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ABSTRACT. Given a complete separableσ-finite measure space(X, Σ, µ) and nested partitions ofX, we

construct unbalanced Haar-like wavelets onX that form an unconditional basis forLp(X, Σ, µ) where

1 < p < ∞. Our construction and proofs build upon ideas of Burkholder and Mitrea. We show that if

(X, Σ, µ) is not purely atomic, then the unconditional basis constant of our basis is(max(p, q) − 1). We

derive a fast algorithm to compute the coefficients.

1. INTRODUCTION

Our goal is, given a measure space(X,Σ, µ) and nested partitions ofX, to construct unbalanced

Haar-like wavelets onX that form an unconditional basis forLp ≡ Lp(X,Σ, µ) where1 < p <∞.

Wavelets are traditionally defined on Euclidean spaces. They usually are the translates and dilates of

one particular function and are orthogonal or biorthogonal with respect to the Lebesgue measure.

However, we work on a general measure space, which need not even have a vector space structure,

so translation and dilation becomes void. Although our wavelets are not the translates and dilates of

one function, they still enjoy the desirable properties of traditional wavelets, such as a multiresolution

structure and an associated fast transform algorithm. Our setting allows for non-translation invariant

measures and covers general nested partitions of arbitrary subsets of Euclidean spaces. Thus our wavelets

are particularly useful in practical applications.

Our construction is inspired by and generalizes the construction [1, 15] of Mitrea wavelets on dyadic

cubes inRn. Mitrea wavelets can be seen as a generalization of the unbalanced Haar wavelets introduced

for non-translation invariant measures in [9].

To show that wavelets form an unconditional basis ofLp, one often uses Calder´on-Zygmund theory

and an interpolation result of Marcinkiewicz. We follow a different approach; we show that the wavelets

essentially are a martingale difference sequence and thus are able to use Burkholder’s celebrated in-

equality [4, 5, 6] to show that they form an unconditional basic sequence. This approach gives the best

unconditional basis constant. We also show that in some cases the wavelets form a monotone basis.
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One aim of this paper is to illustrate how techniques from martingale and Banach space theory can be

used in wavelet theory.

The paper is organized as follows. In Section 2 we set some notation and recall some classical results.

In Section 3 we introduce the notion of a forest, which we use as an indexing set. We use the forest

to define partitions in Section 4. Section 5 contains the construction of the wavelets while Section 6

contains the proof that they form an unconditional basis. We discuss the dual basis and a characterization

in Section 7. The next two sections contain more practical results. Sections 8 shows the connection with

multiresolution analysis and the fast wavelet transform, while Section 9 discusses the setting inside a

Euclidean space.

2. NOTATION AND TERMINOLOGY AND BASICS

Recall that a countable family{ψγ}γ∈G is an unconditional basis forLp if for eachf ∈ Lp there is a

unique family{cγ}γ∈G of real numbers so that
∑
cγψγ converges unconditionally tof in Lp-norm. This

is the case if and only if the following two conditions hold:

(C1) clos span{ψγ | γ ∈ G} = Lp

(C2) a constantK exists so that for all finite subsetsΓ ⊂ G∥∥∥∥∥∥
∑
γ∈Γ

εγ cγ ψγ

∥∥∥∥∥∥
p

6 K

∥∥∥∥∥∥
∑
γ∈Γ

cγ ψγ

∥∥∥∥∥∥
p

,

for all choices ofcγ ∈ R andεγ = ±1.

The smallestK for which condition (C2) holds, denotedKp({ψγ}), is the unconditional basis constant

of {ψγ}.

Clearly, any Banach space with a countable basis is separable. If1 < p < ∞, then a separable

Lp(µ) space has an unconditional basis [18, 8]. Pełczy´nski [19] showed that, for any finite non-purely

atomic measureµ, the spaceL1(µ) does not even embed into a Banach space with an unconditional

basis. Thus we restrict our attention toseparableLp spaces with1 < p < ∞. In this setting, we know

Lp(X,Σ, µ) up to an isometric isomorphism. Recall that two Banach spacesE andF are isometrically

isomorphic if there is an invertible bounded linear operatorT : E → F so that‖T‖ = 1 =
∥∥T−1

∥∥. A

separableLp(X,Σ, µ) is isometrically isomorphic to precisely one of the following spaces, whereLp(m)
is theLp space on the Lebesgue measure space on[0, 1]: `p, `np , Lp(m), Lp(m) ⊕p `p, Lp(m) ⊕p `

n
p for

somen ∈ N (cf. [23, Proposition III.A.1]). The isometric isomorphism basically follows from mapping

(X,Σ, µ) into a combination of the Lebesgue measure space on[0, 1] and the counting measure space on

N. For practical reasons, we prefer to constructively build our wavelets directly onX instead of calling

upon this mapping.

Throughout this paper,(X,Σ, µ) is a fixed complete measure space withµ taking values in the non-

negative extended real numbers. LetΣ+ be the collection of all sets inΣ with strictly positive, but finite,

µ-measure; let̃Σ be any sub-σ-field of Σ such that theµ-completion of(X, Σ̃) is (X,Σ). The support
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of a functionf : X → R is the setsupp f ≡ {x ∈ X | f(x) 6= 0}. For an arbitrary setS, let P(S)
be the power set ofS and#S be the cardinality ofS. ForK ⊂ P(S), let σ(K) be the smallestσ-

algebra containingK. For a functionf onS, we follow the common practice of also denoting byf the

natural extension of the originalf to P(S). Throughout this paper,1 < p < ∞ is a fixed number with

conjugate exponentq where1/p + 1/q = 1. Let p∗ = max (p, q). The dual spaceL∗
p of Lp(X,Σ, µ) is

isometrically isomorphic toLq(X,Σ, µ), whereg ∈ Lq(X,Σ, µ) is identified withx∗g ∈ L∗
p by

x∗g(f) = 〈 f, g 〉 =
∫

X
f g dµ .

