − 1}. We may define an equivalent (isomorphic) additive operation on the indices

as

`′′ = ` ⊕ `′.

Associativity: Follows immediately from the associativity of matrix multiplication.

Identity element: In Section 2.3 it is mentioned that every signalΦ` in the constellation may be premul-

tiplied by the same fixedT × T unitary matrix without changing the error performance of the constellation.

The first element of the constellation is

Φ0 =
1√
2


 IM

V0


 .

We now premultiply every member of the constellation with the unitary matrix


 IM 0M

0M V †
0


 .

This gives an equivalent constellation whose first element has two identity matrices. Thus without loss of

generality we can always assume a constellation withV0 = IM ∈ V.

Inverse element: We show that because we impose internal composition, any element, sayV1, automati-

cally has an inverse inV. SinceV comprises unitary matrices, the matrix productsV1V0, V1V1, . . . , V1VL−1

are all distinct, and are all again inV; they consequently form a permutation of the elements ofV. In

particular, there is an index̀such thatV1V` = V0 = I. Hence,V −1
1 = V`.

Of the four requirements that a group must satisfy, we have shown that imposing internal composition

automatically imposes the remaining three.

Assumption 2 The set of unitary matricesV forms a group.
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Note that sinceV is a finite group of sizeL, its elements must all beLth roots of unity: V L
` = IM for

` = 0, . . . , L − 1.

6.2 Advantages of group constellations

Differential modulation as in Section 4.2 can now be written more succinctly by letting

yτ = zτ ⊕ yτ−1, τ = 1, 2, . . . , y0 = 0 (32)

so that

Vyτ = Vzτ Vyτ−1 .

The transmitted matrix is

Sτ = Vyτ = VzτSτ−1 t = 1, 2, . . . .

Thus, unlike the general case, whenV is a group each transmitted matrix is an element ofV.

One advantage of a group constellation is that the transmitter never has to explicitly multiply matri-

ces, but only needs to compute (32) using a lookup table. Another advantage is simplified design. Good

constellations are often found by searching over large candidate sets. Computingζ for a general candidate

constellation requires checking(L − 1)L/2 correlations of the form

Φ†
`′Φ` =

1
2

(
IM + V †

`′V`

)
. (33)

However, whenV is a group it suffices to check onlyL − 1 correlations; in particular, one may check the

singular values ofΦ†
0Φ` = (1/2)(IM + V`). Figure 3 schematically displays multiple-antenna differential

modulation when the constellation forms a group.

6.3 Abelian group constellations

We now impose the requirement that the product of any two matrices ofV commutes.

Assumption 3 The groupV is Abelian.

Imposing commutativity has some appealing consequences. SinceV0, . . . , VL−1 are unitary, they are normal

matrices, and can be written asV` = P`Λ`P
†
` , where the matrix of eigenvectorsP` obeysP †

` P` = P`P
†
` = I,

andΛ` is a matrix of eigenvalues ofV` [13]. But becauseV0, . . . , VL−1 commute, they share a common set

of eigenvectors,P
def= P0 = P1 = . . . = PL−1; see [13, p. 420]. Consequently, this constellation of

matrices can be diagonalized into a new constellation comprising diagonal matrices of eigenvalues using
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[
I

Vz1

] [
I

Vz2

] [
I

Vz3

]
· · ·

[
Vy0

Vy1

]
[

Vy1

Vy2

]
[

Vy2

Vy3

]

.. .




S0

S1

S2

S3

...




Figure 3: Schematic representation ofM -antenna differential modulation when the constellation forms a
group. Along the top, from left to right, are the symbols one wants to send. These are right-multiplied by
the previously transmitted blockVyτ−1 so that they can overlap, as shown diagonally downward. Unlike in
Figure 2, the transmitted signals are always members of the constellation, just as in standard scalar DPSK.

one fixed`-independent similarity transformV` → P−1V`P . The similarity transform does not effect the

error performance of the constellation because it is equivalent to postmultiplying every signalΦ` by the

unitaryM × M matrixP and premultiplyingΦ` by the unitary2M × 2M matrix


 P−1 0M

0M P−1


 .

Thus, assumingV is Abelian is equivalent to assuming that all of its elements are diagonal matrices. If all

theV` are diagonal, then the signalsΦ` consist of two diagonal blocks (the first of which is identity). This

implies that at any given time only one antenna is active. We call these signalsdiagonal.

6.3.1 Cyclic construction

A simple way to build the commutative groupV with L elements is to make it cyclic. ThenV` is of the form

V` = V `
1 , ` = 0, . . . , L − 1

where the generator matrixV1 is anLth root of the unity. Addition on the indices

`′′ = ` ⊕ `′
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then becomes

`′′ = ` + `′ ( mod L).

