
Online ID: papers0290

Hybrid Meshes
Category: Research

Online ID:

Figure 1: Example of a hybrid mesh (left to right). Starting with the Stanford Buddha original dataset a base domain with genus 0 is
constructed. After one regular refinement step, tunnels are created between arms and head followed by another regular refinement step and
creation of a tunnel between the feet. After one more refinement step three small tunnels are created on the sides followed by further regular
refinement. The model remains a valid 2-manifold throughout and the final remesh has genus six.

Abstract
Hybrid meshes are a novel multiresolution mesh structure which
combines the flexibility of irregular and the simplicity of
(semi-)regular meshes. We show how to construct hybrid meshes
using both regular refinement to build smooth patches and irregular
operations to allow topology changes. We provide a user driven
procedure for remeshing scanned geometry with hybrid meshes.
Several examples and applications are included.

1 Introduction
Highly detailed and complex surfaces are most commonly de-
scribed through meshes. Typical sources of such meshes range
from CAD systems (e.g., STL files) to range sensing [19] and iso-
surface extraction [20]. Sizes can easily reach to millions, and even
billions, of vertices. Processing such digital geometry requires effi-
cient algorithms and powerful mathematical tools which go beyond
standard signal processing approaches. Among other factors the
connectivity of the meshes plays a major role in the construction of
appropriate algorithms. Typically we distinguish betweenirregular
and(semi-)regularmeshes. Irregular meshes have no restriction on
the valence of vertices, while regular meshes are formed by starting
from a coarse irregular base domain and applying recursive regular
refinement, resulting in large regular grid patches. Both types of
meshes come with their own advantages and disadvantages.

Since there is no valence restriction, irregular meshes are very
flexible; they can resolve complex geometric features as well as
accommodate topology changes. The irregularity leads to costly

linked data structures and complex algorithms for multiresolution,
smoothing, compression, editing, etc. Regular (or semi-regular)
meshes on the other hand have an almost everywhere regular struc-
ture which allows for efficient tree or array based data structures and
signal processing algorithms supported by well developed math-
ematical theory such as Fourier, spline, subdivision, and wavelet
methods. Also because of their regular and hence predictable para-
metric structure and connectivity, regular meshes are much more
compressible than irregular ones [13].

The main drawback of regular meshes is their lack of flexibility
in resolving complex or high genus shapes. A regular mesh always
has a bijective mapping between the coarsest level (base domain)
and the finest level, implying that the base domain has to have the
same genus as the final model. This implies that high genus meshes
cannot have simple base domains. Aside from that, the quality of
this mapping, say its smoothness and membrane or stretching en-
ergy, determines the quality of the (semi-)regular mesh. Smooth
maps can be computed using the right parameterization method.
However, a stretched map leads to bad aspect ratio polygons, poor
approximation, and numerical problems. To ensure a high quality
mapping the complexity of the base domain must grow as the geo-
metric complexity of the model grows. The most typical examples
are spiky features. Consider bunny ears: unless the base domain has
a few polygons outlining the ears, a semi-regular mesh will never be
able to resolve the ears without very stretched polygons, see the left
ear in Figure 2. In a sense there must be enough “skin” in the base
domain to avoid later stretching. Note that the stretching problem
is a fundamental problem of regular meshes due to the curvature
of the model. It cannot be solved by computing some special pa-
rameterization or through the use of adaptivity. The former cannot
work because curvature is inherent in the original model. The latter
does not work since regular refinement of a polygon into congruent
pieces does not improve the aspect ratio. An alternative solution
is the use of non-regular adaptive refinements such as triangle bi-
section. However, this no longer creates a regular mesh and all
associated advantages disappear.

Both the genus and the stretching problem restrict how coarse the
base domain can be and limit scalability of semi-regular meshes.
Even if the initial remesh is of high quality, aspect ratios can
quickly deteriorate during editing operations as observed in [16].

