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deavor, low-bitrate compression remains a place where

wavelet methods can prevail.

� We should develop a wavelet image compression stan-

dard more general than just �ngerprints.

� The idea of smoothness of functions should really be

developed and applied as a tool for signal process-

ing { incorporated into models of �ltering and distor-

tion. Donoho has already shown how smoothness and

wavelets �t together for statistical denoising; similar

attention should be given to the role of smoothness in

image compression and restoration. Given the charac-

terizations of Sobolev and H�older smoothness in terms

of wavelet coe�cients, this problem area begs for the

use of wavelet methods.

� There is a big need for wavelet constructions adapted

to irregular two-dimensional sampling.

� Wavelets have just opened the door to the �eld of

non-stationary, non-uniform, non-time invariant signal

processing. This �eld is much larger than the �eld of

time-invariant processing where the Fourier transform

rules. It is like going from linear to non-linear opera-

tors. In this huge domain, wavelets are one important

tools but many others are needed, wavelet packets,

local cosine and may other transforms will come. Im-

portant orientations are: adaptive transforms, the use

of other operators than convolution operators in signal

processing applications, and development of stochas-

tic models for non-stationary processes. Right now

most things have been done on signals, but the same

techniques can be used for numerical computations.

\There have been too many pictures of Lena,

and too many bad wavelet sessions at meetings."

|Martin Vetterli, Oberwolfach Meeting 1995.

F. Dangers facing the �eld

� There is too much media distortion concerning

wavelets. Wavelets are oversold and in danger from

their fashionability. We must say no to certain con-

tracts. Claims by wavelet proponents, such as picture

compression people, can not always be met. We should

be more conservative in our claims.

� There is a danger of underselling wavelets! In the

JPEG and MPEG standards, there are no wavelets.

The DICOM competition will close soon { we should

submit entries, or we will have to wait several years.

� There is a danger that wavelet people will split o�

from their previous specialties and start inbreeding.

Wavelet people should preserve their roots.

� The fact that wavelets have a solid theoretical foun-

dation will prevent them from burning out after 10

years.
There does not seem to be a consensus amongst the answers

here. Some people feel that wavelets are oversold, other feel

exactly the opposite way.

VIII. Conclusion

We have tried to give an idea of what people feel wavelets

are, why they work, and in which direction they are mov-

ing. Obviously this is only a snapshot taken from one point

of view of a continuously evolving story and the only way

to �nd out how it ends is to wait and see.

\Who controls the past,

ran the Party slogan,

controls the future:

who controls the present,

controls the past."

|George Orwell, 1984.
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problems. More than just a simple tool, wavelet ideas

prompt new points of view. Some of the best ideas

aren't written down. The big inuence will come from

the new generation researchers now growing up amidst

wavelet ideas.

� Wavelets have advanced our understanding of singu-

larities. The singularity spectrum completely charac-

terizes the complexity of the data data. Now we must

go to an understanding of the underlying phenomena,

to get the equation from the solution. Wavelets don't

give all the answers but they force us to ask the right

questions.

� Wavelets can be used to distinguish coherent versus

incoherent parts of turbulence in uid ow. They give

some information but don't entirely solve the problem.

Experiments provide high Reynolds' numbers with few

measurements, while simulations provide many mea-

surements but are restricted to low Reynolds' num-

bers.

� In Japan, wavelets resulted in a fruitful collabora-

tion between academic research and industrial devel-

opment.

� The results on regularity, approximation power, and

wavelet design techniques, have led to signi�cant de-

velopments in signal and image processing. For in-

stance, some of the very best �lter banks for image

coding, including biorthogonal spline �lter banks, have

been designed from a wavelet point of view rather than

the more traditional subband �ltering point of view.

\My dream is to solve problems,

with or without wavelets"

| Bruno Torresani, Oberwolfach Meeting 1995.

C. Theorems needed to advance the �eld

� We need good theoretical models on how to distinguish

signals from noise.

� We need to further study nonlinear multiscale meth-

ods in order to understand self-organizing multiscale

systems with nonlinear relations between scales. Test

cases are caricatures of turbulence, the stock market,

or fractal piles of sand. There is no unifying the-

ory at this moment, but maybe wavelets can provide

one. We should not use linear multiscale models in

these cases but instead look for nonlinear approxima-

tion with fast convergence. We need external measures

to determine internal simplicity. The currently known

tools are time-frequency analysis, smoothness, and Lp
spaces.

