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Summary. We generalize earlier results concerning an asymptotic error ex-
pansion of wavelet approximations. The properties of the monowavelets, which
are the building blocks for the error expansion, are studied in more detail, and
connections between spline wavelets and Euler and Bernoulli polynomials are
pointed out. The expansion is used to compare the error for di�erent wavelet
families. We prove that the leading terms of the expansion only depend on the
multiresolution subspaces Vj and not on how the complementary subspaces Wj

are chosen. Consequently, for a �xed set of subspaces Vj , the leading terms do
not depend on the fact whether the wavelets are orthogonal or not. We also
show that Daubechies' orthogonal wavelets need, in general, one level more than
spline wavelets to obtain an approximation with a prescribed accuracy. These
results are illustrated with numerical examples.
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1. Notation

A measurable function f(x) belongs to the space Lp(R), 1 6 p <1, if

kf(x)kp =

�Z +1

�1

jf(x)jp dx
�1=p

< 1 ;
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and to L1(R) if

kf(x)k1 = sup
x2R

jf(x)j < 1 :

The inner product of two functions f(x) and g(x) of the Hilbert space L2(R) is
de�ned as

h f; g i =

Z +1

�1

f(x) g(x)dx :

The Fourier transform of a function f(x) is given by

bf(!) =

Z +1

�1

f(x) e�i!x dx :

A countable set ffng of a Hilbert space is a Riesz basis if every element f of the
space can be written uniquely as f =

P
n cn fn, and positive constants A and B

exist such that

A kfk2 6
X
n

jcnj2 6 B kfk2 :

The space Dm is de�ned a the space of bounded functions that decay faster than
an inverse polynomial,

Dm = ff(x) j jf(x)j 6 C (1 + jxj)�(m+1+�) ; � > 0g :

For a function of this space, its �rst m+ 1 moments are �nite.

2. Introduction

We �rst brie
y review wavelets and multiresolution analysis. For more detailed
treatments, one can consult [4, 9, 18, 23, 24].

2.1. Multiresolution analysis

A multiresolution analysis of L2(R) is de�ned as a set of closed subspaces Vj
with j 2 Zthat exhibit the following properties:

1. Vj � Vj+1,
2. v(x) 2 Vj , v(2x) 2 Vj+1 and v(x) 2 V0 , v(x+ 1) 2 V0,

3.

+1[
j=�1

Vj is dense in L2(R) and

+1\
j=�1

Vj = f0g,

4. A scaling function '(x) 2 V0 exists such that the set f'(x� l) j l 2 Zg is a
Riesz basis of V0.

As a result a sequence fhk j k 2Zg, exists such that the scaling function satis�es
a re�nement equation

'(x) = 2
X
k

hk '(2x� k) :(1)
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The set of functions f'j;l j l 2Zgwith 'j;l(x) =
p
2j '(2jx�l), is a Riesz basis of

Vj . LetWj be a complementary space of Vj in Vj+1, such that Vj+1 = Vj �Wj .
Consequently

+1M
j=�1

Wj = L2(R) :

Note that Wj is not unique.
A function  (x) is a wavelet if the set of functions f (x�l) j l 2Zg is a Riesz

basis of W0. Since the wavelet is also an element of V0, a sequence fgk j k 2Zg
exists such that

 (x) = 2
X
k

gk '(2x� k) :(2)

The set of wavelet functions f j;l(x) j l; j 2Zg is a Riesz basis of L2(R).
The projection operator onto Vj (resp.Wj) that corresponds to this splitting

of L2 is denoted by Pj (resp.Qj). It can be written with the use of a dual scaling

function e' (resp. wavelet e ) as
Pjf(x) =

X
l

h f; e'j;l i'j;l(x) and Qjf(x) =
X
l

h f; e j;l i j;l(x) :

Here e'j;l and e j;l are de�ned similarly as above. Such wavelets are called
biorthogonal wavelets [7]. The dual functions also generate a multiresolution

analysis with subspaces eVj and fWj , which are di�erent from the Vj and Wj .
Taking the Fourier transform of Eqs. (1) and (2) yields

b'(!) = H(!=2) b'(!=2) with H(!) =
X
k

hk e
�ik!(3)

and b (!) = G(!=2) b (!=2); with G(!) =
X
k

gk e
�ik! :(4)

Similar de�nitions and equations hold for the dual functions. A necessary con-
dition for biorthogonality is then

8! 2 R : fM(!)M t(!) = 1 ;

where

M(!) =

�
H(!) H(! + �)
G(!) G(! + �)

�

and similarly for fM(!). Now Cramer's rule says that

eG(!) = �H(! + �)

�(!)
and eH(!) =

G(! + �)

�(!)
;(5)

where �(!) = detM(!). The determinant �(!) does not vanish if and only if
the wavelets generate complementary subspaces.

The de�nition of a multiresolution analysis implies that for f(x) 2 L2(R),
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lim
j!1

Pjf(x) = f(x) and f(x) =
X
j

Qjf(x) :

The error of the approximation in Vj is denoted as Enf(x), with

Enf(x) = f(x)�Pnf(x) or Enf(x) =

1X
j=n

Qjf(x) :

2.2. Orthogonal and semiorthogonal wavelets

A scaling function and wavelet are called orthogonal if the set of functions f'j;l j
l 2 Zg is an orthonormal basis of Vj and if the set f j;l j j; l 2 Zg is an
orthonormal basis of L2(R). This implies thatWj is the orthogonal complement
of Vj in Vj+1. The projection operators onto Vj and Wj are orthogonal and
give the optimal approximation in the L2-sense. The basis functions and dual
functions coincide.

