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Abstract

We present an algorithm based on lattice reduction for the fast decoding of diagonal differential
modulation across multiple antenna. While the complexity of the maximum likelihood algorithm is ex-
ponential both in the number of antenna and the rate, the complexity of our approximate lattice algorithm
is polynomial in the number of antennas and the rate. We show that the error performance of our lattice
algorithm is very close to the maximum likelihood algorithm.

Index Terms—Multi-element antenna arrays, wireless communications, fading channels, differential
modulation, fast decoding, lattice reduction



1 Introduction

Multiple-antenna wireless communication links allow much higher data rates than traditional single antenna
links. Under the assumption that the fading coefficients between the different antenna are independent and
known to the receiver, it was proven in [1, 2] that the capacity of a multiple antenna links scales linearly
with the lesser of the number of send and receive antennas. Several schemes for modulation and coding over
such channels have been proposed [3, 4].

In a mobile wireless environment, the fading coefficients change rapidly and the receiver may not have
enough time to learn the fading coefficients. Even if the receiver does not know the fading coefficients,
a substantial increase in channel capacity is still possible [5]. For high SNR, it is argued heuristically in
[6] that the capacity of the unknown channel is achieved with a new class of so galtady space-time
signals. In [7], a systematic construction of unitary space-time signals is presented.

A natural way of dealing with unknown channels is differential modulation. Recently, a multiple antenna
differential scheme using unitary space-time signals was introduced [8]. The framework is formally similar
to standard one-antenna differential modulation and connects the known channel case with the unknown
channel case. In particular [8] introduces so-calitajonal codeswvhich are simple to generate: every
antenna transmits a PSK symbol in turn.

In [9] a different differential multiple antenna scheme that builds upon the orthogonal designs of [4] was
introduced. The advantage of the orthogonal design differential codes is their good performance, and the
fact that fast decoding algorithms exist. Their disadvantage is that they only exist for a restricted number of
antennas, while diagonal codes exist for any number of antennas. Even though diagonal codes are simple
to generate, so far only a slow decoding algorithm has been introduced; this algorithm is exponential in the
number of antennas and the rate [8].

In this paper we present a fast approximate decoding algorithm for diagonal multiple antenna differential
codes. Our approach relies on approximately recasting the decoding problem into that of finding the closest
point in an integer lattice. To solve the latter, we uselibsis reductioror L L L algorithm introduced by
Lovasz, Lenstra and Lenstra in [10]. Our lattice algorithm is polynomial in the number of antennas, and
independent of the rate. It approximates maximum likelihood decoding, and we show empirically that its

performance is extremely close to it.



2 Single Antenna Differential Modulation

In this section we give a short review of single-antenna differential phase shift keying (DPSK); this review
sets the stage for the multiple-antenna differential modulation technique we discuss in the next section. Dif-
ferential modulation is traditionally used when the channel changes the phase of the symbol in an unknown,
but consistent or continuously varying way. The data information is sent in the difference of the phases of
two consecutive symbols. Under the assumption that the unknown fading coefficient changes little between
two symbols, the difference in phase is preserved and can be used to carry data.

We assume a Rayleigh flat fading channel where the received signals are corrupted by additive noise
and fading. We use complex baseband notation: attime transmit the signal; and we receive the noisy

signalx; at the receiver antenna. The action of the channel is given by:
xt:\/ﬁhtst+wt, tZO,l, (1)

The additive noisev; is independent, identically distribut&t\V' (0, 1) which is the complex Gaussian zero-
mean unit-variance distribution. The complex-valued fading coeffidigig CA(0, 1) distributed but not
independent over time. We assume that the fading coefficients change continuously according to a model
such as Jakes’ [11]. The transmitted signals are normalized to have power one when averaged out over time:
E|s;|> = 1. Thenp represents the expected signal-to-noise ratio (SNR) at the receiver.