� We need to understand simplicity in high-dimensional

phenomena. We have tools and talent here to advance

our understanding of such problems. Such problems

will become more common as we collect more and more

measurements for even simple physical systems.

� It is important to understand the right balance be-

tween simple building blocks and complex representa-

tions, or complex building blocks and simple represen-

tations. Only focusing on one is naive.

� We need to work on dictionaries as methods to rep-

resenting complex objects in terms of simpler compo-

nents.

� Many results in higher dimensions are still incom-

plete. Theoretical advances in higher dimensional

signal approximation bounds, regularity, design tech-

niques, would be very useful in image processing ap-

plications. There is room for substantial improvement

of the current state of the art.

\Splines approximate; wavelets show internal structure."

| Wolfgang Dahmen, Oberwolfach Meeting 1995.

D. What kind of wavelets do we still need?

� We would like to have isotropic, compactly supported,

and orthogonal wavelets, but unfortunately they don't

exist. Multi-wavelets can provide an answer here.

� Wavelets with custom-design properties, like wavelets

on manifolds and wavelets adapted to irregular sam-

ples are on their way.

� We need to work on spanning the gap between eigen-

functions and wavelets.

There seems to be a debate on the relationship be-

tween splines and wavelets. Some people feel that

splines and spline based wavelets will be able to span

the gap between eigenfunctions and wavelets. For ex-

ample, splines already are exact solutions to varia-

tional problems. Other people feel that there is no fun-

damental di�erence between splines and (non spline

based) wavelets and that each exact spline solution

has a corresponding almost-solution in wavelets.

E. Problems not su�ciently explored with wavelets

� Prediction: The stock market, earthquakes, weather.

We should use wavelets to build models based on pre-

viously observed data.

� Physics: We can use wavelets to de�ne the scale of

the observer. Wavelet techniques can be applied to

quantum physics, atoms, and lasers.

� Scienti�c computing and in particular computational

chemistry. We need to look for problems that need

multiscale and non-linear approximation methods.

� Wavelets and �lter banks should be systematically

applied to problems in communications: for exam-

ple transmultiplexers to map many di�erent signals

onto one channel. Wavelets and �lter banks provide

a broad, rich class of new transforms with which to

do this transmultiplexing, o�ering the familiar advan-

tages of time localization and frequency selectivity.

Because wavelets were initially developed in conversa-

tion with the subband coding community, these appli-

cations application has gotten less attention. However,

because of the large global telecommunications mar-

ket, telecommunication applications of wavelets could

be the sleeper that surprises everybody.

� Really make wavelet methods work for video compres-

sion. While MPEG's success and proliferation make

medium-bitrate wavelet video a purely academic en-
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Littlewood-Paley theory, non-linear approximation theory,

fractals and self-similarity, splines, �lter banks, sampling

theory, Calderon-Zygmund theory, pyramid algorithms in

image processing, . . .One small example: adaptive meth-

ods for solving PDEs again corresponds to non-linear ap-

proximation.

Nobody will dispute the usefulness of considering a

general framework to study these ideas. This common

framework, somehow, ended up being called \wavelets."

Whether this is the right name is open for discussion.

The most important point is that by putting di�erent

ideas into a common framework new insights are gained.

For example, non-linear approximation has been studied

for a long time from a theoretical point of view. Wavelet

constructions now provide a computational framework to

go along with this theory. On the other hand the transform

behind subband coding already was a fast wavelet trans-

form, but some of the theoretical background was missing.

Wavelets thus form a new bridge between the theory and

practice bridgeheads.

When faced with a problem from a particular area where

multiresolution and non-linear approximation seems useful,

wavelets provide a exible prototyping environment that

comes with fast computational algorithms and solid the-

oretical foundation. When studying a particular problem

using wavelets di�erent situations can occur:

� The wavelet based algorithms outperform the existing

ones. In this case the wavelet machinery provides new

insights both theoretically and practically.

� The wavelet based algorithms do just as well as the

existing ones. In this case the wavelet theory might

help proving this behavior or simplifying some of the

existing proofs.

� The wavelet based algorithms are inferior to the ex-

isting ones. This could mean that wavelets are not

the right answer for this problem or that the exper-

tise in this particular area surpasses the understand-

ing brought by wavelets. In the latter case, the wavelet

machinery can be enriched with these new ideas.