1



Online ID: papers0290

Also a fully featured editing system should accommodate topology
changes.

irregular regular hybrid

flexibility high limited high
data structure complex (links) tree (easy) forest (easy)
compressibility limited high high
multiresolution complex easy easy
signal processing complex easy easy
topology changes possible impossible possible

Table 1: Comparison between irregular, regular, and hybrid
meshes: Hybrid meshes combine the best of the regular and irregu-
lar worlds.

To address the above problems the present paper introduceshy-
brid meshes, which combine the best of the regular and irregu-
lar worlds, see Table 1. They are flexible because they allow the
growth of extra “skin” and support topological changes; their im-
plementation uses tree based data structures, inheriting their effi-
ciency and simplicity; and they support signal processing type al-
gorithms easily, exploiting the mathematical machinery built up for
the (semi-)regular setting. The main contributions of this paper are
the formalization of the notion of hybrid meshes and a user driven
algorithm to construct hybrid meshes from given geometry.

Figure 2:A remesh of the bunny head: the left ear uses a standard
semi-regular mesh, while the right ear uses a hybrid mesh. Starting
from a single quad extra “skin” is provided for the right ear after
three regular refinement steps through the addition of three cubes
(see also Figure 12). The resulting quads continue to have good
aspect ratio. The left ear on the other hand suffers from severe
stretching and even after seven refinement steps large parts of the
left ear parameter space have not yet been sampled.

Related Work Most remeshing work has focused on the semi-
regular setting, i.e., how to construct a semi-regular resampling of
some irregular geometry. Hoppe and co-workers [12] used a global
optimization framework to recover a Loop subdivision surface from
a given point cloud. Their examples demonstrate how geometric
detail increases the combinatorial complexity of the control mesh.
In order to use surface based wavelet methods [21], which effec-
tively add details to the subdivision setting, Eck and co-workers [4]
gave the first automatic remeshing procedure, but with little control
over the complexity of the base domain. In many settings a fully
automatic method is not appropriate and patch layout under user
control is essential. Krishnamurthy and Levoy [17] introduced such
a system for the construction of bicubic patch layouts on scanned
meshes, while Lee and co-workers [18] described a system with
a flexible tradeoff between user control and automatic remeshing.
These and other semi-regular remeshing algorithms all suffer from
the same distortion issues when insisting on a coarse base domain
and none can accommodate topology changes during remeshing.

Changes in topology have been considered in the context of ir-
regular hierarchy constructions through mesh simplification. For
example, Garland and Heckbert [7] allowed for vertex pair col-
lapses during progressive mesh [11] construction, sacrificing the
manifold property to better deal with many connected components.
A fully general treatment was given by Popovi´c and Hoppe [22].
Topology reduction as an explicit goal was pursued by El-Sana and
Varshney [5]. None of these algorithms attempt to maintain the
2-manifold property as we do.

Changing topology while maintaining the manifold property
in the context of a hierarchical modeler was first introduced by
Gonzalez-Ochoa and Peters [9]. In a similar setting Akleman and
Chen [1, 2] focus on the problem of maintaining the 2-manifold
property for subdivision control meshes. While these two papers
consider the ab initio modeling setting, we focus on the problem of
constructing topology changing parameterizations forgivengeom-
etry.

2 Hybrid Meshes
We begin with the definition of hybrid meshes. To be concrete we
will assume quadrilaterals as the basic face primitive and quadri-
section as the associated regular refinement operation, though our
definitions and algorithms do not depend on it in any essential way.
For example, one may equally well use triangles or hexagons as ba-
sic face types and employ regular refinement strategies other than
quadrisection (e.g., regular trisection [15] or regular bisection [24]).

One way to think of a hybrid mesh is as a generalization of
a semi-regular mesh in which irregularity is not constrained to
the roots of trees (Figure 3, left), but instead is allowed to occur
distributed throughout the refinement hierarchy (Figure 3, right).
Formally, a hybrid mesh is a hierarchical mesh representation that

Figure 3:Semi-regular (left) vs. hybrid meshes (right): In a semi-
regular mesh, only the top is irregular (shaded) and everything on
finer levels is regular. In a hybrid mesh, irregular pieces can be
distributed throughout the tree

starts with a coarsest base domain and builds finer levels using two
types of operations:

� A regular operation in which a single quad (face) is split into
four quads (regularly refined).