A biorthogonal basis is called semiorthogonal when the subspaces Wj are
the orthogonal complement of Vj in Vj+1, but the basis of each subspace is not
orthogonal. In this case the projection operators Pj and Qj still are orthogonal

projections. The dual multiresolution analysis subspaces eVj and fWj now coin-
cide with Vj and Wj . Essentially, the wavelets that live on di�erent levels are
orthogonal, while the ones that live on the same level are not. These wavelets
are also called pre-wavelets. For a more detailed treatment and examples, see
[4, 19, 25, 26].

2.3. Wavelets and polynomials

The moments of the scaling function and wavelet are de�ned as

Mp =

Z +1

�1

xp '(x)dx and Np =

Z +1

�1

xp  (x)dx with p 2 N :

They are �nite if '(x) and  (x) belong to Dp. For the moments of the dual

functions we use the notations fMp and eNp. The scaling functions cannot have

a vanishing integral and are normalized with M0 = fM0 = 1. This implies that

H(0) = eH(0) = 1.
Let N denote the number of vanishing moment of the dual wavelet,

eNp = 0 for 0 6 p < N and eNN 6= 0 :

This is the same as saying that
be (!) has a root of multiplicity N at ! = 0,

and, since be'(0) 6= 0, also that eG(!) has a root of multiplicity N at ! = 0. From
Eq. (5), we see that this is equivalent to H(!) having a root of multiplicity N
at ! = �, which, by using Eq. (3), implies that

ip b'(p)(2k�) = �kMp for 0 6 p < N :(6)
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Poisson's summation formula yields that

X
l

(x� l)p'(x� l) = Mp for 0 6 p < N :(7)

By rearranging the last expression, we see that any polynomial with degree less
than N can be written as a linear combination of the functions '(x � l) with
l 2 Z. Equation (6) is known as the Strang-Fix condition [15, 29, 31], and it
implies that if f 2 CN , then

kEnf(x)k = O(hN) with h = 2�n :

2.4. Contents of the paper

In the �rst part of the paper we derive an asymptotical error expansion for
Enf(x) in terms of powers of h (h = 2�n) assuming that f(x) is a su�ciently
di�erentiable function. Since the error decays as O(hN) we write the expansion
as

Enf(x) =

MX
p=N

hp Tp�N (x) +O(hM+1) :

We show that Tp�N(x) consists of the p-th derivative of f(x) multiplied with
an oscillating function. We propose the name \monowavelets" for the oscillating
functions. This generalizes an earlier result that was only valid for orthogonal
and compactly supported wavelets [33]. In the case of spline wavelets we point
out a connection between the monowavelets and Euler and Bernoulli splines.

In a second part we use the expansion to compare di�erent multiresolution
analyses that have the same number of dual vanishing moments and thus the
same convergence rate. The factor T0(x) of in the leading term is calculated and
compared for di�erent wavelet families. A �rst result is that it does not depend
on how the complementary spacesWj are chosen. Consequently, for a �xed set of
subspaces Vj , the leading term does not depend on the fact whether the wavelets

are orthogonal or biorthogonal. We show that this is also true for the �rst eN
terms. In other words, whether a projection is orthogonal or not, does essentially
not make a di�erence in case the function is smooth and the scale is su�ciently
�ne.

Finally, we show that T0(x) in the case of Daubechies' orthogonal wavelets
is roughly 2N times larger than in the case of spline wavelets (both orthogonal,
semiorthogonal and biorthogonal because of the �rst result). Thus, in order to
obtain an approximation with a certain accuracy, one needs, in general, one more
level with Daubechies' orthogonal wavelets than with spline wavelets.

3. Asymptotic error expansion

In this section we derive M + 1 terms of the asymptotic error expansion (where

M > N). Assume that  (x); e (x) 2 DM+1, f(x) 2 CM+1, and that f (l)(x) is
bounded for l 6M + 1. Recall that
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Qnf(x) = 2n
X
l

h f(y); e (2ny � l) i  (2nx� l) =
X
l

�n;l  (2
nx� l) :(8)

Writing a Taylor formula around y = x in the de�nition of �n;l yields (with y
as integration variable in the inner products):

�n;l = 2n h f(y); e (2ny � l) i

= 2n h
MX
p=0

f (p)(x)
(y � x)p

p!
+ f (M+1)(�(x; y))

(y� x)M+1

(M + 1)!
; e (2ny � l) i

with �(x; y) between x and y

=

MX
p=0

2n f (p)(x)

p!
h (y � x)p; e (2ny � l) i + �n;l(x) ;

with

�n;l(x) = 2n h f (M+1)(�(x; y))
(y� x)M+1

(M + 1)!
; e (2ny � l) i :

As the derivatives of f(x) are bounded and e (x) belongs to DM+1, all the inner
products are �nite. The dual wavelet has N vanishing moments so that

2n h (y � x)p; e (2ny � l) i = 0 for 0 6 p < N ;

and thus the �rst N terms of the summation over p vanish. For N 6 p 6M we
have, using the transformation z = 2ny � l, that