Hence, the transmitter does not even need a lookup table to compute the differential transmission scheme.

The matrixV1 is diagonal and can be written as

V1 =




ei 2π
L

u1 0 · · ·
0

. . . 0

0 · · · ei 2π
L

uM


 , um ∈ {0, . . . , L − 1}, m = 1, . . . ,M.

With this cyclic construction, the2M × M signalsΦ` are given by

Φ` = Θ` Φ0, (34)

where

Θ =


 IM 0M

0M V1


 , and Φ0 =

1√
2


 IM

IM


 .

The`th signal in the constellation therefore has the form

Φ` =
1√
2




1 0 · · ·
0

.. . 0

0 · · · 1

ei 2π
L

u1` 0 · · ·
0

.. . 0

0 · · · ei 2π
L

uM `




, ` = 0, . . . , L − 1. (35)

These signals have a very simple interpretation. At any time, only one transmitter antenna is active and

transmitting either a reference symbol (which in differential modulation is actually the previously sent sym-

bol) or a phase-shifted symbol. Thus, within theτ th block, antennam transmits at timet = τM + m a

symbol that is differentially phase shifted by(2π/L)um` relative to its previous transmission. The value

of ` is determined by the data. It is important to note that the phase shifts are potentially different for each

antenna. WhenM = 1, the signals reduce to standard DPSK.

Signal matricesV` with low pairwise probability of demodulation error form correlations (33) with

singular values that are small for all`′ 6= `. The singular values of(1/2)(IM + V `
1 ) are

d0`m = (1/2)
∣∣∣1 + ei2πum`/L

∣∣∣ =
√

1/2 + (1/2) cos(2πum`/L) = |cos(πum`/L)| . (36)
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Thus

ζ0` =

∣∣∣∣∣
M∏

m=1

sin(πum`/L)

∣∣∣∣∣
1
M

. (37)

Our maximin design requirement is to findu1, . . . , uM satisfying

{u1, . . . , uM} = arg max
06u1,...,uM6L−1

min
`=1,...,L−1

∣∣∣∣∣
M∏

m=1

sin(πum`/L)

∣∣∣∣∣
1

M

.

One can see that ifu1, . . . , uM and L share a common factor, thenV0, . . . , VL−1 are not distinct. Our

maximin design requirement ensures that the signals are distinct.

6.3.2 Multi-cyclic construction

In general, ifL is not prime, a finite Abelian group of sizeL may be written as a cross product of cyclic

groups [14, p. 109]. A corresponding signal construction that is multi-index and systematic may be defined.

Consider a factorization ofL given by

L =
K∏

k=1

Lk.

Using a multi-index notatioǹ = (`1, `2, · · · , `K) with 0 6 `k < Lk, the group elements are given by

V` =
K∏

k=1

Λ`k
k .

HereΛk is a diagonal matrix with diagonal elementsλkm = exp(2πiumk/Lk). The diagonal elements of

V` are thusexp(iα`m) with

α`m = 2π
K∑

k=1

umk`k/Lk, m = 1, . . . ,M.

and the singular values of the correlation matrices ared`m = |1 + v`m| /2 = |cos(α`m)|.
When theLk are pairwise relatively prime, the group is cyclic, otherwise it is multi-cyclic. For a multi-

cyclic group at least two of theLk share a factor; it therefore uses an alphabet with less thenL elements.

Thus, for anym there are two diagonal matrices with the samemth diagonal element. The difference

between these two matrices therefore is zero in itsmth column, its determinant is zero, and thusζ = 0.

Multi-cyclic groups cannot have full diversity and we do not consider them any further.
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7 Design and Performance of Constellations

7.1 Constellation design

In this section, we give the performance of constellations of diagonal signals designed forM = 1, . . . , 5

transmitter antennas. In the search for good constellations, we may employ some simplifying rules that

cause no loss of generality, regardless of the performance criterion used:

1) Because every antenna is statistically equivalent to every other, we may impose the orderingu1 6

u2 6 . . . 6 uM .

2) We may assume thatum > 0, because ifum = 0, then themth antenna can only transmit the symbol

1 and is effectively rendered inoperative.

3) The constellations generated byu1, . . . , uM andαu1, . . . , . . . , αuM are identical for allα relatively

prime toL. From equation (34), we see that multiplication byα simply reorders the signals in in-

creasingα` ( mod L) instead of increasing̀.

