A NEW CLASS OF UNBALANCED HAAR WAVELETS THAT FORM
AN UNCONDITIONAL BASIS FOR L, ON GENERAL MEASURE SPACES

MARIA GIRARDI AND WIM SWELDENS

ABSTRACT. Given a complete separakhiefinite measure spadeX, X, ;1) and nested partitions of, we
construct unbalanced Haar-like wavelets Bnthat form an unconditional basis fér, (X, X, 1) where

1 < p < oo. Our construction and proofs build upon ideas of Burkholder and Mitrea. We show that if
(X, %, u) is not purely atomic, then the unconditional basis constant of our bagisis(p, q) — 1). We
derive a fast algorithm to compute the coefficients.

1. INTRODUCTION

Our goal is, given a measure space, X, 1) and nested partitions oX, to construct unbalanced
Haar-like wavelets orX that form an unconditional basis foy, = L, (X, ¥, 1) wherel < p < oo.

Wavelets are traditionally defined on Euclidean spaces. They usually are the translates and dilates of
one particular function and are orthogonal or biorthogonal with respect to the Lebesgue measure.

However, we work on a general measure space, which need not even have a vector space structure,
so translation and dilation becomes void. Although our wavelets are not the translates and dilates of
one function, they still enjoy the desirable properties of traditional wavelets, such as a multiresolution
structure and an associated fast transform algorithm. Our setting allows for non-translation invariant
measures and covers general nested partitions of arbitrary subsets of Euclidean spaces. Thus our wavelets
are particularly useful in practical applications.

Our construction is inspired by and generalizes the construction [1, 15] of Mitrea wavelets on dyadic
cubes inR™. Mitrea wavelets can be seen as a generalization of the unbalanced Haar wavelets introduced
for non-translation invariant measures in [9].

To show that wavelets form an unconditional basid.gf one often uses Caldam-Zygmund theory
and an interpolation result of Marcinkiewicz. We follow a different approach; we show that the wavelets
essentially are a martingale difference sequence and thus are able to use Burkholder's celebrated in-
equality [4, 5, 6] to show that they form an unconditional basic sequence. This approach gives the best
unconditional basis constant. We also show that in some cases the wavelets form a monotone basis.
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One aim of this paper is to illustrate how techniques from martingale and Banach space theory can be
used in wavelet theory.

The paper is organized as follows. In Section 2 we set some notation and recall some classical results.
In Section 3 we introduce the notion of a forest, which we use as an indexing set. We use the forest
to define partitions in Section 4. Section 5 contains the construction of the wavelets while Section 6
contains the proof that they form an unconditional basis. We discuss the dual basis and a characterization
in Section 7. The next two sections contain more practical results. Sections 8 shows the connection with
multiresolution analysis and the fast wavelet transform, while Section 9 discusses the setting inside a
Euclidean space.

2. NOTATION AND TERMINOLOGY AND BAsICS

Recall that a countable familf), } ¢ is an unconditional basis fax, if for each f € L, there is a
unique family{c, },<g of real numbers so that’ c,, converges unconditionally t6in L,-norm. This
is the case if and only if the following two conditions hold:

(C1) closspan{y, |y € G} =1L,
(C2) a constanf{ exists so that for all finite subselfsC G

Zevcvwv <K chwv )

er er
7 p 7 p

for all choices ofc, € R ande, = £1.
The smallest for which condition (C2) holds, denoted,({«, }), is the unconditional basis constant

of {t}.

Clearly, any Banach space with a countable basis is separable.<Ifp < oo, then a separable
L,(n) space has an unconditional basis [18, 8]. Petsky[19] showed that, for any finite non-purely
atomic measure:, the spacd.;(u) does not even embed into a Banach space with an unconditional
basis. Thus we restrict our attentiongeparableL,, spaces with < p < co. In this setting, we know
L, (X, X, 1) up to an isometric isomorphism. Recall that two Banach spacasd I’ are isometrically
isomorphic if there is an invertible bounded linear operdtarE — F so that|T|| =1 = ||T!||. A
separablé., (X, X, ;1) is isometrically isomorphic to precisely one of the following spaces, whgfe:)
is theL,, space on the Lebesgue measure spade,dft ¢,, £, L,(m), L,(m) ©, £y, Ly(m) &, £ for
somen € N (cf. [23, Proposition Ill.A.1]). The isometric isomorphism basically follows from mapping
(X, %, 1) into a combination of the Lebesgue measure spadé,ahand the counting measure space on
N. For practical reasons, we prefer to constructively build our wavelets directly mstead of calling
upon this mapping.