We say thatf ∈ Lp is orthogonal tog ∈ Lq if 〈 f, g 〉 = 0.

3. TREES ANDFORESTS

We formulate the notation of a forest, which is a useful indexing set. Aforest(F , g, p, C,<) consists

of a countablesetF , which has a (possibly empty) subsetR of root elements, along with a generation

functiong : F → Z, a parent functionp : F \ R → F , a children functionC : F → P(F), and an age

partial ordering< onF , all of which satisfy the following properties:

(F1) C(α) = {β ∈ F | p(β) = α} ,

(F2) 0 6 #C(α) <∞ for eachα ∈ F ,

(F3) if β ∈ C(α) theng(β) = 1 + g(α) ,

(F4) the ordering< linearly ordersC(α) for eachα ∈ F .

(F5) if g(α) < g(β) andpn(α) = pm(β) for somen,m > 0, thenβ < α ,

where the power functionspn of the parent functionp are defined byp0 being the identity function and

pn(α) = p(pn−1(α)). If confusion is unlikely, we denote a forest(F , g, p, C,<) by justF . The given

partial ordering extends to a linear ordering of the whole forest with (F4) and (F5) still holding: it is only

needed to extend the ordering as so to linearly order eachkth-generationFk of F where

Fk = {α ∈ F | g(α) = k} .

Thus, henceforth, forests satisfy the additional property

(F6) the ordering< linearly orders the the whole forest .

One thinks of a parent elementα ∈ Fk on thekth-generation ofF as spawning the children elementsβ

with β ∈ C(α) ⊂ Fk+1. Root elements are denoted byρ and have no parent. A forestF that satisfies

the additional property

(T1) if α, β ∈ F , then there aren,m > 0 so thatpn(α) = pm(β)

is called atree. A tree has at most one root element; arootedtree has exactly one root.
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A leaf is an element that has no children. LetL be the set of leaves inF . On occasions it is convenient

to think of a leaf as repeating itself in the later generations, for this consider

F∗
k = Fk

⋃  ⋃
j<k

L ∩ Fj

 .

Let

Cl(α) =

C(α) if α /∈ L
{α} if α ∈ L .

Define the power functionsCn (resp.Cn
l (α)) of the functionC (resp.Cl(α)) analogous to the power

functionspn. Note that forn ∈ N,

Cn
l (α) = Cn(α)

⋃ n−1⋃
j=0

[
Cj(α) ∩ L

]
.

A countable union of disjoint trees is a forest. Conversely, any forest(F , g, p, C,<) can be expressed

as a countable union of disjoint trees. To see this, consider the equivalence relation∼ on F given by

α ∼ β if and only if (T1) holds. This relation induces a partition ofF

F =
⋃
{∈K

F({) (1)

into disjoint equivalence classesF({) where the indexing setK is the induced quotient space. Each

F({) is a tree.

The concept of a forest, which is fairly technical, is introduced to help simplify the construction of

wavelets from nested partitionings ofX. Later we will reduce the general forest setting to three canonical

cases of trees.

4. PARTITIONS

We call a collection{Xα | α ∈ F} from Σ+ anested partitioningfor X, with respect to the forestF ,

if it satisfies the following partition properties:

(P1) Xα1 ∩Xα2 = ∅ if g(α1) = g(α2) andα1 6= α2 ,

(P2) Xα ∩Xρ = ∅ if ρ ∈ R andpn(α) 6= ρ for eachn > 0 ,

(P3) ifXα is not a leaf, then it can be written as the disjoint union

Xα =
⋃

β∈C(α)

Xβ ,

(P4) X = ∪{Xα | α ∈ F} ,

(P5) σ({Xα | α ∈ F}) = Σ̃ .
4



The partitioning (1) of the forest into trees provides a partition ofX. For each{ ∈ K, let

X({) =
⋃

α∈F({)

Xα .

From the first three partition properties it follows that if{1 6= {2 thenX({1) andX({2) are disjoint.

ThusX can be written as thedisjoint union

X =
⋃
{∈K

X({) . (2)

For each{ ∈ K, the subcollection{Xα | α ∈ F({)} is a nested partitioning forX({) with respect

to the treeF({). The partitions

πk({) = {Xα | α ∈ F∗
k ∩ F({)}

of X({) are nested fork ∈ g(F({)). We will use the subcollection{Xα | α ∈ F({)} to build wavelets

onX({). Our waveletsΞ will then be the union of the wavelets on eachX({). Thus, for the time being,

we will work with trees instead of forests. There are three types of nested partitionings ofX with respect

to a treeT :

- Type I: R 6= ∅ and thusµ(X) <∞ ,

- Type II: µ(X) <∞ andR = ∅ ,

- Type III: µ(X) = ∞ and thusR = ∅ .

Each type is handled slightly different. But before passing to the construction of the wavelets, we clarify

the above notations with the following examples.

Example 1. Let (X,Σ, µ) be the Lebesgue measure space onX = [0, 1). Consider the Type I tree

(T , g, p,<) where

1. T = {(n, k) | n = 0, 1, . . . and1 6 k 6 2n},

2. ρ = (0, 1),
3. g((n, k)) = n,

4. C((n, k)) = {(n+ 1, 2k − 1), (n + 1, 2k)},

5. (n + 1, 2k − 1) < (n+ 1, 2k).

LetX(n,k) = [ 2−n (k − 1) , 2−n (k) ).

Example 2. Let (X,Σ, µ) be the Lebesgue measure space onX = R. Modify the tree from Example 1

by takingn ∈ Z andk ∈ Z and letX(n,k) be formally as in Example 1. In these two examples, each

X(n,k) has two children. This example is of Type III.