For a data rate oR bits per channel use, we ne&d= 2 symbols. A common technique is phase shift

keying (PSK) which uses symbols that drth roots of unity
v =2t =0, L-1. 2)

Suppose we want to send a data sequence of integers, ... with z; € {0,..., L — 1}. The transmitter

sends the symbol stream, so, . . . where
St = Uy, St—1 t=1,2,... (so=1). (3)

The initial symbolsy = 1 does not carry any information and can be thought of as a training symbol. If we

assume that the fading coefficient changes slowly sdithat h; 1, the maximum likelihoodNIL) decoder



is given by

~ML . 2
%"~ = arg min |z — vy @1

The above expression is equal to
lze|? + |ze—1|* — 2|@s 24_1| cos(arg z; — arg x;_1 — 27l /L).

This expression is minimized by minimizing the argument of the cosine. Thus the maximum likelihood

decoder can be computed as
gt = larg (¢¢/2-1) L/ (27)] (4)

where |z] stands for the integer closest 0 An error is made whed}% # 2. The decoding does
not depend on earlier decoding decisions, but only on the received symbglandz;; decoding errors
therefore do not propagate.

A word about models and approximations is in order here. Differential PSK is a decades old technique
used, among many applications, in voice-band modems operating over fixed channels, but when carrier
recovery was not desired. Of course the application to slowly varying channels follows naturally. Similarly
in our extension to multiple antennas given in the next section, one can as a starting point consider a fixed
channel. We mentiond the need for approximate constancy of fading but this is not essential to the definition
of the method. However, in the simulations reported on in Section 5 actual Jake fading models are included

to evaluate the error rate performance.

3 Multiple Antenna Differential Modulation

3.1 The Rayleigh Flat Fading Channel

Consider acommunication link with/ transmitter antennas aidreceiver antennas operating in a Rayleigh
flat-fading environment. We assume a rich scattering environment — either indoor or urban outdoor —
where each receiver antenna responds to each transmitter antenna through a statistically independent fading
coefficient. The received signals are corrupted by additive noise that is statistically independent among the
N receivers and the symbol periods. We also assume a narrow band transmission so no ISI or delay spread
occurs. This is equivalent to assuming that the fading process is non frequency selective. In case of wide

band transmission delay spread becomes important and can be dealt by subdividing the band using OFDM



and then using the above model in each band.

For differential modulation, it is convenient to group the signals transmitted ovekdttatennas in
time blocks of sizeVi. We will user to index the time blocks. The transmitted signals are organized in an
M x M matrix S where the column indices represent the different antennas and the row indices represent
the time samples = M, ..., 7M + M — 1. The matrices are power normalized so that the expected
Euclidean norm of each row is equal to one. This way the total transmitted power does not depend on the
number of antennas. The received signals are organiz&fl in N matricesX . Assuming that the fading

coefficients are constant within each block of siZe the action of the channel is given by

Xr=\pS:H+W, for 7=0,1,.... 5)

HereW. is anM x N matrix of receiver noise coefficients. The noise coefficients are independent across
time and receive antenna, and are identically complex no@M&l0, 1) distributed. TheM x N matrix

H, contains the fading coefficients;. ,, , which areCA/(0,1) distributed. Within a block the fading
coefficients between the different antennas are independentii.s,,, andh,. v ,» are independent if

m # m’ orn # n’. However, the fading coefficients are not necessarily independent across blocks, i.e,
hr; mn @andh,. , , are not independent. Because of the power normalizatitsithe expected SNR at the

receiver.

3.2 Differential Modulation

The generalization of differential modulation to multiple antennas was introduced in [8] and we here briefly
review the main results. Given that a single block takes/pses of the channel, a rarequiresl, = 212
different signals. Each signal is a1 x M unitary matrixV; from a constellatiorl of L such matrices.

The bits to be transmitted are packed into an integer data sequgnsge. .. with z. € {0,..., L —1}. The

fundamental differential encoding equatif8] is given by

S, =V, S,_; for r=12,... wih Sy=1I (6)

Clearly all S matrices are unitary as well; hence the power normalization is satisfied. We next assume that

the fading coefficients are approximately constant @irtime samplesil-_, ~ H.). We can substitute



the above equation in (5) to obtain
X, = VZT Xog +Wr — VZT Wr_q.

