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Abstract

We present an algorithm based on lattice reduction for the fast decoding of diagonal differential
modulation across multiple antenna. While the complexity of the maximum likelihood algorithm is ex-
ponential both in the number of antenna and the rate, the complexity of our approximate lattice algorithm
is polynomial in the number of antennas and the rate. We show that the error performance of our lattice
algorithm is very close to the maximum likelihood algorithm.

Index Terms—Multi-element antenna arrays, wireless communications, fading channels, differential
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1 Introduction

Multiple-antenna wireless communication links allow much higher data rates than traditional single antenna

links. Under the assumption that the fading coefficients between the different antenna are independent and

known to the receiver, it was proven in [1, 2] that the capacity of a multiple antenna links scales linearly

with the lesser of the number of send and receive antennas. Several schemes for modulation and coding over

such channels have been proposed [3, 4].

In a mobile wireless environment, the fading coefficients change rapidly and the receiver may not have

enough time to learn the fading coefficients. Even if the receiver does not know the fading coefficients,

a substantial increase in channel capacity is still possible [5]. For high SNR, it is argued heuristically in

[6] that the capacity of the unknown channel is achieved with a new class of so calledunitary space-time

signals. In [7], a systematic construction of unitary space-time signals is presented.

A natural way of dealing with unknown channels is differential modulation. Recently, a multiple antenna

differential scheme using unitary space-time signals was introduced [8]. The framework is formally similar

to standard one-antenna differential modulation and connects the known channel case with the unknown

channel case. In particular [8] introduces so-calleddiagonal codeswhich are simple to generate: every

antenna transmits a PSK symbol in turn.

In [9] a different differential multiple antenna scheme that builds upon the orthogonal designs of [4] was

introduced. The advantage of the orthogonal design differential codes is their good performance, and the

fact that fast decoding algorithms exist. Their disadvantage is that they only exist for a restricted number of

antennas, while diagonal codes exist for any number of antennas. Even though diagonal codes are simple

to generate, so far only a slow decoding algorithm has been introduced; this algorithm is exponential in the

number of antennas and the rate [8].

In this paper we present a fast approximate decoding algorithm for diagonal multiple antenna differential

codes. Our approach relies on approximately recasting the decoding problem into that of finding the closest

point in an integer lattice. To solve the latter, we use thebasis reductionor LLL algorithm introduced by

Lovasz, Lenstra and Lenstra in [10]. Our lattice algorithm is polynomial in the number of antennas, and

independent of the rate. It approximates maximum likelihood decoding, and we show empirically that its

performance is extremely close to it.
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2 Single Antenna Differential Modulation

In this section we give a short review of single-antenna differential phase shift keying (DPSK); this review

sets the stage for the multiple-antenna differential modulation technique we discuss in the next section. Dif-

ferential modulation is traditionally used when the channel changes the phase of the symbol in an unknown,

but consistent or continuously varying way. The data information is sent in the difference of the phases of

two consecutive symbols. Under the assumption that the unknown fading coefficient changes little between

two symbols, the difference in phase is preserved and can be used to carry data.

We assume a Rayleigh flat fading channel where the received signals are corrupted by additive noise

and fading. We use complex baseband notation: at timet we transmit the signalst and we receive the noisy

signalxt at the receiver antenna. The action of the channel is given by:

xt =
√

ρ ht st + wt, t = 0, 1, . . . . (1)

The additive noisewt is independent, identically distributedCN (0, 1) which is the complex Gaussian zero-

mean unit-variance distribution. The complex-valued fading coefficientht is CN (0, 1) distributed but not

independent over time. We assume that the fading coefficients change continuously according to a model

such as Jakes’ [11]. The transmitted signals are normalized to have power one when averaged out over time:

E|st|2 = 1. Thenρ represents the expected signal-to-noise ratio (SNR) at the receiver.

For a data rate ofR bits per channel use, we needL = 2R symbols. A common technique is phase shift

keying (PSK) which uses symbols that areLth roots of unity

v` = e2πi`/L ` = 0, . . . , L− 1. (2)

Suppose we want to send a data sequence of integersz1, z2, . . . with zt ∈ {0, . . . , L − 1}. The transmitter

sends the symbol streams1, s2, . . . where

st = vzt st−1 t = 1, 2, . . . (s0 = 1). (3)

The initial symbols0 = 1 does not carry any information and can be thought of as a training symbol. If we

assume that the fading coefficient changes slowly so thatht ≈ ht−1, the maximum likelihood (ML) decoder
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is given by

ẑML
t = arg min

l
|xt − vl xt−1|2.