In the past all three situations have occurred. In my opin-

ion, the future of wavelets lies in further exploring the inter-

play and expertise interchange between wavelets and other

research �elds.

\All questions are insightful and carefully researched.

Anybody who claims otherwise is itching for a �ght"

|Martin Feldman, \What do you know?" NPR.

VI. Questionnaire

The following questionnaire was distributed to a number

of researchers involved with wavelets.

1. In your opinion, which are the most promising devel-

opments in wavelets?

2. Where do you feel the �eld is moving?

3. What kind of theoretical developments (theorems) are

needed to further push forward the �eld?

4. What kind of wavelet functions should be further be

sought after?

5. Which application domains have not yet been su�-

ciently explored with wavelets?

6. Where will wavelets be in 10 years from today?

7. Have wavelets kept their promises?

8. Are there any dangers threatening the wavelet �eld?

VII. Answers

This section contains the digested version of the answers.

It is organized per topic and each topic consists of a list

of paragraphs. Each paragraph combines similar answers,

but, as you will notice, sometimes paragraphs contradict

each other.

\Doublethink means the power of holding two

contradictory beliefs in one's mind simultaneously,

and accepting both of them"

|George Orwell, 1984.

A. Wavelets and PDEs

� On the practical side signi�cant progress has been

made in boundary element methods since the Beylkin-

Coifman-Rokhlin paper. Wavelets seem to be more

general than multi-pole methods. We still need fast

quadrature formulas for the discretization of integral

operators.

� In case of elliptic PDEs the existing algorithms are

good. Wavelets will not necessarily outperform them,

but they could be equal. Multigrid is very e�cient,

especially on the simple problems done so far with

wavelets. We should combine wavelet and �nite ele-

ment methods. For example, we can now prove that �-

nite element method codes work using the norm equiv-

alence of unconditional wavelet expansions.

� Classical wavelets seems to be good in computing low

frequency scattering and antenna problems. However

they fail in case of very high frequencies. Additional

engineering expertise is needed to solve the problem.

High frequency oscillatory integral kernels need local

cosines, not classical wavelets.

� In the context of building solvers for integral equations,

adaptive methods are crucial. There is no point in �rst

building a full N �N matrix at a cost of O(N2), and

then using wavelets to invert the matrix inO(N ) steps.

One should immediately build the compressed matrix

in the wavelet basis. This approach needs of fast and

accurate error estimators.

B. Interesting Recent Wavelet Developments

� Denoising has both opened up other �elds and im-

ported techniques such as dictionaries and nonlinear

approximation from other �elds. Nonlinear approxi-

mation, smoothing, and reduction to small optimiza-

tion problems, are real achievements.

� Wavelets have had a big psychological impact. Peo-

ple from many di�erent areas became interested in

time-frequency and time-scale transforms. There has

been a revolution in signal processing. There is less

specialization, and the subject is now opened to new
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well. Such building blocks will be able to reveal the in-

ternal correlation structure of the data sets. This should

result in powerful approximation qualities: only a small

number of building blocks should already provide an accu-

rate approximation of the data.

We can immediately relate this back to the wavelet prop-

erties. Assume we want to approximate a function f with a

function fM which is a linear combination of M wavelets.

The question is: which M wavelets out of a possibly in-

�nite set should we pick and what coe�cients should we

given them? Ideally we want to choose fM so that f � fM
is minimal in the norm of F for all possible choices of M

wavelets and M coe�cients. This would be optimal, we

simplify things by using the equivalent norm in C. This

is not optimal, but we can be o� only by a factor of at

most B=A. Given that the norm in C only depends on the

absolute values of the coe�cient, we �nd the best approxi-

mation in the norm of C by simply choosing the M largest

(in absolute value) coe�cients, i.e., we let

fM =
X
�2�M

c�  �;

where �M contains the indices of the M largest wavelet

coe�cients. Since the index set �M depends on the func-

tion f , the approximation is non-linear: (f + g)M is not

equal to fM +gM . Indeed, the latter can contain up to 2M

wavelet terms. If M goes to in�nity, fM will converge to f

in the norm of F . In order to quantify the approximation

properties of fM , i.e., to verify if we captured the internal

correlation structure of the data, we look at the speed of

convergence as we add more terms. This is given by the

largest � for which

kf � fMk = O(M��): (2)

