
eN = 2 eN = 4 eN = 6

k ehk k ehk k ehk
�4 2�6 �6 �2�9 �8 9 � 2�14

�3 0 �5 0 �7 0

�2 �2�3 �4 9 � 2�8 �6 �35 � 2�12

�1 2
�2 �3 �2�5 �5 9 � 2�10

0 23 � 2�5 �2 �63 � 2�9 �4 189 � 2�12

1 2
�2 �1 9 � 2�5 �3 �59 � 2�10

2 �2�3 0 87 � 2�7 �2 �477 � 2�12

3 0 1 9 � 2�5 �1 153 � 2�9

4 2�6 2 �63 � 2�9 0 5379 � 2�13

3 �2�5 1 153 � 2�9

4 9 � 2�8 2 �477 � 2�12

5 0 3 �59 � 2�10

6 �2�9 4 189 � 2�12

5 9 � 2�10

6 �35 � 2�12

7 0

8 9 � 2�14

Table 2. Dual �lter coe�cients for N = 4. The lifting coe�cients sk = 2eh1�2k are

boldfaced. One recognizes the Deslauriers-Dubuc coe�ents of Table 1 in case eN � N .

eN = 2 eN = 4 eN = 6

k ehk k ehk k ehk
�6 �3 � 2�10 �8 3 � 2�13 �10 �9 � 2�17

�5 0 �7 0 �9 0

�4 11:2�9 �6 �13 � 2�11 �8 75 � 2�16

�3 0 �5 0 �7 0

�2 �125 � 2�10 �4 87 � 2�11 �6 �1525 � 2�17

�1 2
�2 �3 �2�5 �5 3 � 2�9

0 181:2�8 �2 �243 � 2�11 �4 825 � 2�14

1 2
�2 �1 9 � 2�5 �3 �25 � 2�9

2 �125 � 2�10 0 2721 � 2�12 �2 �7425 � 2�16

3 0 1 9 � 2�5 �1 75 � 2�8

4 11:2�9 2 �243 � 2�11 0 21201 � 2�15

5 0 3 �2�5 1 75 � 2�8

6 �3 � 2�10 4 87 � 2�11 2 �7425 � 2�16

5 0 3 �25 � 2�9

6 �13 � 2�11 4 825 � 2�14

7 0 5 3 � 2�9

8 3 � 2�13 6 �1525 � 2�17

7 0

8 75 � 2�16

9 0

10 �9 � 2�17

Table 3. Dual �lter coe�cients for N = 6. The lifting coe�cients sk = 2eh1�2k are
boldfaced. One recognizes the Deslauriers-Dubuc coe�ents of Table 1 as indicated in
Theorem 12.
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As translation and dilation become algebraic operations in the frequency domain, the Fourier transform

is the basic tool for the construction of classical wavelets. In the construction of second generation

wavelets, the Fourier transform can no longer be used; thus, almost all traditional constructions fail. The

real power of the lifting scheme lies in that fact that it can easily be generalized to construct compactly

supported second generation wavelets. The basic idea is to choose a di�erent set of coe�cients sk in (11)

for each wavelet  j;m. This way one can construct wavelets adapted to the cases (1)-(5) described above.

None of the classical wavelet construction schemes allow for this. Again the lifting scheme requires an

initial multiresolution analysis to start the construction. A Lazy wavelet transform can easily be found for

all cases. In [27] a generalization of the Haar wavelets to arbitrary measure spaces, and thus cases (1)-(5),

is given. This is another example of an initial second generation multiresolution analysis. The details of

the second generation lifting scheme are described in [52]. One recent application is the construction of

wavelets on a sphere [48]. In [55] several practical one-dimensional examples such as irregular samples,

weights, and intervals, are worked out.

The basic motivation for the work in this paper was to gain a better understanding of the properties of

the lifting scheme in the more familiar setting of classical wavelets in order to facilitate the generalization

to the second generation case.
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by Wolfgang Dahmen and collaborators. Their results are stated in a setting similar to the second general

wavelet case described above and lead to wavelets de�ned on manifolds and triangulations. We refer the

reader to the original papers [5, 16] for details.
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Figure 4. The fast lifted wavelet transform in case of improved Donoho wavelets. First

a Lazy wavelet transform, then a dual lifting, and �nally a regular lifting. This is an

example of a simple cakewalk.

which we can use to start the lifting scheme. For more information on shift-interpolation, see [32, 54]

and [51, Chapter 3].

4. The idea of shift-interpolation was also used by Chen [6] to construct extended families of semiorthog-

onal spline functions. In case � 6= 0 the dual functions in his family are no longer spline functions.

As typical for the semiorthogonal case, the dual functions are not compactly supported.

9. Conclusion

As we mentioned before, in a regular setting the lifting scheme never leads to a wavelet that somehow

could not be constructed before. The new features are the custom-design property and the speed-up of

the fast wavelet transform. Another nice feature of lifting is that it allows fully in-place calculation of the

wavelet transform. In other words, the memory locations of the original data can be overwritten by the

wavelet coe�cients without having to allocate new memory. In fact, the FFT has a similar feature which

can be obtained by bit-reversing the addresses of the memory locations. In order to calculate the wavelet

transform in place using lifting, a partial bit reversal is needed. More details can be found in [53].

The original motivation behind lifting, however, lied elsewhere, namely in the construction of second

generation wavelets. The basic idea of second generation wavelets is to abandon translation and dilation

to construct wavelets. The goal is to construct wavelets for spaces much more general than L2(R; dx).

Typical examples are

1. wavelets on an interval,

2. wavelets on domains in Rn,

3. wavelets (bi)orthogonal with respect to a weighted inner product,

4. wavelets on curves, surfaces, and manifolds,

5. wavelets adapted to irregular sampling.
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[4, 54]. Thus, for all practical purposes one can take the coe�cients to be the function values. This

property was precisely the motivation behind the Donoho wavelets.