Example 3. Let (X,Σ, µ) be a weighted counting measure onX = N with 0 < µ(n) < ∞ for

eachn ∈ N. Modify the tree from Example 1 by taking integersn 6 0 andk ∈ N. Let X(n,k) =
X ∩ ( 2−n (k − 1) , 2−n (k)]. EachX(0,k) = {k} is a leaf. This example is of Type II ifµ(X) <∞ and

of Type III if µ(X) = ∞.
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Example 4(Logarithmic tree). Let M = {1, 2, . . . ,m} for somem ∈ N. The treeTlog on M is

uniquely determined by the following properties.

1. It hasl generations (0, · · · , l − 1) where2l−2 < m 6 2l−1.

2. Each element ofTlog is a set of consecutive integers fromM .

3. It has one root elementρ = M andg(ρ) = 0.

4. The(l − 1) generation consists of the leaves{{1}, {2}, . . . {m}}.

5. Each element ofTlog with cardinality greater than 1 has two children and the cardinality of the

youngest child is equal to or one less than the cardinality of the older child.

This tree will be used in the general wavelet construction. The namelogarithmic comes from the fact

that the number of generations behaves as the logarithm of #M .

Example 5(Linear tree). Let M be as in the previous example. The treeTlin onM is uniquely deter-

mined by the following properties.

1. It hasm generations (0, · · · ,m− 1).

2. Each element ofTlin is a set of consecutive integers ofM .

3. It has one root elementρ = M andg(ρ) = 0.

4. The(m− 1) generation consists of the leaves{{1}, {2}, . . . {m}}.

5. Each element ofTlin with cardinality greater than 1 has two children and the cardinality of the

youngest child is 1.

This example will also be used in the general wavelet construction. It is calledlinear since the number

of generations is proportional to the number of elements ofM .

The previous two trees may be viewed as nested partitionings themselves.

Example 6. Let (X = M,Σ, µ) be a weighted counting measure onM = {1, 2, . . . ,m} with 0 <

µ(n) < ∞ for eachn ∈ M . Each of the previous two examples gives a nested partitioning{Mα | α ∈
M} of M by lettingMα = α.

Example 7. Let (X,Σ, µ) be the Lebesgue measure space onX = Rn for somen ∈ N. Let {Xα} be

the dyadic cubes inX. EachXα has2n children. This example is of Type III.

Example 8. LetX be the sphereS2 in R3, endowed with the surface area measure. Consider the icosa-

hedronΠ centered at the origin along with the corresponding map

P : Π → S2 where P (v) = v/ ‖v‖R3 .

We useP to push a partition ofΠ out to a partition ofS2. The0 th-generation partition consists of just

Xρ = S2. Next obtain nested partitions ofΠ by recursively subdividing each triangular side. Figure 1

depicts a typical subdivision of a triangle. The image underP of these nested partitions ofΠ are nested

partitions ofS2, where each set of a partition is a spherical triangle. Figure 2 shows the icosahedron (left),

the icosahedron after 3 subdivisions (middle), and the result after applyingP to the middle polyhedron
6
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FIGURE 1. Subdividing a triangle.

FIGURE 2. Partitioning a sphere.

(right). The latter is the fourth generation of the partitions on the sphere. This example is used in [20] as

a starting point.

One can now consider a countable collection of disjoint measure spaces, each of which has a nested

partitioning with respect to a forest. It is possible to unite their forests into a new forest. Then the union

of their nested partitionings forms a nested partitioning for the disjoint sum of the measure spaces (with

respect to the new forest). In this fashion, it is possible to combine the above examples.

Any measure space that has a nested partitioning is necessarily complete, separable, andσ-finite.

Fact 9. Each complete, separable,σ-finite measure space has a nested partitioning.

To see this, note that a complete separableσ-finite measure space may be viewed as a disjoint sum

of complete separable measure spaces, with one space being purely atomic and the other spaces being

purely non-atomic and of finite measure. As in Examples 3 and 6, one can build a nested partitioning on

the purely atomic space. On each of the purely non-atomic spaces of finite measure, using Example 1 and

a theorem of Carath´eodory (cf. [23, I.B.1]), one can build a nested partitioning (with care, separability

guarantees (P5)). Then, as noted above, these partitionings combine to give a nested partitioning for the

entire space.

5. CONSTRUCTION OF WAVELETS

Plant a treeT . Let {Xα | α ∈ T } be a nested partitioning forX with respect toT . We are now ready

to build onX our wavelets, which have as their basic building blocks the scaling functions{ϕα}α∈T
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where

ϕα = µ(Xα)−1/p 1Xα .

The wavelets will be indexed by a setG. The setG consists of a setG∗ along with possibly one other

element. When helpful, we will try to be consistent in the notation by denoting a parent byα, a child by

β, and an element ofG by γ.

First we concentrate onG∗. Each wavelet indexed by aγ ∈ G∗ will be of the form

ψγ = nγ

(
1Pγ

µ(Pγ)
−

1Nγ

µ(Nγ)

)
, (3)

for some setsPγ andNγ in Σ̃ with nγ chosen as to normalizeψγ in Lp, thus,

nγ =
(
µ(Pγ)1−p + µ(Nγ)1−p

)−1/p

.

This resembles the definition of a Haar wavelet, but asµ(Pγ) can differ fromµ(Nγ), we refer to it as an

unbalanced Haar wavelet. It is constructed to have zero mean.

The setG∗ has the form

G∗ =
⋃

α∈T
G(α) ,

where the setG(α) containsmax(0,m− 1) elements (m = #C(α)) and is constructed as follows. The

basic idea is to useG(α) to index those unbalanced Haar wavelets that will be supported onXα and

constant onXβ whereβ ∈ C(α). To do this, we build a mini-tree amongst the children. Enumerate the

children ofα asβi with i ∈ M = {1, 2, · · · ,m} andβi < βi+1. Next consider a treeTM that is either

Tlin or Tlog. Let

G(α) = {(α, ζ) ∈ {α} × TM | #C(ζ) = 2} .

Note that each element ofTM has at most two children.

