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ABSTRACT. A multiresolution analysis of a curve is normal if each wavelet detail vector with respect to a certain
subdivision scheme lies in the local normal direction. In this paper we study properties such as regularity, convergence,
and stability of a normal multiresolution analysis. In particular we show that these properties critically depend on the
underlying subdivision scheme and that in general the convergence of normal multiresolution approximations equals the
convergence of the underlying subdivision scheme.

1. INTRODUCTION

Subdivision is a powerful mechanism for iteratively creating smooth curves and surfaces. Combined with
wavelets, subdivision can be used to approximate arbitrary functions, curves and surfaces. The mathematical
properties of wavelets are well understood in the so-called “functional setting”, i.e., for the approximation of
functions of one of more variables. However, for the case of 1-D curves in the plane, or 2-D surfaces in 3-space,
much less is known. Typically one takes a parameterization of the original curve or surface and ends up using
wavelet analysis in each of the two or three components. This means the wavelet coefficients now become 2- or
3-vectors. It is important to choose an appropriate coordinate frame to describe these wavelet vectors. It is known
that using an absolute coordinate frame for the wavelet or detail vectors leads to undesirable effects when editing
curves; using a local coordinate frame defined by the normal works much better, as shown in [9, 8, 10, 16, 20].

In [11] the notion of normal approximation for curves or surfaces is introduced. A multiresolution approxima-
tion of a curve or surface is normal if all the wavelet vectors perfectly align with a locally defined normal direction
which only depends on the coarser levels. Note that by the normal direction we mean a normal onto an approx-
imation of the curve or surface. Given that this normal direction only depends on coarser levels, only a single
scalar coefficient needs to be stored instead of the standard 2- or 3-vector. This is clearly extremely useful for
compression applications, see [14, 13]. In addition, [11] gives an algorithm to build normal mesh approximations
of large complex scanned geometry.

Because they depend on the computation of a normal, these approximations lead to non-linear representations
and very little is known about their mathematical properties. In this paper we investigate in detail mathematical
properties, such as convergence, regularity, and stability of normal multiresolution approximation for curves. In
particular we show that these properties critically depend on the underlying subdivision scheme and that in general
the convergence of the normal approximation of smooth curves equals the convergence of the subdivision scheme.
Our central idea is to study normal approximation as a perturbation of a linear subdivision scheme.

The organization of this paper is as follows. After the preliminary Section 2, which sets notation and recalls
some basic definitions and properties of subdivision schemes, we outline our main theorems in Section 3, explain-
ing how they tie in with each other, leading up to our main results. In these initial formulations, we typically state
the theorems in a more readable but slightly less general or technical form than later in the paper. The next three
sections contain the technical part of the paper, with statements of the theorems in full generality, together with
their proofs. Section 4 studies in some detail perturbations of sequences produced by linear subdivision schemes,
and estimates how much applying a smooth function can perturb subdivided sequences; these results are used in
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FIGURE 1. Example of the normal mesh algorithm using the mean value of adjacent points as predictor.

the remainder of the paper but may have wider applications. In Section 5, we discuss convergence of the normal
multiresolution approximation. Section 6 relates the speed of convergence and the rate of decay of the wavelet
coefficients with the degree of smoothness of the curve and the approximation order of the underlying subdivision
scheme. Section 7 gives examples; Section 8 outlines several remaining open questions.

2. NOTATION AND PRELIMARIES

2.1. Normal multiresolution analysis. Figure 1 illustrates the main idea from [11] in the case of a normal approx-
imation based on midpoint subdivision. The original curve

�
is described by successively finer approximations,

which are organized in different multiresolution layers indexed by � . We assume that
�

is a continuous, non inter-
secting curve in the plane, whose endpoints we shall take to be the � th level multiresolution points ����� � and ���	� 
 . To
construct the vertices at level �������� , we first set ������
�� ����������� � ; this is what makes the construction interpolating.
We also compute new points � ����
�� ������
 ; each � ����
�� ������
 lies in between the two old points � ��� � and � ��� ����
 . This
is done by first using subdivision to compute a predicted or base point �! ����
�� ������
 . In the case of Figure 1 we use
simply midpoint subdivision given by �" ����
�� ���#��
 �$�%� ��� � &� ��� ����
 ��'�( . We next draw a line from �) ����
�� ������
 in the
direction orthogonal to the line segment �%����� �+*,����� ����
�� . This line is guaranteed to cross the curve segment between� ��� � and � ��� ����
 at least once and we call one of those points � ����
�� ���#��
 . As this procedure continues, the polyline� � , i.e. the piecewise linear curve connecting the points � ��� � comes closer and closer to

�
. We can now think of

this as a wavelet transformation similar to the notion of lifting [18]. Think of �- ����
�� ������
 as a prediction of the real
point � ����
�� ������
 computed based only on coarser information. Then the difference �! ����
�� ������
-. � ��� ������
 is a wavelet
vector. Given that this vector points in a direction normal to a segment that again only depends on coarser data, we
only need to store the length and one sign bit for this normal component to characterize it completely.

We shall be interested in using more general subdivision schemes, which will lead to higher quality approxima-
tion for smooth curves, as we shall see below. As illustrated in Figure 2, the same basic plan is followed: we still
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FIGURE 2. Notation for the normal scheme.

set � ����
�� ��� �/� ��� � , we define �0 ����
�� ������
 via a subdivision scheme 1 (see below), and we define � ����
�� ������
 to be an
intersection point between � ��� � and � ��� ����
 of

�
with the normal through �2 ����
�� ������
 to the segment �3� ��� � *�� ��� ����
 � .

We again define the polyline
� � to be the piecewise linear curve that connects each � ��� ����
 with its “predecessor”� ��� � . The construction immediately begs the following question: how good an approximation to

�
is is the polyline� � ? In other words, how does the distance between

�
and the � -th level polyline

� � decay as � tends to 4 ? It
turns out that the answer is given by the regularity of the subdivision scheme used in the prediction step of the
normal approximation algorithm; the precise study of this dependence is our main topic. Note that in a normal
approximation every �5����
�� ������
 depends in a nonlinear way on the �3�5��� ��� ; these nonlinear aspects complicate the
analysis. Nevertheless, due to the smoothness of

�
, this nonlinear map can be viewed as a perturbation of the

underlying linear subdivision scheme used for predicting the �! ����
�� � from the �3����� ��� ; this is the key observation on
which our analysis is based.

2.2. Sequences. We let 6 denote the space of infinite sequences. Sequences will be written in bold face, and
elements of sequences in normal font, 7�89�:�3;<�=�,� or simply �%;<�>� . We define the difference operator ? as�@?A7B�,�C�D;!����
 . ;!�+E(2.1)

Often a sequence itself is indexed by the subdivision level � ; then we use the convention that 7 � 89�F�3; ��� � � . We
think of a sequence at level � as associated with the parameters G ��� � �IH0(+J � . Therefore we also define the divided
difference operator K � �L( � ? . The divided differences of a sequence 7 � then are7NM O�P� ��K O� 7 QSRT�0E
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We use the usual sup-norm on 6 , U 7VUXWY�[Z,\0] � U ;"�2U . Scalar functions can be applied to sequences component
wise, so that �3^_�37B�����C��^_�%;"�=� . We use the special sequence `a�b�@H0� , i.e. the sequence of which the H -th entry isH itself. The sequence with all entries equal to 0 (resp. 1) is c (resp. d ).
2.3. Subdivision. A local, stationary subdivision scheme is characterized by a bounded linear operator 1 from 6
to itself, defined by a finite sequence e as follows:�@1f7B�,���Ig=hjik� J � h ; h E
The width l of 1 is defined by lm�b(fnpo�q)r�U H-Uts�i��vu�I�0w . The above sum thus is finite: for each H there are only
terms with xzy|{��}��~@�,��H . lA��'>(>����*����@HC�lA��'�(5�#� . Given 1 , we can apply it iteratively starting from a sequence� � , and define, for all ����� , � ����
V��1 � �>E
The sequence � � can be viewed as a coarse approximation of a function, on the integer grid; the sequences � �
then give successively finer approximations of the function on grids with spacing ( J � . We are interested in the
case when this process converges to a smooth function as � increases. A subdivision scheme is interpolating
if i ��� ��� �%� � , implying � ����
�� ��� ��� ��� � for all �>*�H ; in this case the � ��� � are interpreted as function values of� *�� ��� � � � �%G ��� � �B� � �@( J � H)� .

The order of a subdivision scheme 1 is the largest degree for which it leaves the corresponding space of monic
polynomials invariant. More precisely, 1 is of order � if � is the largest integer such that for all Q -degree monic
polynomials � with �L��Q$��� , a Q -degree monic polynomial � exists so that 1f�_��`��v���_��`�'�(>� . If 1 is
interpolating, then 1f�_��`-�_�F�_�@`�'>(>� . We always assume that � is at least one so that 1�d���d . The derived
subdivision schemes are defined as1 M � P �L1�* 1 M O�P �L(=?A1 M O J 
 P ? J 
 * QSRT�)E
Note that 1 M O�P is well-defined as long as 1 M O J 
 P has at least order one, and that the order of 1 M O�P is one less than the
order of 1 M O J 
 P . Thus 1 M O�P is defined for QS��� . Also note that1 M O�P K�� ��K�����
�1 M O J 
 P and 1 M O�P K O� �LK O����
 1�E

A special example is the midpoint interpolating subdivision scheme 1�� where ��1-�	7B�¡������
p�F�3;"��T;!����
���'�( .
This scheme is used in Figure 1, has order �:�L( and yields piecewise linear limit functions. We are now ready to
state the main results.

3. SUMMARY OF MAIN RESULTS

In this section we give a summary of the main theorems of this paper. This will help the reader understand
the structure of the remainder of the paper. These theorems are given without proof and also typically are not
necessarily the most general possible. This is because in their most general form, the statement of the theorem
becomes much more technical and harder to read. For each less general theorem stated here we refer to the more
general form and its proof later in the text. The less general theorems here typically omit any polynomial factors in
the estimates and corresponding logarithmic factors in the regularity estimates. Therefore they do not necessarily
provide the sharpest bounds on the fractional regularity.

Before we start with the statements of our results, we recall some technical preliminaries that will be used
extensively, and that also set some of the notations used below.