2n h (y � x)p; e (2ny � l) i = h (hz + hl � x)p; e (z) i
= hp

pX
s=0

�
p

s

� eNp�s (l� 2nx)s :

The lastN terms of this sum again vanish, so the upper bound of the summation
over s can be p�N . Thus,


n;l =

MX
p=N

hp f (p)(x)

p!

p�NX
s=0

�
p

s

� eNp�s (l � 2nx)s + �n;l(x) :

Combining this expansion with Eq. (8) yields that

Qnf(x) =

MX
p=N

hp f (p)(x)

p!

p�NX
s=0

�
p

s

� eNp�s (�)s �s(2nx) +Kn(x) :

Here �p(x) is the �rst monowavelet, which is de�ned as

�p(x) =
X
l

(x� l)p  (x� l) for 0 6 p < M �N ;

and Kn(x) is given by
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Kn(x) =
X
l

�n;l(x) (2
n x� l) :

Next we show that Kn(x) behaves like O(hN):

jKn(x)j 6
X
l

j�n;l(x)j j (2n x� l)j

6
kf (M+1)(x)k1

(M + 1)!
2n
X
l

h jy � xjM+1; j e (2ny � l)j i j (2n x� l)j

= hM+1 kf (M+1)(x)k1
(M + 1)!

X
l

h jz + l � x=hjM+1; j e (z)j i j (x=h� l)j

6 hM+1 kf (M+1)(x)k1
(M + 1)!

�

X
l

2
4M+1X

j=0

mj jx=h� ljj
�
M + 1

j

�3
5 j (x=h� l)j

with mj = h jzjM+1�j ; j e (z)j i (�nite since e (x) 2 DM+1)

6 hM+1 kf (M+1)(x)k1
(M + 1)!

� max
06j6M+1

mj �

X
l

2
4M+1X

j=0

jx=h� ljj
�
M + 1

j

�35 j (x=h� l)j

= hM+1 kf (M+1)(x)k1
(M + 1)!

� max
06j6M+1

mj �
X
l

(jx=h� lj + 1)M+1 j (x=h� l)j :

Since this last summation over l can be bounded independently of x and h, it
holds that jKn(x)j 6 ChM+1 with C independent of x and n. Now we com-
bine the error expansions for Qn into one for En. Therefore, we de�ne a new
monowavelet ��p(x) and write

Qnf(x) =

MX
p=N

hp f (p)(x)

p!
��p�N(2

nx) +Kn(x) ;(9)

with

��p(x) =

pX
s=0

�
N + p

s

� eNN+p�s (�)s �s(x) :(10)

So

Qn+jf(x) =

MX
p=N

hp f (p)(x)

p! 2jp
��p�N(2

n+jx) +Kn+j(x) :

Finally, adding the projections Qn+j f(x) yields the desired expansion,
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Enf(x) =

MX
p=N

hp f (p)(x)

p!
�p�N (2

nx) +O(hM+1) :(11)

Here �p(x) is the third monowavelet, which is de�ned as

�p(x) =

1X
j=0

��p(2
jx)

2j(p+N)
:

We conclude by saying that the general term of the expansions consists of:
a power of h, the same order of derivative of f(x), and a monowavelet. We can
look at the monowavelet as the \oscillating" part and at the derivative as the
\modulating" part.

4. Properties of monowavelets

4.1. De�nition

Recall that the monowavelet �p(x) is de�ned as

�p(x) =
X
l

(x� l)p  (x� l) :(12)

It is the periodization of xp  (x) with period 1. If  (x) 2 Dp, then the series in
Eq. (12) converges uniformly on [0; 1] and �p(x) is bounded. This can be seen
using the Weierstrass M -test combined with the fact that xp  (x) 2 D0. One
can check that this condition was always satis�ed in the previous section. From
the de�nition it follows that

Z 1

0

�p(x) dx = Np for p 2 N ;

and thus the �rst eN monowavelets have a vanishing mean.
The monowavelet �p(x) is de�ned as

�p(x) =

1X
j=0

��p(2
jx)

2j(p+N)
:(13)

The series in Eq. (13) converges uniformly on [0; 1], and the monowavelet is
periodic with period one. Also,

��p(x) = �p(x)�
�p(2x)

2N+p
;(14)

and Z 1

0

�p(x) dx =
2(N+p)

2(N+p) � 1

Z 1

0

��p(x) dx = 0 if p < eN :

Again the �rst eN monowavelets have a vanishing mean.
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4.2. Invariance

There are obviously many possible choices for the wavelet  (x) whose translates
and dilates generate the same subspaces Wj . A trivial alternative would be
 (x � 1). From its de�nition we see that the function �p(x) depends on the
particular choice for  (x). This is not true for ��p(x) and �p(x). Writing Eq. (9)

with n = 0 in case f(x) is the monomial xp with p > N yields

Q0 x
p =

pX
s=N

�
p

s

�
xp�s ��s�N(x) :(15)

It follows that ��p(x) only depends on the multiresolution analysis subspaces

Wj and not on which particular functions  j;k(x) generate it. So �
�

p(x) is more

characteristic for a multiresolution analysis than �p(x). The same is true for
�p(x) as

E0 xp = (1�P0)xp =

pX
s=N

�
p

s

�
xp�s �s�N(x) :(16)

These dependencies are studied in more detail in Sect. 8. Note that

�0(x) = xN � P0 xN :

This is the error of the approximation of the lowest degree monomial that can-
not be approximated exactly. Equation (16) generalizes this to higher degree
monomials.