Throughout this papef,X, X, 1) is a fixed complete measure space witkaking values in the non-
negative extended real numbers. BEt be the collection of all sets iR with strictly positive, but finite,

u-measure; leE be any subs-field of 3 such that the:-completion of( X, i) is (X,3). The support
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of a functionf : X — R isthe sesupp f = {z € X | f(x) # 0}. For an arbitrary sef, let P(5)
be the power set af and#S be the cardinality ofS. For K C P(S), let o(K) be the smallest-
algebra containind<. For a functionf on S, we follow the common practice of also denoting pyhe
natural extension of the origingl to P(.S). Throughout this papet, < p < oo is a fixed number with
conjugate exponentwherel/p + 1/q = 1. Letp* = max (p, q). The dual spacé,, of L, (X, 3, u) is
isometrically isomorphic td., (X, ¥, i), whereg € L, (X, ¥, u1) is identified withz} € L; by

2() = (f.9) Z/ngdu-

We say thatf € L,, is orthogonal tgj € L, if (f,g) =0.

3. TREES ANDFORESTS

We formulate the notation of a forest, which is a useful indexing séarést(F, g, p, C, <) consists
of acountablesetF, which has a (possibly empty) subgetof root elements, along with a generation
functiong : 7 — Z, a parent functiop : 7 \ R — F, a children functiorC : ¥ — P(F), and an age
partial ordering< on F, all of which satisfy the following properties:

(F1) C(a) ={B € F | p(B) = o},

(F2) 0 < #C(a) < o for eacha € F,

(F3) if 5 € C(a) theng(B) =1+ g(a),

(F4) the ordering< linearly ordersC'(«) for eacha € F.

(F5) if g(a) < g(B) andp™(a) = p™ () for somen, m > 0, thens < «,

where the power functions” of the parent functiop are defined by being the identity function and
p"(a) = p(p"~(a)). If confusion is unlikely, we denote a fore§E, g, p, C, <) by justF. The given
partial ordering extends to a linear ordering of the whole forest with (F4) and (F5) still holding: it is only
needed to extend the ordering as so to linearly order £4etpenerationf;, of F where

Fr={a € F|gla) =k}.

Thus, henceforth, forests satisfy the additional property
(F6) the ordering< linearly orders the the whole forest.

One thinks of a parent elemente F;, on thek"-generation ofF as spawning the children elemerits
with 8 € C(a) C Fiy1. Root elements are denoted pyand have no parent. A fore$t that satisfies
the additional property

(T1) if o, 8 € F, then there are, m > 0 so thatp" («) = p™ ()

is called atree A tree has at most one root elementpatedtree has exactly one root.
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A leaf is an element that has no children. lebe the set of leaves ii. On occasions itis convenient
to think of a leaf as repeating itself in the later generations, for this consider

Fi=rm {U LNF;

Jj<k

Let

e {C(Q) foge
{a} ifael.

Define the power function€™ (resp.C}*(«)) of the functionC' (resp.Cj(«)) analogous to the power
functionsp™. Note that forn € N,

n—1
Cie) =Ca) |J JI[CnL].
j=0

A countable union of disjoint trees is a forest. Conversely, any f@tEsy, p, C, <) can be expressed
as a countable union of disjoint trees. To see this, consider the equivalence relaiiotF given by
a ~ @ifand only if (T1) holds. This relation induces a partition6f

F=JF6o (1)

»eK
into disjoint equivalence classeB(sc) where the indexing set is the induced quotient space. Each
F(x)is atree.
The concept of a forest, which is fairly technical, is introduced to help simplify the construction of

wavelets from nested partitionings &f. Later we will reduce the general forest setting to three canonical
cases of trees.

4. PARTITIONS

We call a collection{ X,, | « € F} from X anested partitionindor X, with respect to the forest,
if it satisfies the following partition properties:

(P1) Xo, N Xy, =0 if glan) = g(a2) anday # s,

P2) X,NX, = if p € R andp™(«) # p for eachn > 0,
(P3) if X, is not a leaf, then it can be written as the disjoint union
Xo= |J X5,
BeC(a)

(P4) X =U{X, | a € F},
(P5) c({Xa | e F}) =3.



The patrtitioning (1) of the forest into trees provides a partitiokofFor eachsr € K, let
X)) = |J Xa.
a€EF ()
From the first three partition properties it follows thatdf # sz then X (5c;) and X (5¢2) are disjoint.
ThusX can be written as thdisjoint union
X=|]JX(). 2)
»el

For eachsr € K, the subcollectio{ X,, | o € F(sr)} is a nested partitioning fak (»r) with respect
to the treeF (s¢). The partitions

m(x) ={Xa | € F N F(x)}

of X (s) are nested fok € g(F(s)). We will use the subcollectiofi.X,, | o € F ()} to build wavelets
on X (sr). Our waveletE will then be the union of the wavelets on eaklisc). Thus, for the time being,
we will work with trees instead of forests. There are three types of nested partitionidgsvith respect
to atree7l:
- Type l: R # () and thusu(X) < oo,
- Typell:  p(X) < occandR =0,
- Type lll:  p(X) = oo and thusk = 0).
Each type is handled slightly different. But before passing to the construction of the wavelets, we clarify
the above notations with the following examples.