3.1. Technical preliminaries. The first proposition states some basic estimates about subdivision that will be
used later; for the sake of completeness we include their short proofs.
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Proposition 3.1. For a subdivision scheme 1 of order �m�I� we have the estimatesUt�@1f7f�,�0U0�T¢£n_o5qh�¤>¥�¦ U ; h Ut*(3.1)

n_o�qh�¤>¥�¦ U ; h . ��1f7B� � U+�/¢£npo�qh�¤>¥�¦ U���?A7B� h U+�D¢TU ?A7VU W��L¢�( J � U K � 7§U W *(3.2)

Proof. The first estimate is given by the definition of 1 ,Ut�@1f7B�,�)U+�mgh�¤>¥ ¦ U ik� J � h U¨U ; h U+�Tn_o5qh�¤>¥�¦ U ; h U>gh�¤>¥ ¦ U ik� J � h U9E
The second estimate follows from this first one, and from 1§dA�jd since �m��� ,n_o5qh,©�¤>¥�¦ U ; h © . �@1f7f� � Uª� n_o5qh,©�¤>¥�¦ U���1��3; h © d . 7B�,� � U+�/¢«n_o5qh¡© � h�¬#¤>¥�¦ U ; h © . ; h ¬ U

� ¢n_o5q® ©�¯ ® ¬#°#± ¦h,©�²2h�¬ ³³³³³³
h ¬ J 
g´¡µ h © �@?A7B� ´

³³³³³³ �T¢¶l�n_o�qh�¤>¥ ¦ U���?A7B� h U9E
The estimate (3.1) states that 1 is a bounded operator when restricted to · W , i.e.U 1VU W¸89� Z�\0]¹ ¤5h,º �t» ¹ » º ² 
 U 1f7�U W[�D4�E
Next, we introduce the function spaces we will be working with. Let ¢ � ��{�� be the continuous and bounded
functions defined on a (possibly unbounded) interval {/¼F½ . Moreover, for Q a positive integer, let ¢ O �3{+� be
constituted by the functions in ¢ � �3{+� with a Q -th derivative that is continuous and bounded on { . Our notations for
fractional regularity is as follows. For

� yS¢ � �3{+� , let¾ �3¿5* � �B� Z�\0]À%Á � À © ¤>¥ U � �%G���� . � �3G�
#�	UU G � . G 
 U Â E
For QÃy£Ä and �Å�L¿Æ�:� we define the class ¢ O � Â �3{+� as the set of functions

� yÃ¢ O �3{+� for which
¾ �3¿5* ��Ç O	È � is

bounded. Similarly, we use the notation
� y£É�Ê�]<Ë��3{+� , with Ì��TQp&¿ , QÍy£Ä , �Î��¿��:� , when

� yÍ¢ O �3{+� and¾ �%¿5* ��Ç O	È � is bounded. For Ì/uyvÄ , the spaces É-Ê¨] Ë �3{+� and ¢ Ë ��{�� coincide; for ÌÏySÄ , however, ¢ Ë �3{+� u¼DÉ-Ê¨] Ë ��{�� .
Finally, ¢ Ë0Ð �3{+� or É-Ê¨] Ë0Ð �3{+� stands for Ñ

Ë>Ò%Ó!Ë ¢ Ë Ò ��{����
Ñ
Ë=ÒÔÓ<Ë É-Ê¨] Ë Ò ��{��#E

We shall use the notation Ì�J in more general contexts as well. More precisely, if ¿ is a real number, we shall
use the notation ¿ J wherever we could insert in its place ¿ .ÃÕ with Õ RI� arbitrarily small. With some abuse of
notation we adopt the conventions ¿ J �&¿5Ö if ¿}��¿5Ö and ¿}�T¿5Ö J if ¿}�T¿5Ö . It follows that npÊ¨×��%¿ J *,¿5ÖÔ� equals ¿5Ö if¿AR&¿5Ö , and ¿ J if ¿}��¿5Ö .

We will often use the version of Taylor’s theorem that says that if
� yÍÉ-Ê¨] Ç O � Â È �3{+� and Q£yÃÄ , �Å��¿Î�:� we

can write � �3;"�z� Og� µ � ��Ç � È �%;2�k�H!Ø �%; . ;2��� � &Ùp�%;!��*
where the rest term ÙA�3;"� is bounded byU Ùp�%;"��U�� ¾pÚ ¿5* ��Ç O	È¡ÛQ�Ø U ; . ; � U O � Â * Ü!;�*,; � yS{)E
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3.2. Our results. The first theorem we state here is well known from the literature (a more general version can be
found in [1]); we include it here for comparison with the theorems that follow it.

Theorem 3.2. Let 1 be a subdivision scheme of order �Ý��� and 1 M O�P its Q -th derived scheme, with Q:�Þ� .
Assume there are positive real numbers ¢ , ß such that³³³ 1 M O�P � ³³³ W �/¢�(�à � * Ü��p�T�0E
Let r�7���w be a family of sequences built by subdivision and let á��=�3G,� be a piecewise linear function interpolating
the points �3;0��� �=� at GB�LH)( J � for all �=*�H . Set��&âS8X�ÏQ . ßf* �:ySÄN* �A�Dâv���>E
If �ã��� and U 7f��U W¸��4 , then there exists a function á�ya¢ Ç�ä ��å È Ð ��½B� such that á��çæ�á uniformly exponentially.

The best bound one can get from this theorem is obtained for that combination of Q and ß where Q . ß is
maximal. Note that this maximum need not be reached at QÆ�T� .

The next theorem concerns sequences 7�� that are not formed exactly by subdivision, but that are close in the
sense that the difference between 7 � and 1f7 � J 
 goes to zero exponentially.

Theorem 3.3. Let 1 be a subdivision scheme of order �Ý��� and 1 M O�P its Q -th derived scheme, with Q:�Þ� .
Assume there are positive real numbers ¢ , ß such that³³³ 1 M O�P � ³³³ W �/¢�( à � * Ü��p�T�0E
Let rk7 � w be a family of sequences satisfyingU 7 ����
 . 1f7 � U W �/¢�( J<è � * �_�D�0*
for some real number é and let á��=�%G,� be a piecewise linear function interpolating the points �3;"��� �>� at Gf�LH0( J � for
all �=*�H . Set ���âv89�DnpÊ�×��9Q . ßf*�é0�#* �êyvÄN* �A�/âv�I�>E
If �ã��� and U 7f��U W¸��4 , then there exists a function á�ya¢ Ç�ä ��å È Ð ��½B� such that á��çæ�á uniformly exponentially.

This theorem says that the regularity of the limit function of a family of sequences approximately generated by
subdivision is bounded both by the regularity of the subdivision scheme and the speed of the approximation. The
more general form of this theorem and is proof is given in Theorem 4.4.

Note that this is similar to standard results linking smoothness of functions with the decay of their wavelet
coefficients, where the wavelet coefficients at level � correspond to the difference between 7 ����
 and 1f7 � ; in the
wavelet case the subdivision operator 1 is determined by the low-pass filter corresponding to the wavelet basis.

Next we show that if you apply a smooth, but possibly non-linear function ^ to a family of subdivision se-
quences, you get an approximate family of subdivision sequences where the speed of approximation depends on
the regularity of ^ . This is important because this typically will happen to the coordinate functionals in a normal
scheme.

Theorem 3.4. Let 1 be a subdivision scheme of order � and let r�7 � w be generated by 1 . Suppose that ^ëy¢�ì ��
 �3½f� with íîyÅÄ and ���Tíî��� ; suppose also that
³³³ 7�M ïzP� ³³³ W �/¢ for ���Tð��Tí and for ��RT� . ThenU ^_��1f7���� . 1f^_�37�����U W �/¢�( J � Ç ì ��
 È E

The fully general version of this theorem is given in Theorem 4.7
We next go into more detail on the construction of a normal multiresolution for a smooth curve

�
in the plane.

Even though the normal multiresolution algorithm does not depend on any parameterization, to formulate the
theorems it is convenient to parameterize

�
by one of the ; - or ñ -coordinates. A piecewise ¢ 
 curve can always

be broken up into adjacent finite length pieces, possibly overlapping, that can be well parameterized by the ; -
coordinate or by the ñ -coordinate; by restricting ourselves to these different pieces separately, and interchanging
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the names of the two coordinates, we may thus assume, without loss of generality, that the curve
�

is parameterized
by its ; -coordinate, so that � �Ir+�%;�*,ò��3;"����sÃ;ayv{0w�*
where ò is a smooth function and { is a bounded interval. In general, we assume that ò is at least ¢ 
 ��{�� , but
occasionally consider the more general case where ò is Hölder continuous with exponent óÃ��� .

Having reduced
�

(at least locally) to the graph of a function òf�%;"� , we can rephrase the basic step in the
construction of a normal multiresolution given in Figure 2. We start with a sequence 7 � on level � and defineô � �[òf�37���� . Next we use an interpolating subdivision scheme 1 to compute the sequences 7V ����
 �õ1f7�� andô  ����
 �$1 ô � . In general ô  ����
 is not equal to òf�37z ����
 � , but as we will see they are close. Next we draw the line
through �3;< ����
�� ���#��
 *}ñ) ����
�� ������
 � that is perpendicular to the line connecting �%; ��� � *pñ ��� � � and �%; ��� ����
 *Añ ��� �#��
 � .
This line and the piece of

�
between �%;2��� ��*§ñk��� �5� and �3;���� ����
>*§ñk��� ����
	� have to intersect in at least one point. We

choose one of the intersection points to be the new point �%; ����
�� ������
 *fñ ����
�� ������
 �/òf�%; ����
�� ������
 �,� 
 . Given that ô �
is always òf�37���� , we focus our attention on the convergence of the 7f� sequences. We will call a family of sequencesr�7���w defined by the above procedure, a family of sequences generated by the �@1�*¡ò-� normal scheme.

To have a proper parameterization, we need that all 7f� sequences are increasing, i.e., ?A7���RT� . In general there
are very few subdivision schemes that always preserve increasing sequences. In our case, the 7�� are obtained by
a nonlinear perturbation of subdivision so the situation is even more complex. Fortunately, there are conditions on
both the subdivision scheme and the initial sequence that guarantee that the 7 � will be increasing. The following
theorem introduces a non-uniformity measure ö of a sequence which is the maximal ratio of the length of two
neighboring intervals; it states that if the non-uniformity of the initial sequence is bounded and the subdivision
scheme preserves this bound, the sequences 7 � generated by the normal scheme will be increasing and converge
exponentially.

Theorem 3.5. Let 1 be an interpolating subdivision scheme. Let the non-uniformity öb��7B� be defined byöb��7B�§89�/Z�\0]� n_o5qS÷ U���?A7B�,�)UUt�@?A7B� ����
 U * U���?A7B�,����
>UU���?A7B� � UAø E(3.3)

Suppose there is an Ù such that for every strictly increasing 7 with öb��7B�V��Ù , 1f7 is strictly increasing as well,
and satisfies öb��1f7B�N�Ãöb�37B� . Suppose 7f� is strictly increasing, with sufficiently small U ?A7z�+U W and öb��7����N�DÙ .
If ò|yv¢ � ��½�� , then 7 � is strictly increasing for all � , with öb�37 � �§�TÙ for all � , and the 7 � converge exponentially,
i.e., there is a �}��� so that U ?A7���U W �T� � U ?A7���U W�* Ü��=E
If 1T�ê1<� the same conclusions follow if ò is merely Lipschitz continuous, without the smallness assumptions onU ?}7 � U W and öb��7 � � .