If N = 2, the wavelets coincide with the Cohen-Daubechies-Feauveau biorthogonal wavelets. Figures 2

and 3 give the graphs of the scaling function and wavelets for N = 4; 6 and eN = 2; 4; 6. One can see that

the smoothness increases with increasing N and eN . For completeness, Tables 2 and 3 list the coe�cients

of eh in the cases N = 4; 6 and eN = 2; 4; 6. Here you can see the e�ect of Theorem 12. The lifting

coe�cients can be found as sk = 2eh1�2k and are shown in bold. For the cases where eN � N , one

recognizes the Deslauriers-Dubuc coe�cients as lifting coe�cients.

Remarks:

1. Although the dual scaling functions with eN = 2 and N > 2 qualitatively resemble e'2;2, the dual
scaling function of Cohen-Daubechies-Feauveau in case eN = N = 2, they are quantitatively quite

di�erent. If N > 2, the dual functions with eN = 2 are bounded everywhere. The dual function

e'2;2, however, is discontinuous and actually becomes in�nity at every dyadic point. This is somehow

puzzling as the dyadics form a dense set. The function obviously cannot be graphed and can maybe

serve as a text book example of how \ugly" a function in L2 can be. The graph of e'2;2 shown

in [18, p. 273] has to be thought of as one particular iteration of the cascade algorithm (which

converges in L2), see also [18, second edition, p. 287, note nr. 10]. The cascade algorithm for this

function does not converge in L1. If one performs more iterations of the cascade algorithm, the

spikes (corresponding to dyadic points) keep growing. The underlying reason is the degeneracy of

1 as an eigenvalue of the operator iterated in the cascade algorithm. In case N > 2, the cascade

algorithm converges in L1.

2. The family of wavelets constructed here is closely connected to the �lters constructed using Lagrange

halfband �lters in [35].

3. By generalizing the notion of interpolation to shift-interpolation, we can �nd more examples of

initial sets of biorthogonal �lters to start the lifting scheme. We de�ne a scaling function ' to be

shift-interpolating if a shift � 2 (0; 1) exists so that '(k + � ) = �k;0. Again a characterization in

terms of the hk exists, since if ' is shift-interpolating with shift � , then

X
l

hl '(2� + 2k � l) = �k;0 :

This implies that we can �nd a dual �lter eh biorthogonal to h as

eh0k = '(2� + k) ;
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The case eN > N : This case, which is less interesting, is more involved. We give only the basic outline

of the construction. We use the same de�nition for d as in the proof above. Since N is even we also let

eN be even. The fact that g has a root of multiplicity eN at the origin leads to

0 = �p;0 �
pX

k=0

�
p

k

�
h(k)(0) d(p�k)(0) for 0 � p < eN : (22)

We let mdp and mhp be the moments of the sequences fdkg and fhkg respectively,

mdp =
X
k

dk k
p = ip d(p)(0) ;

and similarly for mhp. As d and h are even, all moments with odd index are zero. A recursion relation

to calculate the mdp is now given by

md2p = �
p�1X
k=0

�
2p

2k

�
md2kmh2p�2k for 1 � p < eN=2 :

The recursion starts with d0 = 1, which follows from (22) in case p = 0. We let eN of the coe�cients dk

be nonzero, namely the ones where k = 2l+ 1 and � eN=2 � l < eN=2. We can then �nd their values from

eN=2�1X
l=0

d2l+1 (2l + 1)2p = md2p=2 for 0 � p < eN=2 :
This linear system has a eN=2 � eN=2 Vandermonde matrix and can be solved in eN2=20 operations, see

[28, Algorithm 4.6.2, page 181]. It is now straightforward to �nd s, g and the dual functions.

With these two cases, one can construct an entire family of wavelets with interpolating scaling func-

tions. One can check that if eN > 0, the conditions of Theorem 3 are satis�ed and thus these wavelets

generate dual Riesz bases for L2. The associated forward wavelet transform now consists of the Lazy

wavelet transform followed by dual lifting followed by lifting. A block diagram is depicted in Figure 4.

The number of coe�cients of s is about half the number of coe�cients of eh. One can thus speed up the

low-pass part of the fast wavelet transform compared to the standard algorithm by a factor of two.

From (19) and the fact that h has a root of order N at � it follows that eh � 1 has a root of order N

at the origin as well. In other words, the dual scaling function also is a Coi
et of order N orZ
r

xp e'(x) dx = �p for 0 � p < N : (23)

In fact, it is not exactly the same as a Coi
et given that the number of moment conditions (23) (namely

N ) need not be the same as the order of polynomials reproduced (namely eN ). One can think of it as

a biorthogonal Coi
et. In case eN � N this is precisely what one needs as the coe�cients �n;k can be

numerically approximated with an error of O(2�nN ) by using a simple one point quadrature formula
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where the �rst term on the right is precisely the Donoho wavelet. We can now choose the sk coe�cients

to assure that  has eN vanishing moments. In our construction we �x h to be the Deslauriers-Dubuc

�lter hN , which can be written as

hN (!) = 1=2 + ei! esN (2!) : (21)

We consider two cases eN � N and eN > N separately.

The case eN � N : This is the most common case. In image processing and numerical analysis

the number of dual vanishing moments is much more important than the number of primal vanishing

moments. Luckily it turns out that this case is by far the easiest. We want choose s so that  has eN
vanishing moments. The following theorem tells us precisely how to do this.

Theorem 12. Consider the Deslauriers-Dubuc scaling function of order N and the Donoho wavelet that

goes with it. If eN � N , lifting with

s(!) = 2 eseN (�!)
where heN (!) = 1=2 + ei! eseN (2!), results in the shortest wavelet (20) with eN vanishing moments which

is symmetric around 1/2.