This also explains the name \monowavelets". The monowavelets come from
periodizing a monomial multiplied with a wavelet or from projecting down
monomials. These techniques are also used in spline theory where the result-
ing functions are called monosplines [28].

4.3. Fourier series

Write the Fourier series of the monowavelet �p(x) as

�p(x) =
X
k

sp;k ek(x) with ek(x) = exp(2�ikx) ;

and

sp;k =

Z 1

0

�p(x) ek(x)dx :

Poisson's summation formula yields that

sp;k = ip b (p)(2k�) :

The coe�cients with even index can be written as

sp;2k = ip b (p)(4k�) = (i=2)p
dp

d!p

�
G(!) b'(!)

�
!=2k�

:(17)
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If p < eN , these terms vanish, since 2k� is a root of order eN of G(!). So only
the odd index terms, which are antisymmetric around 1=2, remain such that

�p(x+ 1=2) = ��p(x) ;(18)

or X
l

(x+ l=2)p (x+ l=2) = 0 for p < eN :

Equation (6) states that 2k�, k 6= 0 is a root of order N of b'(!). This, together
with Eq. (17), yields that if eN 6 p < Ntot = eN +N , the sp;2k with k 6= 0 will
vanish, or

sp;2k = bip (p)(0) �k = Np �k :

So

�p(x+ 1=2) + �p(x) = 2Np ;(19)

or X
l

(x+ l=2)p (x+ l=2) = 2Np for eN 6 p < Ntot :

The monowavelet ��p(x) has Fourier series

��p(x) =
X
k

s�p;k ek(x) ;

with

s�p;k =

pX
j=0

�
N + p

j

� eNN+p�j (�)j sj;k :

Since they are de�ned as �nite linear combinations of the �p(x), the �
�

p(x) with

p < eN also have vanishing even coe�cients in their Fourier series and thus
satisfy,

��p(x+ 1=2) = ���p(x) for p < eN :(20)

The monowavelet �p(x) has Fourier series

�p(x) =
X
k

tp;k ek(x) :(21)

Writing the Fourier series of both sides of Eq. (14) gives

tp;2k+1 = s�p;2k+1 and tp;2k = s�p;2k +
tp;k

2N+p
;

or, if p < eN and thus s�p;2k = 0,

tp;k =
sp;2l+1

2m(N+p)
with k = 2m(2l+ 1) :(22)

The transition from �p(x) to �p(x) apparently corresponds to �lling in the gaps
at the even indices in the Fourier spectrum.



Asymptotic error expansions of wavelet approximations 11

4.4. Zeros

Lemma 1. If  (x) is continuous and in Dp with p < eN , the monowavelets
�p(x) and �

�

p(x) have at least two zeros in the interval [0; 1).

Proof. If  (x) is in Dp, then the series in Eq. (12) converges uniformly and �p(x)
is continuous. Since ��p(x) is a �nite linear combination, it is continuous too. The

proof then immediately follows from Eqs. (18) and (20). Also, if x0 is a root in
[0; 1), so is (x0 + 1=2) mod 1. �

Lemma 2. If  (x) is continuous and in Dp with p < eN and N > 1, the
monowavelet �p(x) has at least two zeros in the interval [0; 1).

Proof. The function �p(x) is de�ned as the limit of a uniformly convergent series
of continuous functions, so it is continuous. We have, using Eqs. (20) and (21),

�p(0) = �p(1) =
2(N+p)

2(N+p) � 1
��p(0) and �p(1=2) = �2(N+p) � 2

2(N+p) � 1
��p(0) :

This means we have at least two changes of sign. �

4.5. Symmetry

If the wavelet is even or odd,

 (�x) = (�1)m  (x) ;
so are the monowavelets �p(x) and �

�

p(x) and, more precisely,

�p(�x) = (�1)m+p �p(x) and ��p(�x) = (�1)m+p ��p(x) :

More generally, if the wavelet is (anti)symmetric around an integer k,

 (2k � x) = (�1)m  (x) ;
so is the monowavelet ��p(x),

��p(�x) = (�1)m+p ��p(x) :

This is true because the function  (x � k) generates the same space Wj and
thus gives rise to the same ��p(x) function while  (x � k) is even or odd. Note

that we cannot make a simple statement about �p(x). The following statements

regarding the zeros of �p(x) (and consequently of ��p(x)) and �p(x), for p <
eN

hold:

{ If �p(x) is odd, it has zeros at the integers because of �p(0) = 0 and the
periodicity. It then also has zeros at the integers + 1=2 because of Eq. (18).

{ If �p(x) is even, this combined with Eq. (18) yields �p(x) = ��p(1=2 � x).
It thus has zeros at the integers + 1=4, and again because of Eq. (18) also
at the integers + 3=4.