� An irregular operation in which a set of quads (faces) is replaced
with another set of quads (faces) which agree on the boundary.

These two types are fairly general and allow for a multitude of pos-
sible operations whose range cannot be easily delimited. Here are
some examples of useful irregular operations:

� Diagonal collapse:This is the equivalent of an edge collapse
in triangle meshes. Take two opposing vertices of a quad and
identify them. This way one quad, one vertex, and two edges
disappear (Figure 4). The opposite operation is a vertex split.

� Edge flip: This operation entails two neighboring quads and
replaces the edge between them by an edge connecting a non
shared vertex from each quad (Figure 5).

� Cut a hole: This operation selects a connected set of quads
and simply removes them, thereby creating a boundary curve
(Figure 6). The inverse operation takes a boundary curve and
patches it with quads.

2



Online ID: papers0290

� Add a cube: This operations addresses the skin stretching prob-
lem and replaces a single quad with 5 quads arranged as a cube
with open bottom (Figure 7).

� Connect: Select two connected sets of quads, remove them,
thereby creating two boundary curves and build a topological
cylinder between them (Figure 8). This operation can be used to
merge components, build handles (outside cylinder), or build
tunnels (inside cylinder). The inverse operation identifies a
simple closed curve on the manifold, cuts along the curve and
patches up the resulting two boundary loops.

Figure 4:Diagonal collapse.

Figure 5:Edge flip.

Figure 6:Cut hole.

Figure 7:Add cube.

Figure 8:Connect.

Given the ability to grow skin and add and remove tunnels as well as
boundaries the coarsest level of any given surface can be as simple
as a few cubes. This demonstrates the scalability of hybrid meshes:
no matter how complicated the initial surface, it can always be re-
duced to a few or even a single cube, say if it gets rendered as a
single pixel. This is in stark contrast to semi-regular meshes for
which the base domain complexity grows with the complexity of
the input surface.

2.1 Hybrid Mesh Structure
With the above definition in mind we can describe a hybrid mesh as
a sequence of meshes constructed through alternating regular and
irregular operations. Recall the structure of semi-regular meshes.
They start with an irregular coarse base domainM0 and succes-
sively build finer levelsMj through regular refinement. For quads
the number of elements grows by a factor of four from levelj � 1
to level j. Of course, in practice there is no need to instantiate re-
finements uniformly, allowing for adaptively refined meshes.

To provide some structure we add the restriction that an irreg-
ular operation can only involve quads from the same level. This
means that all quads removed have to be from the same level and
all the newly inserted quads belong to the same level. This allows
us to separate the regular and irregular operations by level. Hybrid
meshes then consist of two types of meshesM

j andN j . A mesh
M

j is built by regular refinement of meshN j�1, while a meshN j

follows from performing one or more irregular operations on mesh
M

j . The base domain isM0 = N 0. We thus have the sequence
N

0
!M

1
) N

1
!M

2
) N

2 : : :, where! stands for regular
refinement and) for irregular operations within a level. A semi-
regular mesh is now the special case where no irregular operations
happen and allN j = Mj . The other extreme involves no regu-
lar refinement so allMj = N j�1 and we have a fully irregular
pyramid.

2.2 Data Structures
Our hybrid mesh data structure is simply a forest, i.e., a collection
of quad trees. We start out with one tree per quad of the base do-
main; every irregular operation terminates the subtrees formed by
the quads that are removed and creates as many new trees as there
are new quads. The only tricky part are all the neighborhood rela-
tionships to tie the trees together.

In the implementation we use two types of quads: root and non-
root quads. Each root quad has four pointers to its neighbors and if
refined has four pointers to its children. A non root quad has a par-
ent pointer, no neighbor pointers, and if refined four pointers to its
children. All regular refinement is performed uniformly, however,
it may beinstantiatedlazily to provide the benefits of adaptive re-
finement. The latter is done with a standard restriction criterion. To
limit the number of possible arrangements we added two additional
restrictions to the type of operations which can occur:
� root quads cannot be removed in an irregular operation;

� quads that are involved indifferent irregular operations on the
samelevel cannot be neighbors, i.e., there has to be at least one
quad between them.