Example 1. Let (X, X, 1) be the Lebesgue measure spaceXon= [0,1). Consider the Type | tree
(T,9,p,<) Where

1. 7T={(nk)|n=0,1,... andl < k < 2"},

2.p= (07 1)1

3. g((n,k)) = n,

4. C((n,k)) ={(n+ 1,2k —1),(n+1,2k)},

5. (n+1,2k —1) < (n+1,2k).
Let X py = [27" (k—1), 27" (k)).

Example 2. Let (X, X, 1) be the Lebesgue measure spaceXos R. Modify the tree from Example 1
by takingn € Z andk € Z and letX|, ;y be formally as in Example 1. In these two examples, each
X(n,x) has two children. This example is of Type IlI.

Example 3. Let (X, X, 1) be a weighted counting measure &h = N with 0 < u(n) < oo for
eachn € N. Modify the tree from Example 1 by taking integets< 0 andk € N. Let X, ;) =
XN(27"(k—1),27"(k)]. EachX (o) = {k} is aleaf. This example is of Type Il jf(X') < co and
of Type lll'if u(X) = oc.



Example 4 (Logarithmic tree) Let M = {1,2,... ,m} for somem € N. The treeZjog on M is
uniquely determined by the following properties.
1. It hasl generations(, - - - ,1 — 1) where2!=2 < m < 2!-1,
. Each element dfjoq is a set of consecutive integers fram.
. It has one root elemept= M andg(p) = 0.
. The(l — 1) generation consists of the leavgdl }, {2},... {m}}.
. Each element of|og with cardinality greater than 1 has two children and the cardinality of the
youngest child is equal to or one less than the cardinality of the older child.

ga b~ WDN

This tree will be used in the general wavelet construction. The rlagagithmic comes from the fact
that the number of generations behaves as the logarithm/of #

Example 5(Linear tree) Let M be as in the previous example. The tfBg on M is uniquely deter-
mined by the following properties.
1. It hasm generations(( - - - ,m — 1).
. Each element df}, is a set of consecutive integers if.
. It has one root elemept= M andg(p) = 0.
. The(m — 1) generation consists of the leavgd }, {2}, ... {m}}.
. Each element of}j, with cardinality greater than 1 has two children and the cardinality of the
youngest child is 1.

(62~ GO I \V]

This example will also be used in the general wavelet construction. It is dadkstt since the number
of generations is proportional to the number of element/of

The previous two trees may be viewed as nested partitionings themselves.

Example 6. Let (X = M, ¥, u) be a weighted counting measure dh = {1,2,... ,m} with 0 <
u(n) < oo for eachn € M. Each of the previous two examples gives a nested partitiopldg | « €
M} of M by letting M, = .

Example 7. Let (X, X, ) be the Lebesgue measure spaceXon- R” for somen € N. Let{X,} be
the dyadic cubes iX. EachX,, has2™ children. This example is of Type III.

Example 8. Let X be the spher&? in R?, endowed with the surface area measure. Consider the icosa-
hedronII centered at the origin along with the corresponding map

P:1—S? where P(v) =v/||v|gs -

We useP to push a partition ofI out to a partition 0fS. The0™-generation partition consists of just

X, = S2. Next obtain nested partitions &f by recursively subdividing each triangular side. Figure 1
depicts a typical subdivision of a triangle. The image undaf these nested partitions bff are nested
partitions ofS?, where each set of a partition is a spherical triangle. Figure 2 shows the icosahedron (left),

the icosahedron after 3 subdivisions (middle), and the result after applyboghe middle polyhedron
6



FIGURE 1. Subdividing a triangle.
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FIGURE 2. Partitioning a sphere.

(right). The latter is the fourth generation of the partitions on the sphere. This example is used in [20] as
a starting point.

One can now consider a countable collection of disjoint measure spaces, each of which has a nested
partitioning with respect to a forest. It is possible to unite their forests into a new forest. Then the union
of their nested patrtitionings forms a nested partitioning for the disjoint sum of the measure spaces (with
respect to the new forest). In this fashion, it is possible to combine the above examples.

Any measure space that has a nested partitioning is necessarily complete, separabfnitnd

Fact9. Each complete, separablefinite measure space has a nested partitioning.

To see this, note that a complete separabfanite measure space may be viewed as a disjoint sum
of complete separable measure spaces, with one space being purely atomic and the other spaces being
purely non-atomic and of finite measure. As in Examples 3 and 6, one can build a nested partitioning on
the purely atomic space. On each of the purely non-atomic spaces of finite measure, using Example 1 and
a theorem of Cara#odory (cf. [23, 1.B.1]), one can build a nested partitioning (with care, separability
guarantees (P5)). Then, as noted above, these partitionings combine to give a nested partitioning for the
entire space.

5. CONSTRUCTION OF WAVELETS

Plantatreel. Let{X, | « € 7} be a nested partitioning foX with respect taZ. We are now ready

to build on X our wavelets, which have as their basic building blocks the scaling funcfioR$.cr
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where

Yo = (Xa) P 1y, .

The wavelets will be indexed by a 98t The setG consists of a sgf* along with possibly one other
element. When helpful, we will try to be consistent in the notation by denoting a parentebghild by
8, and an element @ by ~.