This theorem in its full generality, which is more explicit on how small U ?A7N�+U W needs to be, will be proven in
Theorem 5.7.

Combining the results of Theorem 3.4 and Theorem 3.5, we can prove that the normal approximation proce-
dure defines a new, smooth parameterization of

� ��r+�%;��3G,��*,ò��3;��%G,���,�#s,GÎyã~ �)*	�#�@w , where the smoothness of the
reparameterization is governed by the smoothness of ò as well as the regularity of the subdivision scheme.

One of the important features of a normal multiresolution is the decay of the offsets in each of the normal
directions. We will refer to these as wavelet coefficients ù � which are defined asú ��� �C�:û �3;�����
�� ���#��
 . ;  ����
�� ������
 � � ��3ñk����
�� ������
 . ñ  ����
�� ������
 � � E
The rate of convergence to 0 of the wavelet coefficients is then determined by the order � and regularity of 1 , and
the smoothness of

�
. The next theorem states these results, proved in more generality as Theorem 6.3.ü

Our results below do not depend on which of these points is selected. For definiteness we shall assume that there is a rule established
which uniquely picks out one of the solutions, should there be many. For instance we could systematically pick the solution closest to the
predicted point.
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Theorem 3.6. Let 1 be an interpolating subdivision scheme of order �ã�I� and 1 M O�P its Q -th derived scheme, withQS��� . Assume there are positive real numbers ¢ , ß such that³³³ 1 M O�P � ³³³ W �D¢�(�à � * Ü������0* ßÍ�|Q . �>E
Let r�7���w be a family of increasing sequences generated by the ��1�*,ò<� normal scheme, for which there is a �Å�ã�
so that U ?}7 � U W �D¢¶� � E
Let ý=�=�3G,� be a piecewise linear function interpolating the points ;!��� � at G��[H0( J � yj~ �0*	�	� . If òLy�¢ þ���½�� withóÃ�D( then ý � �3G,� converges uniformly exponentially to ý<�%G,� and ý�ya¢Cÿ Ð ��~ �)*	�	�Ô� , where �ê89��nAÊ¨×��tQ . ßf*�ó�� .

In addition let ��Öz89�ãnpÊ�×��9Q . ßvI�=*,óB*,�}� . Then for all Õ R:� there is a constant ¢�� for which the wavelet
coefficients, ú ��� ��� û �%;0����
�� ������
 . ��1f7����,������
	� � ��%ò��3;�����
�� ������
k� . ��1�òf�37������¡������
�� � *
satisfy U ùp��U W �D¢ � ( J � Ç ÿ�Ò J � È *
Finally if �:RI� , let ��Ö Ö2�/npÊ¨×���� . �=*	�k� . Then for sufficiently large � and arbitrary Õ RD� , there is a constant ¢��
such that öb�37���� . ���D¢ � ( J � Ç ÿ�Ò Ò J � È *
with öb��7���� defined as in (3.3).

Finally, we look at the stability of normal multiresolution. In particular we estimate how errors or round-offs
in the wavelet coefficients affect the “reconstruction” of

�
. For pairs of sequences, � �m��7§* ô �çy£6 � , we use the

norm U � U �#� W���Z,\0]� û ; � � �ñ ��
Theorem 3.7. We make the same assumptions as in Theorem 3.6 with the added provision that if QÏRê� we needß���Q . � . Let � � be the vector valued sequences defined in Figure 2 and let

�� � be the corresponding sequences
obtained when the curve is reconstructed from

�� � with the perturbed wavelet coefficients
�ù � . SupposeU � � . �� �+U �#� W�� ��� * U ùp� . �ùp��U W � ��� ( J �
	 * i�RT�0E

Then there is a constant ¢ independent of � , � � and
� �

such that for �_RD� ,U � � . �� ��U �	� W �/¢p� ���  ��� �#E
The more general version is given in Theorem 6.4. In particular, as shown in the discussion at the end of this

theorem, this makes it possible to threshold wavelet coefficients and still obtain a high quality reconstruction.

4. PERTURBING A LINEAR SUBDIVISION SCHEME

Certain linear subdivision schemes produce sequences that converge to smooth functions, as shown in e.g.
[5, 7, 1, 3, 4, 2]. For instance, starting from an arbitrary 7�� in · W , the 4-point (interpolating) subdivision scheme
of [5, 7] produces sequences 7�� in · W such that, for all � ,Z�\0]� U � ��( J � H0� . ;���� �)U+�D¢�( J � *
where

�
is a function in ¢ � Ð depending on 7 � ; many other subdivision schemes have similar convergence prop-

erties. In this section, we shall consider sequences 7 � that are “almost” produced by such a linear subdivision
process, in the sense that the difference between 7 ����
 and 1B7 � is small, and decays exponentially in � as � grows
(see (4.1) below). We shall see that such perturbations still converge to a continuous limit function; moreover, pro-
vided the rate of decay of the perturbation is sufficiently fast, the smoothness of the limit function is not affected
by the perturbation.
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4.1. General Assumptions. Let r�7���w be a family of sequences, and suppose that there is a stationary subdivision
scheme 1 , and constants éÅR�� and �"*�ÌÏ�D� such thatU 7 ����
 . 1f7 � U W ���!���¶/�k� Ë ( J!è � * �����)E(4.1)

The order of the (linear, stationary, local and bounded) subdivision scheme 1 will always be denoted by � ; we
shall consider only 1 for which �ª�¸� . We shall be interested in · W -bounds on ��1 M ´ P � � . We have of course for�p���}��� , ³³³ 1 M ´ P � ³³³ W � ³³³ 1 M ´ P ³³³ � W s
often we can provide tighter bounds. If the spectral radius  ´ of 1 M ´ P in · W is strictly smaller than

³³ 1 M ´ P ³³ W , then it

follows from the well-known identity ������ ´ ����Ê¨nA�
� W 
� ����� ³³³ 1 M ´ P � ³³³ W that we also have³³³ 1 M ´ P � ³³³ W �/¢T~� ´ �,�� Õ ��� � *
where Õ R�� is arbitrary, and ¢ depends on Õ . Estimates of this type will be used extensively below. In what
follows, we shall assume that we pick one particular Q with �Æ��QÏ��� and a corresponding real number ß&�I� ,
such that ³³³ 1 M O�P � ³³³ W ���	(�à � * Ü��p�D�0*(4.2)

for some � independent of � ; we shall derive all our other estimates form (4.2). By allowing ourselves the freedom
to choose Q�u�b� , some of the derived estimates may be tighter than if we picked QÍ�:� . If (4.2) is satisfied for
the pair �9Q�*,ß�� , then we shall say that ß is Q -suitable. We will see that if ß is Q -suitable, then the Hölder regularity
of the limiting functions obtained by applying pure subdivision to arbitrary initial sequences is at least Q . ß , up
to possible logarithmic factors in the estimates. In the perturbation case, both Q . ß and é play a role (see below).
This importance of the quantities Q . ß motivates the following definitions. For each QSyÍr��>*	E�E	E!*¡�_w , we define� O ��Z,\)]<r�Q . ßfsfß£�D�0* there exists � RT� such that (4.2) is satisfied w=E
Clearly, all ßjRIQ . � O are Q -suitable; Q . � O itself may or may not be Q -suitable, depending on Q and 1 . We
define the smoothness � to be the maximum of these � O :� 89�Dn_o5q!r � O s2QÆ�b�>*	E�E	E<*,�_w=E
The Q at which this maximum is achieved is called the optimal Q , and (occasionally) denoted by Q������ . If there are
two different maximizing Q�
 , Q2� for which � O © � � O ¬ � � , but for one of them Q � . � is Q!� -suitable, then we
pick this Q as the optimal one. We define the smoothness � of the subdivision scheme to be the value of � O for the
optimal Q . In some theorem statements, it is useful to use the notation"� 89� # � * Q$����� . � is Q$����� -suitable *� J * otherwise E
4.2. A useful estimate for geometric series. For convenience we define the geometric series function% ���2*�&f*�Ì��z�(' J 
g� µ � H Ë � � *(4.3)

(where by convention � � � � .) We will use this function in the subsequent sections, together with some well-
known facts that we summarize in
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Proposition 4.1. For �2*�Ì��T� and &Íy*) � the function in (4.3) satisfies% ���"*+&f*�Ì��§�-,./ .0 ¢p�����1& Ë � ' * ��RI�>*& Ë ��
 * �A�:�>*¢p���"*�Ì���* ���I�>*(4.4)

for some constants ¢ . Moreover,
%

is increasing in all of its arguments; if ����2 , there is a constant ¢ independent
of & such that % ���"*+&f*�Ì 
 �N�D¢p���2*32k*�Ì 
 *�Ì � � % �42k*�&f*�Ì � �#E(4.5)

Finally, for �A��&�
 ��&-� , ' ¬ J 
g� µ ' ©0H Ë � � �j�¡��5& 
 � Ë � ' © �,�� % ���2*�& � . & 
 *�Ì��,�#E(4.6)

4.3. Estimates and Regularity Results. We start by establishing some estimates in preparation for our main goal
in this subsection: Theorem 4.4 below.