{ If �p(x) is odd, it has zeros at the half integers; if it is even we cannot tell
more about the position of its zeros this easily.
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4.6. Connection with scaling function

The relationship between �p(x) for p < Ntot and the scaling function can be
written more explicitly using the Zak transform. Remember that the Zak trans-
form of a function f(x) 2 L2(R) is de�ned as [16, 17]:

(Zf)(x; !) =
X
l

e�i!l f(x+ l) for x; ! 2 R ;

and satis�es
(Zf)(x; !) =

X
k

bf(! + 2�k) ei(!+2�k)x :

De�ne now:

p = ipG(p)(�) =

X
k

kp (�1)k gk :

Then

sp;2k+1 = ip
dp

d!p

h
G(!=2) b'(!=2)i

!=(2k+1)2�

=

�
i

2

�p pX
s=0

�
p

s

�
G(p�s)(�) b'(s)((2k + 1)�)

= 2�p
pX

s=0

�
p

s

�

p�s i

s b'(s)((2k + 1)�) :

Now, for p < eN ,

�p(x) = (Z xp  )(x; 0)
=

X
k

sp;2k+1 e2k+1(x)

= 2�p
pX

s=0

�
p

s

�

p�s

X
k

is b'(s)((2k+ 1)�) e2k+1(x)

= 2�p
pX

s=0

�
p

s

�

p�s (Z xs')(2x; �)

= 2�p
pX

s=0

�
p

s

�

p�s

X
l

(�1)l (2x� l)s '(2x� l) :

For eN 6 p < Ntot holds that

�p(x) = Np + 2�p
pX

s=0

�
p

s

�

p�s

X
l

(�1)l (2x� l)s '(2x� l) :

In case p = 0 we have that

s0;2k+1 = G(�) b'((2k + 1)�) = b'((2k + 1)�) ;(23)

and
�0(x) =

X
l

(�1)l'(2x� l) = 2
X
l

'(2x� 2l)� 1 :(24)
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5. Spline monowavelets

In this section we study the monowavelets in case the scaling function and
wavelet are spline functions. Therefore, we �rst introduce Euler and Bernoulli
polynomials and splines.

5.1. Euler and Bernoulli polynomials and splines

A sequence of polynomials Vm(x), m 2 N, is an Appell sequence if Vm(x) is a
polynomial of strict degree m and

V 0m(x) = mVm�1(x) :

The Euler and Bernoulli polynomials are two Appell sequences, denoted with
Em(x) and Bm(x) respectively, that satisfy [1, 14]

2 exz

ez + 1
=
X
n

Em(x)

m!
zm for jzj < 2� ;

and
z exz

ez � 1
=
X
n

Bm(x)

m!
zm for jzj < � :

The �rst elements of the sequences are

E0(x) = 1
E1(x) = x� 1=2
E2(x) = x2 � x
E3(x) = x3 � 3=2x2 + 1=4
E4(x) = x4 � 2x3 + x ;

and

B0(x) = 1
B1(x) = x� 1=2
B2(x) = x2 � x+ 1=6
B3(x) = x3 � 3=2x2 + 1=2x:
B4(x) = x4 � 2x3 + x2 � 1=30 :

The Bernoulli polynomials satisfy

Bm(x+ 1)�Bm(x) = mxm�1 ;

and consequently

B(p)
m (0) = B(p)

m (1) for 0 6 p 6 m� 2 :

This means that, if we de�ne a 1-periodic function Bm(x) as

Bm(x) = Bm(x� [x]) ;

then this is a periodic spline of order m + 1 with integer knots that belongs to
Cm�2. It is called the Bernoulli periodic spline [21]. The �rst four are shown in
Fig. 1. Its Fourier series for m > 1 is

Bm(x) = � m!

(2�i)m

X
k

0 ek(x)

km
:

The prime indicates that the term with k = 0 is omitted. The function Bm(x)
has the same parity (even/odd) as m.
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Fig. 1. Bm(x) for m = 1;2; 3;4

Something similar is possible for the Euler polynomials. They satisfy

Em(x+ 1) +Em(x) = 2xm ;

and consequently

E(p)
m (0) = �E(p)

m (1) for 0 6 p 6 m� 1 :

This means that if we de�ne a 2-periodic function Em(x) as

Em(x) = (�1)[x]Em(x� [x]) ;

then this is a periodic spline of order m + 1 with integer knots that belongs to
Cm�1. It is called the Euler periodic spline [21, 28]. The �rst four are shown in
Fig. 2. The function Em(x) has the opposite parity (even/odd) as m. Also,

Em(j +m=2) = (�1)j �m :

It is sometimes normalized so that �m = 1, see [3, 28]. It is then the cardinal
spline interpolant of the sequence yk = (�1)k. Its Fourier series for m > 1 is

Em(x) =
2m!

(�i)m+1

X
k

e2k+1(x=2)

(2k + 1)m+1
:
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Fig. 2. Em(x) for m = 1; 2;3; 4

5.2. Spline wavelets

We consider the multiresolution analysis where V0 is the space of piecewise
polynomials of degree m� 1 with integer knots that belong to Cm�2. Note that
this implies that N = m. From the dual multiresolution analysis we only require

that eN > 0. The dual scaling function and wavelet need not be splines. We
supply the notation with an extra superscript (m). A possible choice of scaling

function is '(m)(x) = Nm(x), the cardinal B{spline of order m. We know that

bNm(!) =

�
1� e�i!

i!

�m

;

so that (from Eqs. (22) and (23))

s
(m)

0;2k+1 =

�
2

i�

�m
1

(2k + 1)m
and t

(m)

0;k = eN (m)
m

�
2

i�

�m
1

km
:

We will show in Sect. 8 that, for all possible dual wavelets,

eN (m)
m = � m!