Regular operations simply populate a standard tree. Irregular op-
erations involve removing certain non-root quads as well as insert-
ing new root quads. Putting in the neighbor pointers for the new
root quads is straightforward. The only difference with respect to
base domain root quads is that the neighbors need not be root quads
themselves. When a non-root quad gets removed, it is replaced by
a virtual root quad. This virtual root quad does not correspond to
a quad in the mesh, but only stores the neighbor pointers of the re-
moved quad to the newly created root quads. For example, for the
add cube operation (Figure 7) the virtual root quad will point to the
four sides of the cube. In case the removed quad has no new root
quad as neighbors, there is no need for a virtual root quad. This
happens for example when a single quad is removed to create a
boundary, or in case a removed quad does not touch the boundary
of the removed quad region.

There are standard algorithms for resolving neighborhood rela-
tions in quadtrees (e.g., [23]). Neighbor questions ascend up the
tree, reach the nearest common ancestor, and descend back down
to find the answer. For semi-regular meshes, one modification is
needed: When the question reaches a root quad, its explicit neigh-
borhood relationships combined with a stored orientation permuta-
tion are used before descending down the tree again. For hybrid
meshes, another modification is needed. When descending the tree,
one can reach a removed quad. Then the explicit neighbor relations
of the virtual root quad, again with a suitable permutation, are used
to continue the algorithm.

The actual implementation of the data structure is more efficient
than the one described above. For example, given that four children
are always created as a group, they are stored in thesamestructure.
Hence only one, not four child pointers are needed. This also allows

3



Online ID: papers0290

the sharing of pointers to vertices and results in a cost of only 12
bytes per quad (not counting storage for vertices). Alternatively one
may use levelwise arrays which are even more compact and may be
preferable on some architectures.

3 Building Hybrid Meshes
In this section we describe our algorithm to build hybrid meshes.
The input is typically a fine irregular triangle mesh, though the
faces could be more general if desired. The system provides a mix-
ture of automatic operations and interactive user control. Certain
tasks such as tracing curves and smoothing patch boundaries are
best done by the system while others such as deciding topological
cuts or aligning patch boundaries with features are best done by the
user.

In this section we go in detail through the steps for building a
hybrid mesh for two examples: a Max Planck head model, which
does not require topological changes, and a close-up of the side
of Buddha, which does change genus. Details on all the algorith-
mic components such as parameterization, relaxation, and building
cubes are given in Section 4.

Max Plank The hybrid mesh is built in 9 stages, see Figure 9.

1. First we need a base domainM0. This base domain can be
built automatically or can be specified by the user. In the case
of the Planck head, the user specifies four points on the bound-
ary (bottom of the neck). Subsequently, the system automat-
ically adds three cubes, places their vertices on the model,
traces and smoothes the patch boundaries, and computes a
parameterization for all patches as shown in the top left of
Figure 9.

2. Next the parameterization is used to compute three levels of
regular refinement; this givesM3. For each quadq of M3,
the system also computes a stretch parameter�q defined as

�q =
Aq

Pq

whereAq is the area on the input model covered by this quad
patch andPq is the area of the quad in parameter space. As-
suming root quads to have unit parameter area, the parameter
areaPq for any quad of levelj is 2�2j . The top middle shows
a colored texture map indicating the value of�q for M3. In
this way the user can quickly identify that the region around
the nose needs extra skin.

3. The user selects a region with2 � 3 patches around the nose
for an irregular operation (top right). The system automati-
cally adds one layer of patches (giving4 � 5 patches) as a
buffer zone to ensure a parametrically smooth transition.

4. The system cuts the selected4 � 5 region from the original
mesh, removes the patch layout in the2 � 3 interior, and
presents it to the user (middle left).