The elementγ = (α, ζ) ∈ G(α) generates a waveletψγ as in (3) with

Pγ =
⋃
i∈ζ1

Xβi
, and Nγ =

⋃
i∈ζ2

Xβi
,

whereζ1 andζ2 are the two children ofζ.

The remainder ofG depends on the particular type of splitting.

- For Type I, let

G = G∗ ∪ {ρ} and ψρ = ϕρ ≡ µ(X)−1/p 1X .

For later use, letPρ = X andNρ = ∅.
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FIGURE 4. Logarithmic construction.

- For Type II, let

G = G∗ ∪ {ν} and ψν = µ(X)−1/p 1X ,

whereν /∈ G∗. For later use, letPν = X andNν = ∅.

- For Type III, letG = G∗.

Finally, take

Ψ = {ψγ | γ ∈ G} . (4)

We define the following partial ordering onG. Any element inG∗ is less than an element inG \ G∗.

Next consider two elements inG∗, sayγ1 = (α1, ζ1) andγ2 = (α2, ζ2). Nowγ1 < γ2 if eitherα1 < α2,

or α1 = α2 andζ1 < ζ2. Also define the generation function onG∗ asg((α, ζ)) = g(α).
Depending on the choicesTlin or Tlog for TM we refer to the respective construction as linear or

logarithmic. They will have the same theoretical properties; the advantage of the logarithmic construction

is that the support size of the wavelets is smaller and that the wavelets are have more symmetry. In the

setting of the examples in the previous section, the above construction leads to well-known wavelets.

- For Example 1 (resp. 2),Ψ is the Haar system on[0, 1) (resp.R).

- For Example 3 (resp. 6),Ψ is a Haar-like unconditional basis for`p (resp.`mp ).

- For Example 7 the linear construction leads to the Mitrea wavelets [1, 15]. The Mitrea wavelets

are the first example of higher dimensional compactly supported Haar-like wavelets in the case of

non-translation invariant measures. The basic idea, as depicted in Figure 3 for the two dimensional

case, is simple but extremely clever. Our linear construction is inspired by the Mitrea wavelets.

The setting of the Mitrea wavelets is actually more general than presented here as the measure can

be Clifford-algebra-valued.

- Again for Example 7, Figure 4 depicts the logarithmic construction in casen = 2.
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Concluding, the basic idea behind constructing the unbalanced Haar wavelets in the case that the number

of children is greater than two is to build a mini-tree amongst the children as to reduce it to the case of

two children.

6. PROPERTIES OF WAVELETS

ClearlyΨ is normalized. Note that for eachγ ∈ G∗,∫
X
ψγ dµ = 0 . (5)

If γ andγ′ are inG, then ∫
X
ψγ ψγ′ dµ = 0 , (6)

for if ψγ andψγ′ are not disjointly supported andγ < γ′, thenψγ′ is constant on the support ofψγ . If

α ∈ T , then

span{ϕβ | β ∈ Cl(α)} = span{ϕα, ψγ | γ ∈ G(α)} , (7)

and furthermore this extends over several generations for ifi ∈ N, then

span{ϕβ | β ∈ Ci
l (α)} = span

{
ϕα, ψγ | γ ∈ ∪i−1

j=0G(Cj(α))
}
. (8)

To see this, note that set containment in one direction (⊇) is clear; furthermore, in the right-hand side

(by (5) and (6)) and the left-hand side, the indicated functions that span the space (of dimension#Ci
l (α))

can be viewed as an orthogonal basis.

Since

Lp = clos span{1A | A ∈ Σ+} ,

and{Xα | α ∈ T } ∪ ∅ is a semi-ring that generates̃Σ, it follows that (cf. [3, Theorem 11.4])

Lp = clos spanΦ (9)

where

Φ = {ϕα | α ∈ T } .

Note thatLp is separable sinceT is countable.

Lemma 10.

clos span Ψ = Lp.
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Proof. Fix an indicator function1Xδ
with δ ∈ T . By (9), it suffices to show that

1Xδ
∈ clos span Ψ . (10)

If δ = ρ, then (10) clearly holds; thus, assume thatδ 6= ρ.

Considerα ∈ T of the formα = pi(δ) for somei > 0, along with the corresponding function

fi = 1Xδ
− µ(Xδ)
µ(Xα)

1Xα .

Towards showing thatfi is in span Ψ, consider (8) with the sameα andi as in this proof. Clearly,fi is

in the set on the left-hand side and so it is also in the set on the right-hand side. Sincefi andψγ have a

vanishing integral (forγ ∈ G∗) while ϕα does not,fi does not have a component alongϕα. Thus

fi ∈ span
{
ψγ | γ ∈ ∪i−1

j=0 G(Cj(α))
}

⊂ span Ψ .

Towards (10), consider the three types of nested partitionings separately.

- For Type I,pi(δ) = ρ for some finitei and1Xρ ∈ span Ψ.

- For Type II, the function1Xpi(δ)
tends to1X in Lp-norm asi→ ∞ and1X ∈ spanΨ.

- For Type III,

‖fi − 1Xδ
‖p = µ(Xδ)µ(Xpi(δ))

−1/q ,

andµ(Xpi(δ)) tend to infinity asi→ ∞.

So for each of the three types, (10) holds.

ThusΨ satisfies (C1). Toward (C2), recall that a constantKp exists so that for the usual Haar functions

{hk}∞k=1 on [0, 1), ∥∥∥∥∥
n∑

k=1

εk ck hk

∥∥∥∥∥
p

6 Kp

∥∥∥∥∥
n∑

k=1

ck hk

∥∥∥∥∥
p

,

for all n ∈ N, sequences{ck}n
k=1 in R, andεk = ±1. This inequality (in an equivalent formulation) is

due to R.E.A.C. Paley [18]; the above formulation was noted by Marcinkiewicz [13]. Using martingale

theory, Burkholder [5] generalized Paley’s inequality to hold for martingale difference sequences (such

as the Haar functions) on[0, 1). Since the waveletsΨ can essentially be viewed as a martingale difference

sequence, we will call upon Burkholder’s generalization. We first recall some basic definitions.