22m
:

This implies that

�
(m)

0 (x) =
2m�1

(m� 1)!
Em�1(2x) and �

(m)

0 (x) = Bm(x) :
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The �p(x) and �p(x) functions with p > 0 here are also one-periodic splines
of order m. Analytic expressions can be obtained, but the derivation is quite
technical and is omitted here. We refer to [32] for details. We only include the
main result, which states that

� (m)
p (x) = (�1)p

�
m

p

�
Bm+p(x) for p < Ntot :

The fact that we have an analytic expression for the monowavelets here is ex-
tremely useful in convergence acceleration algorithms as described in [33].

Remark 1. Equation (13) for p = 0 yields the following relationship between
Euler and Bernoulli splines:

Bm(x) = � m

2m+1

1X
i=0

Em�1(2
i+1x)

2mi
:

Something similar is also true for the polynomials, as

Bm(x) = � m

2m+1

kX
i=0

Em�1(2
i+1x)

2mi
+
Bm(2

k+1x)

2m(k+1)
;

and this is an iterated version of [1, Eq. (23.1.27)].

Remark 2. In [30, pp. 147{151], Strang and Fix construct an asymptotical er-
ror analysis for the projection in the space spanned by piecewise linear �nite
elements. This result coincides with the one presented here in case m = 2 and
M = 2.

6. Other examples of monowavelets

{ For the Daubechies orthogonal wavelets with compact support [8, 9, 10] (the
extremal phase, closest-to-linear phase and coi
ets), these functions were
studied in [33]. Some of the graphs can be found there too.

{ The Deslauriers-Dubuc scaling functions and wavelets can be constructed as
autocorrelation functions of the Daubechies orthogonal scaling functions and
wavelets [11, 12, 13, 27]. The �0(x) for the cases N = 2; 4; 6; 8 are shown in
Fig.3.

{ In case of the Meyer wavelet [24], b (!) has support [�8�=3;�2�=3] [
[2�=3; 8�=3], so b (2k�) is identically zero for jkj 6= 1. We have thatb (�2�) = �

p
2=2, such that

�0;Meyer(x) = �
p
2 cos(2�x) :

The Meyer wavelet has faster than polynomial decay such that all the func-
tions �p(x) are de�ned. They will be all of the form

�p;Meyer(x) = ap sin(2�x� bp) :

The asymptotical error expansion, however, does not make sense in this case
since all the moments of this wavelet vanish (N =1).
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Fig. 3. �0(x) in the case of Deslauriers-Dubuc with N = 2; 4;6; 8

{ For the Shannon wavelet, where

 Shannon(x) =
sin(2�x)� sin(�x)

�x
;

one can see that X
l

 Shannon(x� l)

diverges. Note that the Shannon wavelet is not in D0.

For the Meyer wavelet, which has in�nitely many vanishing moments, the
�p(x) monowavelet is a sine. In the case of spline wavelets, it is easily seen
from their Fourier series that the Euler and Bernoulli periodic splines converge
to a sine or cosine as m goes to in�nity. For the di�erent Daubechies families
the monowavelets seem to converge to a sine function as N goes to in�nity.
So it appears that as the number of vanishing moments goes to in�nity, the
monowavelets converge to sine functions.

7. Interpolation

The leading term of the expansion looks like

hN �0(x=h) f
(N)(x) :
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Remember that we stated that it consists of an oscillating and a modulating
part. The modulating part is given by the envelopes

hN f (N)(x) �max and hN f (N)(x) �min ;(25)

where

�max = max
x2[0;1]

�0(x) and �min = min
x2[0;1]

�0(x) :

The �rst term oscillates between these two envelopes. As a result of Lemma 2
this function has at least 2n+1 zeros per unit length. This leads to the following
theorem:

Theorem 1. If f(x) is su�ciently smooth, the approximation Pnf(x) asymp-
totically interpolates f(x) in at least 2n+1 points per unit length.

The \asymptotically" here means that one can always �nd a large enough n such
that the interpolating properties hold. Essentially, one needs to take n so that
the remaining terms do not in
uence the zeros of the �rst term. The examples
of Sect. 9 will show that n need not be very large. Note that the number of
interpolation points is twice the number of basis functions. The interpolation
points zk, where Pnf(zk) = f(zk), satisfy

z2k = (x1 + k)h+O(h2) and z2k+1 = (x2 + k)h+O(h2) ;

where x1 and x2 are zeros of �0(x) in [0; 1).

8. Comparison of multiresolution analyses

The error expansion can be used to compare di�erent multiresolution analyses.
The error decays as O(hN) and the constant in front of this factor is given by

T0(x) = �0(x=h)
f (N)(x)

N !
:

For su�ciently small h the leading term of the expansion provides a su�ciently
accurate approximation of the error. To compare di�erent multiresolution anal-
yses we therefore look at

AN = k�0(x)k1 ;

because

kEn f(x)kp � hN kT0(x)kp 6
AN hN

N !
jf(x)jN;p :

Here the Sobolev seminorm is de�ned as

jf(x)jN;p = kf (N)(x)kp :
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8.1. Multiresolution analyses with di�erent Vj subspaces

A �rst possibility is to compare di�erent multiresolution analyses that have the
same number of vanishing dual wavelet moments. The order of convergence of
the wavelet approximation evidently is the same. Therefore, we compare the
numerical value of the constant AN . Table 1 gives AN as a function of N
for the Daubechies orthogonal wavelets, spline wavelets, and Deslauriers-Dubuc
wavelets. As we will see in the next section, Am is the same for all spline wavelets
(orthogonal, biorthogonal or semiorthogonal) of order m. The spline wavelets
have by far the smallest constants.