The above expression is equal to

|xt|2 + |xt−1|2 − 2 |xt xt−1| cos(arg xt − arg xt−1 − 2πl/L).

This expression is minimized by minimizing the argument of the cosine. Thus the maximum likelihood

decoder can be computed as

ẑML
t = barg (xt/xt−1)L/(2π)e , (4)

wherebxe stands for the integer closest tox. An error is made when̂zML
t 6= zt. The decoding does

not depend on earlier decoding decisions, but only on the received symbolsxt−1 andxt; decoding errors

therefore do not propagate.

A word about models and approximations is in order here. Differential PSK is a decades old technique

used, among many applications, in voice-band modems operating over fixed channels, but when carrier

recovery was not desired. Of course the application to slowly varying channels follows naturally. Similarly

in our extension to multiple antennas given in the next section, one can as a starting point consider a fixed

channel. We mentiond the need for approximate constancy of fading but this is not essential to the definition

of the method. However, in the simulations reported on in Section 5 actual Jake fading models are included

to evaluate the error rate performance.

3 Multiple Antenna Differential Modulation

3.1 The Rayleigh Flat Fading Channel

Consider a communication link withM transmitter antennas andN receiver antennas operating in a Rayleigh

flat-fading environment. We assume a rich scattering environment — either indoor or urban outdoor —

where each receiver antenna responds to each transmitter antenna through a statistically independent fading

coefficient. The received signals are corrupted by additive noise that is statistically independent among the

N receivers and the symbol periods. We also assume a narrow band transmission so no ISI or delay spread

occurs. This is equivalent to assuming that the fading process is non frequency selective. In case of wide

band transmission delay spread becomes important and can be dealt by subdividing the band using OFDM
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and then using the above model in each band.

For differential modulation, it is convenient to group the signals transmitted over theM antennas in

time blocks of sizeM . We will useτ to index the time blocks. The transmitted signals are organized in an

M ×M matrix Sτ where the column indices represent the different antennas and the row indices represent

the time samplest = τM, . . . , τM + M − 1. The matrices are power normalized so that the expected

Euclidean norm of each row is equal to one. This way the total transmitted power does not depend on the

number of antennas. The received signals are organized inM ×N matricesXτ . Assuming that the fading

coefficients are constant within each block of sizeM , the action of the channel is given by

Xτ =
√

ρSτ Hτ + Wτ for τ = 0, 1, . . . . (5)

HereWτ is anM × N matrix of receiver noise coefficients. The noise coefficients are independent across

time and receive antenna, and are identically complex normalCN (0, 1) distributed. TheM × N matrix

Hτ contains the fading coefficientshτ ; m,n which areCN (0, 1) distributed. Within a block the fading

coefficients between the different antennas are independent, i.e.,hτ ; m,n andhτ ; m′,n′ are independent if

m 6= m′ or n 6= n′. However, the fading coefficients are not necessarily independent across blocks, i.e,

hτ ; m,n andhτ ′; m,n are not independent. Because of the power normalization,ρ is the expected SNR at the

receiver.

3.2 Differential Modulation

The generalization of differential modulation to multiple antennas was introduced in [8] and we here briefly

review the main results. Given that a single block takes upM uses of the channel, a rateR requiresL = 2RM

different signals. Each signal is anM ×M unitary matrixV` from a constellationV of L such matrices.

The bits to be transmitted are packed into an integer data sequencez1, z2, . . . with zτ ∈ {0, . . . , L−1}. The

fundamental differential encoding equation[8] is given by

Sτ = Vzτ Sτ−1 for τ = 1, 2, . . . with S0 = I. (6)

Clearly allSτ matrices are unitary as well; hence the power normalization is satisfied. We next assume that

the fading coefficients are approximately constant over2M time samples (Hτ−1 ≈ Hτ ). We can substitute
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the above equation in (5) to obtain

Xτ = Vzτ Xτ−1 + Wτ − Vzτ Wτ−1.