Because the noise matrices are independent and statistically invariant with respect to multiplication by uni-
tary matrices, we may write this as
X, =V, X, +V2W., (7)

whereW! is anM x N matrix of additive independeitt\V (0, 1) noise. This is théundamental differential

receiver equationThe maximum likelihoodNIL) decoder [8] is given by

gl =arg  min [X: = ViXr|lp, 8)

=U,...,

where the matrix norm is the Frobenius norm

I J
AIZ = tr (ATA) = tr (AA4T) =375 Jay, ©)
i=1 j=1

We will use this matrix norm throughout the paper.

The quality of a constellatio’ is determined by the probability of error of mistaking one symbol of
Y for another. In [8] it is shown that the probability of mistaking a sigialfor a signalV,» depends
dominantly on the absolute value determinan¥pf- V.. In particular the quality of a constellation is
measured by the so-calleliversity produc{8]

L 1M
20§§31£9<L\det(w Ve )| (10)

(=

The diversity product is always between 0 and 1; the closer to 1, the better the error performance. Any
constellation with non-zero diversity product is said to have full diversity.

A challenging problem which only recently was posed is how to design constellations of unitary matrices
with high diversity product. At this point no general construction exists. In [8] itis argued that for differential
modulation it is natural to let the constellations form a group. This way all transmitted mastiossme
from the same constellation. Again no general group construction exists. Only for Abelian (commutative)
groups is a general design available [8]. These groups are suboptimal, but perform well fer=ateor

2. Assuming that the group is Abelian is equivalent to lettinglalbe diagonal, withl’th roots of unity on



M R L [’LL1’LL2 “"u,]\/[]

2 1 4 [11]

3 1 8 [113]

4 1 16 [1357]

5 1 32 [157911]

6 1 64 [1715232531]

2 2 16 [17]

3 2 64 [11127]

4 2 256 [12597 107]

5 2 1024 [1157 283415 487]
6 2 4096 [1439789 1539 1911 2015]

Table 1: Diagonal antenna constellations Mdr= 1,2, 3,4 and 5 transmitter antennas and r&te= 1,2
that maximize( in (10). The number of signals in the constellatioris= 2#M

the diagonal [8]. The decoding method presented in this paper applies to this special case and exploits the

diagonal structure of the matrices. In particular the constellation is given by
Vi =V, where V;=diagl[e’?™/L ... g2/l 0<I< L,

andu,, are integers betwedhand . — 1. Without loss of generality we can lef = 1. The constellation is
thus entirely defined by the integers. . . uy,. For a givenM, thew,,, are chosen to maximize the diversity
product( as defined in (10). Table 1 lists the diagonal constellations used in this paper.

Because’ forms a group every transmitted mat$x belongs toV. This implies that at any given time

only one antenna transmits a PSK symbol. Diagonal constellations are thus very simple to implement.

3.3 Maximum likelihood decoding

We focus on the case df = 1 receiver which is most typical for a mobile setting. We later show how
to generalize our decoding algorithm A > 1. The received signals form a lengii vector X, whose
elements we denote as. ,,. The maximum likelihood decoder for diagonal codes can be written as

M
M axg min | X, — Vi X, = arg min 3 e -

m=1

€Z27mmé/L.T7-,1; m 2.

Using the cosine triangle rule the summands are equal to

’xT; m’2 + ’wT—l; m’2 -2 ’xT; m Lr—1; m’ cos(arg Lrim — AELr—1;m — 27T’U,m€/L)



Given that only the cosine depends.oiine maximum likelihood decoder is equivalent to

M
sME — arg max Z A2, cos((tuml — om) 210/ L), (11)
¢ m=1
where
Ay = T m 1. m|Y?  and @, = arg (@7, m/Tr—1. m) L/ (270).