Theorem 4.2. Let r�7���w , Ì , � , é , 1 , � be given as in Section 4.1; pick QSy£r=�>*�E	E�E<*¡�_w and let ß be Q -suitable. Set¶�Dn_o�q<�tQ . é-*,ß��#E
Then there is a constant ¢ , independent of � , � and 7 M ´ P� , such that³³³ 7 M ´ P� ³³³ W � ¢76 ³³³ 7 M ´ P� ³³³ W ��98;:@��|�=<?>	( � Ç ´ J O �A@ ÈCB� ¢ 6 ³³³ 7NM ´ P� ³³³ W �� 8 # � < > ( � Ç ´ J O �A@ È *D��ÍQ . �+*�=* ��ÍQ . �+* �p���A�|Q�*(4.7)

where E
´ �F,./ .0 �)* ßÃR|Q . é<*Ìv/�=* ß|�ÃQ . é<*Ì�* ßÃ�|Q . é<*  # �>* ¶��Q . �}RT�)*�0* otherwise E(4.8)

Proof. Let us start by defining the residual sequencesG ����
 89�L7 ����
 . 1f7 � * G � ��7 � s
observe that G M O�P����
 �L7zM O�P����
§. 1 M O�P 7NM O�P� E
By induction on the simple relationship³³³ G M ´ ��
 P����
 ³³³ W �L( ����
 ³³³ ? G M ´ P����
 ³³³ W ���	( ����
 ³³³ G M ´ P� ³³³ W *
and (4.1), we get ³³³ G M O�P� ³³³ W �H�	( � O U G � U W ���#�5� Ë ( J � Ç èkJ O	È * Ü0�pRD�0E(4.9)
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Together (4.9) and (4.2) give us for �_�T� ,³³³ 7�M O�P� ³³³ W � ³³³ 1 M O�P 7NM O�P� J 
  G M O�P� ³³³ W � ³³³ 1 M O�P � 7NM O�P� J � �1 M O�P G M O�P� J 
  G M O�P� ³³³ W� ³³³³³ �g´,µ � 1 M O�P ´ G M O�P� J ´ ³³³³³ W � ³³³ 1 M O�P � ³³³ W ³³³ G M O�P� ³³³ W I�#� � J 
g ´,µ � ³³³ 1 M O�P ´ ³³³ W �¨� . ��� Ë ( J Ç � J ´ È Ç èkJ O#È
� �	( à � ³³³ 7 M O�P� ³³³ W &¢¶� � J 
g ´,µ � ( à ´ ��� . ��� Ë ( J Ç � J ´ È Ç è5J O	È � �	( à � ³³³ 7 M O�P� ³³³ W &¢¶��( à � % �@( O J!è5J à *�� ��>*�Ì��
� �	( à � ³³³ 7 M O�P� ³³³ W &¢¶�J,./ .0 ���¶/�k� Ë ( �

Ç O J!è È *�ßÍ�|Q . é!*���¶/�k� Ë ��
 ( à � * ßa�ÃQ . é!*( à � * ßÍR|Q . é!* � ¢ 6 ³³³ 7 M O�P� ³³³ W &� 8 �,��|� <�K ( @�� ��*(4.10)

which agrees with (4.7, 4.8) when �p�/Q . Suppose now that (4.7, 4.8) holds for some �Æ�&Q . Induction will then
yield the result if we can prove that this implies (4.7, 4.8) is true also for � . �A�L� . To show this, we first fix an
index H_�}8=H ����
 , and construct a sequence of indices r5H 	 w � 	 µ � such that H 	 yÅ{ �?L4M © . Then

;�M ´ J 
 P����
�� � �/;-M ´ J 
 P��� � Á  �g 	 µ � 6 ;�M ´ J 
 P	���
�� �?L4M © . ;�M ´ J 
 P	�� �?L 8
and we can estimate ³³³ 7NM ´ J 
 P����
 ³³³ W � ³³³ 7�M ´ J 
 P� ³³³ W  �g 	 µ � Z�\0]� n_o5qh�¤>¥ ¦ ³³³ ;�M ´ J 
 P	���
�� � . ;�M ´ J 
 P	�� h ³³³ E
The desired result then follows from Lemma 4.3 (below) with � 
 �/� and noting that

³³³ 7 M ´ P� ³³³ W �D( ³³³ 7 M ´ J 
 P� ³³³ W .

Lemma 4.3. With the assumptions and notation of Theorem 4.2, if (4.7, 4.8) holds for some �I�FQ then for�p�Í�5
 �Ã��� ,� ¬ J 
g	 µ � © Z�\0]� n_o5qh�¤>¥ ¦ ³³³ ;�M ´ J 
 P	���
�� � . ;�M ´ J 
 P	�� h ³³³ �
¢ 6 ³³³ 7NM ´ P� ³³³ W �� 8;: ( J � © ��,��|�5
	� < > ( � © Ç ´ J O J 
¡�A@ È 6 ����¨��� . �5
�� < > Ð © ( Ç � ¬ J � © È Ç ´ J O J 
,��@ È 8 B E

Proof. Since � . ���&� the order of 1 M ´ J 
 P is at least one, and we can use (3.2) in Proposition 3.1. Together with
(4.9) and the hypothesis that (4.7, 4.8) is true for � , we then get� ¬ J 
g	 µ � © Z,\)]� npo�qh�¤>¥�¦ ³³³ ; M ´ J 
 P	���
�� � . ; M ´ J 
 P	�� h ³³³ � � ¬ J 
g	 µ � © Z�\0]� n_o5qh�¤>¥�¦ ³³³16 1 M ´ J 
 P 7 M ´ J 
 P	 8 � . ; M ´ J 
 P	�� h ³³³  � ¬ J 
g	 µ � © ³³³ G M ´ J 
 P	���
 ³³³ W

� � � ¬ J 
g	 µ � © ( J 	 ³³³ 7 M ´ P	 ³³³ W 5�#� � ¬ J 
g	 µ � © i Ë ��( ´ J!è5J 
 � 	� � 6 ³³³ 7 M ´ P� ³³³ W &� 8 � ¬ J 
g	 µ � © ( J 	 : ���i < > ( Ç ´ J O ��@ È 	 B I�#� � ¬ J 
g	 µ � © i Ë ( Ç ´ J O J 
,�ONà È 	 *
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where we set
�ßÍ8X��Q . é so that ��/n_o5q<�%ßf* �ß�� . We now apply (4.6) in Proposition 4.1,� ¬ J 
g	 µ � © Z�\0]� n_o5qh�¤>¥�¦ ³³³ ;-M ´ J 
 P	¡��
�� � . ;-M ´ J 
 P	�� h ³³³ �

¢ 6 ³³³ 7 M ´ P� ³³³ W &� 8P: ( J � © �¡�N % �¡�k'>(�*�� � . � 
 *��=�,���,��|�5
�� < > ( � © Ç ´ J O J 
¡�A@ È �¡�� % �@( ´ J O J 
,��@ *@��� . �5
5* E ´ ���,��|�5
�� Ë ( � © Ç ´ J O J 
,�ONà È �¡�� % ��( ´ J O J 
¡�ONà!*���� . �5
5*�Ì�� B E
Now, if ß£� �ß , then ¶� �ß and

E
´ �TÌ , and by Proposition 4.1,� ¬ J 
g	 µ � © Z,\)]� npo�qh�¤>¥�¦ ³³³ ; M ´ J 
 P	���
�� � . ; M ´ J 
 P	�� h ³³³ �D¢ 6 ³³³ 7 M ´ P� ³³³ W &� 8;: ( J � © A�,�k§� 
 �+< > ( � © Ç ´ J O J 
¡��@ È �,�k % ��( ´ J O J 
¡�A@ *�� � . � 
 * E ´ �,� B E

Similarly, if ßÍR �ß , we have that ��/ß and by (4.5) in Proposition 4.1 we get the same result. Finally, for �_�T� ,%|Ú ( ´ J O J 
¡��@ *@�=* E ´ Û �H�;,./ .0 � < > ( �
Ç ´ J O J 
,��@ È *D}R£Q . �V/��*� < > ��
 * ��ÏQ . �V/��*�>* }�£Q . �V/��* � � 6 ��|� <?> Ð © ( � Ç ´ J O J 
¡��@ È 8 E

This concludes the proof.

The estimate in Theorem 4.2 can now be used to prove a theorem about existence and regularity of the subdivi-
sion limit function.

Theorem 4.4. Let r�7���w , Ì , � , é , 1 , � , Q and ß be given as in Section 4.1. Suppose ;2��� � is defined precisely for
those �=*�H such that G���� �|�ÞH0( J � y�{ , where { is a (possibly infinite) interval. Let á��=�3G,� be a piecewise linear
function interpolating the points �%;2��� �>� at �%G@��� ��� . Set¶��n_o5q<�9Q . é!*�ß���* �j��Q . ¶���/�â-* �êyvÄN* �}�/âv�I�>E(4.11)

If �[Rj� and U 7 � U W �:4 , then there exists a function áLy&¢Cÿ Ð ��{�� such that á � æ á uniformly exponentially,
and á Ç�ä È satisfies the Hölder inequalityU á Ç�ä È �%G��?�G,� . á Ç�ä È �3G,�	U0���>U ?}G	U å �¡���U1����� U ?}G	U¨U � < * Ü!G�*�G-�?}G�yv{2*(4.12)

where E
�Q,./ .0 �0* ßÍR|Q . é!*ÌÅ��>* ßa�ÃQ . é!*Ìz* ßÍ�|Q . é!*  # �=* �yR) � *�)* otherwise E(4.13)

Proof. Let áNM ´ P� �%G,� be the piecewise linear function defined on { that interpolates the points 6 ;-M ´ P��� � 8 at �3G@��� �>� for�Í�S�a�$� (extrapolated as a constant at the boundaries when necessary). By Theorem 4.2 these functions are
bounded uniformly for all � . Moreover, for �=
 �Ï��� ,³³³ á M ´ P� ¬ . á M ´ P� © ³³³ W � � ¬ J 
g	 µ � © Z,\)]À ³³³ á M ´ P	���
 �%G,� . á M ´ P	 �%G,� ³³³ � � ¬ J 
g	 µ � © Z�\0]� ³³³ á M ´ P	���
 6 H0( J Ç 	���
 È 8 . á M ´ P	 6 H0( J Ç 	���
 È 8 ³³³

� � ¬ J 
g	 µ � © Z,\)]� ³³³³ ; M ´ P	¡��
�� � . �( 6 ; M ´ P	��UT¨�WV��+X �; M ´ P	��UY �WV��+Z 8 ³³³³ � � ¬ J 
g	 µ � © Z,\0]� n_o�qh�¤>¥�¦ ³³³ ; M ´ P	���
�� � . ; M ´ P	�� h ³³³ E
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Since ���D�ê�£Q we can use Lemma 4.3 to estimate this,³³³ á�M ´ P� ¬ . á�M ´ P� © ³³³ W � ¢ 6 ³³³ 7NM ´ ��
 P� ³³³ W �� 8P: ( J � © ��,�N|�5
	� < ( J � © Ç�ä ��å J ´ È 6 ��L����� . �k
�� < > ( J Ç � ¬ J � © È Ç�ä ��å J ´ 8 B� ¢ Ú ( ´ ��
 U 7 � U Wj&� Û : ( J � © L�¡��£� 
 � < ( J � © Ç¨ä ��å J ´ È 6 ����¨� � . � 
 � <?> ( J Ç � ¬ J � © È Ç�ä ��å J ´ È 8 B *(4.14)

which tends to 0 when � 
 *�� � æ 4 . Hence rká M ´ P� w is a Cauchy sequence, and the limit á M ´ P y/¢ � �3{+� exists for�p���}�D� . Next, after letting � � æY4 in (4.14) we get³³³ á M ´ P . á�M ´ P� ³³³ W �H�,� < ( J � Ç�ä ��å J ´ È * �_RD�0* �p���}�T�§E
This shows that the convergence rate is uniformly exponential. Then, taking ?�G such that ( J � ��U ?}G	U-�ê( J ����

with ��R�� and using Theorem 4.2 again,³³³ á M ä P �%G��?�G,� . á M ä P �%G,� ³³³ W � ³³³ á M ä P �3G-�?}G,� . ázM ä P� �%G��?}G,� ³³³ W  ³³³ ázM ä P� �%G��?}G,� . á�M ä P� �%G,� ³³³ W ³³³ á�M ä P� �%G,� . á M ä P �3G,� ³³³ W� �,� < ( J ��å  ³³³ ázM ä P� �%G��?}G,� . á�M ä P� �%G,� ³³³ W� �,� < ( J ��å �( J � ³³³ 7NM ä ��
 P� ³³³ W ���,� < ( J ��å� �>U ?}G	U å UC�[�\� U ?}G	U¨U <+E
This shows (4.12) for U ?�G	U0���5'�( . Finally, for U ?}G	U+�j�k'>( , (4.12) holds by the boundedness of á M ä P . It remains to
note that the functions á M O�P are related to á as Q�Ø á M O�P �3G,�z��] O áN�3G,��'^]>G O [1, 6].

