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Wavelets and the Lifting Scheme: A 5 Minute Tour

In this paper, we give a brief introductory tour to the lifting scheme, an new method to construct wavelets. We show

its advantages over classical constructions and give pointers to the literature.

1. Introduction

The purpose of this paper is to give a very short, \nuts and bolts", introduction to the lifting scheme and provide
references for further reading. The lifting scheme is a new method for constructing biorthogonal wavelets. The main
di�erence with classical constructions [1-3] is that it does not rely on the Fourier transform. This way lifting can

be used to construct second generation wavelets, wavelets which are not necessarily translates and dilates of one
function. The latter we refer to as �rst generation wavelets.

In the case of �rst generation wavelets, the lifting scheme will never come up with wavelets which somehow

could not be found by the Cohen-Daubechies-Feauveau machinery [2]. Nevertheless, it has the following advantages:

1. It allows a faster implementation of the wavelet transform. Traditionally, the fast wavelet transform is calcu-
lated with a two-band subband transform scheme, see Figure 1. In each step the signal is split into a high pass

and low pass band and then subsampled. Recursion occurs on the low pass band. The lifting scheme makes
optimal use of similarities between the high and low pass �lters to speed up the calculation. The number of


ops can be reduced by a factor of two.

2. The lifting scheme allows a fully in-place calculation of the wavelet transform. In other words, no auxiliary
memory is needed and the original signal (image) can be replaced with its wavelet transform.

3. In the classical case, it is not immediately clear that the inverse wavelet transform actually is the inverse of
the forward transform. Only with the Fourier transform one can convince oneself of the perfect reconstruction
property. With the lifting scheme, the inverse wavelet transform can immediately be found by undoing the

operations of the forward transform. In practise, this comes down to simply changing each + into a � and
vice versa.

4. The lifting scheme is a very natural way to introduce wavelets in a classroom. Indeed, since it does not rely
on the Fourier transform, the properties of the wavelets and the wavelet transform do not appear as somehow
\magical" to students without a strong Fourier background. In fact, this paper originated from typing up

lecture notes.

Secondly, the lifting scheme can be used in situations where no Fourier transform is available. Typical examples are:

1. Wavelets on bounded domains: The construction of wavelets on general possibly non-smooth domains is needed

in applications such as data segmentation and the solution of partial di�erential equations. A special case is the
construction of wavelets on an interval, which is needed to transform �nite length signals without introducing
artifacts at the boundaries.

2. Wavelets on curves and surfaces: To analyze data that live on curves or surfaces or to solve equations on curves
or surfaces, one needs wavelets intrinsically de�ned on these manifolds, independent of parametrization.

3. Weighted wavelets: Diagonalization of di�erential operators and weighted approximation require a basis

adapted to weighted measures. Wavelets biorthogonal with respect to a weighted inner product are needed.

4. Wavelets and irregular sampling: Many real life problems require basis functions and transforms adapted to
irregularly sampled data.

It is obvious that wavelets adapted to these setting cannot be formed by translation and dilation. The Fourier
transform can thus no longer be used as a construction tool. The lifting scheme provides an alternative.

The basic idea behind the lifting scheme is very simple. It starts with a trivial wavelet, the \Lazy wavelet"; a
function which essentially doesn't do a thing, but which has the formal properties of a wavelet. The lifting scheme
then gradually builds a new wavelet, with improved properties, by adding in new basis functions. This is the
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Figure 1: The fast wavelet transform: classical implementation (left) and lifting scheme (right). The lifting scheme

�rst does a Lazy wavelet transform, then calculates the 
j�1;m, and �nally lifts the �j�1;k.

inspiration behind the name \lifting scheme". Instead of diving into the theory and �ring o� a sequence of formulas,

we give a simple example which illustrates the above mentioned properties.

2. A simple example

Suppose we sample a signal f(t) with sampling distance 1. We denote the original samples as �0;k = f(k) for k 2 ZZ.
We would like to \decorrelate" this signal. In other words, we would like to see if it is possible to capture the
information contained in this signal with fewer coe�cients, i.e. coe�cients with a larger sampling distance. A more

compact representation is needed in applications such as data compression. Maybe it will not be possible to exactly
represent the signal with fewer coe�cients but instead �nd an approximation within an acceptable error bound. We

thus want to have precise control over the information which is lost by using fewer coe�cients. Obviously, we would
like the di�erence between the original and approximated signal to be small.