Because the noise matrices are independent and statistically invariant with respect to multiplication by uni-

tary matrices, we may write this as

Xτ = Vzτ Xτ−1 +
√

2 W ′
τ , (7)

whereW ′
τ is anM ×N matrix of additive independentCN (0, 1) noise. This is thefundamental differential

receiver equation. The maximum likelihood (ML) decoder [8] is given by

ẑML
τ = arg min

`=0,...,L−1
‖Xτ − V`Xτ−1‖F , (8)

where the matrix norm is the Frobenius norm

‖A‖2F = tr (A†A) = tr (AA†) =
I∑

i=1

J∑
j=1

|aij |2. (9)

We will use this matrix norm throughout the paper.

The quality of a constellationV is determined by the probability of error of mistaking one symbol of

V for another. In [8] it is shown that the probability of mistaking a signalV` for a signalV`′ depends

dominantly on the absolute value determinant ofV` − V`′ . In particular the quality of a constellationV is

measured by the so-calleddiversity product[8]

ζ =
1
2

min
06`<`′<L

|det (V` − V`′)|1/M . (10)

The diversity product is always between 0 and 1; the closer to 1, the better the error performance. Any

constellation with non-zero diversity product is said to have full diversity.

A challenging problem which only recently was posed is how to design constellations of unitary matrices

with high diversity product. At this point no general construction exists. In [8] it is argued that for differential

modulation it is natural to let the constellations form a group. This way all transmitted matricesSτ come

from the same constellation. Again no general group construction exists. Only for Abelian (commutative)

groups is a general design available [8]. These groups are suboptimal, but perform well for rateR = 1 or

2. Assuming that the group is Abelian is equivalent to letting allV` be diagonal, withL’th roots of unity on
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M R L [u1 u2 · · · uM ]

2 1 4 [1 1]
3 1 8 [1 1 3]
4 1 16 [1 3 5 7]
5 1 32 [1 5 7 9 11]
6 1 64 [1 7 15 23 25 31]

2 2 16 [1 7]
3 2 64 [1 11 27]
4 2 256 [1 25 97 107]
5 2 1024 [1 157 283 415 487]
6 2 4096 [1 439 789 1539 1911 2015]

Table 1: Diagonal antenna constellations forM = 1, 2, 3, 4 and 5 transmitter antennas and rateR = 1, 2
that maximizeζ in (10). The number of signals in the constellation isL = 2RM .

the diagonal [8]. The decoding method presented in this paper applies to this special case and exploits the

diagonal structure of the matrices. In particular the constellation is given by

V` = V `
1 , where V1 = diag [ei2πu1/L · · · ei2πuM /L], 0 6 l < L,

andum are integers between0 andL− 1. Without loss of generality we can letu1 = 1. The constellation is

thus entirely defined by the integersu2 . . . uM . For a givenM , theum are chosen to maximize the diversity

productζ as defined in (10). Table 1 lists the diagonal constellations used in this paper.

BecauseV forms a group every transmitted matrixSτ belongs toV. This implies that at any given time

only one antenna transmits a PSK symbol. Diagonal constellations are thus very simple to implement.

3.3 Maximum likelihood decoding

We focus on the case ofN = 1 receiver which is most typical for a mobile setting. We later show how

to generalize our decoding algorithm toN > 1. The received signals form a lengthM vectorXτ whose

elements we denote asxτ ; m. The maximum likelihood decoder for diagonal codes can be written as

ẑML
τ = arg min

`
‖Xτ − V` Xτ−1‖2F = arg min

`

M∑
m=1

|xτ ; m − ei2πum`/Lxτ−1; m|2.

Using the cosine triangle rule the summands are equal to

|xτ ; m|2 + |xτ−1; m|2 − 2 |xτ ; m xτ−1; m| cos(arg xτ ; m − arg xτ−1; m − 2πum`/L).
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Given that only the cosine depends on` the maximum likelihood decoder is equivalent to

ẑML
τ = arg max

`

M∑
m=1

A2
m cos((um`− ϕm) 2π/L), (11)

where

Am = |xτ ; m xτ−1; m|1/2 and ϕm = arg (xτ ; m/xτ−1; m)L/(2π).

ThusAm is the geometric mean of the modulus of the signals received from antennam in block τ − 1 andτ

while ϕm represents their phase difference in units of2π/L. We let thearg operator take values in[−π, π)

so thatϕm ∈ [−L/2, L/2). ClearlyAm andϕm also depend onτ , but we from now on drop the block index

τ to simplify notation.