If � is large, the essential information contained in a func-

tion is captured by a small fraction of the wavelet coe�-

cients. This is the key to applications. The question on how

to �nd � has been studied extensively in the area of non-

linear approximation and smoothness spaces. The main re-

sult says that if F is a Besov space of smoothness �, then

(2) holds. We do not intend to give a precise mathematical

formulation of Besov spaces here, but rather try to give

some intuition on why they are important. For example, if

a function belongs to C�, i.e, if this function is � times con-

tinuously di�erentiable, and its �-th derivative belongs to

L2, then (2) holds. However, for this kind of functions tra-

ditional linear approximationmethods based on the Fourier

transform also give convergence speeds like (2). But C�

functions are not very good models for real life signals. A

much better model, e.g. for images, are functions which

are piecewise smooth. Indeed images have discontinuities

(edges), with smooth regions in between. These functions

still belong to Besov spaces with high (typically � > 2)

smoothness index. Besov spaces thus provide appropriate

models for real life signals. For piecewise smooth functions,

linear, Fourier-based methods give very slow convergence

(e.g, � = 1), while non-linear wavelet-based method still

exhibit the fast convergence (e.g, � > 2). This property

results in the fact that, quoted from Donoho, \wavelets are

optimal bases for compressing, estimating, and recovering

functions in F ."

IV. Instances of wavelets

There are several instances of functions that exhibit the

above mentioned properties. As Jelena and Ingrid worded

it, we follow the \democratic" approach and refer to all of

them as wavelets. Some examples are:

� Dyadic translates and dilates of one function:

These are the classical wavelets. They naturally con-

nect with multiresolution analysis and subband cod-

ing. For more information we refer to the article by

Albert Cohen and Jelena Kova�cevi�c.

� Wavelet packets: This is an extension of the clas-

sical wavelets which yields basis functions with better

frequency localization at the cost of a slightly more ex-

pensive transform. For more information check the ar-

ticle by Nicolaj Hess-Nielsen and Victor Wickerhauser.

� Local trigonometric bases: The main idea is to

work with cosines and sines de�ned on �nite inter-

vals combined with a simple, but very powerful way

to smoothly join the basis functions at the endpoints.

For more information we again refer to the article by

Nikolaj Hess-Nielsen and Victor Wickerhauser.

� Multi-wavelets: The idea is not to use one �xed

function to translate and dilate but rather a �nite

number. This way one can obtain combinations of

useful properties which were impossible with classical

wavelets.

� Second generation wavelets: Here one entirely

abandons the idea of translation and dilation. This

gives extra exibility which can be used to construct

wavelets adapted to irregular samples, weights, or

manifolds. For more information, we refer to the paper

by Peter Schr�oder.

We should point out that the Fourier transform does not

�t into this picture, as the basis functions do not have

space localization and the powerful non-linear approxima-

tion properties fail.

\It's the place where my prediction from the sixties

�nally came true: `In the future everybody will be

famous for �fteen minutes.' I am bored with that

line. I never use it anymore. My new line is, `In

�fteen minutes, everybody will be famous.' "

|Andy Warhol, Exposures (1979) `Studio 54'.

V. Are wavelets fundamentally new?

As we mentioned earlier, research can be thought of as

a continuous growing fractal which often folds back onto

itself. This folding back de�nitely occurred on several oc-

casions in the wavelet �eld. We point out that many of

the idea and properties mentioned in the previous sections

have been circulating in di�erent areas. We mention here

a few: subband coding, subdivision for CAGD, multigrid

for the numerical solution of partial di�erential equations,
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A. Wavelets are building blocks for general functions.

We want to express a general function f of F as an

in�nite series of wavelets. Thus a coe�cient sequence

c = fc� j � 2 �g has to exist so that

f =
X
�

c�  �: (1)

We call this a wavelet series and assume it converges in the

norm of F . We require that the converge is unconditional,

i.e., independent of the order of summation. Consider the

space C which contains all coe�cient sequences c 2 C, for

which the corresponding function f belongs to F :

C = fc j
X
�

c�  � 2 Fg:

We want an explicit characterization of this space, i.e., we

want to tell whether a coe�cient sequence c belongs to C

without having to synthesize f . This is done through a

norm on C so that c 2 C if and only if kckC < 1. The

norms of C and F should be equivalent in the sense that

positive constants A and B exist so that

A kckC 6 kfkF 6 B kckC :

The fact that the norm of C depends only on the absolute

value jc�j of the coe�cients is related to the unconditional

convergence of the series. The convergence thus cannot

depend on cancelations due to alternating signs of the co-

e�cient sequence.