7.2 Search method

In Section 4, we mention that constellations of differential unitary space-time signals can be designed with

a maximin procedure: find theu1, . . . , uM ∈ {0, . . . , L − 1} that maximize the diversity product

ζ = min
`∈{1,...,L−1}

∣∣∣∣∣
M∏

m=1

sin(πum`/L)

∣∣∣∣∣
1

M

. (38)

We do not know of explicit solutions to this procedure, and we therefore resort to exhaustive computer

searches. We consider only single-index cyclic constructionsK = 1. Candidates for the best set of

u1, . . . , uM ∈ {0, . . . , L−1} are generated exhaustively, tested for performance by computing the diversity

product, and kept if they exceed the previously best candidate.

The search space can be reduced using the following rules:

a) Equation (38) does not change ifum is replaced byL − um. We may therefore restrict our search to

um ∈ {0, . . . , L/2} (assumingL is even).

b) If um shares a factor withL then there is aǹ ∈ {1, . . . , L − 1} for which um` = 0 ( mod L); this

implies that the diversity product is zero. Thus, we can restrict the search toum that are relatively

prime toL.

21



M R L δ ζ [u1 u2 · · · uM ] Pe union bound (ρ = 20 dB)

1 1 2 0 1 [1] (standard DBPSK) 9.9e-3
2 1 4 0.7071 0.7071 [1 1] 1.7e-3
3 1 8 0.7860 0.5134 [1 1 3] 4.6e-4
4 1 16 0.7071 0.5453 [1 3 5 7] 6.7e-5
5 1 32 0.8179 0.4095 [1 5 7 9 11] 3.0e-5

1 2 4 0.7071 0.7071 [1] (standard DQPSK) 4.9e-2
2 2 16 0.9239 0.3826 [1 7] 3.4e-2
3 2 64 0.9389 0.2765 [1 11 27] 2.6e-2
4 2 256 0.9335 0.2208 [1 25 97 107] 1.7e-2
5 2 1024 0.9389 0.1999 [1 157 283 415 487] 9.1e-3

Table 1: Systematic antenna constellations forM = 1, 2, 3, 4 and 5 transmitter antennas and rateR = 1, 2
that maximize the diversity productζ in (9). The number of signals in the constellation isL = 2RM , and
δ is defined in (10). ThePe upper bound is a union bound on block error rate obtained by summing over
` 6= `′ the Chernoff bounds (7) withρ = 20 dB.

c) By Rule b), we may assume thatu1 is relatively prime toL. But then there exists anα such that

αu1 = 1 ( mod L). By multiplying u2, . . . , uM by this sameα, and using Rule 3) above, we may

assume thatu1 = 1.

d) In equation (38), the product for` andL − ` is the same; it is 1 for̀ = L/2 (assumingL is even).

Thus, the minimum may be taken over` ∈ {1, . . . , L/2 − 1}.

Table 1 shows the results of our searches for constellations ofL = 2RM that maximizeζ. For com-

parison, we also include the values ofδ, but no attempt to minimizeδ was made. BecauseL is a power of

two, only oddum appear. ForM = 1 transmitter antenna, the search naturally produces differential BPSK

(R = 1) and differential QPSK (R = 2). Also included is an upper bound on the block error rate obtained

by summing over̀ 6= `′ the Chernoff bounds (7) withρ = 20 dB.

Comments:

1. We choose to maximizeζ in (38) rather than minimizeδ in (10) because, for example, there are two

M = 2, R = 1 constellations that have the sameδ but very differentζ ’s and performances. The

poorer performing constellation hasu = [1 2], for which δ = 0.7071, ζ = 0, and union bound

Pe 61.1e-2 atρ = 20 dB. The better performing constellation hasu = [1 1] (see also Table 1), for

which δ = 0.7071, ζ = 0.7071, and union boundPe 61.7e-3.

2. We did not search for constellations with more than2RM signals from which we would employ a

subset.
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7.3 Constellation performance

In our models, we assume that the channel remains approximately constant forT = 2M symbols. In real

communication systems, our model is therefore accurate when the coherence time of the fading process

between the two terminals is at least this long. In our simulations, the fading is assumed to be independent

between antennas but correlated in time according to Jakes’ model [8]. A typical physical scenario where

such a model is appropriate is a base station antenna array communicating with a mobile. If we assume

that the mobile is traveling at approximately 25 m/s (55 mph) and operating at 900 MHz, the Doppler shift

is approximatelyfD = 75 Hz. The Jakes correlation between two fading coefficientst time samples apart

is J0(2πfDTst), whereTs is the sampling period andJ0 is the zero-order Bessel function of the first kind.