In the one antenna case (M = 1 with u1 = 1) the maximum likelihood decoder can be found at a cost

independent ofL by roundingϕ1 to the closest integer, cf. (4). However, in caseM > 1, finding the`

that minimizes the above sum is nontrivial. Therefore earlier approaches [8] resorted to a brute force search

among theL = 2RM candidates. The cost of this approach is clearly exponential in both the rate and the

number of antennas. In the next section we discuss a fast algorithm for finding an approximate solution.

4 Fast Decoding

Surprisingly, a maximization identical to (11) shows up in number theory. To disprove the Mertens Conjec-

ture, which if true would have implied the Riemann hypothesis, Odlyzko and te Riele [12] use a maximiza-

tion like (11). To quickly find approximate solutions, they use a lattice reduction method. Our approach is

inspired by their work.

4.1 Constellations as lattices

We first define a lattice inRM as the set of all points

{
M∑

m=1

am bm | am ∈ Z

}
,

where{b1, . . . ,bM} is a set of independent vectors inRM , called thebasisof the lattice. We will use bold

to denote vectors inRM .

An important insight is that diagonal constellations can be thought of asM -dimensional lattices. This
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comes from the fact that the cosine functions in (11) are2π periodic and the arguments thus can be reduced

to the interval[−π, π). To do so we use a symmetric modulo operation, denoted as mod∗, where mod∗x has

range[−x/2, x/2) instead of the usual[0, x). The arguments of the cosine can now be written as

[(um`− ϕm) mod∗L] 2π/L.

Define theM -vector u = [u1 · · · uM ]t and letem be the standard unit vectors inRM . The vectors

`u mod∗L for 0 6 l < L form the part of a lattice which lies in[−L/2, L/2)M . To bring the compo-

nent`um in the range[−L/2, L/2) we simply need to add an integer multiple ofL. This is equivalent to

adding an integer multiple of the vectorL em to `u. Thus the lattice is formed by taking integer linear

combinations of the vectoru and the vectorsLem. A basis for the lattice is formed byu andLem for

2 6 m 6M .
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Figure 1: One can think of diagonal constellations as lattices. This is an example inM = 2 dimen-
sions whereu = [1 9]t andL = 32. The elementV` of the constellation is represented by the vector
` [1 9]tmod∗32.

Example: Consider the case whereM = 2, u = [1 9]t, andL = 32; we end up with 32 vectors in the
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square[−16, 15]2, see Figure 1. The lattice is generated by summing integer multiples of the vectors

 1

u2

  0

L

  L

0

 .

Clearly the first two form a basis asL times the first one minusu2 times the second is the third.

4.2 Approximation of the cosine

As mentioned above, we can restrict the arguments of the cosines in (11) to a interval[−π, π) around zero.

Thus maximizing a cosine is equivalent to forcing its argument to be close to zero. For argumentsα close

to zero the cosine can be approximated as:

cos(α) ≈ 1− α2

2
.

Hence we can approximate the maximization of(11) by a minimizing of the sum of the squares of the

arguments of the cosines. Then the expression becomes the square of a Euclidean distance. We denote the

index which minimizes this approximate likelihood asẑeucl:

ẑeucl = arg min
`

∑
m

Am ((um`− ϕm) mod∗L)2 = arg min
`

∑
m

((Amum`−Amϕm) mod∗AmL)2 . (12)

The vectors with componentsAmum` mod∗AmL form a lattice, which is the above lattice where each

dimensionm has been scaled byAm. Define the diagonal matrixA as

A = diag [A1 · · ·Am]. (13)

The lattice is generated by the basis

b1 = Au, and bm = Amem = Aem for 2 6 m 6M, (14)
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or equivalently by the columns of the matrix



A1 0 0 · · · 0

A2u2 A2L 0 · · · 0

A3u3 0 A3L · · · 0
...

...
. . .

...

AMuM 0 0 · · · AmL


(15)

Consider the vectory with componentsAmϕm. We can think ofẑeucl as the index of the lattice vector

closest toy in RM . This implies that we have transformed our problem to the well known problem finding

the closest vector in a lattice.