ThusA,, is the geometric mean of the modulus of the signals received from antemmbalock - — 1 andr
while ¢,,, represents their phase difference in unit@of L. We let thearg operator take values ip-7, 7)
so thatyp,, € [-L/2,L/2). Clearly A,, andy,, also depend on, but we from now on drop the block index
7 to simplify notation.
In the one antenna cas#/(= 1 with u; = 1) the maximum likelihood decoder can be found at a cost
independent of. by roundingy; to the closest integer, cf. (4). However, in cage > 1, finding thel
that minimizes the above sum is nontrivial. Therefore earlier approaches [8] resorted to a brute force search
among theL = 2%M candidates. The cost of this approach is clearly exponential in both the rate and the

number of antennas. In the next section we discuss a fast algorithm for finding an approximate solution.

4 Fast Decoding

Surprisingly, a maximization identical to (11) shows up in number theory. To disprove the Mertens Conjec-
ture, which if true would have implied the Riemann hypothesis, Odlyzko and te Riele [12] use a maximiza-
tion like (11). To quickly find approximate solutions, they use a lattice reduction method. Our approach is

inspired by their work.

4.1 Constellations as lattices

We first define a lattice iR as the set of all points

M
{Zambm|am€Z},
m=1

where{b, ..., by} is a set of independent vectorsii”, called thebasisof the lattice. We will use bold
to denote vectors iR,

An important insight is that diagonal constellations can be thought af afimensional lattices. This



comes from the fact that the cosine functions in (11)2ar@eriodic and the arguments thus can be reduced
to the interval—7, 7). To do so we use a symmetric modulo operation, denoted a%, wheére modz has

range[—x/2, z/2) instead of the usual, =). The arguments of the cosine can now be written as
[(uml — o) mod L] 27/ L.

Define the M-vectoru = [u;---uy/)t and lete,, be the standard unit vectors RM. The vectors
¢u mod'L for 0 < I < L form the part of a lattice which lies ip-L/2,L/2). To bring the compo-
nent/u,, in the range—L/2, L/2) we simply need to add an integer multiple ©f This is equivalent to
adding an integer multiple of the vectdre,, to u. Thus the lattice is formed by taking integer linear
combinations of the vecton and the vectord.e,,. A basis for the lattice is formed by and Le,, for

2<m< M.

151 * 23 1
* 30

*12
* 19
101 * 26 1

*15
* 22
5r *29 1

*11
*18
* 25

*14
*21
* 28

*10
*17
* 24
*31
-10} * 6 R
*13
* 20

* 2

-15f *9 ]

*16
1

1 1 1 1 1 1

-15 -10 -5 0 5 10 15

Figure 1. One can think of diagonal constellations as lattices. This is an example #a 2 dimen-
sions whereu = [1 9] and L = 32. The element/; of the constellation is represented by the vector
¢[1 9)*mod*32.

Example: Consider the case whefld = 2, u = [1 9], andL = 32; we end up with 32 vectors in the



squareg—16, 15]2, see Figure 1. The lattice is generated by summing integer multiples of the vectors

1 0 L
u9 L

Clearly the first two form a basis dstimes the first one minus, times the second is the third.

4.2 Approximation of the cosine

As mentioned above, we can restrict the arguments of the cosines in (11) to a ipterya) around zero.
Thus maximizing a cosine is equivalent to forcing its argument to be close to zero. For argunuirgs

to zero the cosine can be approximated as:

042

cos(a) ~ 1 — >

Hence we can approximate the maximization(df) by a minimizing of the sum of the squares of the
arguments of the cosines. Then the expression becomes the square of a Euclidean distance. We denote the

index which minimizes this approximate likelihood 25!
seucl __ : . 2 — : . 2
£ = arg min ; A (Ul — @) mod L) = arg min ; ((Apuml — Appm) mod A, L)°. (12)

The vectors with componentd,, u,,£ mod*A,,L form a lattice, which is the above lattice where each

dimensionm has been scaled by,,,. Define the diagonal matriA as
A =diag [A;--- Ap). (13)
The lattice is generated by the basis

by = Au, and b,, =A4,e, = Ae,, for2<m < M, (14)



or equivalently by the columns of the matrix

[ A 0 0 - 0 |
A2U2 AQL 0 tee 0
A3U3 0 A3L tee 0

L A]V[UM 0 0 s AmL ]

(15)

Consider the vectoy with componentsA,,,,,. We can think ofz°! as the index of the lattice vector

closest tay in RM. This implies that we have transformed our problem to the well known problem finding

the closest vector in a lattice.