5. The user draws a new patch layout in the empty region by
specifying control points and their connectivity. The system
responds by drawing geodesics connecting them, and ensures
that the new patches connect correctly to the existing ones
(center).

6. After the layout is specified, the system smoothes the curves
and computes a parameterization for the new patches (middle
right).

7. The system attaches the newly created patches at level 3 of
the remesh replacing the quads selected earlier, thereby go-
ing fromM3 to N 3. The patches outside the selected area
get refined automatically. The stretch parameters are recom-
puted for the quads ofN 3 (bottom left). Compare with the
top middle figure to see how stretching around the nose has
been reduced.

8. Remeshing now continues to buildM4 (bottom middle).
Around the nose, the new parameterization is used, every-
where else we still use the original one.

9. More adaptive refinement steps are added until we reach the
final adaptive remeshM8. The remesh has26K vertices
compared to25K for the original. The relativeL2 error is
0:01%.

Figure 9: Sequence of screen shots for building the Max Planck
hybrid mesh.

Close-up of Buddha If the original mesh has genus higher than
zero, we first simplify its topology to obtain a genus 0 model. For
each tunnel, the user needs to specify a non-separating cut on the
input mesh. (A non-separating cut is a simple closed curve which,
if cut, does not create a new component.) The system then cuts
the mesh, thereby creating two new boundary curves, and fills the
two holes. As an example we show how a tunnel on the side of the
Buddha was handled in eight steps, see Figure 10.

1. The user draws a curve along the tunnel and the system closes
the tunnel with two filled caps (Figure 10a).

2. Once all tunnels are closed or handles are cut, a parameteriza-
tion onto a genus 0 base domain can be computed and remesh-
ing can begin. All filled caps get parameterized as well. Note
that the two back to back filled caps that were put in for each

4



Online ID: papers0290

Figure 10: Sequence of screen shots for building the side of the
Buddha.

cut get assigned to different regions in the parametric domain.
At the appropriate level, the user can ask the system to rein-
troduce a genus change. The system responds by selecting
the appropriate region on the remesh (Figure 10b) which cov-
ers both filled caps. Note that in general there could be two
separate regions, one for each of the caps.

3. The system cuts out the submesh of the original surface which
is associated with this region (Figure 10c).

4. The system removes the caps (Figure 10d).

5. An entirely new patch layout needs to be generated for this
submesh, with the only requirement that it matches the bound-
ary of the cut-out region (Figure 10e). The new layout is either
drawn by the user from scratch, or can be copied from a layout
template (see “Transferring Layouts” in Section 4).

6. The specified layout is automatically relaxed (Figure 10f).

7. The system computes a parameterization for the submesh
(Figure 10g) and the highlighted region of Figure 10b is re-
placed by the set of newly created root quads.

8. The remeshing process continues (Figure 10h). The remesher
uses the original base domain parameterization outside of the
pink region, and the new parameterization for the submesh.

4 Algorithmic Components
Here we give more details of the algorithmic components used for
building hybrid meshes.

Path tracing Paths on the original mesh are used to delineate
boundaries between parametric patches. In order to build them we
employ a simplified version of the standard shortest path algorithm
on triangulated domains [14]. It uses a topological distance in the
dual graph of the triangulation. Note that these paths are relaxed
later.

Parameterization Any remeshing method first needs to com-
pute a parameterization, i.e., build a bijection between a region of
the original input surface and a region of the parameter plane. Here
we present the basic algorithm for parameter computations. Con-
sider a regionR of the mesh homeomorphic to a disc that we want

to parameterize onto a convex planar regionB, i.e., find a bijective
mapu : R ! B. The mapu is fixed by a boundary condition
@R ! @B and minimizes a certain energy functional. We here
consider the functional provided by Floater [6]. The functionu
needs to satisfy the following equation in the interior:

ui =
X

k2V(i)

�ikuk; (1)

whereV(i) is the 1-ring neighborhood of the vertexi in the orig-
inal mesh and the weights�ik are as in [6]. The main advantage
of the Floater weights is that they are always positive, which, com-
bined with the convexity of the parametric region, guarantees that
the mapping is a bijection so no quad flipping can occur. The sys-
tem (1) is solved with the biconjugate gradient method [8]. This
method is used to compute a parameterization of each patch onto
the unit square[0; 1]� [0; 1] in the(u; v) plane.