The ratio between AN for Daubechies' orthogonal wavelets and spline
wavelets behaves roughly like 2N . Consequently, an approximation using splines
at a certain level n yields roughly the same error as an approximation using
Daubechies' orthogonal scaling functions at level n+1. In other words, in order
to obtain an approximation with a certain numerical error, one needs, in general,
one more level with Daubechies' orthogonal wavelets than with spline wavelets.
Remember that one extra level doubles the amount of work.
Note: The fact that the �rst non-vanishing dual wavelet moment plays a role in
comparing errors in the discrete case was also pointed out in [20].

Table 1. AN for di�erent wavelet families

extremal closest-to- Deslauriers-

N phase linear phase coi
et spline Dubuc

1 0.500 0.500 0.5000

2 0.500 0.500 0.641 0.1667 0.1667

3 0.597 0.597 0.0481

4 0.865 0.915 0.856 0.0333 0.3000

5 1.904 1.918 0.0244

6 5.109 5.701 4.899 0.0238 1.7857

7 18.169 18.044 0.0261

8 70.927 71.865 59.436 0.0333 21.6176

9 310.398 303.921 0.0476

8.2. Multiresolution analyses with the same Vj subspaces

Another idea is to compare AN for a multiresolution analysis with �xed Vj
subspaces, but di�erent Wj subspaces and consequently di�erent projection op-
erators. Typically, we want to compare biorthogonal bases with (semi)orthogonal
ones. Recall that in the latter case the projection operators are orthogonal and
yield best approximations in the L2 sense.

In order to compare the error expansion for di�erent families of wavelets,
we �rst need to study some dependencies in a multiresolution analysis more
carefully. Hereby we always use the normalizations

b'(0) = 1 and G(�) = 1 ;

to avoid non-uniqueness. The following dependencies now hold in any multires-
olution analysis:
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{ Given a scaling function, the subspaces Vj are uniquely determined by

Vj = clos spanf'j;l(x) j l 2 Zg :
On the other hand, given the subspaces Vj , in�nitely many scaling functions
exist that generate these spaces. More precisely, if '(x) is a such a function,
any function '�(x) with

b'�(!) = A(!) b'(!) ;(26)

where A(!) is a bounded 2�-periodic function that does not vanish and
A(0) = 1, generates the same subspaces Vj . Moreover, any function generat-
ing the same subspaces is of this form.

{ A similar statement holds for the wavelet  (x) and the subspaces Wj .
{ Given the subspaces Wj , the subspaces Vj are uniquely determined by

Vj =

jM
i=�1

Wi :

On the other hand, if the Vj are given, in�nitely many choices for complemen-
tary spaces Wj are possible, one choice being the orthogonal complements.

{ Given the spaces Wj , the fWj are uniquely determined by the fact that

Wj ? fWj0 if j 6= j0 and
M
j

fWj = L2(R) :

Figure 4 shows these dependencies in a graph.

-

-

-� �

�

6 6

'(x)

 (x) Wj

Vj e'(x)

e (x)eWj

eVj

Fig. 4. Dependencies in a multiresolution analysis

For each characteristic of a multiresolution analysis we now can de�ne its
dependency: V -dependent, '-dependent, W -dependent, or  -dependent. Some-
thing is called '-dependent if it depends on the speci�c choice of scaling function.
The other dependencies are de�ned similarly. We always use the most charac-
teristic dependency. By looking at the dependency graph we see that something
that is V -dependent is also '-dependent, but we only use the term '-dependent
for something that is not V -dependent. In other words, something that is V -
dependent does not change if the scaling function '(x) is replaced with a func-
tion '�(x) that generates the same Vj spaces. In order to become more familiar
with this terminology, we illustrate it with some examples.

{ Anything that is V -dependent is also W -dependent.
{ The projection Qnf(x) is W -dependent.
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{ The projection Pnf(x) is W -dependent too, as

Pn =

n�1X
j=�1

Qj :

{ The number of vanishing dual wavelet moments (N) is V -dependent.
{ The �0(x) monowavelet is '-dependent because of Eq. (24).
{ The ��p(x) and �p(x) monowavelet are, in general, W -dependent because of

Eqs. (15) and (16).
{ Anything that is '-dependent and W -dependent at the same time is V -
dependent.

We extend these properties with the following lemmas:

Lemma 3. The �rst non-vanishing dual wavelet moment is V -dependent and,
more precisely,

eNN = �(i=2)N H(N)(�) = (�1=2)N
X
k

(�)k kN hk :

Proof. We �rst prove that it is '-dependent. Pick, therefore, a scaling function
'(x) that generates the Vj . Recall that

eG(!) = �H(! + �)

�(!)
;

with
�(!) = H(!)G(! + �)�H(! + �)G(!) :

Now,

eNN = iN
be (N)

(0) = iN
dN

d!N

h eG(!=2) be'(!=2)i
!=0

;

and, since ! = 0 is a root of multiplicity N of eG(!),
eNN = (i=2)N eG(N)(0) :

Since ! = � is a root of multiplicity N of H(!), it holds that

eG(N)(0) = �H
(N)(�)

�(0)
:

The fact that �(0) = 1 now yields the '-dependency.