In Theorems 4.2 and 4.4 we let ß take an arbitrary Q -suitable value. The results are of course sharper for lower ß .
If we take QÅ�&Q �
�W� , and if Q . � is itself Q -suitable, then we can simply replace ß by Q . � everywhere. If Q . �
is not Q -suitable, then we can take ßÍ�TQ . �  Õ where Õ is arbitrarily small. On making these substitutions, we
obtain the following corollary from Theorem 4.4.

Corollary 4.5. The expression (4.11) can be replaced by�b��nAÊ¨×�� "� *�é0�#* �b�}8>�/�â-* �êyvÄN* �}�/âv�I�>E(4.15)

We then have á�yS¢¶ÿ Ð ��½f� and (4.12) holds with this â and the following

EE
� ,./ .0 �)* � �/é�*Ìv/�=* � ��é�*Ì�* � R/é�*  # �=* �ãy|r��>*	E�E	E!*3Q . �>w=*0QS�/(�*�)* otherwise E(4.16)

Remark: With the notation introduced in Theorem 4.4 and Corollary 4.5, we can rewrite (4.7, 4.8) as³³³ 7NM ´ P� ³³³ W ��_��>×)Z+` 6 ³³³ 7NM ´ P� ³³³ W &� 8 # �>* �p�����D�§*� < ( � Ç 
 J å È *a���L�D��>E(4.17)

This estimate will be used below, in this form.

4.4. Approximate Commutation. In this section we explore the properties of the family of sequences ^_��7���� ,
where ^ is a smooth function, and the 7 � are produced by subdivision, 7 ����
 �L1f7 � . We shall see that the ^_�37 � �
constitute a family that is “almost” produced by subdivision. More precisely, we shall show that they satisfy an
estimate of type (4.1), i.e.U ^_�37 ����
 � . 1f^_��7 � �	U W �êU ^_�@1f7 � � . 1f^_�37 � ��U W �H��� å ( J � è *(4.18)
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with â and é to be determined below. It then follows that all the estimates of Section 4 can be applied to the ^_��7���� ,
or to any family of sequences � ô � � for which

³³ ô ����
 . 1 ô � ³³ W is bounded by (4.18). This fact shall be exploited
later. We start by proving a lemma for a fixed level.

Lemma 4.6. Let 1 be an interpolating, stationary, local, linear and bounded subdivision scheme of order � .
Suppose ^ãyv¢ ì � Â �3½f�#* íîyvÄ�* �p�T¿��I�>E(4.19)

If íî��� and �m��� , ³³ Ú ^_��1B7�� . 1f^_��7B� Ûcb ³³ � ¢&n_o�q� ¤>¥ed U���?A7B� � U ì � Â �/¢DU ?A7VU ì � ÂW(4.20)

for all f , where ¢ depends only on ^ and on 1 . If íîR�� , �ãR/í , andU ? ï 7VU W��I�>* ����ð��/íI*(4.21)

then U ^_�@1f7B� . 1f^_�37f�	U W�� ¢|n_o�q 6 U ?}7VU ì � ÂW * ³³ ? ì 7 ³³ � W *hg ³³ ? ì 7 ³³ W *hg ì ��
 8 *(4.22)

where gj89� n_o5q
 ² ï ² ì J 
 U ? ï 7VU 
+V ïW E
Proof. Let ô �[^_��1B7B� . 1f^_��7B� . Since ^ yL¢Cì � Â �3½f� we can Taylor expand ^_��7B� around �@1f7B� b , with f
fixed. By also using the fact that 1§d}�:d , we getñ b � i<1 ìg' µ 
 �37 . �@1f7f� b � ' ^ Ç ' È �,�@1f7B� b �&fØ j b L��1BÙA��7f�,� b� ìg' µ � ��1���7 . ��1f7B� b � ' � b ^ Ç ' È �,�@1f7B� b �&fØ L��1fÙp��7B�,� b *(4.23)

and the rest term, Ù , satisfies the estimate U Ùp�%;!�	U��m¢_U ; . �@1f7B� b U ì � Â . (Note, (4.23) is true also for í �¸� ,
with no contribution from the sum.) Using (3.1, 3.2) in Proposition 3.1 we getUt�@1fÙp�37B��� b U+�/¢�npo�q� ¤>¥1d U Ùp�%; � �	U+�/¢�n_o5q� ¤>¥1d U ; � . �@1f7B� b U ì � Â �D¢Ynpo�q� ¤>¥1d U���?A7B� � U ì � Â �T¢ëU ?A7VU ì � ÂW *(4.24)

which shows (4.20), the case when íî�I� .
For the case íîRI� we start by making a special discrete Taylor expansion around index f ,7Í� ì J 
gï µ � �@? ï 1f7f� bð£Ø � ï �@(>` . f£�- G *(4.25)

where �¶� �:�>* � ï �3;"�z��;��3; . �k� k�kck��3; . ðm/�k��* ð�RT�)*(4.26)

and G is defined as the residual of the expression. (We keep in mind that G also depends on f , but for simplicity
we do not make it explicit in the notation.) Before continuing, we derive an estimate for the residual G . The
polynomial � ï in (4.25) corresponds to ; ï in the Taylor expansion for the continuous case. We use it here since
the effect of applying ? to � ï mimics the behavior of the continuous differentiation operator in the sense that?p� ï ��` . fÍ�N�bðv� ï J 
 �@` . f£� , which is an easy consequence of (4.26) and (2.1). Induction on this relation
gives ? ' � ï ��` . f£�f� ,./ .0 ïmlÇ ï J ' J 
 È4l � ï J ' �@` . fÍ��*n&Í�Tð£*ð£Ø¨d2* &a��ð£*�0* &ÍRTð£E
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Then, since � ï ��(>` . f£� is a linear combination of rk� ï Ò �@`���w ï Ò ² ï , clearly ?_ìÆ7Ï��?Aì G . For �p�I&Í�Dí . � ,
we use the fact that 1 is interpolating of order �$R/í . � , and compute

? ' 1f7 � ì J 
gï µ � ��? ï 1B7�� bðÍØ ? ' 1B� ï �@(>` . f£�-�? ' 1 G� ì J 
gï µ � ��? ï 1B7�� bðÍØ ? ' � ï �@` . fÍ�-&? ' 1 G� ��? ' 1f7f� b d  ì J 
gï µ ' ��
 �@? ï 1f7f� b�%ð . & . �k��Ø � ï J ' �@` . fÍ�-&? ' 1 G E
By taking the f -th element of this sequence we conclude that6�1 M ' P ? ' G 8 b ��( ' �@? ' 1 G � b ���0* &S���0*�E	E	E<*�í . �>E
Then, using (3.2) in Proposition 3.1 we haven_o�q� ¤>¥ed ³³ ��? ì J 
 G � � ³³ �bn_o�q� ¤>¥ed ³³³ ��? ì J 
 G � � . 6 1 M ì J 
 P ? ì J 
 G 8 b ³³³ �/¢&n_o�q� ¤>¥ed ³³ ��? ì G � � ³³ E
By induction we get the estimate of the residual around the index f ,n_o�q� ¤>¥ed U ¿��0U��D¢�n_o5q� ¤>¥1d ³³ �@? ì G �,� ³³ ��¢�n_o5q� ¤>¥1d ³³ �@? ì 7B��� ³³ �D¢ ³³ ? ì 7 ³³ W E(4.27)

Going back to (4.23) we take & such that (A�I&Í�/í and consider

1���7 . ��1B7B� b � ' � 1�i ì J 
gï µ 
 ��? ï 1f7f� bðÍØ � ï ��(>` . f£�� G j '
� 1 G ' �1�i ì J 
gï µ 
 �@? ï 1B7�� bðÍØ � ï �@(>` . f£� j '

5' J 
g 	 µ 
 ÷ & i ø 1poq G 	 i ì J 
gï µ 
 ��? ï 1f7f� bð£Ø � ï ��(=` . fÍ� j ' J 	�rs�}8ut 
 vt � vtxw>E
For the first term t 
 we get from (4.27),U y 
b U>�ãUt�@1 G ' � b U��T¢Tn_o5q� ¤>¥1d U ¿ � U ' �/¢ ³³ ? ì 7 ³³ ' W �D¢ ³³ ? ì 7 ³³ � W E(4.28)

Recalling that 1 M ï�P is bounded for ð��Dí . � we furthermore haveU���? ï 1f7f� b U=�êU ( J ï ��1 M ï�P ? ï 7f� b U+���BU ? ï 7VU W�*(4.29)

and we get for t w ,
U y wb U�� ¢P' J 
g 	 µ 
 n_o5q� ¤>¥1d U ¿ 	� U$i ì J 
gï µ 
 U ? ï 7�U W U � ï ��(=H . fÍ�	U j ' J 	� ¢ ³³ ? ì 7 ³³ W ' J 
g 	 µ 
 n_o5q
 ² ï ² ì J 
 U ? ï 7�U4z Ð L{W �/¢Pg ³³ ? ì 7 ³³ W E(4.30)
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Finally, for the second term t � , let ó|�:�3ó!
�*	E�E	E<*�ó$|¶� denote a multi-index. Then, since 1 is interpolating of order�mRTí and � ï �3���B��� for ð���� ,y �b � }~�1¸g» þ » µ ' &fØóBØ ì J 
�ï µ 
 ÷ �@? ï 1f7f� bð£Ø ø þ { � ï ��(>` . f£� þ {��� b
� }��~ 1 g� ��� � z��� Ð ©{ � © ï þ {�� ì &fØóBØ ì J 
�ï µ 
 ÷ ��? ï 1f7B� bðÍØ ø þ { � ï �@(>` . f£� þ { ����� b E

By (4.29) we then haveU y �b_U�� ¢�npo�q� ¤>¥ d g� ��� � z� � Ð ©{ � © ï þ {�� ì ì J 
�ï µ 
 U ? ï 7�U þ {W � ï �@(>H . fÍ� þ {
� ¢ g� ��� � z� � Ð ©{ � © ï þ { � ì ì J 
�ï µ 
 6 U ? ï 7VU 
�V ïW 8 ï þ { �D¢ g� ��� � z� � Ð ©{ � © ï þ { � ì ì J 
�ï µ 
 g ï þ { �/¢�g ì ��
 E(4.31)

In conclusion, (4.22) follows from (4.24) and (4.23) together with the bounds (4.28, 4.30, 4.31).