Patch boundary and global vertex relaxation Computing
parameterizations per patch does not give us a globally smooth
mesh. We also need to relax the patch boundaries and global vertex
positions. This is done in a manner similar to [10]. Specifically,
to relax a patch boundary, we parameterize the two neighboring
patches onto a rectangular region[0; 2] � [0; 1] in the(u; v) plane.
The path endpoints are mapped to(1; 0) and(1; 1). The smoothed
path is then the mapping of the straight line between(1; 0) and
(1; 1) (in fact only theu parameter needs to be computed). To relax
a global vertex position, the vertex and its neighboring patches are
mapped to a star shaped region in the parameter plane (Figure 11).
Then the global vertex is reassigned to a vertex on the original mesh
region which is closest to the parametric center of the star. Given
that we select a vertex from the interior of the region we do not care
that the region is non-convex. Subsequently, the incident paths are
relaxed with the procedure described above.

This procedure is also useful when building layouts. If, while
building a layout, one has a patch with an even number of vertices
the above procedure can be used to add a new center vertex and
divide the patch into quadrilateral patches.

Figure 11:Patch boundary and global vertex relaxation.

Transferring layouts Because the input mesh can be large, it
is not efficient to run global relaxations on the original input mesh.
Instead we run relaxations on a coarser version built through mesh
simplification. To transfer a patch boundary back to the original
model, we project all vertices onto the model, connect them with
geodesics, and rerun the patch boundary relaxation. Global vertex
relaxation is much more expensive and does not need to be rerun
on the fine model. We typically build the hybrid mesh layout in-
teractively on the coarse version and later transfer the entire layout
off-line to the original model. If needed, the user can still make
changes to the finest level layout. The final version of Buddha in
Figure 1 was generated using this method. The user worked with a
mesh which was 10 times smaller than the original.

5



Online ID: papers0290

Cube building If a patch has severe stretching, the system pro-
vides a semi-automated way for adding skin by building extra
cubes. Consider a patch with a high stretch parameter and fix its
boundary on the original mesh. The system will find the original
mesh vertex in the patch which is furthest from the boundary in
geodesic distance (Figure 12). It then traces four geodesic curves
from the patch corners on the boundary to this extremal point. The
right number of cubes to insert can be determined automatically by
rounding the ratio of the average length of the traced curves to the
average length of the four boundary curves. The vertices of the new
cubes are then found by equally dividing the four curves traced to
the extremal point.

Figure 12: Building skin with cubes for the bunny ear. Left:
geodesics to the furthest point, center: geodesics are split and con-
nected, right: relaxed version.

Connect with cylinder This procedure is used to connect two
components of theoriginal model. The user draws a simple closed
curve on each component. The inside caps are removed on each
component and the system inserts a triangulated cylinder between
the two curves on the original mesh. Both curves are parameterized
and sampled uniformly to place the vertices (see Figure 18 and the
paragraph “Foot bones” in the next section for more details).

5 Results
Feline The results for the Feline model are shown in Figure 13.
We use the cube building algorithm to construct a 4 cube base do-
main, insert legs and tail on level 1, and horns on level 2. The
original tail has two tunnels which get recreated on levels 2 and 3,
see Figure 14.

Figure 13: The Feline remesh begins with 4 cubes adding long
chains of cubes automatically at level 1 to accommodate legs, tail,
head and wings. At level 2 horns are added and the tail fuses (see
Figure 14). The bottom right shows the adaptively refinedM

8 with
a relativeL2 error of 0.01%.

David’s head The David head starts with a 2 cube base domain
(Figure 17, left). Irregular operations are used to add skin for the
nose and align patch boundaries with the eye lids, see Figure 15.
Figure 16 shows a close-up around the eye while Figure 17 shows
the uniformM6 as well as the final adaptiveM11.