We can reduce the number of coe�cients, by simply subsampling the even samples. This way we obtain a new

sequence given by

�
�1;k := �0;2k for k 2 ZZ : (1)

We would like to have an idea on how much information was lost. In other words, which extra information (if any) do

we need to recover the original f�0;kg from the f�
�1;kg. We will use coe�cients f


�1;kg to encode this di�erence and
refer to them as wavelet coe�cients. Many di�erent choices are possible, and depending on the statistical behavior
of the signal, one will be better then the other. Better means smaller wavelet coe�cients.

The most naive, trivial choice would be to say that the lost information is simply contained in the odd
coe�cients, 


�1;k := �0;2k+1 for k 2 ZZ. This choice corresponds to the Lazy wavelet. Indeed, we haven't done very
much except for subsampling the signal in even and odd samples. Obviously, this will not really decorrelate the

signal. The wavelet coe�cients are only small in case the odd samples are small and there is no reason whatsoever
why this should be the case. But, bear with us, and you will see why the Lazy wavelet is useful.

Let us try to �nd a more elaborate scheme to recover the original samples f�0;kg from the subsampled

coe�cients f�
�1;kg. The even samples f�0;2kg can immediately be found as �0;2k := �

�1;k. But maybe we can also
�nd, or at least predict, the odd samples based on the f�

�1;kg. Assuming some correlation amongst neighboring

samples, we suggest to predict an odd sample �0;2k+1 as the average of its two (even) neighbors: ��1;k and �
�1;k+1.

This need not be exact, the wavelet coe�cient therefore encodes the di�erence between the exact sample and its
predicted value:



�1;k := �0;2k+1 � 1=2 (�

�1;k + �
�1;k+1) : (2)

If the signal is somehow correlated, the majority of the wavelet coe�cients is small. The ones that fall below the
error threshold can simply be ignored. This way one obtains more compact representations. If the original signal is

piecewise linear between the even samples, all wavelet coe�cients are zero.

We are quite happy with these wavelet coe�cients. They encode the detail needed to go from the f�
�1;kg

coe�cients to the f�0;kg. Essentially they measure to which extend the original signal fails to be linear. Their

expected value is small. In terms of frequency content, the wavelet coe�cients capture the high frequencies present
in the original signal while the f�

�1;kg somehow capture the low frequencies. In principle we could now simply

iterate this scheme. Starting from the f�
�1;kg, we could �nd coarser level coe�cients f�

�2;kg (by subsampling) and
f

�2;kg (as the failure to be linear).

However, we are not very pleased with the choice of the f�
�1;kg. The reason is the following. Suppose

we are given 2n + 1 original samples f�0;k j 0 � k � 2ng. We could apply our scheme n times thus obtaining
f
j;k j �n � j � �1; 0 � k < 2n+jg and two (coarsest level) coe�cients �

�n;0 and �
�n;1. These are the �rst

(�
�n;0 = �0;0) and the last (�

�n;1 = �0;2n ) original sample. This introduces considerable aliasing. We would like the
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Figure 2: Left: the wavelet coe�cient is the failure to be linear. Right: The lifting scheme: First calculate the

wavelet coe�cients 
j�1;m and then use them to lift the �j�1;k.

average of the �j;k coe�cients to be the same on each level, or
P

k
�
�1;k = 1=2

P
k
�0;k. The current subsampling

obviously does not have this property. We will obtain it by a second step: lifting the �
�1;k with the help of the

wavelet coe�cients 

�1;k. Again we use the neighboring wavelet coe�cients. A moments thought yields that the

correct choice is:

�
�1;k+= 1=4 (


�1;k�1+ 

�1;k) : (3)

The wavelet transform on each level now consists of two stages: �rst calculate the wavelet coe�cients as the failure
to be linear (2), secondly lift the subsampled coe�cients (1) with the help of these wavelet coe�cients (3). See

Figure 2 for a scheme. The inverse transform can immediately be found: �rst undo the lifting (�= instead of +=in
(3)), then add in the failure to be linear with the linear prediction: �0;2k+1 := 


�1;k + 1=2 (�
�1;k + �

�1;k+1).