For example in the case eN = N , the lifting coe�cients are simply the dual lifting coe�cients times

two. In case eN < N , the lifting coe�cients come from dual lifting coe�cients of a lower order Deslauriers-

Dubuc �lter (namely seN ).
Proof. Let edN (!) = e�i! esN (2!). Then edN is the unique shortest �lter that satis�es

- edN (!) � 1=2 has a root of order N at the origin,

- edN has only odd taps: edN (!) + edN (! + �) = 0,

- edN is symmetric: edN (�!) = edN (!).
We need to �nd an s so that  has eN vanishing moments. We �rst �nd a d of the form d(!) = ei! s(2!),

and then later show that d = 2 edeN . The theorem then follows from substituting d and ed and using the

fact that they are symmetric.

First, d obviously has only odd taps. Next, write

ei!g(!) = 1� h(!) d(!) :

In order to get a wavelet which is symmetric around 1/2, d has to be even. In order for the wavelet to

have eN vanishing moment g has a root of multiplicity eN at the origin. If d(0) = 1 then g(0) = 0 since

h(0) = 1. If d(p)(0) = 0 for 1 � p < eN , then g(p)(0) = 0 because h(p)(0) = 0. The shortest �lter that

satis�es these constraints is d = 2 edeN .
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There is a close connection between Donoho wavelets and the Lazy wavelet. Consider an interpolating

�lter h that satis�es (15). This implies that h can be written as

h(!) = 1=2 + e�i! es(2!) ;
where es is a trigonometric polynomial. Consequently,

eg(!) = e�i!=2� es(2!) :
Now these are precisely the equations we would get from applying the dual lifting scheme to the Lazy

wavelet �lters

2h0(!) = eh0(!) = 1 and g 0(!) = 2 eg0(!) = e�i! :

(Note the slightly di�erent normalization from the example given above.) Thus we have shown the

following result.

Corollary 11. The set of biorthogonal �lters associated with an interpolating scaling function and the

Dirac function as its dual can always be seen as the result of the dual lifting scheme applied to the Lazy

wavelet �lters.

8.2. Improving Donoho wavelets. Donoho wavelets, however, in general can su�er from the following

disadvantages.

1. They do not provide Riesz bases for L2. The dual wavelets do not even belong to L2. Another way

to see this is that the wavelets do not have a vanishing integral and thus cannot form a Riesz basis

for L2, see [18, Chapter 3].

2. The fast wavelet transform introduces considerable aliasing. For example the low pass �lter eh(!)
used in the fast wavelet transform is simply a constant.

These wavelets are useful in case the function one wishes to expand is smooth, which is precisely the

setting in [23].

In this section, we try to overcome these disadvantages. We start from the set of biorthogonal �lters

associated with an interpolating scaling function and the Dirac as its dual, cf. (18). The lifting scheme

then results in

eh(!) = 1 + e�i! h(! + �) s(2!) ; and g(!) = e�i! � h(!) s(2!) : (19)

Note that

 (x) = 2'(2x� 1)�
X
k

sk '(x� k) ; (20)
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N = 2 N = 4 N = 6 N = 8

k h2
k

k h4
k

k h6
k

k h8
k

�1 2�2 �3 �2�5 �5 3 � 2�9 �7 �5 � 2�12

0 2�1 �2 0 �4 0 �6 0

1 2�2 �1 9 � 2�5 �3 �25 � 2�9 �5 49 � 2�12

0 2�1 �2 0 �4 0

1 9 � 2�5 �1 75 � 2�8 �3 �245 � 2�12

2 0 0 2�1 �2 0

3 �2�5 1 75 � 2�8 �1 1225 � 2�12

2 0 0 2�1

3 �25 � 2�9 1 1225 � 2�12

4 0 2 0

5 3 � 2�9 3 �245 � 2�12

4 0

5 49 � 2�12

6 0

7 �5 � 2�12

Table 1. Deslauriers-Dubuc �lters hN for N = 2; 4; 6; 8.

These �lters are given in Table 1. For N = 2 the associated scaling function is the Hat function or linear

B-spline. The scaling functions are always continuous and the regularity grows asymptotically for large

N as :2075N [18, p. 226].

8. Wavelets with interpolating scaling functions

In this section we show how dual lifting connects Donoho wavelets to the Lazy wavelet and how lifting

can be used to improve Donoho wavelets.

8.1. Donoho wavelets. Given a �lter h associated with an interpolating scaling function, we can �nd

a trivial set of biorthogonal �lters by letting

eh0(!) = 1; g0(!) = e�i!; and eg(!) = e�i! h(! + �) : (18)

It is easy to see that (4) is satis�ed. An associated set of biorthogonal functions formally exists. The

dual scaling function is the Dirac impulse at the origin and the wavelet function becomes

 (x) = 2'(2x� 1) :

The dual wavelet is a linear combination of Dirac impulses since

be (!) = e�i! h(! + �) :

Donoho introduced these wavelets [23], where he shows they form unconditional bases for certain smooth-

ness spaces. We therefore call them Donoho wavelets. Chui and Li use similar wavelets [8] to de�ne

functional wavelet transforms, a setting in which duals need not be in L2.
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The construction (17), when started from the Daubechies orthogonal or Cohen-Daubechies-Feauveau

biorthogonal wavelets, yields a family of smooth, compactly supported, and interpolating functions which

were studied originally by Deslauriers and Dubuc [21, 22] and which are also known as Lagrange halfband

�lters [3]. This connection was made in [3, 49, 47]. Ansari et al [3] show how the Daubechies �lters can

be derived from Lagrange halfband �lters, Shensa [49] points out a connection between the fast wavelet

transform and the �a trous algorithm, and Saito and Beylkin [47] use the autocorrelation function to build a

multiresolution analysis in which they relate the zero-crossings to the locations of edges at di�erent scales

in the signal. They then reconstruct a signal from its zero-crossings and the slopes at the zero-crossings.

Vetterli and Herley [65] also use this connection in the construction of biorthogonal wavelets.

Using (17), statements concerning (bi)orthogonal scaling functions can be rephrased as statements

concerning interpolating scaling functions. This allows us to formulate a necessary and su�cient condition

on h for ' to be interpolating using the ideas of Theorem 3, see also [13] and [18, Chapter 6].