Example: Figure 2 shows an example of the cosine approximation for the lattice of Figure 1. Assuming

that A1 = A, = 1, the shaded region are the poigtgor which the maximum likelihood decoder returns

the origin ¢M" = 0). We call this the maximum likelihood Voronoi cell. It is found by drawing the curves

of pointsy for which two lattice points have the same likelihood. For example fer0 and? = 7 this is

the nearly vertical curved line. When using the Euclidean approximation these curved lines become straight

lines and the Voronoi cell becomes an exact polygon. In this example the Euclidean and maximum likelihood

Voronoi cells are virtually indistinguishable. However, in higher dimensions they may differ more.

6

-2

-4

-6
-8 -6 -4 -2 0 2 4 6 8

Figure 2: The maximum likelihood Voronoi cell is almost exactly a polygon.
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4.3 Finding the closest point in a lattice

Approximating the maximum likelihood decoding with a closest point in a lattice does not immediately
lead to a fast algorithm. Finding the closest point in a lattice is NP-hard [13]. Thus any known algorithm
will be exponential in the number of dimensiong. However, there is a well-known polynomial-time
approximation algorithm introduced by Lenstra, Lenstra, andakavin [10]; it uses a technique called

basis reductioror “the LLL algorithm.” The LLL algorithm relies on the observation that when a lattice

has an orthogonal basis, the closest point can be found trivially by rounding each component to the closest
lattice component. Thus for a given lattice the LLL algorithm attempts to find the “most orthogonal” basis,
or more precisely the basis with the shortest vectors, and then use component wise rounding to find the
closest lattice point. Finding the basis with the shortest vectors itself is a NP-hard problem; LLL tries to find

a basis with reasonably short vectors.

6

2

-6 I I I I I I I I
-8 -6 -4 -2 0 2 4 6 8

Figure 3: Close up of the lattice of Figure 1. The shortest vectors are (44} and (3,-5) { = 3) The

solid diamond is the region for which component wise rounding decides the origin is the closest point. The
dashed polygon is the true Voronoi cell. Both regions have an area of 32 and tile the plane. The overlap is
90.2%.

Example: Figure 3 shows a close-up of the lattice in Figure 1. The Euclidean Voronoi cell of the origin,
i.e., the region for which the origin is the closest lattice point, is the dashed polygon. The original basis is
[19]" and[0 32]*. The vectord4 4]' (¢ = 4) and[3 — 5]' (¢ = 3) are the shortest vectors and form a basis.
The solid diamond is the region for which component wise rounding decides the origin is the closest point.

Clearly the two regions are quite close. The overlap is 90%; thus for a uniform distribution of query points

11



component wise rounding would fail in 10% of the queries. However, the distribution of the query points is
typically highly peaked around the lattice points, and the performance of component wise rounding can be

much better. In higher dimensions the overlap can be much less.

4.4 The LLL algorithm

For completeness, we sketch the basis reduction algorithm; everything in this subsection is explained in
more detail in textbooks [14]. Léi; ... b, denote the original basis of the lattice, as given in (14) above.

The basis reduction algorithm does a series of operations of the form
b; < b; + ab;, integer a; (16)

such operations yield a different basis for the same lattice. The operations are intended to make the vectors
“more orthogonal” to each other, in a way we make precise shortly. The algorithm also swaps (relabels)
vectors, exchanginb; andb;. Such an operation clearly does not change the basis set.

The basis reduction algorithm includes the use of Gram-Schmidt (GS) orthogonalization, and also uses
some techniques similar to Gram-Schmidt. Recall that the GS orthogonalization is a set of orthogonal
vectors{b; ... by} with the same linear span &b ...b,,}, and can be obtained as follows: fiofrom
lto M, obtainBZ- by removing thij-components fronb;: that is, seﬂA)Z- to b;, and then forj fromi — 1

down to1l, set

HereBJZ denoteQA)j . Bj = HBJ»Hz. Each such assignment completely removeﬁ?t;}eomponent fronb;,
so thatb; andﬁj are orthogonal. The resulting vectoy is also orthogonal to the vectobs for 1 < j < i.