Fix X0 ∈ Σ+ and a sub-σ-field Σ0 of Σ that is generated by a partitionπ = {E1, . . . , En} of X0

(thusX \ X0 is an atom ofΣ0). Considerg ∈ L1(X,Σ, µ) with supp g ⊂ X0. Then the conditional

expectationE(g | Σ0) of g with respect toΣ0 is

E(g | Σ0) =
n∑

i=1

∫
Ei
g dµ

µ(Ei)
1Ei ,

observing the convention that0/0 is 0. A simple martingale, with respect to a non-decreasing sequence

{Σi}n
i=1 of sub-σ-fields of Σ, is a finite sequence{fi}n

i=1 of simple functions with finite support that
11



satisfy thatfi is Σi-measurable for1 6 i 6 n and thatE(fi+1 | Σi) = fi for 1 6 i < n. Its

correspondingmartingale difference sequence{di}n
i=1 is given bydi = fi − fi−1 wheref0 is just the

null function, thusfk =
∑k

i=1 di.

Our setting calls for the following version of Burkholder’s celebrated inequality.

Theorem 11(Burkholder). If {fi}n
i=1 is a simple martingale with respect to a non-decreasing sequence

{Σi}n
i=1 of sub-σ-fields ofΣ, then its corresponding martingale difference sequence{di}n

i=1 satisfies∥∥∥∥∥
n∑

i=1

εi ci di

∥∥∥∥∥
p

6 (p∗ − 1)

∥∥∥∥∥
n∑

i=1

ci di

∥∥∥∥∥
p

, (11)

for all n ∈ N and all choices ofci ∈ R andεi = ±1.

See [5, 6, 7] for the proof.

If Lp(m) isometrically embeds intoLp(X,Σ, µ), then any basis forLp(X,Σ, µ) has, for eachε > 0,

a blocked basis that is(1 + ε)-equivalent to the usual Haar basis ([16, 17] and [11]). Burkholder [4]

showed that the unconditional basis constant of the usual Haar basis isp∗ − 1. Olevskĭı showed that

the unconditional basis constant of any unconditional basis is greater than or equal to that of the Haar

system. From these facts follow the below known fact.

Theorem 12. If (X,Σ, µ) is not purely atomic, then the unconditional basis constant for any uncondi-

tional basis forLp(X,Σ, µ) is at least(p∗ − 1).

The following lemma is needed to apply Theorem 11 to finite subsets ofΨ.

Lemma 13. Fix a finite subset{γi}n
i=1 fromG that satisfiesγ1 > γ2 > . . . > γn. LetX0 ∈ Σ+ be such

that supψγi ⊂ X0 for eachi. Consider the corresponding partitions

πi = {Pγi , Nγi , X0 \ (Pγi ∪Nγi)}

ofX0 and letΣi = σ ({πj | 1 6 j 6 i}). Then

1. ψγi is Σi-measurable fori = 1, . . . , n
2. E(ψγi+1 | Σi) = 0 for i = 1, . . . , n− 1.

Proof. Sinceψγi is constant on each of the setsPγi ,Nγi , andX0 \ (Pγi ∪Nγi), it is Σi-measurable. Fix

1 6 i < n and considerE(ψγi+1 | Σi). An atomA ⊂ X0 of Σi has the form

A =
m⋂

k=1

Fk

where

Fk ∈
i⋃

j=1

{Pγj , Nγj , X0 \ (Pγj ∪Nγj )}

12



andγi+1 < γj for j = 1, . . . , i. If γi+1 < γ ∈ G, thenPγ (and likewise forNγ and forX0\(Pγ∪Nγ)) is

either disjoint from or contains the support ofψγi+1 . Furthermore,
∫
X ψγi+1 dµ is zero. ThusE(ψγi+1 |

Σi) = 0, as needed.

Now plant a whole forestF . Let {Xα | α ∈ F} be a nested partitioning forX with respect toF .

Keeping with the notation from Section 4, writeX as the disjoint union ofX({)’s. For each{ ∈ K, the

subcollection{Xα | α ∈ F({)} is a nested partitioning forX({) with respect to the treeF({); thus,

there are waveletsΨ({) as in (4) onX({). Let

Ξ =
⋃
{∈K

Ψ({) .

We are now able to state the main result of this paper.

Corollary 14. The waveletsΞ forms a normalized unconditional basis forLp(X,Σ, µ), withKp(Ξ) 6
(p∗ − 1). If Lp is not purely atomic, thenKp(Ξ) = (p∗ − 1).

Proof. In light of Lemma 10 and Theorem 12, it suffices to show that (C2) holds withK = p∗ − 1 for

the setΞ. SinceX is thedisjoint union of theX({)’s, for anyf ∈ Lp

‖f‖p
p =

∑
{∈K

∥∥f 1X({)

∥∥p

p
.

Furthermore, for each{ ∈ K andγ ∈ G

ψγ 1X({) =

ψγ if γ ∈ F({)

0 if γ /∈ F({) .

Thus it suffices to show that (C2) holds withK = p∗ − 1 for each setΨ({). Thus we assume, without

loss of generality, thatF is a tree and denoteΞ by justΨ.

Keeping with previous notation, fix a finite collectionΓ ⊂ G and orderΓ = {γi}n
i=1 so thatγ1 >

γ2 > . . . > γn. Let{πi}n
i=1 and{Σi}n

i=1 be as in the statement of Lemma 13. By Theorem 11, it suffices

to show that the sequence{fi}n
i=1 given by

fi =
i∑

j=1

ψγj

is a simple martingale with respect to{Σi}n
i=1.

Lemma 13 gives that eachfi is Σi-measurable. Ifi < n, then by Lemma 13 and the linearity of the

conditional expectation operator

E(fi+1 | Σi) −E(fi | Σi) = E(fi+1 − fi | Σi) = E(ψγi+1 | Σi) = 0 .