Theorem 10. The following two conditions are equivalent:

1. ' de�ned by (7) is in L2 and is interpolating,

2. h is a trigonometric polynomial with h(0) = 1 and h(!) + h(! + �) = 1, and the constants are the

only invariant trigonometric polynomials under R, where R acts on 2�-periodic functions as

(Ra)(!) = h(!=2) a(!=2) + h(!=2 + �) a(!=2 + �) :

This condition precisely excludes counterexamples such as (16). Although it appears technical it can

be checked easily by looking at the eigenvalues of a matrix H with entries Hk;l = h2l�k. The matrix

approach in the orthogonal case was introduced by Lawton [36].

It immediately follows from (15) that h(!) � 1 has a root of order N at the origin. In other words,

interpolating scaling functions always have the Coi
et [19] property in the sense that

Z +1

�1

xp '(x) dx = �p for 0 � p < N :

We next consider the family of interpolating �lter and scaling functions derived by Deslauriers and

Dubuc [21]. The Deslauriers-Dubuc �lters are indexed by an even parameter N and we denote them as

hN . They are the shortest �lters that combine the following properties:

� hN is interpolating: hN (!) + hN (! + �) = 1,

� hN is symmetric: hN (�!) = hN (!),

� the scaling functions reproduce polynomials up to degree N : or hN has a root of order N at �.
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7. Interpolating scaling functions

The use of interpolating scaling functions has been proposed by several authors, see [2, 8, 10, 23, 37,

38, 47, 57]. In the next section, we show how one can use the lifting scheme to construct compactly

supported interpolating scaling functions. We therefore �rst recall some results concerning interpolating

scaling functions in this section.

De�nition 8. A scaling function ' is interpolating if '(k) = �k for all k 2 Z.

The advantage of using an interpolating scaling functions is that the coe�cients of an expansion

f(x) =
X
k

�k '(x � k) ;

satisfy f(k) = �k. The following well-known proposition allows us to characterize interpolating scaling

functions.

Proposition 9. If ' is interpolating, then h2k = �k;0=2 for all k 2 Z.

This condition can also be written as

h(!) + h(! + �) = 1 : (15)

Note that the converse is not always true. The following function is a typical counterexample:

'(x) =

8>>><
>>>:

3 + x for x 2 [�3; 0)
3� x for x 2 [0; 3)

0 elsewhere.

(16)

It is a stretched hat function with h�3 = h3 = 1=4, h0 = 1=2 and the other hk zero, and is not

interpolating.

We refer to �lters that satisfy condition (15) as interpolating �lters. They are also known as �a-trous

�lters which are used in the �a trous algorithm, a method to quickly compute samples of a continuous

wavelet transform, see e.g. [24, 31, 45, 49].

There is a close connection between a pair of biorthogonal scaling functions and an interpolating scaling

function. More precisely, if ' and e' are biorthogonal then � de�ned as

�(x) =

Z
1

1

'(y) e'(y + x) dy (17)

is interpolating and vice versa. The interpolation property immediately follows from the biorthogonality

condition. In case ' is an orthogonal scaling function � is simply its autocorrelation function.
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Figure 1. The lifted fast wavelet transform: The basic idea is to �rst perform a classical

subband �lter with simple �lters and later \lifting" the lower subband with the help of

the higher subband. In the case of dual lifting the higher subband would be lifted with

the help of the lower one.

faster implementation (again compared to the standard case) of the wavelet transform if we let eh0 to be
the shortest �lter that is biorthogonal to h, and think of the given eh as a lifting from eh0.

Consider the example of Section 4.1. The low-pass step of the fast wavelet transform in the standard

case is

�j;l =
p
2 (�1=16�j+1;2l�2 + 1=16�j+1;2l�1+ 1=2�j+1;2l + 1=2�j+1;2l+1 + 1=16�j+1;2l+2 � 1=16�j+1;2l+3) :

Given that s1 = �s�1 = 1=8, this now becomes

�j;l =
p
2 (1=2�j+1;2l + 1=2�j+1;2l+1) + 1=8 
j;l�1 � 1=8 
j;l+1 ;

which has fewer operations. Obviously, during implementation, one also absorbs the factor
p
2 in the

coe�cients and takes advantage of the symmetry. If eg is longer, a greater reduction in operations can be

obtained.

As we mentioned, the standard algorithm is not necessarily the best way to implement the wavelet

transform. Exploiting the special structure of the �lters after lifting is only one idea in a whole tool bag

of methods to improve the speed of a fast wavelet transform. Another idea consists of factoring the �lters,

as suggested in [18, Section 6.4]. This can be combined with lifting. It involves factoring h(!), eh(!),
and s(!) over the reals where possible. Rioul and Duhamel discuss several other schemes to improve the

standard fast wavelet transform [45]. In the case of long �lters, they suggest an FFT based scheme known

as the Vetterli-algorithm [65]. In the case of short �lters, they suggest a \fast running FIR" algorithm

[63]. How these ideas combine with the idea of using lifting and which combination will be optimal for a

certain wavelet remains a topic of future research. The main point of this section is to show that keeping

the lifting structure of the �lters can be bene�cial.
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h, eh0, g0, eg and s. This can reduce the number of operations as compared to the standard algorithm.

Using (12), we can write the �rst equation of (14) as

�j;l =
p
2
X
k

eh0k�2l �j+1;k +X
k

sl�k 
j;k :

This assumes that we calculate the 
j;l coe�cients before the �j;l. Each step of the forward transform

thus splits into two stages: (I) a classical subband splitting using the simple �lters eh0 and eg, (II) an
update of the low subband f�j;lg using the s �lter on the high subband f
j;kg. For the inverse transform
we obtain by using (10) that

�j+1;k =
p
2
X
l

hk�2l

 
�j;l �

X
m

sl�m 
j;m

!
+
p
2
X
l

g0
k�2l 
j;l :

Here stage I is simply undoing the stage II of the forward transform, while stage II is a classical subband

merging using the simple �lters h and g0. This leads to the following algorithm for the fast lifted wavelet

transform. A block scheme is depicted in Figure 1. Implementation of dual lifting or cakewalk (alternating

lifting and dual lifting) is now straightforward.