Note that

b, =b;+ > B;b;,
1<

for some coefficientg;;. Consequently we can use the modified step

b; — b; — ——2b;, (17)

where the only change is the uselofinstead oﬂA)j; because the steps are done in decreagiogier, any

b;,-components ob; that are added th; are removed later, singé < j.

12



The basis reduction algorithm tries to make each vebtomore orthogonal to the other vectors; an
operation such as (17) would be ideal for this, but is not of the form (16). Instead, the algorithm can come

close to this by employingreak reductionfor j = ¢ — 1 down to 1, set

b; — b; — bi - b; b, (18)
b2 !
J

where|z| denotesr rounded to the nearest integer. With the rounding, we are removiriAgjtbemponent
of b;, up to somexl-jﬁj with || < 1/2.

The result of this operation is thht is weakly reducedmeaning that the following holds:

b;=b;+ Y aibj, (19)
1<5<i

where the coefficients;; have|o;;| < 1/2.

(We should remark that other sequences of steps of the form (16) can be done that also achieve the
weakly reduced state (19); however weak reduction is the simplest method we've seen.)

One problem with the weak reduction steps (19) is that ifs very long compared to the other vectors,
then little or no removal ob; components from the other vectors may occur. Intuitively, such a viegtor
should be reduced by the other vectors, instead of the other way around. That is, it would be good to swap
along vectorb; with some shorter vectds; with j > i. This is roughly what basis reduction does: having
computed the GS orthogonalization and made all basis vectors weakly reduced, the algorithm tests if there

is anz such that

~ 4 ~ ~
b > (bl + afiyb7). (20)

If there is such an, the algorithm interchangds; andb;.;. The GS orthogonalization is done again, and
again all basis vectors are weakly reduced. The algorithm repeats this test, and these steps, untiliso such
found, and the algorithm stops.

This is a complete overall description of the basis reduction algorithm. There are some obvious in-
efficiencies in this high-level version; for example, after interchandgn@ndb,, there is no need to
recomputeﬁj or b, for j < i. Moreover, for giverk, there’s no need to compufg or b, for j > k until
all needed interchanges are doneifet k. A recursive version of the basis reduction procedure is shown in

Figure 4. This version removes some of these inefficiencies.

13



proc reduce(7)
if (1 < 1) return; fi
while (TRUE) do
reduce(i — 1);

forj<—z‘—1downt01dobi<—bi—{

~

b; — by;
for j « i — 1 downto 1 do b; < b; — %bj od; //update GSvector
J

if (b7_, < 4/3(b? + a?,_,b?_,)) then exit; fi
swap b; and b;_1;

bi-b;
> —‘b od; //weakly reduce
J

od

Figure 4: The basis reduction algorithm.

Plainly the output basis is weakly reduced. Another important property of the output, a consequence of

the interchanges based on (20), is that
b? > b? /2, 1)

fori =2...M, where agairf)? denotesb; - b; = ||B<||2 That is, the orthogonal vectols are not too far
apart in size. Note that since the basis reduction algorithm finished, Wdol%ayeg (b2 + a7, 1b »)

fori=2...M, or
1

b? o5
il 3/4—a 1

b? < 2b?,

sincew; ;—1 < 1/2. This gives the claimed property.
Now suppose we are given a vecigrand we want to find the integer combination of the basis vectors
b; ... b, thatis closest ty. We simply perform a weak reduction step fousingb; ... b,,; the total of

the subtracted vectors is a lattice elemghthat is near tg/: we have
x=y-y =) Ab;, (22)
i

where|\;| < 1/2. Theny’ will be our guess for the closest lattice point.

For our decoding problem with original basis vectors given by (¥4¢an be written as

M
m=1



Thusy’ is equal toy} Au plus multiples of vectorsi,,e,, for 2 < m < M. Because:; = 1, we can find
the approximate decoding answer as

At — f mod L.