How do we now �nd the coe�cients, given a function f?

They are linear functionals of f written as

c� = h e �; f i ;
where h �; � i is the appropriate pairing. The e � are the dual
wavelets. If F is a Hilbert space, the dual wavelets belong

to F as well, otherwise they belong to the dual of F . There

are di�erent instances of functions with these properties.

The nicest somehow is an orthonormal basis in which case

the coe�cients are unique, the dual and primal wavelets

coincide, and the discrete (C) and continuous norms (F)

are equal. In case of an unconditional basis, the coe�cients

are still unique but the norms are only equivalent, and in

the case of a frame, the coe�cients are not unique but can

be chosen so that the norm equivalence holds.

B. Wavelets have space-frequency localization.

Consider the case of the real line. Locality in space im-

plies that most of the energy of a wavelet is restricted to

a �nite interval. Ideally the function is exactly zero out-

side the �nite interval: a so-called compactly supported

function. In general we want fast, e.g. inverse polynomial

or exponential, decay away from the center of mass of the

function. Frequency localization simply means that the

Fourier transform of a wavelet is localized, i.e., a wavelet

mostly contains frequencies from a certain frequency band.

The Heisenberg uncertainty principle puts a lower bound

on the product of space and frequency variance. The decay

towards high frequencies corresponds to the smoothness of

the function. The smoother the function, the faster the

decay. If the decay is exponential, the function is in�nitely

many times di�erentiable. The decay towards low frequen-

cies corresponds to the number of vanishing moments of

the wavelet. A wavelet  � has N vanishing moments in

case Z
R

xp  � dx = 0;

for 0 6 p < N . Thinking of \frequency localization" in

terms of smoothness and vanishing moments, allows us to

generalize this notion to setting where no Fourier transform

is available, e.g. manifolds.

C. Wavelets have fast transform algorithms.

It has to be easy to implement wavelet functions on a

computer. Typically we want an algorithm with linear or

linear-logarithmic complexity to pass between a function f

and its wavelet coe�cients c. Such an algorithm is referred

to as a \fast wavelet transform."

Fast wavelet transforms are often obtained through mul-

tiresolution analysis. The idea is to approximate the func-

tion f at di�erent levels of resolution. Think for example

of representing an image with fewer and fewer pixels. The

wavelet coe�cients can then by found as the additional de-

tail needed to go from a coarser to a �ner approximation.

Combining all detail coe�cients together then leads to the

wavelet coe�cients c.

We should point out that these three properties are not

unrelated. For example, if the wavelet basis is orthogonal,

then the coe�cients are simply given as the inner product

of f with the basis function, which greatly simpli�es the

transform algorithm. On the other hand, if the wavelets

are well separated in the time-frequency domain, it is quite

likely they form an unconditional basis.

\In research the horizon recedes as we advance,

and is no nearer at sixty than it was at twenty.

As the power of endurance weakens with age, the

urgency of pursuit grows more intense . . .

And research is always incomplete"

|Mark Pattison, (1875).

III. Why do wavelets work?

Why do we want these properties? Most of the data

which we encounter in real life is not totally random but

has a certain correlation structure. Think for example of

audio signals, images, solutions of di�erential equations,

time series, etc. The correlation structure of many of these

signals is similar. They have some correlation in space (or

time), but the correlation is local. For example, neighbor-

ing pixels in an image are highly correlated but ones that

are far from each other are uncorrelated. Similarly there is

some correlation in frequency, but again it is local. Indeed,

the spectrum of many signals has a band structure.

This motivates approximating these data sets with build-

ing blocks that have space and frequency localization as
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Wavelets: What Next?

Wim Sweldens

Abstract|In this concluding article, we want to look ahead

and see what the future can bring to wavelet research. We

try to �nd a common denominator for \wavelets" and iden-

tify promising research directions and challenging problems.

Keywords|Wavelet, Future.

\Predicting is hard, especially about the future."

|Victor Borge, quoted by Philip Kotler.

I. Introduction

A
S the articles in this special issue show, wavelets have

been successfully applied in a wide variety of research

areas. These papers prove that wavelets provide a common

framework to study problems that at �rst sight seem un-

related. Part of the power of wavelets comes from the fact

that they lie at the crossroads of a wide variety of research

areas.