Forward transform:

- Stage I: (Calculate the unlifted coe�cients)

�j;l :=
p
2
X
k

eh0
k�2l �j+1;k and 
j;l :=

p
2
X
k

egk�2l �j+1;k :
- Stage II: (Calculate the lifted coe�cients)

�j;l := �j;l +
X
k

sl�k 
j;k :

Inverse transform:

- Stage I:

�j;l := �j;l �
X
k

sl�k 
j;k :

- Stage II:

�j+1;k :=
p
2
X
l

hk�2l �j;l +
p
2
X
l

g0k�2l 
j;l :

Assume that we are in the situation where the �lters h and eh are given. Is there a way to speed up

the wavelet transform associated with these �lters? Remember that the Vetterli-Herley lemma tells us

that any �lter eh0 that is biorthogonal to h is related to eh through the lifting scheme. We thus get a
12



5. We can use the lifting scheme to do other things than just increase the number of vanishingmoments.

One idea is to choose s to get better frequency resolution and less aliasing. Another idea is to shape

the wavelet for use in feature recognition. Choose the sk coe�cients in (11) so that  resembles

the particular feature we want to recognize. The magnitude of the wavelet coe�cients now is

proportional to how much the signal at the particular scale and place resembles the feature. This

has important applications in automated target recognition and medical imaging.

6. The idea of custom designing a wavelet was also suggested by Aldroubi and Unser [2], Abry and

Aldroubi [1] and Chui and Wang [12]. They introduce several schemes to control the shape, support,

regularity, and interpolating properties of the wavelet. The di�erence with our approach is that we

work in the fully biorthogonal case, while they work in the semiorthogonal case. The latter has the

advantage that the wavelet and scaling function are orthogonal to each other. The disadvantage is

that the dual �lters are not guaranteed to be �nite.

7. One can also use the lifting scheme to construct semiorthogonal wavelets. One then needs to choose

the sk in (11) so that '(� � l) and  are orthogonal. This in general leads to in�nite �lters.

6. The fast wavelet transform

For a function f 2 L2, de�ne

�j;l = h f; e'j;l i and 
j;l = h f; e j;l i ;
where e j;l and e'j;l are de�ned similarly to  j;l. Consider the following problem: given the �n;l for a �xed

n, calculate the wavelet coe�cients 
j;l for j < n. This is classically done through recursive applications

of the formulae

�j;l =
p
2
X
k

ehk�2l �j+1;k and 
j;l =
p
2
X
k

egk�2l �j+1;k : (14)

The inverse transform recursively uses the formula

�j+1;k =
p
2
X
l

hk�2l �j;l +
p
2
X
l

gk�2l 
j;l :

The resulting algorithm is linear and is known as the fast wavelet transform. It is exactly the same as

subband �ltering. We use this algorithm, which need not be optimal, as a comparison basis and refer to

it as the standard algorithm. It is the same as what is called the basic algorithm in [45, Section III.B] in

the sense that it avoids calculating �ltered coe�cients that will be immediately subsampled.

If the �lters are constructed with lifting, we can take advantage of this in the fast wavelet transform.

Essentially, we never need to explicitly construct the �lters eh and g, but instead we can always work with
11



does the job. Consequently,

eh(!) = �1=32 e3i! + 9=32 ei! + 1=2 + 9=32 e�i! � 1=32 e�3i! :

This implies that e' is the Deslauriers-Dubuc interpolating scaling function of order 4 [22]. The scaling

function ' is still the Dirac impulse.

5. Discussion

1. Evidently, we can also go from an initial set of �lters fh0; eh; g; eg 0 g to fh; eh; g; eg g thereby changing
the �lters h and eg while keeping eh and g unchanged. We denote the trigonometric polynomial

involved by es(!). This operation will lead to the dual lifting scheme. Relationships like (11),

(12), and (13) can be obtained by simply toggling the tildes. In case of dual lifting the dual scaling

function remains unchanged, while the primal scaling function and dual wavelet change. The primal

wavelet also changes, but again in a much less fundamental way as the coe�cients of the re�nement

relation (gk) remain the same. Dual lifting can be used to improve the properties of the dual wavelet

or equivalently the primal scaling function.

2. One fascinating aspect is that lifting can be iterated. For example, after increasing the number of

vanishing moments of the wavelet, one can use the dual lifting scheme to increase the number of

vanishing moments of the dual wavelet. By alternating lifting and dual lifting, one can bootstrap

one's way up to a multiresolution analysis with desired properties. We call this a \cakewalk"

construction. For more details we refer to [52].

3. The lifting scheme never yields a set of �lters that somehow could not be found before. Essentially

every set of �lters constructed using the lifting scheme could also have been derived using the

machinery of Daubechies, Cohen-Daubechies-Feauveau, or Vetterli-Herley. For example, lifting

the Lazy wavelet results in trying to �nd an even function t so that t(!) + t(! + �) = 0 and

1=2� t(!) has as a root of a certain multiplicity at the origin. This is precisely the same problem

from which Daubechies starts in her construction of orthogonal wavelets (in her notation m0(!) =

1=2� t(! + �)). This leads to a solution involving a combinatorial expression.

4. New insights coming from the lifting scheme are threefold. First, we can use equation (11) to get

immediate access to the wavelet function and choose the �lter s so that it satis�es certain properties.

This allows painless custom design of the wavelet. Second, we show in the next section that the

lifting scheme can speed up the wavelet transform. Finally, the lifting scheme allows for construction

of second generation wavelets which are not translates and dilates of one �xed function. None of

the traditional wavelet construction schemes allow this generalization.
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After lifting fh; eh0; g0; eg g to fh; eh; g; eg g we obtain

g(!) = g0(!) � h(!) s(2!) :

In order to have one vanishing moment we need g(0) = 0 and thus s(0) has to be 0. Having two vanishing

moments is equivalent to g0(0) = 0, which results in

g0
0

(0) = h(0) s0(0) 2 + h0(0) s(0) :

This implies that s0(0) = �i=4. In order to keep the symmetry, we choose s(!) = �i=4 sin!. Conse-

quently,

eh(!) = �1=16 e2i! + 1=16 ei! + 1=2 + 1=2 e�i! + 1=16 e�2i! � 1=16 e�3i! :

It turns out that this is precisely one of the biorthogonal �lters of Cohen-Daubechies-Feauveau [14, 18].