Theorem 4.7. Let 1 be an interpolating, stationary, local, linear and bounded subdivision scheme of order � and
let r�7���w be generated by 1 . Suppose^ãyv¢ ì � Â �3½f�#* íîyvÄ�* �p�T¿��I�>E
If íî��� , �ã�I� and

³³³ 7NM 
 P� ³³³ W �Ï� Ë ( �
	 , thenU ^_�@1f7 � � . 1f^_�37 � �	U W ��_��>×)Z+`�� Ë Ç ì � Â È ( J � Ç ì � Â È Ç 
 J 	 È E(4.32)

If íîR�� , �ãR/í and³³³ 7 M ï�P� ³³³ W ��_W�=×)ZC` # �>* �¶��ðª�DíI*� Ë ( �
	 *�ðÞ�LíI* Ì��D�0* �p�Di��/íI*(4.33)

for ��R�� , then

U ^_�@1f7 � � . 1f^_�37 � ��U W �H_W�>×2ZC`�,./ .0 ( J �
Ç ì � Â È * �p�DiC�L� . ¿}�/í . �=*� Ë ( J � Ç ì ��
 J 	 È *î�p��� . ¿��/i��/í . �=*� � Ë ( J � Ç � ì J �
	 È *ª�p�Dí . � �/i��/íIE(4.34)

Proof. The first result, (4.32), follows directly from Lemma 4.6, since U ?A7VU�Wm�L( J � ³³³ 7�M 
 P� ³³³ W .

For the second part we note that for ���Dð �/í . � , we have U ? ï 7���U W �H� ( J � ï �b� for sufficiently large� , and gL� n_o�q
 ² ï ² ì J 
 U ? ï 7���U 
�V ïW ��_��>×)Z+` npo�q
 ² ï ² ì J 
 ( J � �(_W�=×)ZC`2( J � E
Therefore, n_o5q�6+U ?A7���U ì � ÂW * ³³ ? ì 7�� ³³ � W *hg ³³ ? ì 7�� ³³ W *hg ì ��
 8� �!npo�q 6 ( J � Ç ì � Â È *�� � Ë ( J �¡� Ç ì J 	 È *�� Ë ( J � Ç ì ��
 J 	 È *z( J � Ç ì ��
 È 8� �!npo�q 6 ( J � Ç ì � Â È *�� � Ë ( J �¡� Ç ì J 	 È *�� Ë ( J � Ç ì ��
 J 	 È 8 E
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This shows (4.34).

5. CONVERGENCE OF NORMAL MULTIRESOLUTION APPROXIMATION

5.1. Introduction. We are now ready to attack our analysis of normal multiresolution approximation. Let us first
define our setting. To begin with, we are given a smooth curve

�
in ½ � . This curve can be parameterized in many

ways; often we shall assume it is ¢ 
 , so that we could parameterize it by arc length. It will be more convenient for
us, though, to parameterize it by one of the ; - or ñ -coordinates. A piecewise ¢ 
 curve can always be broken up
into adjacent finite length pieces, possibly overlapping, that can be well parameterized by the ; -coordinate (with,
say, U ]=ñ)'�]=;�U��D( ) or by the ñ -coordinate (with, say, U ]>;<'�]=ñ-U��T( ); by restricting ourselves to these different pieces
separately, and interchanging the names of the two coordinates, we may thus assume, without loss of generality,
that the curve

�
is parameterized by its ; -coordinate, so that� �Ir+�%;�*,ò��3;"����sÃ;ayv{0w�*

where ò is a smooth function and { is an interval, a half-line or all of ½ . For convenience we always assume that
the definition of ò is extended to all of ½ . In many cases, we shall assume that ò is at least ¢ 
 ��{�� (corresponding
to our remarks above); occasionally we shall be more general and assume only Hölder continuity with a Hölder
exponent óÃ�I� .

Given a (possibly finite) sequence 7f� in { , we define ô � �bòf�37���� . For every � we compute the two predictor
sequences 7z ����
 and ô  ����
 using an interpolating stationary linear subdivision scheme 1 ,7  ����
 ��1f7��>* ô  ����
 �L1 ô � E
Those are in general not related via the function ò , i.e. ô  ����
 u� òf�37z ����
 � , but, as we will see, the sequencesô  ����
 and ò���7  ����
 � will be close. In a normal multiresolution we first determine, for every H , the line through
the point �%;< ����
�� ������
 *¶ñ) ����
�� ���#��
 � that is perpendicular to the line connecting �%;"��� �+*¶ñk��� �5� and �%;0��� �#��
>* ñ5��� ����
	� ;
the intersection point of this normal line and the curve

�
gives the new point �%;!����
�� ������
>*�ñ5����
�� ������
�� . (This is

illustrated in Figure 3.) The ; -coordinate of this new odd-indexed point thus satisfies�3; ����
�� ������
 . ;  ����
�� ������
 �	��?A7 � � � L�%ñ ����
�� ������
 . ñ  ����
�� ������
 �#�@? ô � � � �L�0s(5.1)

the even-indexed points are just taken over from the previous level, ;!����
�� ���Î�ê;���� � . We let the whole procedure
be described by the application of the nonlinear operator �}� to the original sequence,7 ����
 �(� � 7 � E
We shall always start out with a strictly increasing sequence 7�� , i.e. ?}7f�CRD� ; in order to avoid messy difficulties
with the definition of polyline approximation below we would like to have ?A7z��R�� for all � . In general (5.1) does
not always have solutions such that this is true, however. (We shall derive conditions on 1 , 7§� and

�
to ensure

this.) In any case, we shall apply the operators �}� only to sequences 7�� for which ?A7��|R�� . We should also
remark that (5.1) may have several solutions for which ?A7f�ÎRb� . Our results below do not depend on which of
these solutions is selected. For definiteness we shall assume that there is a rule established which uniquely picks
out one of the solutions, should there be many. The rule could for instance be to pick the solution closest to (or
furthest away from) the predicted point. When we say that the points on the next finer level are “well-defined,” we
mean that there exist solutions 7 ����
 with ?A7 ����
 Rê� satisfying (5.1) and, if there are many such solutions, we
implicitly assume that the rule decides which of them to select.

In order to define the convergence we wish to establish, we introduce auxiliary functions ò)� . Each ò=� interpolates
linearly the values ñ5��� � at the ;0��� � ; if 7�� is strictly increasing, this is a well-defined function. Without restriction,
we also assume { is the smallest interval containing all points ;"��� � , so that ò�� is defined on the whole of { . The
graph of ò=� , the (piecewise linear) curve

� � , is the normal multiresolution approximation at level � . (Note that� � depends on
�

, 7f� and 1 as well as on � .) We will then say that the normal multiresolution approximation
� �

converges to
�

if U¨U ò . ò � U¨U � º Ç ¥ È ��Z,\0]� ¤>¥ U òf�%;"� . ò � �%;!�	Ut*
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converges to 0 as �}æY4 . Now, if ò|yS¢ þ and
�ó|�/npÊ¨×��%óB*����§RT� , thenZ�\0]�c� ¯ ¦�² � ² ��� ¯ ¦ M © U ò��3;"� . ò � �3;"��U� Z,\)]��� ¯ ¦�² � ² �c� ¯ ¦ M © ³³³³ ; . ;0��� �;0��� ����
 . ;0��� � ~ òf�%;"� . òf�%; ��� � ���� ;0��� ����
 . ;;���� �#��
 . ;���� � ~ òf�%; ��� ����
 � . òf�%;"��� ³³³³� Z�\0]» � Ò J � Ò Ò » ² Ç[� ¹ � È ¦ U ò��3; Ö � . ò��3; Ö Ö �	U � ¾ � �óB*¡ò-�#�@?}7���� Nþ � *

so that U¨U ò . ò � U�U � º Ç ¥ È �T¢DU ?A7 � U Nþ W E
The normal multiresolution approximation therefore converges to the desired limit if 7 � remains strictly increasing
for all � and if U ?A7 � U W æ�� as �}æY4 .

To prove stability and good decay estimates for the “differences”, û �37�� . 7  � � � L� ô � . ô  � � � * we will in fact

need exponential convergence to 0 of U ?A7 � U W as ��æë4 ; see below. We shall see that the rate of convergence to
0 of the differences is determined by the order � of 1 , its optimal Q , ß and the smoothness of

�
.

We shall occasionally single out one particular family of interpolating subdivision schemes for the use in the
prediction step: the so-called Lagrange interpolation subdivision schemes, in which the new odd-indexed points
are given the values taken by a polynomial determined by several neighboring old points. For instance, in the
two-point scheme, �2����
�� ���#��
 is given the value at G �[�k'>( of the linear polynomial that takes the values �<��� � atGB��� and �0��� ����
 at Gf�:� ; in other words,�)����
�� ���#��
V� �( ���)��� ��5�0��� ����
#�#E
In the four-point scheme, �2����
�� ���#��
 is given the value at Gç���k'>( of the cubic that takes the values �!��� � J 
 , �)��� � ,�)��� ����
 and �)��� ����� at GB� . �=*��0*��>*�( respectively, leading to� ����
�� ������
 �F���� ��� ��� � 5� ��� ����
 � . ���� ��� ��� � J 
 5� ��� ���-� ��E
In general, the (k· -point scheme gives � ����
�� ������
 the value at Gf�b�k'>( of the ��(5· . ��� -degree polynomial that takes
the values � ��� �#� ï at GB�/ð , where ð[� . ·�T�=*	E	E�E<*¡· . We shall denote the (k· -point scheme by 1 � h . In particular
the 2-point and the 4-point schemes will be denoted by 1 � and 1 � :��1<�c�����¡������
«8X� �( ���0��� �§5�)��� ����
	��*��1 � �����¡������
«8X� ��c� ���0��� ��v�)��� ����
	� . ��c� ���0��� � J 
zv�)��� �������#E
Since these are all interpolating schemes, we have of course ��1��W�f���,�����ê��1 � �f���,�����ê��1<� h �����,���C���0��� �+E