Example: Figure 2 shows an example of the cosine approximation for the lattice of Figure 1. Assuming

thatA1 = A2 = 1, the shaded region are the pointsy for which the maximum likelihood decoder returns

the origin (̂zML = 0). We call this the maximum likelihood Voronoi cell. It is found by drawing the curves

of pointsy for which two lattice points have the same likelihood. For example for` = 0 and` = 7 this is

the nearly vertical curved line. When using the Euclidean approximation these curved lines become straight

lines and the Voronoi cell becomes an exact polygon. In this example the Euclidean and maximum likelihood

Voronoi cells are virtually indistinguishable. However, in higher dimensions they may differ more.

−8 −6 −4 −2 0 2 4 6 8
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−2

0

2

4
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 4

 3
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28

29

25

 0

 4

 3

 7

28

29

25

Figure 2: The maximum likelihood Voronoi cell is almost exactly a polygon.

10



4.3 Finding the closest point in a lattice

Approximating the maximum likelihood decoding with a closest point in a lattice does not immediately

lead to a fast algorithm. Finding the closest point in a lattice is NP-hard [13]. Thus any known algorithm

will be exponential in the number of dimensionsM . However, there is a well-known polynomial-time

approximation algorithm introduced by Lenstra, Lenstra, and Lov´asz in [10]; it uses a technique called

basis reductionor “the LLL algorithm.” The LLL algorithm relies on the observation that when a lattice

has an orthogonal basis, the closest point can be found trivially by rounding each component to the closest

lattice component. Thus for a given lattice the LLL algorithm attempts to find the “most orthogonal” basis,

or more precisely the basis with the shortest vectors, and then use component wise rounding to find the

closest lattice point. Finding the basis with the shortest vectors itself is a NP-hard problem; LLL tries to find

a basis with reasonably short vectors.

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

 0

 4

 3

 7

28

29

25

Figure 3: Close up of the lattice of Figure 1. The shortest vectors are (4,4) (` = 4) and (3,-5) (̀ = 3) The
solid diamond is the region for which component wise rounding decides the origin is the closest point. The
dashed polygon is the true Voronoi cell. Both regions have an area of 32 and tile the plane. The overlap is
90.2%.

Example: Figure 3 shows a close-up of the lattice in Figure 1. The Euclidean Voronoi cell of the origin,

i.e., the region for which the origin is the closest lattice point, is the dashed polygon. The original basis is

[1 9]t and[0 32]t. The vectors[4 4]t (` = 4) and[3 − 5]t (` = 3) are the shortest vectors and form a basis.

The solid diamond is the region for which component wise rounding decides the origin is the closest point.

Clearly the two regions are quite close. The overlap is 90%; thus for a uniform distribution of query points
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component wise rounding would fail in 10% of the queries. However, the distribution of the query points is

typically highly peaked around the lattice points, and the performance of component wise rounding can be

much better. In higher dimensions the overlap can be much less.

4.4 The LLL algorithm

For completeness, we sketch the basis reduction algorithm; everything in this subsection is explained in

more detail in textbooks [14]. Letb1 . . .bM denote the original basis of the lattice, as given in (14) above.

The basis reduction algorithm does a series of operations of the form

bi ← bi + abj, integer a; (16)

such operations yield a different basis for the same lattice. The operations are intended to make the vectors

“more orthogonal” to each other, in a way we make precise shortly. The algorithm also swaps (relabels)

vectors, exchangingbi andbj . Such an operation clearly does not change the basis set.

The basis reduction algorithm includes the use of Gram-Schmidt (GS) orthogonalization, and also uses

some techniques similar to Gram-Schmidt. Recall that the GS orthogonalization is a set of orthogonal

vectors{b̂1 . . . b̂M} with the same linear span as{b1 . . .bM}, and can be obtained as follows: fori from

1 to M , obtainb̂i by removing thêbj-components frombi: that is, set̂bi to bi, and then forj from i − 1

down to1, set

b̂i ← b̂i − b̂i · b̂j

b̂2
j

b̂j.

Hereb̂2
j denoteŝbj · b̂j = ‖b̂j‖2. Each such assignment completely removes theb̂j-component from̂bi,

so thatb̂i andb̂j are orthogonal. The resulting vectorb̂i is also orthogonal to the vectorsbj for 1 6 j < i.