4.2. Lifting the Lazy wavelet. The Lazy wavelet leads to a fascinating example of an initial set of

biorthogonal �lters. It is essentially a set of biorthogonal �lters that do not do anything. More precisely,

2eh0(!) = h0(!) = 1 and eg 0(!) = 2 g0(!) = e�i! :

One step in a Lazy wavelet transform is nothing else but subsampling into the even and odd indexed

samples. In fact, in this case of regularly spaced samples, the Lazy wavelet is nothing new. It is exactly

the same as the polyphase representation often used in the design of �lter banks, see for example [59, 61].

The reason why we gave it its own name is that it is instrumental in case of irregular samples and second

generation wavelets [52].

An associated set of biorthogonal functions f'0; e'0;  0; e 0g does not exist in L2. Formally one can

think of '0 as a Dirac impulse at the origin and of e'0 as a function that is one in the origin and zero

elsewhere. Then '0 and e'0, again purely formally, would be biorthogonal. Needless to say, they can

never form Riesz bases.

After lifting fh0; eh0; g0; eg 0 g to fh0; eh; g; eg 0 g we obtain

g(!) = e�i!=2� s(2!) :

Given that ei! g0(!) is even and assuming we want to keep symmetry, we need to choose s so that

ei! s(2!) is even. We call the latter function t(!), so

ei! g(!) = 1=2� t(!) :

We choose t so that the left-hand side has a root of order 4 at the origin. Simple calculations show that

the even function

t(!) = 9=16 cos ! � 1=16 cos 3!
9



Although formally similar, the expressions in (11) and (12) are quite di�erent. The di�erence lies in

the fact that in (11) the scaling functions on the right-hand side did not change after lifting, while in (12)

the functions on the right-hand side did change after lifting. Equation (12) does not really give much

insight into how the dual scaling function changes and therefore is not much help in the choice of the

sk. On the other hand, (11) tells us precisely what happens to the wavelet after lifting and will be the

key to �nding the sk coe�cients. The dual wavelet (13) also changes, but in a much less fundamental

way than the wavelet and dual scaling function. More precisely, the dual wavelet changes because the

dual scaling functions from which it is built change, while the coe�cients of the linear combination (egk)
remain exactly the same.

The power behind the lifting scheme is that through s we have full control over all wavelets and dual

functions that can be built from a particular scaling function. This means we can start from a simple or

trivial set of biorthogonal functions and use (11) to choose s so that the wavelet after lifting has some

desirable properties. This allows custom design of the wavelet and it is the motivation behind the name

\lifting scheme." Since the scaling functions on the right-hand side of (11) do not change after lifting,

conditions on  immediately translate into conditions on s. For example, we can choose s to increase the

number of vanishing moments of the wavelet, or choose s such that  resembles a particular shape.

The advantage of using (11) as opposed to (2) for the construction of  is that in the former we

have total freedom in the choice of s. Once s �xed, the lifting scheme assures that all �lters are �nite

and biorthogonal. If we used (2) to construct  , we would have to check the biorthogonality separately.

The lifting scheme thus allows us, to isolate into s, the degrees of freedom that are left after �xing the

biorthogonality conditions.

Evidently, the lifting scheme is useful only if we have an initial set of biorthogonal �lters. The following

section gives two examples of initial sets.

4. Examples

4.1. Lifting the Haar wavelet. We start from the Haar wavelet and try to use the lifting scheme to

increase the number of vanishing moments of the wavelet from one to two. We have

eh0(!) = h(!) = 1=2 + 1=2 e�i! ;

and

eg(!) = g0(!) = �1=2 + 1=2 e�i! :

Note that because of (5), we have that g0(�) = �1, while most authors prefer to have g0(�) = 1.
8



wavelet as,

b (!) = g(!=2) b'(!=2)
= g0(!=2) b'(!=2) � s(!)h(!=2) b'(!=2)
= g0(!=2) b'(!=2) � s(!) b'(!) :

This means that

 (x) = 2
X
k

g0
k
'(2x� k)�

X
k

sk '(x� k) :

Similarly we obtain

be'(!) = eh(!=2) be'(!=2)
= eh0(!=2) be'(!=2) + s(!) eg(!=2) be'(!=2)
= eh0(!=2) be'(!=2) + s(!)

be (!) :
Thus,

e'(x) = 2
X
k

eh0
k
e'(2x� k) +

X
k

s�k e (x � k) :

We can summarize these observations in the following theorem.

Theorem 7 (Lifting scheme). Take an initial set of biorthogonal scaling functions and wavelets

f'; e'0;  0; e 0 g. Then a new set f'; e';  ; e g, which is formally biorthogonal can be found as

 (x) =  0(x)�
X
k

sk '(x� k) (11)

e'(x) = 2
X
k

eh0k e'(2x� k) +
X
k

s�k e (x� k) (12)

e (x) = 2
X
k

egk e'(2x� k) (13)

where the coe�cients sk can be freely chosen.

Note that the resulting functions are only formally biorthogonal. Indeed, it is not guaranteed that

the new dual wavelets belong to L2 or that the new wavelets form a Riesz basis. For each choice of s,

the conditions of Theorem 3 have to be veri�ed, in order to assure that an associated set of biorthogonal

functions exists. The only conditions to verify are the non-degeneracy of 1 as an eigenvalue of eP and

the sign of the invariant trigonometric polynomial. If s and the initial �lters are �nite, all associated

basis and dual functions are compactly supported. An interesting question is whether the conditions of

Theorem 3 can be translated into a simple condition on s.
7



where s(!) is a trigonometric polynomial. Conversely, if one of the dual �lters is biorthogonal to h, and

they are related through (8), the other one is biorthogonal to h as well.