When the prediction step is computed by means of 1�� , i.e.7  ����
 �L1 � 7 � * ô  ����
 �L1 � ô � *
it turns out that the analysis of normal multiresolution approximation is especially simple. We shall see below
that we always have convergence if the function ò is in ¢ þ �3½f� , with ó�R�� , without any restrictions on the initial
data other than ?}7f�vRê� . For other prediction subdivision schemes 1 , however, even for 1���1�� h with ·ÎR¸� ,
convergence is not as automatic; in general we need to impose restrictions on both 7�� and on 1 . The special
property that simplifies the analysis for 1Ï�L1 � is the monotonicity of 1 � : if ?x�TRD� , then ?p1 � �/RD� . In general
linear subdivision schemes do not map arbitrary increasing sequences to increasing sequences. For instance, 1�� is
not monotone: if � h �j· for ·p�ê� , � h ���>�§�· for ·}�I( , then ��1����§� 
 � . �k'��c���m��1����N� � ��� � �b� . In this
example, there is a sudden large jump in the ratio ��?x�§� ����
 '��@?x�N� � as H crosses from 0 to 1, which causes 1 �c�
to be no longer increasing. We shall keep track of such non-uniformity by means of the non-uniformity measureö [15]. The general topic of monotonicity preserving interpolating subdivision schemes is studied in [15], where
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several non-linear monotonicity preserving schemes are introduced. For a given sequence 7 we define the functionö as öb��7B�§89�/Z�\0]� n_o5q ÷ U���?A7B� � UUt�@?A7B�,����
=U * U���?A7B� ����
 UU���?A7B���0UAø E
It turns out [19] that if one restricts oneself to strictly increasing sequences with öb��7B���7¡¶�($¢ ( , then 1 � 7 is
strictly increasing again; moreover, öb�@1 � 7B����¡ T( ¢ ( , so that all 1 �� � will be strictly increasing. This leads us
to define the notion of weak monotonicity:

Definition 5.1. We call a subdivision scheme weakly monotone with bound Ù if for every strictly increasing 7
with öb��7z�N�TÙA*1f7 is strictly increasing as well, and satisfies öb��1f7B�§�TÙAE(5.2)

In fact, 1 � has the stronger property that if öb��7B�N��¡-�( ¢ ( , then öb��1 � 7B�N�Ãöb�37B� [19]. For completeness we
include a proof of this as outlined to us by Ruud van Damme in Appendix B. We shall give this stronger property
a special name as well.

Definition 5.2. We call a subdivision scheme weakly contractive with bound Ù if for every strictly increasing 7
with öb��7z�N�TÙA*1f7 is strictly increasing as well, and satisfies öb��1B7B�§�£öb��7z��E(5.3)

In our proofs, we will require this stronger notion of weak contractivity. In fact, 1h£ and 1�¤ are also weakly
contractive, see [17].

The main goal of this section is to show that if 1 is weakly contractive, if both U ?A7N�+U W and öb�37��5� are suffi-
ciently small, and if ò�y&¢ þ ��½f� with ó�Rm� , then U ?A7 � U W converges to zero exponentially. Before proving this
main result, Theorem 5.7 in Section 5.3 below, we prove several technical lemmas, bundled together in Section 5.2.

We assume 1 is a linear, bounded, local and interpolating subdivision scheme. As before, �õ�$� denotes the
order of 1 ; we pick QSy£r��>*�E	E	E!*,�_w optimal for 1 , and ßÍ��� to be Q -suitable. (See Section 4.1.) We denote by l
the width of 1 , as given in Section 2. Throughout this section ó will be the Hölder exponent of the function ò , i.e.ò|yS¢ þ �3½f� .
5.2. Preliminary Lemmas. These lemmas will only concern one refinement step in the normal multiresolution
scheme. We denote the initial level by 7 and the next level by

�7 ; with this notation (5.1) becomes� �; ������
 . ;  ������
 �#��?A7z� � ��%ò�� �; ������
 � . ñ  ���#��
 �	��? ô � � �/�)E(5.4)

Mostly we leave out the index H when it is understood anyway; we shall also use the shorthand notation?};Æ�:�@?}7B���+*î?}ñp�ê��? ô ���+* ;  �:�@1f7f�¡������
>* ñ  �b�@1 ô �,���#��
ç�:��1�òf�37B���¡������
�* �;Å� �;"������
�E(5.5)

We also define the help sequences ¥ � , ¥9¦ and § asÕ � � �:����1 . 1 � �,7B� ������
 * Õ ¦ � �ê�,��1 . 1 � � ô � ���#��
 * §���( ¥ � ?}7SI¥=¦�? ô�@?}7f� � ���? ô � � E(5.6)

The divergence of the predictor 1 from the two-point scheme 1�� is measured by ¥ � and ¥9¦ , while the magnitude of§ determines whether the normal scheme will pierce the curve in between points from the preceding level, hence
whether monotonocity of 7 will be preserved by

�7 . (See Figure 3.) For simplicity, we setÕ � � Õ � � �D;  . ;"�V�;"����
( * Õ ¦ � Õ ¦ � ��ñ  . ñ��§�ñ=����
( * Ì£�LÌ � E(5.7)
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FIGURE 3. The help sequences ¥ � , ¥9¦ and § introduced in Section 5.2.

Lemma 5.3. Suppose 7 is a strictly increasing sequence and óÃRD� . IfU §pU W��H2 ���=*(5.8)

then
�7 is well-defined and strictly increasing. If óÍ�I� there is a constant � independent of H ,���j� . ÷ � . 2(VI� Ö¨ U ?A7VU ÂW ø * � Ö¨ � ¾ �%¿5*¡ò Ö ��* ¿¶��npÊ�×��3ó . �>*	�k��* �( �D�}���=*(5.9)

such that n_o5q<�,�@? �7��¡���+*N�@? �7B�¡������
��§�����@?}7B����* Ü<H!E(5.10)

If �p�TóÍ�I� J , we obtain

npo�q-�,��? �7B�,���0*���? �7z�,���#��
	�N�j��?A7B���R}~ � . i � . 2(V5� ¨ �@?}7B� þ J 
� j 
�V þ �� * Ü-H!*(5.11)

where � ¨ � ¾ �%óz*¡ò-� .
Proof. We fix the index H and use the shorthand notation of (5.5, 5.7). Then we introduce the function� �3G,�B� ��G,?�;pÏ;!� . ;! ��0?};AL�Ôòp�%G,?};A�;"�=� . ñ) ��,?}ñ��?};!� � L��?}ñ0� � ya¢ þ ~ �0*	�	�@*
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which is well-defined since 7 is well-defined and strictly increasing. The equation (5.4) for
�; ,� �; . ;  �,?};pL�Ôò}� �;"� . ñ  �,?}ñp�L�0*

can then be recast as � ÷ �; . ;"�?};îø ���0E(5.12)

Moreover, � �3�=�B� . ���Ì( � . � . 2( �D�0* � �¡�k�B� � . Ì( � � . 2( RT�)s
by continuity there is a root to

�
in the interval �3�0*���� , so we can indeed take

�;|yÃ�3;��+*,;!����
�� . This shows that
�7 is

strictly increasing. Set i �/npÊ¨×��%óz*	��� . By (5.12),U � �3���	U+��� � ÷ �; . ;!�?}; ø 	 * U � �,���	U���� � ÷ ;"����
 . �;?}; ø 	 * � � �/npo�q-�¡�>* ¾ ��i=* � ����E(5.13)

Letting � satisfy � . ÷ � . 2(^� � ø 
�V
	 �D�����>*(5.14)

we have � . � � ÷ ���Ì(�� � ø 
�V3	 � ³³³³ � ���=�� � ³³³³ 
�V
	 � �; . ; �?}; �j� . ; ����
 . �;?};� � . ³³³³ � �¡���� � ³³³³ 
�V3	 �:� . ÷ � . Ì(�� � ø 
�V3	 �D�5*(5.15)

from which it follows thatn_o5q-�,�@? �7B�¡���+*N�@? �7B�¡������
��z��?};Vn_o5q ÷ �; . ;"�?}; * ;"�#��
 . �;?�; ø �T��?�;�E(5.16)

Assume now that óD�ê� . Then i��m� and � � �jn_o5q-�,�>*�U � Ö�U W_� . Since ò�yÍ¢ 
 �3½f� there is a ©ÅyD~ ; � *�; ����
 � such
that ò<Ö���©>�z�L?}ñ)'�?}; , and therefore,� Ö �3G,�z� ��?};"� � Ïò!Ö���G,?};A�;"���0?}ñ0?};��?};!� � L��?}ñ0� � �j�� �Ôò<Ö>�3G,?};p�;"��� . ò<Ö3��©>���,?}ñ0?};�@?�;!� � ��@?�ñ0� � E
Consequently, for �p�&G§�L� and �	Ö¨ � ¾ �%¿5*,ò!Ö � ,U � Ö �%G,��U+�I��5� Ö¨ U G,?�;pÏ; � . ©)U Â U ?�ñ-U ?};��?};!� � L��?}ñ0� � ����L��?};"� Â �	Ö¨( ���� �( � Ö¨ U ?A7VU ÂW$�(� � E
This estimate together with (5.14) gives (5.9). Suppose now that �A�TóÃ��� . so that i �Dó . Then¾ �@i=* � � � Z,\0]� ² À © Ó À Á ² 


³³ �%G � . G 
 �#�@?�;!� � ��%òA�%G � ?};AÏ; � � . òA�3G 
 ?};A�; � ���,?}ñ ³³~ �@?�;!� � L��?}ñ0� � �}U G�� . G�
>U þ� U G�
 . G���U 
 J þ ��?};"� � I� ¨ �@?};"� þ U ?}ñ-U�@?};"� � ��@?}ñ�� � � �@?�;!� ���?};"� � L��?}ñ0� �  � ¨( �@?};"� þ J 
 (=?};�U ?�ñ-U��?};"� � L��?}ñ0� �� �� � ¨( ��?};"� þ J 
 ��� � E
The estimate together with (5.13, 5.14, 5.16) gives (5.11).