First we concentrate ofi*. Each wavelet indexed by-ae G* will be of the form

Yy =" (Mtg) - ut%)) ’

for some sets?, and NV, in ¥ with n., chosen as to normalize, in L,, thus,

(3)

= (e 4 u(Nwlp)l/p .

This resembles the definition of a Haar wavelet, byt @3,) can differ fromu (N, ), we refer to it as an
unbalanced Haar wavelett is constructed to have zero mean.
The setG* has the form

¢ =G,
acT

where the sef(«) containsmax(0,m — 1) elements# = #C(«)) and is constructed as follows. The
basic idea is to usé&(a) to index those unbalanced Haar wavelets that will be supported oand
constant onX g where € C(«). To do this, we build a mini-tree amongst the children. Enumerate the
children ofa asg; withi € M = {1,2,--- ,m} andf3; < ;1. Next consider a tre&), that is either

Tiin Or Tjog. Let

G(e) = {(, ) € {a} x Tns | #C(C) = 2} .

Note that each element @, has at most two children.
The elementy = (o, () € G(a) generates a wavelgt, as in (3) with

P,=|JXp, and N,=|]Xs,,
1€C1 1€C2

where(; and(; are the two children of.
The remainder of; depends on the particular type of splitting.

- For Type |, let
G=G"U{p} and v,=p, = p(X)P1x.

For later use, leP, = X andN, = 0.
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FIGURE 3. Mitrea wavelets (linear construction).

0 - |+ +

FIGURE 4. Logarithmic construction.

- For Type Il, let
G=6"U{v} and ¢, =pX) Py,

wherev ¢ G*. For later use, leP, = X andN,, = ().
- For Type lll, letG = G*.

Finally, take
¥ ={y,[veg}. (4)

We define the following partial ordering @h Any element inG* is less than an element ;1\ G*.
Next consider two elements @i, sayy; = (a1, (1) andys = (a9, (2). Now~y; < 7, if eitherag < ag,
ora; = ap and¢; < (o. Also define the generation function ¢ asg((«, ¢)) = g(a).

Depending on the choicegi, or Tiog for 7y, we refer to the respective construction as linear or
logarithmic. They will have the same theoretical properties; the advantage of the logarithmic construction
is that the support size of the wavelets is smaller and that the wavelets are have more symmetry. In the
setting of the examples in the previous section, the above construction leads to well-known wavelets.

- For Example 1 (resp. 2 is the Haar system 0, 1) (resp.R).

- For Example 3 (resp. 6) is a Haar-like unconditional basis féy (resp.(;").

- For Example 7 the linear construction leads to the Mitrea wavelets [1, 15]. The Mitrea wavelets
are the first example of higher dimensional compactly supported Haar-like wavelets in the case of
non-translation invariant measures. The basic idea, as depicted in Figure 3 for the two dimensional
case, is simple but extremely clever. Our linear construction is inspired by the Mitrea wavelets.
The setting of the Mitrea wavelets is actually more general than presented here as the measure can
be Clifford-algebra-valued.

- Again for Example 7, Figure 4 depicts the logarithmic construction in pase2.
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Concluding, the basic idea behind constructing the unbalanced Haar wavelets in the case that the number
of children is greater than two is to build a mini-tree amongst the children as to reduce it to the case of
two children.

6. PROPERTIES OF WAVELETS

Clearly ¥ is normalized. Note that for eache G*,

/wwdu_o. 5)
X

If v andy are ingG, then

[ vy du=o. ©)
X

for if ¢, and¢., are not disjointly supported and < +/, thens., is constant on the support gf,. If
a € 7T, then

span{pgs | B € Ci(a)} = span{pa, ¥y | v € G(a)}, ()
and furthermore this extends over several generations fat iN, then
span{pg | B € Cj(a)} = span {(pa, Py |y € U;;%G(Cj(a))} . (8)

To see this, note that set containment in one directiohig clear; furthermore, in the right-hand side
(by (5) and (6)) and the left-hand side, the indicated functions that span the space (of dingefisian)
can be viewed as an orthogonal basis.

Since

L, =closspan{ls | A€ ¥},
and{X, | « € T} U is a semi-ring that generat® it follows that (cf. [3, Theorem 11.4])
L, = closspan ® (9)
where
O ={py|xeT}.
Note thatL,, is separable sincg is countable.
Lemma 10.

closspan ¥ = L,,.
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Proof. Fix an indicator function x; with § € 7. By (9), it suffices to show that
1x; € closspan W . (20)

If § = p, then (10) clearly holds; thus, assume that p.
Considera € 7 of the forma = p?(d) for somei > 0, along with the corresponding function

o w(Xs)
fi=1x;— ml){a .