The decoder answet*t is only approximate due to the following simplifications:

1. The cosine approximation, i.&" need not be&™". In other words, théZ/-dimensional polyhedral

Euclidean Voronoi cell does not coincide exactly with the curved maximum likelihood cell.

2. In the basis with the shortest possible vectorsith@imensional polyhedral Euclidean Voronoi cell

is approximated by &/-dimensional parallelepiped.

3. The LLL algorithm does not necessarily find the basis with the shortest possible vectors.

4.5 An Exact Algorithm

This subsection shows that it is possible to apply basis reduction techniques to solve the closest-point prob-
lem exactly, in polynomial time for fixed dimension. The main idea is that while the above component
wise rounding is not enough to get the exact answer, we can show that not too many different coordinate
values need be considered to obtain the closest lattice point. While the algorithm we obtain for proving this
complexity bound is probably not of practical use, such a proof shows that the difficulty of the problem is
related to the dimension, not the sizelaf A similar result was already known for the similar problem of
finding the shortest vector in a lattice [14]; it is possible that the our algorithm is already “folklore.”

Suppose we are given a vectpr and we want to find the nearest vector in the lattice. As above, we
perform a weak reduction step fgrusingb; ... b, to obtain lattice elemeng’. We are left with the
problem of finding the lattice point nearest to the vester y — y’.

We claim the following: a lattice poini closest tax can be expressed as= ) . o;b;, where|a| <
2M/2 " This bound, and some brute-force search, yield the algorithm# fer —2(M-1)/2  o(M-1)/2
we recursively search for the closest lattice pointtosubject to the condition that the point has form
kbar + >, csbs. Equivalently, letx” = x — kbyy, and look for the closest point t&f in the lattice
generated byb; ... by _1}.

To prove the bound on the size ofy;, note that (21) implies thah2, > b;/2~. We have also

15



x2 <Y, 53/4, from (22), andz? < 4x2, sincez must be at least as closestas the origin. We have
2Mbi, > > b7 > 4x® > 2 > ajby,
7

and soa2, < 2M, yielding the claim.

In the recursive application of the algorithm, note that by the construction of the orthogonalization, we
can usex’ — (x - BM/Bfw)BM and get the same answer. That is, we can igngre and the subproblem
is (M — 1)-dimensional; thus a recursive solution will satisfy the relevant conditions and it is enough to
consider coefficients; with o < 2.

The resulting algorithm has a running time proportiona2®f +1)2/4+M byt polynomial in the other

parameters (rate and length of the operands).

4.6 Multiple antenna receiver

We show here how lattice decoding can be used in the case of a multiple antenna receixereEeivers,
the received symbak; is anM x N matrix with elements:, ,,, ,. The maximum likelihood decoder is
now given by

N M

s ML . 2 . 127uml/L 2
ZY = arg min | Xr — Ve Xroa||7p = arg min E E |7 — €T / Tr—1; mn|”-
n=1m=1

This in turn can be written as
~ML 2
= A ml — Omon) 2w /L), 24
gl =arg maxy > A7, cos(uml — pmn) 27/L) (24)

where

/2 and Omm = arg (Tr; mn/Tr—1; mm) L/ (27).

Am,n = |x7; m,n Lr—1; m,n‘

The maximization (24) is formally similar to the one in (11). Using the same cosine approximation as
before, we see that the decoding problem can be recast as a closest point in a |attisedinensions and
we can use the approximate lattice decoding.

Using NV receive antennas multiplies the dimension of the lattic&/byor increasing dimensions, brute
force search algorithms quickly become unusable, and fast approximate algorithms like LLL are the only

option.

16



5 Results

L = QRJ\/I TML Tlatt

4 .04 .08
8 .08 A1
16 .13 17
32 .26 .26
64 .54 41

R

1

1

1

1

1

2 16 A1 .09
2 64 A7 .15
2 256  1.77 .24
2 1024  7.49 .39
2 4048 33.8 .56
3

3

3

3

3

64 A2 .09
512 361 .16
4096 27.6 .23
32768 240 44
262144 2170 .72

OO WN O WN OO WN g

Table 2: Times in milliseconds for an implementation of the brute force maximum likelihood algorithm
(TML) and the lattice algorithmI{!***). For rate 1 the lattice algorithm is faster for more than 32 symbols.
For rate 2 and higher the lattice algorithm always wins. Even for constellations with over 200K symbols,
the lattice algorithm finishes in less than a millisecond. Times are measured on a SGI R10000 at 195MHz.