Figure 14:Detail of the Feline tail section. On level 1 a long cube
chain is grown to accommodate the tail. At level 2 the top loop of
the tail fuses, while at level 3 the end of the tail fuses with the leg.

Figure 15:Irregular operations for David’s nose at regular refine-
ment level 3 (left; before and after) and for his eyes at level 4 (right;
before and after).

Figure 16: Detail of David’s left eye at remeshing levels 4 (after
insertion of hybrid patches for lid alignment), 6, and 11 (adaptive).

Figure 17:Hybrid mesh of David’s head. Coarsest level (two cubes
with open bottom), level 6 after hybrid operations (see Figure 15,
and the final remesh with 11 levels (see eye detail in Figure 16,
right).

Foot bones The foot bones is an example with 19 connected
components, see Figure 19. We first discuss the procedure in detail
for two bones, see Figure 18. The user starts by outlining a simple
closed curve on each original component (Figure 18a). The system
creates a cylinder in between (Figure 18b). Then a patch layout is
generated for the combined components (Figure 18c). After one
level of refinement, the user decides to make a cut and highlights
the region around the tunnel (Figure 18d). The system cuts out
the corresponding region of the original mesh (Figure 18e) and re-
moves the cylinder. The user provides new patch layouts for each
of the caps (Figure 18f) and the system computes parameteriza-
tions (Figure 18g). The cut can now be made and remeshing can
continue (Figure 18h). For the entire model, see Figure 19, the user

6



Online ID: papers0290

Figure 18:Remeshing of multiple components.

first adds cylinders to group the components into a single compo-
nent. The base domain is laid out by hand (top left), except for the
“fingers” which are done by cube building. During various stages
of the remeshing, cuts get made to create new components as de-
scribed above.

Figure 19:Foot bones example: remeshing of a multiple component
dataset starting from a single connected component base mesh.

Statistics Table 2 shows various statistics for the models used in
this paper. The user time is the time needed for the user to build all
hybrid mesh operations on an intermediate level. For big meshes
(Buddha and David’s head) the system time is the time needed to
transfer the patch layout to the original model together with the time
needed to compute the fine remesh. The error is computed with the
I.E.I-CNR Metro tool (the Metro tool was unable to compute the
error for the finest level Buddha).

Note that the original David data is contaminated with “topolog-
ical noise,” i.e., there are numerous tiny tunnels, especially around
the hair. These tunnels were automatically removed with a topolog-
ical noise removal algorithm described in [3]. After this topological
cleanup step there are still significant “stalactite” like features left
which are mostly locatedinsidethe model. These stalactites were
removed during hybrid remeshing.

Model # Vertices # Vertices Relative User System
Original Remesh L2 error Time Time

Buddha 544171 306644 N/A 2 hr 4 hr
Planck 25445 26067 1.0e-4 10 min 2 min
Feline 49864 70793 9.2e-5 1.5 hr 14 min
David 590337 380582 4.0e-4 2 hr 43 min
Bones 33684 75747 7.3e-5 1.5hr 12 min

Table 2:Summary of hybrid mesh results for different models. The
relative L2 errors are computed with the I.E.I.-CNR Metro tool.
Timings were performed on a 1Ghz Pentium III machine.

6 Conclusions and Future Work
The past few years have seen a whole series of papers on (semi)-
regular mesh applications. Almost all of them mention adding topo-
logical operations in their future work section. The present paper
provides a solution to this challenge through the introduction of
hybrid meshes. They represent a powerful new mesh description
which combines the best of regular and irregular meshes. In turn
hybrid meshes provide the foundation for a whole series of new
algorithmic developments. Examples include, hybrid subdivision,
hybrid wavelets, hybrid mesh processing, hybrid mesh editing, and
hybrid mesh compression.

Acknowledgments

References
[1] A KLEMAN , E., AND CHEN, J. Guaranteeing 2-Manifold Property for Meshes.

In Proceedings of the Shape Modeling International, 18–25, 1999.