Towards showing thaf; is in span ¥, consider (8) with the same andi as in this proof. Clearlyf; is
in the set on the left-hand side and so it is also in the set on the right-hand side.fSamck)., have a
vanishing integral (fory € G*) while ¢, does not,f; does not have a component alopg. Thus

fi € span{zb«Y | v € Uj;% G(Cj(a))} C span V¥ .
Towards (10), consider the three types of nested partitionings separately.
- For Type 1,p*(6) = p for some finitei and1x, € span V.
- For Type Il, the functioanpi(é) tends tol x in L,-norm asi — oo andlx € span V.
- For Type I,

1fi = 1x,ll, = n(Xs) ﬂ(Xpi(a))_l/q ;
and (X, (5)) tend to infinity asi — oo.
So for each of the three types, (10) holds. O

ThusV satisfies (C1). Toward (C2), recall that a constiptexists so that for the usual Haar functions
{hkz}?& on [07 1)’

n

Zek ci hy,

k=1

n

> ok

k=1

<K,

p

)

p
for all n € N, sequencegc, }7_, in R, ande, = £1. This inequality (in an equivalent formulation) is
due to R.E.A.C. Paley [18]; the above formulation was noted by Marcinkiewicz [13]. Using martingale
theory, Burkholder [5] generalized Paley’s inequality to hold for martingale difference sequences (such
as the Haar functions) df, 1). Since the waveleté can essentially be viewed as a martingale difference
sequence, we will call upon Burkholder’s generalization. We first recall some basic definitions.

Fix X, € ¥T and a subs-field 3, of ¥ that is generated by a partition= {E1,... ,E,} of Xj
(thus X \ Xy is an atom of¥). Considerg € L (X, %, u) with suppg C Xy. Then the conditional
expectationE (g | Xy) of g with respect ta2 is

n

E(g|%0) = Z

i=1

Jg, 9du
— N 1E; >
()

observing the convention thaf0 is 0. A simple martingalewith respect to a non-decreasing sequence

{3}~ of subu-fields of ¥, is a finite sequencéf;} , of simple functions with finite support that
11



satisfy thatf; is ¥;-measurable fol < ¢ < n and thatE(f;+1 | ¥;) = fiforl < ¢ < n. Its
correspondingnartingale difference sequendé€;} , is given byd; = f; — fi—1 wheref is just the
null function, thusfy, = %, d;.

Our setting calls for the following version of Burkholder’s celebrated inequality.

Theorem 11(Burkholder) If {f;}! , is a simple martingale with respect to a non-decreasing sequence
{¥;}*, of sube-fields of%, then its corresponding martingale difference sequefat¢]” ; satisfies

n
§ cid;
i=1

n

Zei C; dz‘

i=1

: (11)

p

<(p'-1)
p

for all n € N and all choices of; € R ande; = +1.

See [5, 6, 7] for the proof.

If L,(m) isometrically embeds inth,, (X, ¥, 1), then any basis fok, (X, £, 1) has, for eacl > 0,
a blocked basis that i§l + €)-equivalent to the usual Haar basis ([16, 17] and [11]). Burkholder [4]
showed that the unconditional basis constant of the usual Haar basis-id. Olevski’showed that
the unconditional basis constant of any unconditional basis is greater than or equal to that of the Haar
system. From these facts follow the below known fact.

Theorem 12. If (X, X, ) is not purely atomic, then the unconditional basis constant for any uncondi-
tional basis forL, (X, ¥, 1) is at least(p* — 1).

The following lemma is needed to apply Theorem 11 to finite subseis of

Lemma 13. Fix a finite subse{~;}", from G that satisfiesy; > 72 > ... > v,. Let X, € ¥ be such
thatsup ¢, C X, for eachi. Consider the corresponding partitions

T, = {P% R N%. , Xo \ (P’Yz UN%.)}

of Xpandlety; = o ({m; | 1 < j < i}). Then

1. ¢, is ¥;-measurable foi = 1,... ,n
2. E(Yy,,, | X)) =0fori=1,... ,n—1

Proof. Sincey., is constant on each of the sétg, V,,, and X, \ (P,, UN,,), itis 3;-measurable. Fix
1 <i < nand conside (1., , | ¥;). AnatomA C X, of ; has the form

m
A:ﬂ&
k=1
where
i
Fy e U{P%' ) N’Yj ) XO\(P%' UN’Y]')}
j=1

12



andy; 41 < vjforj=1,... 4 Ify41 < € G, thenP, (and likewise forV, and forX,\ (P,UN,)) is
either disjoint from or contains the supportif,, ,. Furthermore,[, 1., , du is zero. ThusE (v, |
¥;) = 0, as needed. O

Now plant a whole fores¥. Let{X, | « € F} be a nested partitioning fok with respect taF.
Keeping with the notation from Section 4, wrifé as the disjoint union oK (s¢)’s. For eachsc € K, the
subcollection{ X, | « € F(s)} is a nested partitioning fak (»r) with respect to the treg (s¢); thus,
there are wavelet® (sc) as in (4) onX (s). Let

E= ] ¥().

wel

We are now able to state the main result of this paper.

Corollary 14. The wavelet& forms a normalized unconditional basis fog (X, 3, 1), with K,(Z) <
(p* —1). If L,, is not purely atomic, thei,, (=) = (p* — 1).