We assume thatTs = 1/30, 000 so TsfD = 0.0025. The Jakes correlation function has its first zero at

t ≈ 153. This means that fading samples separated by much less than 153 symbols, sayT = 15 symbols,

are approximately equal and our model is accurate forT 6 15 or M 6 7.

We suppose that binary data are to be transmitted, and we therefore have to assign the bits to the constel-

lation signals. We do not yet know how to make an effective gray-code type of assignment, but we observe

that, in our simulations,L = 2RM is always even. Therefore,u1, . . . , uM are all odd (see Rule 3), hence

V
L/2
1 = −IM andΦ†

`Φ`+L/2 = 0. Hence, signals offset byL/2 are maximally separated and are given

complementary bit assignments.

Figures 4 and 5 show the bit error performance ofM = 1, 2, 3, 4, and 5 transmitter antennas and

one receiver antenna forR = 1 andR = 2. We see that the differential unitary space-time signals are

especially effective at high SNR. This is not inconsistent with claims in [3] that unitary space-time signals

are best suited for high SNR. We also note that the block error union bounds presented in Table 1 give

rough indications of the bit error performances shown in the figures. Because the fading is continuous, the

effects of variations in the fading coefficients should be more apparent with large blocklengthT . Since

T = 2M , the effects equivalently should be apparent for largeM . This perhaps explains the limited gain in

performance forM = 5 overM = 4 whenR = 1, and the slight appearance of an error floor at very high

SNR’s.

8 Concluding remarks

An advantage of our diagonal signals (35) is their simplicity. Because only one antenna transmits at any

given time, one power amplifier can be switched among the antennas. But this amplifier must deliverM -

times the power it would otherwise deliver if there were an array ofM amplifiers simultaneously driving the

other antennas. Consequently, this amplifier needs to have a larger linear operating range than an amplifier
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Figure 4: Performance ofM = 1, 2, 3, 4, and 5 transmitter antennas andN = 1 receiver antenna as a
function of SNRρ. The channel has unknown Rayleigh fading that is changing continuously according to
Jakes’ model with parameterfDTs = 0.0025. The data rate isR = 1, and the signal constellations used are
given in Table 1.

array would. Amplifiers with a large linear range are often expensive to design and build. It may therefore

occasionally be desirable to have allM antennas transmitting simultaneously at lower power. In this case,

we may modify the constellation by post-multiplying our signals by a fixedM × M unitary matrix such as

a discrete Fourier transform matrix. This has the effect of smearing the transmitted symbol on any active

antenna across all of the antennas. On the other hand, the entire constellation may be premultiplied by a

commonT × T unitary matrix, smearing the symbols in time. As is mentioned in Section 2.3, neither

constellation modification affects its error performance in any way.

The diagonal signals are the natural consequence of three assumptions. The first assumption, which

appears in Section 4.1, gives the block-unitary structure ofΦ` and is essentially unrestrictive. The second
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Figure 5: Performance ofM = 1, 2, 3, 4, and 5 transmitter antennas andN = 1 receiver antenna as a
function of SNRρ. The channel has unknown Rayleigh fading that is changing continuously according to
Jakes’ model with parameterfDTs = 0.0025. The data rate isR = 2, and the signal constellations used are
given in Table 1.

assumption, which appears in Section 6.1, requires the signal matrices to form a group, and is appealing

because it simplifies signal design and generation. We do not know how restrictive this assumption is

and how much constellation performance suffers by considering only groups. The final assumption, which

appears in Section 6.3, requires the group to be Abelian. We have experimentally found this assumption to

be fairly restrictive and the performance of diagonal signal to degrade significantly for ratesR > 2.

The general differential framework we have described is a natural extension of standard DPSK to more

than one transmitter antenna. It is flexible and can accommodate all rates and any number of antennas. The

framework allows broad classes of unitary matrix-valued signals to be chained together differentially; a class

of diagonal signals was given as a simple special case. Maximum likelihood decoding was shown to be a
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simple matrix noncoherent receiver, and pairwise error performance was measured with a diversity product.

It remains a rich open problem to find other classes of group and non-group high-rate constellations with

large diversity products.
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After finishing this work, we learned of an differential modulation scheme proposed by Tarokh and

Jafarkhani [15]. While similar in its transmission of signal matrices that depend differentially on the input

data, their approach is based specifically on orthogonal designs. We also learned of an approach by Hughes

[16] who has a differential construction similar to the construction in our paper. Hughes focuses on group

codes, and two-antenna codes with cyclic and quaternionic structures are explicitly designed.
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