[2] A KLEMAN , E., CHEN, J.,AND SRINIVASAN , V. A New Paradigm for Changing
Topology during Subdivision Modeling. InProceedings of Pacific Graphics,
2000.

[3] A NONYMOUS. -.

[4] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND

STUETZLE, W. Multiresolution Analysis of Arbitrary Meshes.Proceedings of
SIGGRAPH 95(1995), 173–182.

[5] EL-SANA , J., AND VARSHNEY, A. Topology Simplification for Polygonal Vir-
tual Environments.IEEE Transactions on Visualization and Computer Graphics
4, 2 (1998), 133–144.

[6] FLOATER, M. S. Parameterization and Smooth Approximation of Surface Tri-
angulations.Computer Aided Geometric Design 14(1997), 231–250.

[7] GARLAND , M., AND HECKBERT, P. S. Surface Simplification Using Quadric
Error Metrics.Proceedings of SIGGRAPH 97(1997), 209–216.

[8] GOLUB, G. H., AND LOAN, C. F. V. Matrix Computations, third ed. The Johns
Hopkins University Press, 1996.

[9] GONZALEZ-OCHOA, C., AND PETERS, J. Localized-Hierarchy Surface Splines
(LeSS).ACM Symposium on Interactive 3D Graphics(1999), 7–16.

[10] GUSKOV, I., VIDIM ČE, K., SWELDENS, W., AND SCHRÖDER, P. Normal
Meshes.Proceedings of SIGGRAPH 00(2000), 95–102.

[11] HOPPE, H. Progressive Meshes.Proceedings of SIGGRAPH 96(1996), 99–108.

[12] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN, H., MCDON-
ALD , J., SCHWEITZER, J., AND STUETZLE, W. Piecewise Smooth Surface
Reconstruction.Proceedings of SIGGRAPH 94(1994), 295–302.

[13] KHODAKOVSKY, A., SCHRÖDER, P.,AND SWELDENS, W. Progressive Geom-
etry Compression.Proceedings of SIGGRAPH 00(2000), 271–278.

[14] KIMMEL , R., AND SETHIAN, J. Fast Marching Method on Triangulated Do-
mains. InProceedings of the National Academy of Science, vol. 95, 8341–8435,
1998.

[15] KOBBELT, L.
p
3 Subdivision.Proceedings of SIGGRAPH 2000(2000), 103–

112.

[16] KOBBELT, L. P., BAREUTHER, T., AND SEIDEL, H.-P. Multiresolution Shape
Deformations for Meshes with Dynamic Vertex Connectivity.Computer Graph-
ics Forum 19, 3 (2000), 249–260.

[17] KRISHNAMURTHY, V., AND LEVOY, M. Fitting Smooth Surfaces to Dense
Polygon Meshes.Proceedings of SIGGRAPH 96(1996), 313–324.

[18] LEE, A. W. F., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN,
D. MAPS: Multiresolution Adaptive Parameterization of Surfaces.Proceedings
of SIGGRAPH 98(1998), 95–104.

[19] LEVOY, M., PULLI , K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D.,
PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J.,
SHADE, J., AND FULK , D. The Digital Michelangelo Project: 3D Scanning
of Large Statues.Proceedings of SIGGRAPH 00(2000), 131–144.

[20] LORENSEN, W. E., AND CLINE, H. E. Marching Cubes: A High Resolution
3D Surface Construction Algorithm.Computer Graphics (Proceedings of SIG-
GRAPH 87) 21, 4 (1987), 163–169.

7



Online ID: papers0290

[21] LOUNSBERY, M., DEROSE, T. D., AND WARREN, J. Multiresolution Analysis
for Surfaces of Arbitrary Topological Type.ACM Transactions on Graphics 16,
1 (1997), 34–73.

[22] POPOVIĆ, J.,AND HOPPE, H. Progressive Simplicial Complexes.Proceedings
of SIGGRAPH 97(1997), 217–224.

[23] SAMET, H. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

[24] VELHO, L., AND ZORIN, D. 4-8 Subdivision. Computer Aided Geometric
Design(2001). to appear.

8