Sincefi is Σi-measurable,fi = E(fi | Σi). ThusE(fi+1 | Σi) = fi, as needed.
13



SinceΞ is an unconditional basis forLp, each ordering{ψγi}∞i=1 of Ξ forms a basis forLp. Given an

ordering{γi}, the basis constantMp({ψγi}) is the smallest numberM for which∥∥∥∥∥
n∑

i=1

ci ψγi

∥∥∥∥∥
p

6M

∥∥∥∥∥
m∑

i=1

ci ψγi

∥∥∥∥∥
p

holds for alln,m ∈ N with n < m and all choices ofci ∈ R. Clearly,1 6 Mp({ψγi}) 6 Kp(Ξ).
In fact, if Pp({Ξ}) is the supremum ofMp({ψγi}) over all possible orderings ofΞ, thenPp({Ξ}) 6
Kp({Ξ}) 6 2Pp({Ξ}). If Mp({ψγi}) = 1, then{ψγi} is a monotone basis.

A rooted tree can be enumerate{γi}i so thatγi > γi+1.

Corollary 15. The waveletsΨ = {ψγi} associated with a rooted tree form a monotone basis forLp

when ordered so thatγi > γi+1.

Proof. Fix n ∈ N and a sequence{ci}n+1
i=1 from R. By Corollary 14, it suffices to show that∥∥∥∥∥
n∑

i=1

ci ψγi

∥∥∥∥∥
p

6

∥∥∥∥∥
n+1∑
i=1

ci ψγi

∥∥∥∥∥
p

.

Consider the sub-σ-field Σn = σ ({πj | 1 6 j 6 n}) as in the statement of Lemma 13 withX0 = X. It

follows from Lemma 13 that
∑n

i=1 ci ψγi is Σn-measurable and thatE(ψγn+1 | Σn) = 0. Thus

n∑
i=1

ci ψγi = E

(
n∑

i=1

ci ψγi | Σn

)

= E

(
n∑

i=1

ci ψγi | Σn

)
+ cn+1E

(
ψγn+1 | Σn

)
= E

(
n+1∑
i=1

ci ψγi | Σn

)
.

The result now follows from the fact that conditional expectation is a contraction onLp.

7. DUAL BASIS AND CHARACTERIZATION

Consider the coordinate functionals{ψ̃γ | γ ∈ G} of the unconditional basisΞ, which are (uniquely)

determined by the condition〈ψγ′ , ψ̃γ 〉 = δγγ′ . SinceLp is reflexive,{ψ̃γ | γ ∈ G} forms an uncondi-

tional basis for the dual spaceLq(X,Σ, µ) . Thus, iff ∈ Lp andg ∈ Lq, then

f =
∑
γ∈G

〈 f, ψ̃γ 〉 ψγ and g =
∑
γ∈G

〈ψγ , g 〉 ψ̃γ , (12)

where the convergence is unconditional.

It follows from (6) thatψ̃γ is a multiple ofψγ . Straightforward calculations give that ifγ ∈ G∗ then

ψ̃γ = ñγ

(
1Pγ

µ(Pγ)
−

1Nγ

µ(Nγ)

)
,

14



where

ñγ =
[
nγ(µ(Pγ)−1 + µ(Nγ)−1)

]−1

,

and ifρ ∈ G then

ψ̃ρ = µ(X)−1/q 1X ,

while if ν ∈ G then

ψ̃ν = µ(X)−1/q 1X .

It follows from Corollary 14 that1 6
∥∥∥ψ̃γ

∥∥∥
q
6 2(p∗ − 1) for eachγ ∈ G. If γ ∈ G \ G∗, then∥∥∥ψ̃γ

∥∥∥
q

= 1. For a fixedγ ∈ G∗,

∥∥∥ψ̃γ

∥∥∥
q

= ñγ

(
µ(Pγ)1−q + µ(Nγ)1−q

)1/q

,

which need not be one. We examine this a little closer. Let

r = µ(Pγ)/µ(Nγ) and N(p, r) =
∥∥∥ψ̃γ

∥∥∥
q
.

Then

N(p, r) = (1 + r1−p)1/p (1 + r1−q)1/q (1 + r−1)−1.

The following properties ofN(p, r) hold for1 < p <∞ and0 < r <∞:

1. N(p, r) = N(q, r),
2. N(p, r) = N(p, 1/r),
3. N(p, 1) = N(2, r) = 1,

4. 1 6 N(p, r) 6 2,

5. for any fixedp, limr→∞N(p, r) = 1,

6. for any fixedr, limp→∞N(p, r) = 2 (1 + r−1)−1.

These easily can be verified. The uniform bound in (4) follows from bounding each factor which yields

21/p 21/q 1. Thus the norm of the coordinate functional is always less than 2, while the last property

shows that it can be arbitrarily close to 2. Ifp = 2 or if µ(Pγ) = µ(Nγ) for eachγ ∈ G∗, then the dual

basis is normalized.

Following the reasoning in [14, Chapter 6], we now derive a criterion, connected with the absolute

value of the coefficientscγ , to determine whether a formal series
∑
cγ ψγ belongs toLp. Towards this,

we consider the Cantor group∆ ≡ {−1, 1}G of all sequencesε (indexed byG) of ±1, along with its

coordinate functionalseγ : ∆ → {−1, 1} determined byε = {eγ(ε)}γ∈G , and its product (i.e. Bernoulli

probability) measureζ.

For eachε in ∆, let Tε : Lp → Lp be the continuous (by (C2)) linear operator determined by

Tε ψγ = eγ(ε)ψγ .
15



Consider a functionf ∈ Lp of the form

f =
∑
γ∈Γ

cγ ψγ (13)

for some finite subsetΓ of G. So if ε ∈ ∆ andx ∈ X then

(Tεf)(x) =
∑
γ∈Γ

eγ(ε) cγ ψγ(x) .