Proof. The converse statement follows immediately from combining (6) and (8) and using the fact that

s(!) is 2�-periodic.

The proof of the �rst statement follows the reasoning in [18, p. 133]. Theorem 3 implies that two

positive constants A and B exist so that

A < jh(!)j2 + jh(! + �)j2 < B :

Consequently, h(!) and h(! + �) cannot vanish together. Now let d = eh� eh0, then
d(!) h(!) + d(! + �)h(! + �) = 0 :

It follows that d(!) = e�i!h(! + �) s(2!), where s(!) is a trigonometric polynomial.

After �nishing this work, the author learned that this lemma is essentially identical to an earlier proposi-

tion of Vetterli and Herley [65, Proposition 4.7]. We therefore will refer to Lemma 5 as the Vetterli-Herley

lemma. It turns out that the same lemma was also used for the construction of �lter banks in [56] and

in [35].

The Vetterli-Herley lemma gives us a complete characterization of all �lters biorthogonal to a given

�lter. The following corollary now immediately follows from using (5).

Corollary 6. Take an initial set of �nite biorthogonal �lters fh; eh0; g0; eg g. Then a new set of �nite

biorthogonal �lters fh; eh; g; eg g can be found as

eh(!) = eh0(!) + eg(!) s(2!) (9)

g(!) = g0(!) � h(!) s(2!) ; (10)

where s(!) is a trigonometric polynomial.

We will refer to this procedure as lifting for reasons that will become clear later. We next investigate

how this procedure a�ects the basis functions. This will allow us to precisely formulate lifting.

First we note that the associated scaling function does not change after lifting, since it depends only

on the �lter h. The associated dual scaling function, wavelet, and dual wavelet do change. We write the
6



Given a set of �nite biorthogonal �lters, it is not guaranteed that an associated set of biorthogonal

functions exists. The following theorem from [14], see also [18, Theorem 8.3.1], gives a necessary and

su�cient condition. We �rst de�ne the operator P acting on 2�-periodic functions as

(P a)(!) = jh(!=2)j2 a(!=2) + jh(!=2 + �)j2 a(!=2 + �) ;

and similarly for eP .
Theorem 3 (Cohen-Daubechies-Feauveau). Given two �nite �lters h and eh, the following statements

are equivalent:

1. ' and e' de�ned by the product expansion (7) are in L2 and h'; e'(� � l) i = �l,

2. the �nite �lters h and eh are biorthogonal in the sense of (6), h(0) = eh(0) = 1, 1 is a non-degenerate

eigenvalue of P and of eP , and the invariant trigonometric polynomials are strictly positive.

If we now choose g as in (5), and  as in (2), then the  j;l form a Riesz basis for L2.

There are many di�erent ways in which the high pass �lters can be derived from the low pass �lters.

A complete characterization of all choices is given in a theorem of Chui [7, Theorem 5.19, p. 148]. We

state the theorem using the notations introduced above.

Theorem 4 (Chui). Let h and eh be biorthogonal �lters in the sense of (6). Then the �lters g and eg
satisfy (4) if and only they are chosen from the class:

eg(!) = e�i! h(! + �) k(2!) and g(!) = e�i! eh(! + �) k�1(2!) ;

where k belongs to the Wiener class and k(!) 6= 0.

A �lter belongs to the Wiener class if its coe�cients sequence is in `1. If k(!) does not vanish, k�1(!)

is in the Wiener class as well. While this theorem gives a complete characterization, it also shows that

the high pass �lters g and eg can both be �nite only in case k is a monomial. In the remainder of this

paper, we restrict ourselves to the latter case.

3. The lifting scheme

We start with the following observation.

Lemma 5. Fix a compactly supported scaling function ', and let h be the �nite �lter associated with it.

Consider two �nite dual �lters eh and eh0, both of them biorthogonal to h in the sense of (6) and satisfying

the conditions of Theorem 3. Then they are related to each other by

eh(!) = eh0(!) + e�i! h(! + �) s(2!) ; (8)

5



and similarly for em(!). In the signal processing literature these matrices are called modulation matrices.

In the case of �nite �lters, detm(!) is a monomial. We choose the determinant as

detm(!) = �e�i! ;

so that

eg(!) = e�i! h(! + �) and g(!) = e�i! eh(! + �) : (5)

Then (4) is equivalent to

h(!) eh(!) + h(! + �)eh(! + �) = 1 : (6)

This condition in the orthogonal case (h = eh) is called the Smith-Barnwell condition as they used it to

design the �rst orthogonal �lter banks [50].

Let N be the number of vanishing moments of the dual wavelet,Z +1

�1

xp e (x) dx = 0 for 0 � p < N :

It is also the multiplicity of the origin as a root of eg(!). Similarly, let eN be the number of vanishing

moments of the wavelet. In a multiresolution analysis, eN and N are at least 1. The scaling function and

its integer translates can reproduce any polynomial of degree strictly less than N . We therefore say that

the order of the multiresolution analysis is N .

De�ne the Fourier transform of a function f as

bf (!) = Z +1

�1

f(x) e�i!x dx :

By iterating the re�nement relation, we can write the Fourier transform of a scaling function as

b'(!) = 1Y
j=1

h(2�j!) ; (7)

where the product converges absolutely and uniformly on compact sets. A similar statement holds for

the dual scaling function e'.
De�nition 1. The set of functions f'; e';  ; e g is a set of biorthogonal functions if conditions (3) are

satis�ed.