Note that

bi = b̂i +
∑

16j<i

βijb̂j,

for some coefficientsβij . Consequently we can use the modified step

b̂i ← b̂i − b̂i · b̂j

b̂2
j

bj, (17)

where the only change is the use ofbj instead of̂bj ; because the steps are done in decreasingj order, any

bj′-components ofbj that are added tôbi are removed later, sincej′ < j.
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The basis reduction algorithm tries to make each vectorbi more orthogonal to the other vectors; an

operation such as (17) would be ideal for this, but is not of the form (16). Instead, the algorithm can come

close to this by employingweak reduction: for j = i− 1 down to 1, set

bi ← bi −
⌊
b̂i · b̂j

b̂2
j

⌉
bj , (18)

wherebxe denotesx rounded to the nearest integer. With the rounding, we are removing theb̂j component

of bi, up to someαijb̂j with |αij | 6 1/2.

The result of this operation is thatbi is weakly reduced, meaning that the following holds:

bi = b̂i +
∑

16j<i

αijb̂j , (19)

where the coefficientsαij have|αij | 6 1/2.

(We should remark that other sequences of steps of the form (16) can be done that also achieve the

weakly reduced state (19); however weak reduction is the simplest method we’ve seen.)

One problem with the weak reduction steps (19) is that ifb1 is very long compared to the other vectors,

then little or no removal ofb1 components from the other vectors may occur. Intuitively, such a vectorb1

should be reduced by the other vectors, instead of the other way around. That is, it would be good to swap

a long vectorbi with some shorter vectorbj with j > i. This is roughly what basis reduction does: having

computed the GS orthogonalization and made all basis vectors weakly reduced, the algorithm tests if there

is ani such that

b̂2
i >

4
3
(b̂2

i+1 + α2
i+1,ib̂

2
i ). (20)

If there is such ani, the algorithm interchangesbi andbi+1. The GS orthogonalization is done again, and

again all basis vectors are weakly reduced. The algorithm repeats this test, and these steps, until no suchi is

found, and the algorithm stops.

This is a complete overall description of the basis reduction algorithm. There are some obvious in-

efficiencies in this high-level version; for example, after interchangingbi andbi+1, there is no need to

recomputêbj or bj for j < i. Moreover, for givenk, there’s no need to computêbj or bj for j > k until

all needed interchanges are done fori 6 k. A recursive version of the basis reduction procedure is shown in

Figure 4. This version removes some of these inefficiencies.
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proc reduce(i)
if (i 6 1) return; fi
while (TRUE) do

reduce(i− 1);

for j ← i− 1 downto 1 do bi ← bi −
⌊

bi·bbj

bb2
j

⌉
bj od; //weakly reduce

b̂i ← bi;

for j ← i− 1 downto 1 do b̂i ← b̂i −
bbi·bbj

bb2
j

bj od; //update GSvector

if (b̂2
i−1 6 4/3(b̂2

i + α2
i,i−1b̂

2
i−1)) then exit; fi

swap bi and bi−1;
od

Figure 4: The basis reduction algorithm.

Plainly the output basis is weakly reduced. Another important property of the output, a consequence of

the interchanges based on (20), is that

b̂2
i > b̂2

i−1/2, (21)

for i = 2 . . . M , where again̂b2
i denoteŝbi · b̂i = ‖b̂i‖2. That is, the orthogonal vectorŝbi are not too far

apart in size. Note that since the basis reduction algorithm finished, we haveb̂2
i−1 6

4
3(b̂2

i + α2
i,i−1b̂

2
i−1)

for i = 2 . . . M , or

b̂2
i−1 6

1
3/4− α2

i,i−1

b̂2
i 6 2b̂2

i ,

sinceαi,i−1 6 1/2. This gives the claimed property.

Now suppose we are given a vectory, and we want to find the integer combination of the basis vectors

b1 . . .bM that is closest toy. We simply perform a weak reduction step fory usingb1 . . .bM ; the total of

the subtracted vectors is a lattice elementy′ that is near toy: we have

x ≡ y − y′ =
∑

i

λib̂i, (22)

where|λi| 6 1/2. Theny′ will be our guess for the closest lattice point.

For our decoding problem with original basis vectors given by (14),y′ can be written as

y′ =
M∑

m=1

y′mbm. (23)
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Thusy′ is equal toy′1Au plus multiples of vectorsAmem for 2 6 m 6 M . Becauseu1 = 1, we can find

the approximate decoding answer as

ẑlatt = y′1 mod L.