It follows from (C2) that

K−p
p ‖f‖p

p 6 ‖Tε f‖p
p 6 Kp

p ‖f‖p
p (14)

whereKp is the unconditional basis constant ofΞ.

SinceTεf(x) is product(µ× ζ)-measurable, Tonelli’s Theorem gives that∫
∆
‖Tεf‖p

p dζ(ε) =
∫

X

∫
∆

∣∣∣∣∣∣
∑
γ∈Γ

eγ(ε) cγ ψγ(x)

∣∣∣∣∣∣
p

dζ(ε) dµ(x) . (15)

Khinchin’s inequality (cf. [24]) gives strictly positive constantscp andCp so that

cp ‖{aγ}‖`2
6

∫
∆

∣∣∣∣∣∣
∑
γ∈Γ

aγ eγ(ε)

∣∣∣∣∣∣
p

dζ(ε)

1/p

6 Cp ‖{aγ}‖`2
(16)

for each sequence{aγ}γ∈Γ of real numbers. Combining (16) and (15) yields

cpp

∫
X
|(Af)(x)|p dµ(x) 6

∫
∆
‖Tεf‖p

p dζ(ε) 6 Cp
p

∫
X
|(Af)(x)|p dµ(x) (17)

where

(Af)(x) =

∑
γ∈Γ

|cγ |2 |ψγ(x)|2
1/2

. (18)

Next, integrate inequality (14) over∆, note thatζ(∆) = 1, and use (17) to see that

cpK
−1
p ‖Af‖p 6 ‖f‖p 6 KpCp ‖Af‖p . (19)

Consider any ordering{ψγi}∞i=1 of Ξ and a functionf ∈ Lp. The functions

fn =
n∑

i=1

cγi ψγi where cγi = 〈 f, ψ̃γi 〉

are of the form in (13) and thus satisfy (19). Furthermore,{fn} converges inLp-norm tof and{(Afn)}
is aµ-a.e. increasing sequence of non-negativeLp-functions. Thus the (non-linear) mappingA in (18)

extends to a mapping fromLp to Lp. Now follows the below characterization.
16



Theorem 16. If 1 < p <∞, then

∑
γ∈G

cγ ψγ ∈ Lp ⇐⇒

∑
γ∈G

|cγ |2 |ψγ(x)|2
1/2

∈ Lp .

8. MULTIRESOLUTION ANALYSIS

Wavelets are closely related to the concept of multiresolution analysis [10, 12, 14]. Traditionally

wavelets are the translates and dilates of one particular function. Since we work with arbitrary partitions

and non-translation invariant measures, our wavelets cannot be the translates and dilates of one function.

In fact, they are a special case of so-called “second generation wavelets”. The basic idea of second

generation wavelets is to give up the translation and dilation structure of wavelets, but to keep their

desirable properties such as multiresolution analysis and fast transform algorithms. In this section we

show how the unbalanced Haar wavelets fit into this concept. The fast wavelet transform will give us an

algorithm to compute the coefficients in the expansions (12).

We define two new sets as

S(γ) = Cl(α) if γ ∈ G(α) and S∗(β) = G(α) if β ∈ Cl(α) .

Now consider (7). The basis{ϕβ | β ∈ Cl(α)} has dual basis

{ϕ̃β | β ∈ Cl(α)} ,

whereϕ̃β is a multiple ofϕβ and‖ϕ̃β‖q = 1, while the other basis{ϕα, ψγ | γ ∈ G(α)} has dual basis

{ϕ̃α, ψ̃γ | γ ∈ G(α)} ,

whereψ̃γ is as in Section 7. The basis functions in the above two bases are related as follows:

(R1) forα ∈ F andγ ∈ G∗,

ϕα =
∑

β∈Cl(α)

hα,β ϕβ and ψγ =
∑

β∈S(γ)

gγ,β ϕβ

where

hα,β = 〈ϕα, ϕ̃β 〉 and gγ,β = 〈ψγ , ϕ̃β 〉

(R2) forβ 6= ρ,

ϕβ = h̃p(β),β ϕp(β) +
∑

γ∈S∗(β)

g̃γ,β ψγ

where

h̃α,β = 〈ϕβ , ϕ̃α 〉 and g̃γ,β = 〈ϕβ , ψ̃γ 〉 .
17



Fork ∈ g(F), letGk = {γ ∈ G∗ | g(γ) = k} and consider the subspacesVk andWk of Lp, where

Vk = clos span {ϕβ | β ∈ F∗
k} and Wk = clos span {ψγ | γ ∈ Gk} .

Note that the indicated functions not only span, but also provide an unconditional basis for, these sub-

spaces. The dual basis for this basis ofVk is given by

{ϕ̃β | β ∈ F∗
k}

while the dual basis for this basis ofWk is given by

{ψ̃γ | γ ∈ Gk} .

By viewingF∗
k−1 ∪ F∗

k as a two-generation forest, it follows that

Vk = Vk−1 ⊕Wk−1 (20)

and thatVk has another basis

{ϕα | α ∈ F∗
k−1} ∪ {ψγ | γ ∈ Gk−1}

with dual basis

{ϕ̃α | α ∈ F∗
k−1} ∪ {ψ̃γ | γ ∈ Gk−1} .

A function f ∈ Vk has a representation as

f =
∑

β∈F∗
k

aβ ϕβ with aβ = 〈 f, ϕ̃β 〉 (21)

as well as, by (20),

f =
∑

α∈F∗
k−1

aα ϕα +
∑

γ∈Gk−1

cγ ψγ (22)

with

aα = 〈 f, ϕ̃α 〉 and cγ = 〈 f, ψ̃γ 〉 .