De�nition 2. The set of �lters fh; eh; g; eg g is a set of �nite biorthogonal �lters if condition (4) is satis�ed
and detm(!) = �e�i!.
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2. Multiresolution analysis

A multiresolution analysis of L2(R) is built using two basis functions: a scaling function ' and a

wavelet  . The scaling function ' 2 L2 satis�es a re�nement relation in the sense that,

'(x) = 2
X
k

hk '(2x� k) : (1)

The integer translates of the scaling function f'(x � k) j k 2 Zg, form a Riesz basis for the closure of

their span. They also partition the unity as

X
k

'(x � k) = 1 :

The wavelet function  2 L2 is given by the re�nement relation

 (x) = 2
X
k

gk '(2x� k) : (2)

The functions  j;l(x) =
p
2j '(2jx� l), with j; l 2 Z form a Riesz basis of L2.

The dual scaling function e' and wavelet e also generate a multiresolution analysis. They satisfy

re�nement relations like (1) and (2) with coe�cients ehk and egk respectively. They are biorthogonal to '

and  in the sense that

h e';  (� � l) i = h e ; '(� � l) i = 0 and h e'; '(� � l) i = h e ;  (� � l) i = �l : (3)

De�ne the 2�-periodic functions

h(!) =
X
k

hk e
�ik! and g(!) =

X
k

gk e
�ik! ;

and similarly for the dual functions. We refer to h as the �lter associated with ', where we can think of

h either as the sequence of coe�cients fhk j kg, or as the 2�-periodic function h(!). We consider only

the case where the scaling function, wavelet, and their duals are compactly supported. Consequently,

only a �nite number of the coe�cients in the re�nement relations are non-zero while h(!) and g(!) are

trigonometric polynomials. In this setting, we refer to h and g as �nite �lters (also known as FIR |

finite impulse response | �lters).

A necessary condition for the biorthogonality (3) is

8! 2 R : em(!)mt(!) = 1 ; (4)

where

m(!) =

2
4 h(!) h(! + �)

g(!) g(! + �)

3
5 ;
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In this paper, we always work in the fully biorthogonal setting and consider only the case where

the scaling function, wavelet, and their duals are compactly supported. We present the lifting scheme,

a novel way of looking at the construction of biorthogonal wavelets that allows custom design of the

wavelet. In wavelet constructions one typically needs to simultaneously satisfy two groups of constraints:

the biorthogonality relations (A) and various other constraints such as regularity, vanishing moments,

frequency localization, and shape (B). The lifting scheme relies on a simple relationship between all

multiresolution analyses that share the same scaling function. It thus isolates the degrees of freedom

left after �xing the biorthogonality relations (A). Then one has full control over the remaining degrees

of freedom to satisfy (B) and custom design the wavelet. Once the wavelet is de�ned, a compactly

supported biorthogonal dual wavelet and scaling function immediately follow from the lifting scheme.

Essentially, one can choose a particular scaling function, form a trivial multiresolution analysis with it,

and use the lifting scheme to bootstrap one's way up to a multiresolution analysis with speci�c properties.

This is the motivation behind the name \lifting scheme." In a translation/dilation invariant setting, the

lifting scheme will not come up with wavelets that somehow could not be found using the techniques

developed by Cohen-Daubechies-Feauveau [14] or Vetterli-Herley [65]. The new insights from lifting are:

(i) custom design of wavelets, (ii) a new idea to speed up the wavelet transform, (iii) a generalization to

non translation/dilation invariant settings (second generation wavelets).

The paper is organized as follows. In Section 2 we give a concise introduction to multiresolution

analysis. We essentially list only the properties we later use. We refer the reader who is not familiar

with this subject matter to more detailed treatments such as [7, 18, 33, 34, 42, 46, 66, 67]. In Section 3

we state the basic result, which is illustrated with examples in Section 4. The following section contains

a discussion, while in Section 6 we show how the lifting scheme can speed up the implementation of the

fast wavelet transform. In Section 7 we review some properties of interpolating scaling functions. We use

the lifting scheme to build a family of wavelets from interpolating scaling functions in Section 8. Finally,

we conclude by showing how this result �ts in a broader line of research.

The results in this paper are inspired by the work [23] and [39]. Donoho [23] suggests the idea of

wavelets built from interpolating scaling functions, while the wavelets of Lounsbery et al. [39] can be seen

as a particular instance of the lifting scheme in case one wants to construct semiorthogonal wavelets.

2



THE LIFTING SCHEME: A CUSTOM-DESIGN

CONSTRUCTION OF BIORTHOGONAL WAVELETS

WIM SWELDENS

November 1994 (revised November 1995)

Abstract. We present the lifting scheme, a new idea for constructing compactly supported wavelets

with compactly supported duals. The lifting scheme uses a simple relationship between all multiresolu-

tion analyses with the same scaling function. It isolates the degrees of freedom remaining after �xing the

biorthogonality relations. Then one has full control over these degrees of freedom to custom design the

wavelet for a particular application. The lifting scheme can also speed up the fast wavelet transform.

We illustrate the use of the lifting scheme in the construction of wavelets with interpolating scaling

functions.

1. Introduction

Over the last few years many constructions of wavelets have been introduced both in the mathematical

analysis and in the signal processing literature. In fact the fruitful interaction between these communities

is largely responsible for the success of wavelets. In mathematical analysis, wavelets were originally

constructed to analyze and represent geophysical signals using translates and dilates of one �xed function.

A mathematical frameworkwas developed by the so-called \French school" [15, 20, 29, 42], see also [25, 26].

In signal processing, wavelets originated in the context of subband coding, or more precisely quadrature

mirror �lters [43, 44, 50, 59, 60, 61, 62, 64, 68]. The connection between the two approaches was made

by the introduction of multiresolution analysis and the fast wavelet transform by Mallat and Meyer in

[40, 41, 42]. A major breakthrough was the construction of orthogonal, compactly supported wavelets by

Daubechies [17]. Since then, several generalizations to the biorthogonal or semiorthogonal (pre-wavelet)

case were presented. (In the latter case wavelets on di�erent levels are orthogonal, while wavelets on

the same level are not.) Biorthogonality allows the construction of symmetric wavelets and thus linear

phase �lters. Examples are: the construction of semiorthogonal spline wavelets [2, 7, 11, 12, 58], fully

biorthogonal compactly supported wavelets [14, 65], and recursive �lter banks [30].
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