The decoder answer̂zlatt is only approximate due to the following simplifications:

1. The cosine approximation, i.e,ẑeucl need not bêzML. In other words, theM -dimensional polyhedral

Euclidean Voronoi cell does not coincide exactly with the curved maximum likelihood cell.

2. In the basis with the shortest possible vectors theM -dimensional polyhedral Euclidean Voronoi cell

is approximated by aM -dimensional parallelepiped.

3. The LLL algorithm does not necessarily find the basis with the shortest possible vectors.

4.5 An Exact Algorithm

This subsection shows that it is possible to apply basis reduction techniques to solve the closest-point prob-

lem exactly, in polynomial time for fixed dimension. The main idea is that while the above component

wise rounding is not enough to get the exact answer, we can show that not too many different coordinate

values need be considered to obtain the closest lattice point. While the algorithm we obtain for proving this

complexity bound is probably not of practical use, such a proof shows that the difficulty of the problem is

related to the dimension, not the size ofL. A similar result was already known for the similar problem of

finding the shortest vector in a lattice [14]; it is possible that the our algorithm is already “folklore.”

Suppose we are given a vectory, and we want to find the nearest vector in the lattice. As above, we

perform a weak reduction step fory usingb1 . . .bM , to obtain lattice elementy′. We are left with the

problem of finding the lattice point nearest to the vectorx = y − y′.

We claim the following: a lattice pointz closest tox can be expressed asz =
∑

i αibi, where|αM | 6
2M/2. This bound, and some brute-force search, yield the algorithm: fork = −2(M−1)/2 . . . 2(M−1)/2,

we recursively search for the closest lattice point tox, subject to the condition that the point has form

kbM +
∑

i<M αibi. Equivalently, letx′ = x − kbM , and look for the closest point tox′ in the lattice

generated by{b1 . . .bM−1}.
To prove the bound on the size ofαM , note that (21) implies that̂b2

M > b̂i/2M−i. We have also
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x2 6
∑

i b̂
2
i /4, from (22), andz2 6 4x2, sincez must be at least as close tox as the origin. We have

2M b̂2
M >

∑
i

b2
i > 4x2

> z2
> α2

M b̂2
M ,

and soα2
M 6 2M , yielding the claim.

In the recursive application of the algorithm, note that by the construction of the orthogonalization, we

can usex′ − (x′ · b̂M/b̂2
M )b̂M and get the same answer. That is, we can ignoreλM , and the subproblem

is (M − 1)-dimensional; thus a recursive solution will satisfy the relevant conditions and it is enough to

consider coefficientsαi with α2
i 6 2i.

The resulting algorithm has a running time proportional to2(M+1)M/4+M , but polynomial in the other

parameters (rate and length of the operands).

4.6 Multiple antenna receiver

We show here how lattice decoding can be used in the case of a multiple antenna receiver. ForN receivers,

the received symbolXτ is anM × N matrix with elementsxτ ; m,n. The maximum likelihood decoder is

now given by

ẑML
τ = arg min

`
‖Xτ − V` Xτ−1‖2F = arg min

`

N∑
n=1

M∑
m=1

|xτ ; m,n − ei2πum`/Lxτ−1; m,n|2.

This in turn can be written as

ẑML
τ = arg max

l

N∑
n=1

M∑
m=1

A2
m,n cos((um`− ϕm,n) 2π/L), (24)

where

Am,n = |xτ ; m,n xτ−1; m,n|1/2 and ϕm,n = arg (xτ ; m,n/xτ−1; m,n)L/(2π).

The maximization (24) is formally similar to the one in (11). Using the same cosine approximation as

before, we see that the decoding problem can be recast as a closest point in a lattice ofMN dimensions and

we can use the approximate lattice decoding.