The relations between the different representations follow from simple linear algebra arguments. To

simplify notation, assume that the forest has no leaves, indeed, just replace eachFk with F∗
k . Combining

(21) and (R2) and identifying coefficients results in

aα =
∑

β∈C(α)

h̃α,β aβ and cγ =
∑

β∈S(γ)

g̃γ,β aβ , (23)

whereg(β) = k andg(α) = g(γ) = k − 1. Similarly, combining (22) and (R1) results in

aβ = hp(β),β ap(β) +
∑

γ∈S∗(β)

gγ,β cγ . (24)

Next consider a functionf ∈ Vn with n fixed. Given the scaling function coefficientsaβ with g(β) =
n, we can recursively use (23) to calculate all wavelet coefficientscγ on the older generations where

18



g(γ) < n. Conversely, given the coefficientsaα with g(α) = m along with all the wavelet coefficientscγ
wherem 6 g(γ) < n, we can recursively use (24) to find the coefficientsaβ on the younger generation

whereg(β) = n.

These operations form the so-called “fast wavelet transform”. Since all summations in the transform

are finite, it can easily be implemented on a computer. One only needs to build a forest data structure

that satisfies all the forest properties of Section 3. This can be done nicely using an object-oriented

programming language.

The way the algorithm is described, the number of operations for the calculation of the wavelet co-

efficientscγ with γ ∈ G(α) is O(m2). Actually, by using the hierarchy ofTM , one can reduce this to

O(m). In Example 7 (dyadic cubes onRn) we havem = 2n and this difference can become important.

We do not include the details of this algorithm as they are straightforward.

9. EUCLIDEAN SPACES

One of the original motivations for the construction of the unbalanced Haar wavelets was their use in

practical applications; thus, we take a closer look at the case whereX is a subset ofRn.

Consider the topology induced by the Euclidean distanced on Rn. LetX be a Borel set ofRn and

B(X) be the Borel subsets ofX. Consider aσ-finite measureµ onB(X) and let(X,M(X), µ) be theµ-

completion of(X,B(X), µ). A common practical example is a weighted measureµ wheredµ = w dm

for the Lebesgue measurem onX and a non-negative Lebesgue measurable functionw; if w is a non-

zero constant function, thenM(X) are just the Lebesgue measurable subsets ofX.

Assume that we start with(X,M(X), µ). Next we are given subsets{Xα | α ∈ F} of X that

satisfy the partition properties from Section 4. Such subsets usually are determined by the application;

numerical solvers for integral and differential equations often recursively subdivide an original domain

X into theXα’s, as illustrated in Example 8. Keeping with the previous notation,σ({Xα | α ∈ F}) = Σ̃
and theµ-completion of(X, Σ̃) is (X,Σ). We would like an easily verifiable condition on{Xα | α ∈ F}
that would guarantee thatΣ = M(X); for then, the corresponding wavelets form an unconditional basis

for Lp(X,M(X), µ). Towards this, two useful measurement are the diameter ofS ⊂ Rn given by

diamS = sup
x, y∈S

d (x, y)

and the (µ-)essential diameter ofS ∈ M(X) given by

ess diamS = inf {diam Y | Y ⊂ S , Y ∈ M(X) , µ(S \ Y ) = 0} .

If Xα is in B(X) for eachα ∈ F and if for eachx ∈ X

inf
α∈F
x∈Xα

diamXα = 0 , (25)

thenΣ̃ = B(X) and soΣ = M(X). It is possible to relax condition (25).
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Proposition 17. If Xα is inM(X) for eachα ∈ F and if for eachx ∈ X

inf
α∈F
x∈Xα

ess diamXα = 0 , (26)

thenΣ = M(X).

As customary, fory ∈ Rn andε > 0, let

Nε(y) = {x ∈ X | d(x, y) < ε} .

Proof. SinceΣ̃ ⊂ M(X), it suffices to show thatB(X) ⊂ Σ. Towards this, fix anyδ and ε with

0 < δ < ε andy ∈ Rn. It suffices to find a setNδ ∈ Σ so thatNδ(y) ⊂ Nδ ⊂ Nε(y).
For eachx ∈ Nε(y), find decreasingsequences{Xαn(x)}n and{Yαn(x)}n along with a sequence

{yαn(x)}n so that

1. x ∈ Xαn(x)

2. yαn(x) ∈ Yαn(x) ⊂ Xαn(x)

3. µ
(
Xαn(x) \ Yαn(x)

)
= 0

4. limn diamYαn(x) = 0
5. limn yαn(x) = y0(x) for somey0(x) ∈ Rn .

If d(y, y0(x)) < ε, then pickαn(x) so that

Yαn(x) ⊂ Nε(y)

and ifd(y, y0(x)) > ε, then pickαn(x) so that

Yαn(x) ⊂ [Nδ(y)]
C .

Since

Nε(y) ⊂
⋃

x∈Nε(y)

Xαn(x)

there is a countable subset{xi | i ∈ J} of Nε(y) such that

Nε(y) ⊂
⋃
i∈J

Xi

whereXαn(xi) = Xi. Likewise, setYαn(xi) = Yi. LetJ0 = {i ∈ J | d(y, y0(xi)) < ε} and

Nδ =

[ ⋃
i∈J

(Xi \ Yi) ∩ Nδ (y)

] ⋃  ⋃
i∈J0

Yi

 .

ThenNδ(y) ⊂ Nδ ⊂ Nε(y) andNδ ∈ M(X). ThusNε(y) ∈ Σ, as needed.
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The use of the unbalanced Haar wavelets in applications is still somehow limited. The reason is

that they are non-smooth and that they have only one vanishing moment; i.e. the integral of a wavelet

vanishes, but the integral of a wavelet multiplied with a non-constant polynomial need not vanish. Con-

sequently, the convergence of the expansion (12) is slow for a smooth functionf . In [21, 22] the “lifting

scheme” is described, which given one initial multiresolution analysis, can allows you to build a second,

more performant one, in the sense that the wavelets have more vanishing moments or more smoothness.

The Haar wavelets constructed in this paper are a perfect example for such an initial multiresolution

analysis.
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