Proof. In light of Lemma 10 and Theorem 12, it suffices to show that (C2) holds Witk p* — 1 for
the se=. SinceX is thedisjoint union of theX (s)'s, forany f € L,

£ = > 1 xeally -

wel
Furthermore, for eaclr € K andy € G
vy iy e F(x)
Uy lx( = T
0 ifyé¢ F(sx).

Thus it suffices to show that (C2) holds wiith = p* — 1 for each set (). Thus we assume, without
loss of generality, thaF is a tree and denote by justW.

Keeping with previous notation, fix a finite collectidhC G and ordel” = {v;}" , so thaty; >
Y2 > ... > vy, Let{m;}7_, and{¥;}! , be as in the statement of Lemma 13. By Theorem 11, it suffices
to show that the sequend¢; }”"_, given by

fi = Z w’Y]’
j=1

is a simple martingale with respect{&;}” ;.
Lemma 13 gives that each is X;-measurable. If < n, then by Lemma 13 and the linearity of the
conditional expectation operator

E(fix1| %) — E(fi | i) = E(fix1 — fi | i) = E(Yy,,, | ) =0.

Sincef; is ¥;-measurablef; = E(f; | ¥;). ThusE(f;+1 | £;) = fi, as needed. O
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SinceZ= is an unconditional basis fdx,, each orderind ., }°, of = forms a basis foL.,,. Given an
ordering{~; }, the basis constarit/,,({1,, }) is the smallest numbe¥/ for which

n

Z Ci Uy

=1

m

Z Ci ¢’Y¢

=1

<M

p

p
holds for alln,m € N with n < m and all choices of; € R. Clearly,1 < M,({,}) < Ky(2).
In fact, if P,({Z}) is the supremum of/,({v~,}) over all possible orderlngs d, thenP,({Z}) <
K,({Z}) < 2P,({E}). If M,({v)1,}) = 1, then{y.,, } is a monotone basis.

A rooted tree can be enumerdtg }; so thaty; > ;1.

Corollary 15. The waveletsl = {1, } associated with a rooted tree form a monotone basisLfpr
when ordered so thaf; > ;1.

Proof. Fixn € N and a sequenc@z}’”1 from R.. By Corollary 14, it suffices to show that
n+1

Z Ci Yy > e W
i=1 » i=1

Consider the sub-field £,, = o ({m; | 1 < j < n}) as in the statement of Lemma 13 wilfy = X. It
follows from Lemma 13 tha} ;" | ¢; ¢, iS En -measurable and th#(v),, ., | ¥,) = 0. Thus

ey, =E (Z ci by, | zn>
=1 =1
=F (Z & ¢’y¢ | En) + anrlE (/lzz)’yn.i,_l | En)

i=1
n+1
—E (Zcm% y zn> .
i=1
The result now follows from the fact that conditional expectation is a contractidr),on O

7. DUAL BASIS AND CHARACTERIZATION

Consider the coordinate func‘uona{l&W | v € G} of the unconditional basig, which are (uniquely)
determined by the conditiorf ., ¢, ) = d,. SinceL, is reflexive,{¢, | v € G} forms an uncondi-
tional basis for the dual spaég (X, >, 1) . Thus, if f € L, andg € L, then

f:Z<fa7$'y>'¢w and gzz<¢%g>7$'ya (12)
veG v€G

where the convergence is unconditional.
It follows from (6) thahZV is a multiple ofi,. Straightforward calculations give thatifc G* then

ibv g < 1P’y 1N’y >

=N —

TPy p(Ny) )
14




where
—1
Ny = nW(M(P’Y)il + '“(Nv)il) )

and ifp € G then

Uy = p(X) M1y,
while if v € G then

Yy = p(X) V1
It follows from Corollary 14 thatl < JWH < 2(p* — 1) foreachy € G. If v € G\ G*, then
q

H%Hq = 1. For afixedy € G*,

_ 1/q
H@Z)'qu =Ty (N(Pv)l_q+/‘(N'y)1_q> )
which need not be one. We examine this a little closer. Let
r=u(P)/p(N,) and Np.r) = 4] .
Then
N(p,r) = (14 P)VP (1 4 pl=0yl/a (1 4 p=1)=1,

The following properties ofV (p, r) hold for1 < p < oo and0 < r < oc:

1. N(p,r) = N(q,r),

2. N(p,r) = N(p,1/r),
N(p,l) = N(27T) =1,
]- < N(p7r) < 21

for any fixedp, lim, o N(p,7) =1,
6. for any fixedr, lim,_oo N(p,7) =2 (1 +r~ 1)L

o s w

These easily can be verified. The uniform bound in (4) follows from bounding each factor which yields
21/p 21/41, Thus the norm of the coordinate functional is always less than 2, while the last property
shows that it can be arbitrarily close to 2.plt= 2 or if (P,) = u(N,,) for eachy € G*, then the dual
basis is normalized.