We implemented the maximum likelihood and lattice decoding algorithms for the diagonal differential
codes assuming one receiver. Table 2 gives the decoding times in milliseconds for the maximum likelihood
(T™M1) and lattice algorithmT'***) on a SGI R10000 processor at 195MHz. For rate 1 the lattice algorithm
is faster for more than 32 symboils. For rate 2 and more the lattice algorithm always wins. For a constellation
with 260K symbols, the maximum likelihood algorithm needs 2 seconds while the lattice algorithm finishes
in less than a millisecond. We see that the running time of the lattice algorithm depends much less on the
rate than it does on the number of antennas. This is partly because the cost of the operation in software is
independent off the lengths of the operands. Our implementationGssewith the STL template library.
Because of the overloading of the common arithmetic vector operators, there is a fair amount of time spent
allocating memory for temporary vectors in the lattice algorithm. For a fixed number of antennas one could
build an optimized fixed length vector allocation routine, but we did not do this. For real time decoding at a
sample rate of 30kHz, one has to be able to run the decoding algorithfrxird3 msec. Our software proto-
type already almost obtains this; it is clear that an optimized implementation or a hardware implementation

can easily run in real time.
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Figure 5: Block error rate for constellations with= 2 and M = 2, 3,4. The error rate of the lattice algo-
rithm is shown in full while the maximum likelihood is dotted. Clearly they are very close. For comparison
we also included a single antenna DPSK scheme (dashed).

We also computed the error performance of the lattice algorithm versus maximum likelihood. We do so
by computing the block error rate for both algorithms, i.e, the relative number of timegMhadr 212t is
not equal toz.. The fading per antenna is correlated in time according to Jakes’ model [11]. We assume
that the carrier is 900MHz, the sampling rate is 30kHz, and the mobile receiver moves at 55 mph. The Jakes
correlation after time samples then ig)(270.0025¢) where.J; is the zero-order Bessel function of the first
kind. Figure 5 shows the error performance for r&te- 2 codes on 2,3, and 4 antennas. The codes used
are given in Table 1. The solid lines are the block error rates of the lattice algorithm and the dotted lines are
the rates of the maximum likelihood algorithm. Clearly the performance is very close. We found the lattice
algorithm to be between 1% worse for low SNR to 10% worse for high SNR. For comparison we also put
in the performance of a single antenna DPSK scheme (dashed). As already observed in [7, 8] the error rate

drops significantly when going to multiple antennas.

18



6 Conclusion and Future Work

In this paper we showed how diagonal differential codesibrtransmit antenna can be thought off as
lattices inM dimensions. This insight allows the use of the well knalvhL algorithm as a fast approxi-

mate decoding algorithm. We show that the performance of the lattice algorithm is close to the maximum
likelihood algorithm.

There are several directions for future work. It may be possible to get a better basis thahithe
algorithm returns: in the test (20) used to decide if swapping is needed, thelyadlean be replaced by a
value closer to 1. This makes the output basis more orthogonal, at the cost of more iterations of the reduction
algorithm; perhaps the number of iterations could be bounded at some fixed limit to assure that decoding is
not too slow. It may also be possible to incorporate the cosine measure into the closest vector calculation,
using a small amount of local search.

At this point very little is known about how to design good diagonal codes and one typically resorts
to exhaustive or random searches. The connection with lattices perhaps can add insight in how to design
diagonal codes. For example, one can approximately relate the diversity product of a diagonal code to the
minimum distance between two lattice points.

So far we have only studied the block error rate. To find the bit error rate one needs to assign bit
sequences to each of tlhesymbols. Again the interpretation as lattices may help in find good bit allocation

schemes.
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