As the title suggests, this paper consists of two parts:

Wavelets andWhat Next. In the �rst part, we discuss what

is currently meant by a wavelet. We do so by outlining a

common denominator for various developments which have

been called wavelet. In the second part, we want to look

ahead and ask ourselves the question: \What next?" We

point out in which direction the wavelet research front is

moving and identify challenging problems.

In order to gather information for this paper, we sent a

questionnaire (see Section VI) to various researchers, both

inside and outside the wavelet �eld. More particularly

these questions were addressed in a round table discus-

sion called by Marie Farge and Ingrid Daubechies at the

wavelet Oberwolfach meeting held in August 1995. The

second part is based upon the responses to this question-

naire. Sometimes literal quotes will be included, at other

places we present the answers in digested form.

Writing this paper is equally hard as predicting the fu-

ture, i.e., virtually impossible. Chris Heil worded this

nicely in his response: \If anybody actually knew the future

of wavelets well enough, they probably would be writing a

paper about it and : : :" We start out by tuning down our

ambition. We do not pretend to foretell the future but

rather to discuss current exciting developments and iden-

tify powerful research directions.

The previous articles of this issue discuss the application

of wavelets in particular �elds and are written by leading

experts in those �elds. Each of them already point to a

particular exciting direction in which the wavelet �eld is

moving. Here we do not address each of these individual

�elds but rather give an overview on a coarser (sic) level.

AT&T Bell Laboratories Rm. 2C-371, 600 Mountain Avenue, Mur-
ray Hill NJ 07974. Department of Computer Science, Katholieke
Universiteit Leuven, Belgium. The author is senior research assis-
tant of the Belgian National Fund of Scienti�c Research (on leave).
E-mail: wim@research.att.com.

Like the article on the history on wavelets, this article on

their future only contain a personal view. Realize that it

is written from the perspective of a junior researcher who

does not even know the time before wavelets. The future

of a research �eld can be a very touchy subject. I have

tried to lighten up the tone of the whole article. There is

no need to take these writings too seriously: let us all relax

and enjoy discussing current issues in wavelet research ;-)

In the light of this, I decided not to include any refer-

ences. However, it should be crystal clear that I do not

claim authorship of any of the ideas in this paper. It is

simply a write-up of understanding that has been oating

around in the community. So no credit is given, nor taken.

\If you steal from one author, it's plagiarism;

if you steal from many, it's research"

|Wilson Mizner, The Legendary Mizners (1953).

II. What are wavelets?

In this section we give an idea of what makes a func-

tion a wavelet and why wavelets are desirable in certain

applications. Given that the wavelet �elds keeps growing,

the de�nition of a wavelet continuously changes. Therefore

it is almost impossible to rigorously de�ne a wavelet. As

in most areas of research, the wavelet knowledge front ad-

vances like an in�nite dimensional fractal, sometimes tak-

ing o� in isolated directions but also many times folding

back onto itself. Finding a de�nition of a wavelet is like

approximating this fractal with a ball. The \minimal" so-

lution is a ball with a small radius which �ts in the interior

of the fractal. But this leads to a de�nition that contains

only the very core material and leaves out most of the re-

cent and very exciting developments at the forefront. The

\maximal" solution is �tting the fractal in a ball. This

results in a de�nition that includes almost any function.

Therefore we step away from the idea of giving a rig-

orous de�nition and allow ourselves the freedom to make

\fuzzy" statements. We urge the reader to bear with us

and not judge this by the usual scienti�c standards. For

precise mathematical statements, clear de�nitions, rigor-

ous material, and correct scienti�c results, we refer to the

earlier articles in this issue. For vague descriptions, aky

statements, an exposition which sweeps most details under

the carpet, lots of hand waving, etc., keep reading.

We denote a wavelet as  �(x) where x belongs to the

(unde�ned) spacial domainX,  � belongs to a (unde�ned)

class F of functions, and � belongs to an (unde�ned) index

set �. Think for example of X as the real line, F as L2(R),

� as Z2 with � = (j; l), and  �(x) as 2
j=2 (2jx � l). We

will refer to 	 = f � j � 2 �g as the wavelet basis. In

order to justify calling 	 a wavelet basis, we expect the

following three properties.