Following the reasoning in [14, Chapter 6], we now derive a criterion, connected with the absolute
value of the coefficients,, to determine whether a formal serig$c, ¢, belongs talL,,. Towards this,
we consider the Cantor group = {—1,1}9 of all sequences (indexed byG) of +1, along with its
coordinate functionals, : A — {—1, 1} determined by = {e,(¢)},eg, and its product (i.e. Bernoulli
probability) measure.

Foreache in A, letT : L, — L, be the continuous (by (C2)) linear operator determined by

Te % = 67(6) % .

15



Consider a functiorf € L,, of the form

= Z Cy Yy (13)

el

for some finite subsdt of G. So ife € A andz € X then

(T f)(@) =) enle) ey oy (@) -

verl’

It follows from (C2) that
K7 I < I Te fIl < K311 (14)

whereK), is the unconditional basis constantzf
SinceT, f(x) is product(u x ¢)-measurable, Tonelli's Theorem gives that

J sl aceo = [ /

Khinchin’s inequality (cf. [24]) gives strictly positive constarisandC), so that

& [}, < ( /

for each sequencfu, }cr of real numbers. Combining (16) and (15) yields

p

(€) ey ¥y ()| d(e) dpfz) - (15)

E:avev

verl’

P 1/p
6)) <Gy [{aq},, (16)

cp/lAf P dp(e /HTfllpdC C”/IAf P duz) 17)
where

1/2
(Af)(x) = (Z ey w:r)?) : (18)

vyel
Next, integrate inequality (14) oveX, note that{(A) = 1, and use (17) to see that
KU A fN, < I, < Kp Gy LA, - (19)

Consider any orderingy, }7°, of = and a functionf € L,,. The functions

fo = ZC% ¢y, where ¢, = <f77$’Yi )
i=1

are of the form in (13) and thus satisfy (19). Furthermdu,} converges irL,-norm to f and{(Af,)}
is ap-a.e. increasing sequence of non-negaliydunctions. Thus the (non-linear) mappingin (18)

extends to a mapping from, to L,,. Now follows the below characterization.
16



Theorem 16. If 1 < p < oo, then

1/2

d ey €L, — > ey l? ey () €L,.

veG veG

8. MULTIRESOLUTION ANALYSIS

Wavelets are closely related to the concept of multiresolution analysis [10, 12, 14]. Traditionally
wavelets are the translates and dilates of one particular function. Since we work with arbitrary partitions
and non-translation invariant measures, our wavelets cannot be the translates and dilates of one function.
In fact, they are a special case of so-called “second generation wavelets”. The basic idea of second
generation wavelets is to give up the translation and dilation structure of wavelets, but to keep their
desirable properties such as multiresolution analysis and fast transform algorithms. In this section we
show how the unbalanced Haar wavelets fit into this concept. The fast wavelet transform will give us an
algorithm to compute the coefficients in the expansions (12).

We define two new sets as

S(v)=Ci(a) if ve€G(a) and S*(B)=G(a) if peCla).
Now consider (7). The basisps | 5 € Ci(a)} has dual basis

{¢s | B €Cila)},

wheregg is a multiple ofpg and||@g||, = 1, while the other basigpa, 1y | v € G(a)} has dual basis

{Bar Uy | 7 € G()}

wheres), is as in Section 7. The basis functions in the above two bases are related as follows:
(R1) fora € F andy € G*,
Ya= D hapys and v,= > g,5¢p
peCi(e) BeSM)

where

hoz,ﬂ = <<a0017 @,@ > and 9v,8 = <¢’ya @,@ >
(R2) for3 # p,

8 = hp(e),8 p(e) + Z 9,3 ¥y
vES*(B)

where

hap= (@, 0a) and g,5= (pg,y) .
17



Fork € g(F), letG, = {v € G* | g(y) = k} and consider the subspadésandWV}, of L,,, where
Vi, = closspan{pg | f € Fi;} and W = closspan{vy | v € Gi} .

Note that the indicated functions not only span, but also provide an unconditional basis for, these sub-
spaces. The dual basis for this basid/pis given by

{ps | B e Fi}

while the dual basis for this basis @fy, is given by

{vy |7 €Gi}-
By viewing F;;_, U F}; as a two-generation forest, it follows that
Vie = Vi1 @ Wiy (20)
and thatV}, has another basis

{alae Fr 1y U{y | v € Gr}

with dual basis

{Bal o€ Fp 3 Ufdy [v€EGra}.
A function f € V;, has a representation as
=7 asps with ag= (f,55) (21)
BEF;
as well as, by (20),
Z Go Po T Z Cy @Z)'y (22)
aEF;_, YEGK—1
with
o= (f,$a) and o = (f,d;) .
The relations between the different representations follow from simple linear algebra arguments. To
simplify notation, assume that the forest has no leaves, indeed, just replacg,eaith 7;;. Combining
(21) and (R2) and identifying coefficients results in
Z Ea,@ ag and Cy Z g,yg ag , (23)
BeC(a) BES(y
whereg(5) = k andg(a) = g(v) = k — 1. Similarly, combining (22) and (R1) results in
ap = hp(s) 5 Gp(s) T D G1.8Cy - (24)
vES*(B)
Next consider a functiorf € V;, with n fixed. Given the scaling function coefficients with g(5) =

n, we can recursively use (23) to calculate all wavelet coefficientsn the older generations where
18



g(v) < n. Conversely, given the coefficienig with g(«) = m along with all the wavelet coefficients
wherem < g() < n, we can recursively use (24) to find the coefficiemison the younger generation
whereg(5) = n.