To prove that eNN is V -dependent, take a di�erent scaling function,

b'�(!) = A(!) b'(!) ;
which has

H�(!) =
A(2!)

A(!)
H(!) :

As A(0) = 1, and � is a zero of order N of H(!), it holds that

H�(N)(�) = H(N)(�)=A(�) ;

which yields the same �rst non-vanishing dual wavelet moment. �
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Lemma 4. The leading term of the error expansion is V -dependent.

Proof. The monowavelet �0(x) and eNN are '-dependent, so ��0(x) =
eNN �0(x) is

'-dependent too. As ��0(x) was alreadyW -dependent, it is thus V -dependent. So
also �0(x) and consequently the leading term of the expansion are V -dependent.
�

Note: If the subspace V0 is the space of the piecewise polynomials of degreem�1
with integer knots that belong to Cm�2, we can take '(m)(x) to be the B-spline
Nm(x), so

H(!) =

�
1 + e�i!

2

�m

;

such that
eN (m)
m = � m!

22m
;

and
Am = kBm(x)k1 :

In the case m is even, we have a simple expression since

A2n = kB2n(x)k1 = jB2nj ;
where B2n is the 2nth Bernoulli number. The leading term of the expan-
sion is exactly the same for Battle-Lemari�e orthogonal spline wavelets [2, 22],
Cohen-Daubechies-Feauveau biorthogonal spline wavelets [7], and Chui-Wang
semiorthogonal spline wavelets [4, 5, 6].

The dependency of the higher order terms is studied in the following lemmas.

Lemma 5. Given eN , the �rst Ntot = N + eN moments of the dual scaling
function are '-dependent.

Proof. Since e'(x) is a dual function, it holds that

X
k

e'(! + k2�)'(! + k2�) = 1 :

Taking the pth derivative of this expression at ! = 0 yields

X
k

pX
s=0

�
p

s

�
e'(s)(k2�)'(p�s)(k2�) = 0 :(27)

Now, since

ip b'(p)(2k�) = Mp �k for 0 6 p < N ;

and

ip be'(p)(2k�) = fMp �k for 0 6 p < eN ;

it holds that X
k

e'(l)(k2�)'(m)(k2�) = e'(l)(0)'(m)(0)

for 0 6 l < eN or 0 6 m < N . The terms for k 6= 0 in Eq. (27) thus vanish if

s < eN or p � s < N . Consequently, if p < Ntot, then
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pX
s=0

�
p

s

�
(�1)s fMsMp�s = 0 for 0 < p < Ntot :

These relations show that the �rst Ntot moments of the dual scaling function
only depend on the �rst Ntot moments of the scaling function. �

Note: a similar statement holds for the �rst Ntot discrete moments of the se-
quence fhkg.
Lemma 6. The functions Qn x

p and En xp are V -dependent if p < Ntot.

Proof. It follows from Lemma 5 that the function Pn xp is V -dependent. The
proof then immediately follows from the fact that En = 1 � Pn and Qn =
Pn+1 �Pn. �

Lemma 7. The functions ��p(x) and �p(x) are V -dependent if p <
eN .

Proof. From Lemma 6, Eq. (15), and Eq. (16). �

These lemmas can be combined into the following theorem:

Theorem 2. The �rst eN terms of the error expansion are V -dependent.

So we can conclude that for the approximation of a smooth function on a
small scale it does not really matter how the spacesWj are chosen. The outcome
that orthogonal and biorthogonal projections almost give the same result might
look surprising at �rst sight, but one has to keep in mind that it only holds for
smooth functions.

9. Numerical examples

We implemented a computer program that calculates the operator Pn f(x) from
samples of a function f(x). It employs quadrature formula to approximate the
inner products and a subdivision scheme to evaluate the basis functions. The er-
ror of these numerical approximation schemes is always negligible in comparison
with the error of the wavelet approximation. We consider the function

f(x) = exp
��20(x� 1=2

�2
) ;

and calculate Pn f(x) for x 2 [0; 1].
Figure 5 shows the error E5f(x) in case the scaling function is the orthogonal

Daubechies function with N = 2. The dotted lines are the envelopes of the lead-
ing term of the error expansion. At this level the leading term already provides
a reasonable approximation of the error. Note that the interpolation properties
described in Sect. 7 hold.

Figure 6 shows the error E5f(x) in case the scaling function is the B-spline

of order N = 2 and the dual scaling function is the one with eN = 2 constructed
in [7]. Again the dotted line are the envelopes of the leading term of the error
expansion. One can clearly distinguish the shape of the Bernoulli spline of degree
2.

Table 2 compares maxx jEnf(x)j on di�erent levels in two cases. In the �rst
one the scaling function is the orthogonal Daubechies scaling function with N =
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Fig. 5.

4. The second one corresponds to the biorthogonal case with '(x) = N4(x)

(N = 4) and eN = 6. The order of convergence is O(h4) in both cases. On the
�ner levels the error is indeed divided by 16 each time. This con�rms what was
predicted in Sect. 8: The approximation using splines at a certain level yields
roughly the same error as an approximation using Daubechies' scaling functions
with the same N at the next (�ner) level.
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