UsingN receive antennas multiplies the dimension of the lattice byN . For increasing dimensions, brute

force search algorithms quickly become unusable, and fast approximate algorithms like LLL are the only

option.
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5 Results

M R L = 2RM TML T latt

2 1 4 .04 .08
3 1 8 .08 .11
4 1 16 .13 .17
5 1 32 .26 .26
6 1 64 .54 .41

2 2 16 .11 .09
3 2 64 .47 .15
4 2 256 1.77 .24
5 2 1024 7.49 .39
6 2 4048 33.8 .56

2 3 64 .42 .09
3 3 512 3.61 .16
4 3 4096 27.6 .23
5 3 32768 240 .44
6 3 262144 2170 .72

Table 2: Times in milliseconds for an implementation of the brute force maximum likelihood algorithm
(TML) and the lattice algorithm (T latt). For rate 1 the lattice algorithm is faster for more than 32 symbols.
For rate 2 and higher the lattice algorithm always wins. Even for constellations with over 200K symbols,
the lattice algorithm finishes in less than a millisecond. Times are measured on a SGI R10000 at 195MHz.

We implemented the maximum likelihood and lattice decoding algorithms for the diagonal differential

codes assuming one receiver. Table 2 gives the decoding times in milliseconds for the maximum likelihood

(TML) and lattice algorithm (T latt) on a SGI R10000 processor at 195MHz. For rate 1 the lattice algorithm

is faster for more than 32 symbols. For rate 2 and more the lattice algorithm always wins. For a constellation

with 260K symbols, the maximum likelihood algorithm needs 2 seconds while the lattice algorithm finishes

in less than a millisecond. We see that the running time of the lattice algorithm depends much less on the

rate than it does on the number of antennas. This is partly because the cost of the operation in software is

independent off the lengths of the operands. Our implementation usesC++ with the STL template library.

Because of the overloading of the common arithmetic vector operators, there is a fair amount of time spent

allocating memory for temporary vectors in the lattice algorithm. For a fixed number of antennas one could

build an optimized fixed length vector allocation routine, but we did not do this. For real time decoding at a

sample rate of 30kHz, one has to be able to run the decoding algorithm inM×.03 msec. Our software proto-

type already almost obtains this; it is clear that an optimized implementation or a hardware implementation

can easily run in real time.
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Figure 5: Block error rate for constellations withR = 2 andM = 2, 3, 4. The error rate of the lattice algo-
rithm is shown in full while the maximum likelihood is dotted. Clearly they are very close. For comparison
we also included a single antenna DPSK scheme (dashed).

We also computed the error performance of the lattice algorithm versus maximum likelihood. We do so

by computing the block error rate for both algorithms, i.e, the relative number of times thatẑML
τ or ẑlatt

τ is

not equal tozτ . The fading per antenna is correlated in time according to Jakes’ model [11]. We assume

that the carrier is 900MHz, the sampling rate is 30kHz, and the mobile receiver moves at 55 mph. The Jakes

correlation aftert time samples then isJ0(2π0.0025t) whereJ0 is the zero-order Bessel function of the first

kind. Figure 5 shows the error performance for rateR = 2 codes on 2,3, and 4 antennas. The codes used

are given in Table 1. The solid lines are the block error rates of the lattice algorithm and the dotted lines are

the rates of the maximum likelihood algorithm. Clearly the performance is very close. We found the lattice

algorithm to be between 1% worse for low SNR to 10% worse for high SNR. For comparison we also put

in the performance of a single antenna DPSK scheme (dashed). As already observed in [7, 8] the error rate

drops significantly when going to multiple antennas.
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6 Conclusion and Future Work

In this paper we showed how diagonal differential codes forM transmit antenna can be thought off as

lattices inM dimensions. This insight allows the use of the well knownLLL algorithm as a fast approxi-

mate decoding algorithm. We show that the performance of the lattice algorithm is close to the maximum

likelihood algorithm.

There are several directions for future work. It may be possible to get a better basis than theLLL

algorithm returns: in the test (20) used to decide if swapping is needed, the value4/3 can be replaced by a

value closer to 1. This makes the output basis more orthogonal, at the cost of more iterations of the reduction

algorithm; perhaps the number of iterations could be bounded at some fixed limit to assure that decoding is

not too slow. It may also be possible to incorporate the cosine measure into the closest vector calculation,

using a small amount of local search.

At this point very little is known about how to design good diagonal codes and one typically resorts

to exhaustive or random searches. The connection with lattices perhaps can add insight in how to design

diagonal codes. For example, one can approximately relate the diversity product of a diagonal code to the

minimum distance between two lattice points.

So far we have only studied the block error rate. To find the bit error rate one needs to assign bit

sequences to each of theL symbols. Again the interpretation as lattices may help in find good bit allocation

schemes.
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