In-place calculation can be done as follows. Assume the original samples are stored in a vector v[k]. Each

coe�cient �j;k or 
j;k is stored in location v[2�j k]. The Lazy wavelet transform is then immediate. All other
operations can be done with += or �= operations, see Figure 2.

3. Formal description

The algorithm of the previous section can be casted into a formal description with the use of basis functions. Let �
be the classical \Hat" function: �(x) = maxf0; 1� jxjg. De�ne the piecewise linear approximations on each level as

Pj(x) =
X
k

�j;k �j;k(x) with �j;k(x) = �(2jx� k) :

The di�erence between two approximations can now be encoded with the help of the wavelets,

Pj(x)� Pj�1(x) =
X
k


j;k  j;k(x) with  j;k(x) =  (2jx� k) :

In case the �j;k coe�cients are not lifted, the correct choice for the wavelet is:  (x) = �(2x� 1). With lifting, the

wavelet is given by

 (x) = �(2x� 1)� 1=4�(x)� 1=4�(x+ 1) : (4)

This way of constructing a wavelet is typical for the lifting scheme. A new wavelet  (x) is found as an old wavelet

�(2x � 1) combined with two Hat functions on the same level, �(x) and �(x + 1). This opposed to the classical
case were a wavelet is constructed as a linear combination of Hat functions on the next �ner level, namely �(2x�k)

with k 2 ZZ. We can now write the original signal as

P0(x) = P
�n(x) +

�1X
j=�n

X
k


j;k  j;k :

The 
j;k are calculated with the algorithm described in the previous section. An approximation using fewer coe�-

cients can now be obtained by simply omitting the wavelet coe�cients below a certain threshold. The wavelet (4)
is constructed so that its integral is zero and thus

R
IR
P0(x) dx =

R
IR
Pj(x) dx.

For those familiar with the work in [2,3], the wavelet presented here is the (2; 2) biorthogonal wavelet. In



the classical case the f�
�1;kg coe�cients are found as the convolution of the f�0;kg coe�cients with the �lter

eh = f�1=8; 1=4; 3=4; 1=4;�1=8g. This step would take 6 
ops per coe�cients while lifting only needs 3.

4. Generalizations and pointers for further reading

Many generalizations of the wavelet from the previous section are possible. We mention here a few. First of all

one can use a higher order scheme to predict the odd indexed values from the even. For example, one can predict
�j;2k+1 based on the cubic polynomial through the values �j;2k�2; �j;2k ; �j;2k+2; �j;2k+4. In this case the wavelets
coe�cients are all zero in case the original signal is cubic. Also higher order (N) polynomial interpolation is possible.

These predictions can be computed quickly with the Neville algorithm. Secondly, one can use fancier schemes for
the lifting of the �j;k coe�cients. For example one can assure that not only the integral but the �rst eN moments

of the approximations are preserved:
R
IR
xp Pj(x) dx =

R
IR
xp Pj�1(x) dx for 0 � p < eN . Consequently the �rst eN

moments of the wavelet are zero. The algorithm above has eN = N = 2.

The lifting scheme also allows to adapt the transform in a natural way to �nite length signals (intervals). For
example, the predicted value now is based on the linear interpolation of the �j;2k values left and right. In case no

value on the left exist, one can take two values on the right and use linear extrapolation. Same for higher order
schemes and also for the lifting of the �j;k. A similar philosophy can be used to adapt wavelets to domains, weighted

measures, curves and surfaces, and irregular samples, but this is beyond the scope of this introductory tour.

The theory behind the construction of �rst and second generation wavelets with the help of lifting is described
respectively in [7] and [8]. Wavelets on a sphere are constructed with the lifting scheme in [5]. These spherical

wavelets are used for spherical image processing in [6]. In [4], the generalization of Haar wavelets to the second
generation case is presented. They form a perfect example to start lifting. A \nuts and bolts" introduction to
the construction of second generation wavelets is the topic of [9]. There concrete examples concerning interval

constructions, irregular samples, and weighted measures are given. The technical reports from South Carolina
are available as Postscript �les through anonymous ftp to ftp.math.sc.edu, in the directories /pub/imi 94 and

/pub/imi 95.
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