These operations form the so-called “fast wavelet transform”. Since all summations in the transform
are finite, it can easily be implemented on a computer. One only needs to build a forest data structure
that satisfies all the forest properties of Section 3. This can be done nicely using an object-oriented
programming language.

The way the algorithm is described, the number of operations for the calculation of the wavelet co-
efficientsc, with v € G(a) is O(m?). Actually, by using the hierarchy df,;, one can reduce this to
O(m). In Example 7 (dyadic cubes @) we havem = 2™ and this difference can become important.

We do not include the details of this algorithm as they are straightforward.

9. BEUCLIDEAN SPACES

One of the original motivations for the construction of the unbalanced Haar wavelets was their use in
practical applications; thus, we take a closer look at the case whése subset oR".

Consider the topology induced by the Euclidean distahoa R™. Let X be a Borel set oR™ and
B(X) be the Borel subsets of. Consider ar-finite measurg. on B(X) and let(X, M(X), u) be theu-
completion of(X, B(X), ). A common practical example is a weighted meaguveneredy = w dm
for the Lebesgue measune on X and a non-negative Lebesgue measurable funetioifi w is a non-
zero constant function, thel!(X') are just the Lebesgue measurable subsei$.of

Assume that we start withX, M(X), ). Next we are given subse{sX, | a € F} of X that
satisfy the partition properties from Section 4. Such subsets usually are determined by the application;
numerical solvers for integral and differential equations often recursively subdivide an original domain
X into theX,’s, as illustrated in Example 8. Keeping with the previous notaigfi X, | o € F}) = %
and theu-completion of( X, 3) is (X, ). We would like an easily verifiable condition diX,, | o € F}
that would guarantee that = M (X); for then, the corresponding wavelets form an unconditional basis
for L,(X, M(X), n). Towards this, two useful measurement are the diametgrofR"™ given by

diam S = sup d(z,y)
z,yesS

and the [i-)essential diameter f € M(X) given by
ess diamS = inf {diamY | Y C S, Y e M(X), u(S\Y)=0}.
If X, isinB(X) for eacha € F and if for eachr € X

inf diam X, =0, (25)
acF
{EGX&

theny = B(X) and sox = M(X). Itis possible to relax condition (25).
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Proposition 17. If X, is in M(X) for eacha € F and if for eachz € X

inf ess diamX, =0, (26)
acF
r€Xqy

then® = M(X).
As customary, foy € R™ ande > 0, let
Ne(y) = {z € X | d(z,y) <e}.

Proof. SinceX ¢ M(X), it suffices to show tha8(X) c ¥. Towards this, fix any) and e with
0 < d < eandy € R". It suffices to find a selNs € X so thatNs(y) C N5 C Ne(y).
For eachz € N(y), find decreasingsequenceg X, (,)}» and{Y,, (»)}» along with a sequence
{Yapn (z) }n SO that
1.z € Xan(x)
Yo (z) € Yan(x) - onn(x)
1 (X (@) \ Yau @) =0
- Nimy, diam Y, ;) =0
- limy, Yg,, (2) = yo(x)  for someyp(z) € R™ .

ga b~ WN

If d(y,y0(x)) < €, then pickay, (z) so that
Yan(x) C Ne(y)
and ifd(y, yo(x)) > ¢, then picka, (z) so that
Yo () C [N5(1)]°
Since

Ne(y) - U onn(x)
TENe(y)
there is a countable subset; | i € J} of N.(y) such that
Ne(y) - U Xz
icJ

whereX,, .,y = X;. Likewise, setr,, .,y = Y;. LetJy = {i € J | d(y, yo(z:)) < €} and

Ns=1 U (Xi\m)mN5<y)] U {U Y;

ieJ 1€Jo

ThenN;s(y) € Ns C Ne(y) andNs € M(X). ThusN,(y) € £, as needed. O
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The use of the unbalanced Haar wavelets in applications is still somehow limited. The reason is
that they are non-smooth and that they have only one vanishing moment; i.e. the integral of a wavelet
vanishes, but the integral of a wavelet multiplied with a non-constant polynomial need not vanish. Con-
sequently, the convergence of the expansion (12) is slow for a smooth furictiof21, 22] the “lifting
scheme” is described, which given one initial multiresolution analysis, can allows you to build a second,
more performant one, in the sense that the wavelets have more vanishing moments or more smoothness.
The Haar wavelets constructed in this paper are a perfect example for such an initial multiresolution
analysis.
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