Next, we show that upper bounds on § , needed to apply Lemma 5.3, can be derived from the data:
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Lemma 5.4. Let 7 be a strictly increasing sequence. Suppose that óÃR�� and that there is a constant ª such that³³³³ ¥ �?A7 ³³³³ W ��ªv�I�>E(5.17)

Then there is a constant � that only depends on ò and on 1 , such thatU §pU W[�D(�ª}I��öb�37B�+«|U ?A7VU ÂW�* ¿C�/npÊ¨×��%ó . �>*����#E(5.18)

Proof. We fix H and as in Lemma 5.3 we use the shorthands (5.5, 5.7). Then

U ÌNU � ( U Õ � ?};p Õ ¦ ?}ñ-U��?};"� � L��?}ñ0� � ��(
³³³ Õ � ?�;_ Õ � Ç�� ¦ È ¬� � �?�ñ 6 Õ ¦ .£Õ � � ¦� � 8 ³³³�@?};"� � ��@?}ñ�� �

� (�ªA (2U ?}ñ-U ³³³ Õ ¦ .£Õ � � ¦� � ³³³�@?�;!� � ��@?�ñ0� � E(5.19)

Moreover, Õ ¦ .£Õ � ?}ñ?}; � �@1�ò���7B� . 1<��òf�37f�,�,���#��
 .£Õ � ?}ñ?};� �@1�ò���7B� . ò��@1f7f�,� ������
 ��%ò��@1 � 7B� . 1 � ò���7f�,� ������
L�Ôòf��1f7f� . ò��@1<�	7B���¡������
 .|Õ � ?�ñ?}; E
By Lemma 4.6, with í �:� , the first two terms can be bounded by� n_o5qh�¤>¥ ¬ ¦ M © U���?A7B� h U 
,� Â �H��öb�37B�C«§?};}U ?}7VU ÂWIE
For the last terms we resort to Taylor expansion around �@1��	7B�¡������
 . Since òaya¢ 
,� Â , there is a ©AyÃ~ ;!�+*�;"����
�� andÙ such that�Ôòf��1f7f� . ò��@1 � 7B��� ������
 .|Õ � ?�ñ?}; � ��1f7 . 1 � 7f� ������
 ò Ö �@1 � 7B� ���#��
 &ÙA��7B� ������
 .|Õ � ò Ö ��©>�� Õ � �Ôò Ö �3;  � . ò Ö ��©>����&ÙA��7B� ������
 *
where U��3Ùp�37B��� ������
 U+�/¢_Ut�@1f7 . 1 � 7f� ������
 U 
,� Â �L¢_U Õ � U 
,� Â E
Entering these estimates into (5.19) givesU ÌNUY� (\ª� ()U ?�ñ-U¬®��öb��7B� « ?�;AU ?};�U ÂWb�U Õ � U¨U ò<Ö@�%;! �� . ò<Ö���©>�	U��¢_U Õ � U 
,� ÂW¯��?};!� � L��?}ñ0� �� (\ª� ¬ ��öb��7B� « U ?A7VU ÂWb�ª ¾ �3¿5*¡ò Ö �	U ;  . ©)U Â &¢°ª 
¡� Â U ?}7VU ÂW ¯ (2U ?}ñ-U ?�;��?};"� � ���?}ñ0� �� (\ª�I��öb��7B� « U ?A7VU ÂWLE
It easily follows from Lemmas 5.3 and 5.4 that if

³³ ¥±� 7 ³³ W �(ª£�j�k'�( , and if öb��7z� « U ?A7VU ÂW is sufficiently small,
then

�7 is well-defined and strictly increasing. We shall assume the existence and monotonicity
�7 in the two lemmas

that follow. Note that öb�37z� plays a role in the bound (5.18) on § . In order to iterate these estimates over more
than one level, we will therefore need to bound öb� �7B� as well. We start by an estimate on U �7 . 1f7VU W :

Lemma 5.5. Let 1 , � , ò and ó be as prescribed at the end of Section 5.1. If 7 and
�7 are both strictly increasing

and if óÏ��� and ò Ö is uniformly continuous *(5.20)
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then for sufficiently small U ?A7VU W ,U�� �7 . 1B7�� ���#��
 U��jU���1�òf�37B� . òf��1f7f��� ������
 U9* Ü<H!*
and U �7 . 1f7�U W¸�bU 1�ò���7�� . òf��1f7f��U W�E(5.21)

In particular, if óÃR�� and ¿C�/npÊ¨×��%ó . �>*���� , then (5.21) holds ifU ?A7VU W[� : (çU ò Ö U W ¾ �%¿5*¡ò Ö � B J 
�V Â ¢ J 
 *(5.22)

where ¢ is the constant of Proposition 3.1.

Proof. Since 1 is interpolating, the second estimate (5.21) follows trivially from the first. We fix H and as before
introduce the shorthand (5.5). Since òayS¢ 
 , there is a © 
 yÃ~ npÊ¨×�� �;�*,;< ���*,n_o�q!� �;�*�;! ���� such thatò Ö ��©k
	�B� ò�� �;"� . òf�%;! ���; . ;  E
Moreover, by the construction of the normal scheme we can find © � satisfyingò Ö ��©	���B� òf�%; �#��
 � . òf�%; � �;!����
 . ;!� � �; . ;  ñ  . òf� �;"�
and ©	�¶yÏ~ ;"�+*�;"����
�� since 7 is increasing. Then,� �; . ;  � � � �%ò�� �;"� . òf�%;  ���#�%ñ  . òf� �;!�,��L� �; . ;  �	�%ñ  . ò�� �;"���#�Ôò Ö ��©	�k� . ò Ö ��©�
��,�� �%ò�� �;"� . òf�%;  ���#�%ñ  . òf� �;!�,��L�%ñ  . òf� �;"��� � ò Ö ��© � �	�Ôò Ö ��© � � . ò Ö ��© 
 ����E
We furthermore note that

�7 is increasing, ; � � �;S��; ����
 , and that �$��� , soU ©�
 . ©	�+U�� npo�q-��U �; . ;!�0Ut*�U �; . ;!����
�Ut*�U ;  . ;"�)U9*kU ;  . ;"����
=U �� npo�q-��U ?}7VU W�*vnpo�qh�¤>¥ ¬ ¦ M © U ; h . �@1f7B�¡������
=U ���T¢DU ?A7VU WI*
by (3.2) in Proposition 3.1. Then, since ò�Ö��3;"� is uniformly continuous,U ò Ö ��©	���	�Ôò Ö ��©	�k� . ò Ö ��©�
��,��U��IU ò Ö U WjU ò Ö ��©	�k� . ò Ö ��©�
��	U+�I�k'>(�*
for U ?A7VU W small enough. In particular, if óÃRI� , and (5.22) is satisfied, thenU ò Ö U WjU ò Ö ��©	�k� . ò Ö ��©k
#�	U0� ¾ �3¿5*¡ò Ö ��U ©�� . ©k
>U Â U ò Ö U W[� ¾ �3¿5*¡ò Ö �,¢ Â U ?A7VU ÂWjU ò Ö U W��I�k'�(0E
Hence, � �; . ;  � � � �Ôòf� �;!� . òf�%;  �,�#�3ñ  . ò�� �;"�,�� �3ñ0 . òf� �;!�,� �(� �Ôòf� �;!� . òf�%;  �,�#�3ñ  . ò�� �;"�,�� �3ñ  . òf� �;!�,� �(  �%ò�� �;!� . òf�%;  ��� �(� �%ñ  . ò��3;  �,� � E
This proves the lemma.

We now use this to derive a bound on öb� �7B� :
Lemma 5.6. Let 7 , 1f7 and

�7 all be strictly increasing sequences and suppose ó&Rb� . Then, if (5.22) is satisfied
with ¿C�DnpÊ¨×��3ó . �=*	��� , and if ¢Töb��1B7B�%öb�37B�+«£U ?A7VU ÂW����5'³²2*(5.23)

where ¢ is the constant in (4.20) in Lemma 4.6, thenöb� �7B�N�Ãöb��1f7B�	�¡��I´=¢�öb��1f7B�3öb�37z� « U ?}7VU ÂW �#E(5.24)
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Proof. Since 1 and the normal scheme are both interpolating,
�;-���¶�ê��1B7B�¡��� , and, with ·ç���)*	� ,U���? �7 . ?p1f7B� ����� h U>�ãU �; ������
 . ��1B7�� ���#��
 U9E

By our assumptions we can use Lemma 5.5 and then Lemma 4.6 with í �j� to getUt�@? �7 . ?p1f7f�¡����� h U+�bUt�@1�ò���7B� . òf��1B7B�,�¡������
=U+�/¢ npo�qh�¤>¥ ¬ ¦ M © Ut�@?}7B� h U 
¡� Â �D¢�öb�37B�+« �@?}7B����U ?A7VU ÂW�E(5.25)

Moreover, since ?p1f7&RD� , ��?p1f7B� ���#� h � �@?p1f7B�¡���V��@?p1f7B�¡������
(#öb�@1f7f� � ��?A7B�,�(#öb�@1f7f� E(5.26)

Using (5.25, 5.26) we then get Ut�@? �7 . ?p1f7B�¡����� h U��?p1f7B�,����� h �/(>¢�öb��1f7B�3öb�37B� « U ?A7�U ÂW E
Since this quantity is smaller than �5'�( we have, now with ·V�Jµ}� ,��? �7z�,���? �7B�,�#� h � �@?A1B7B�,�VL��? �7 . ?p1f7f�,���?p1f7B�,�#� h L��? �7 . ?p1f7f�,�#� h� �@?p1f7B�,���?p1f7B� �#� h ÷ ���(>¢�öb��1f7B�3öb�37z� « U ?}7VU ÂW� . (>¢�öb��1f7B�3öb�37z� « U ?}7VU ÂW ø� �@?p1f7B� ���?p1f7B�,�#� h Ú ��5´�¢&öb�@1f7B�%öb��7z�C«|U ?A7VU ÂW Û *
where we have used �¡���(5G,��'��¡� . (5G,�N�I��5´>G for �A�TG��I�k'�² . This proves (5.24).

Remark: One could also replace öb�37B� « in these last two lemmas by the possibly smaller quantity,ö « �37B�N89�LZ,\0]�·¶ n_o5q ÷ Ut�@?}7B���0UUt�@?}7��,��� h U * Ut�@?A7z�,��� h UUt�@?A7B�,�0U�ø s�·��:�>*�E	E	E<*�lR¸ÎE
Nowhere in this subsection have we assumed weak monotonicity or weak contractivity for 1 . In the next sub-

section, we shall introduce this assumption to set up iterative estimation. In summary, we will have the following
argument:¹

Start with 7 strictly increasing, with öb�37z�N�DÙ .¹
Assume 1 is weakly contractive with bound Ù , so that 1f7 is also strictly increasing, with öb�@1f7B�§�Íöb�37z�N�Ù .¹
If
³³ ¥±� ¹ ³³ W �ºª|�j�5'�( and if öb�37B� « ��
 U ?A7VU ÂW is sufficiently small, we have U §pU WÞ�(2¶�j� by Lemma 5.4,

so that, by Lemma 5.3,
�7 is well-defined and strictly increasing.¹

By Lemma 5.6, we have a bound on öb� �7z� which will allow us to start on the next step, as we shall see in
more detail in the next subsection.

5.3. Convergence Theorems. In this section, we return to the iterated normal multiresolution approximation:
we consider successively refined 7�� again, and the corresponding ô � , 7z � and ô  � as defined in Section 5.1. For
every level � , we use again the notation 7�����
 for the result of the normal refinement of 7f� , corresponding to the
refinement 7&æ �7 in the preceding subsection. We start by proving exponential convergence of U ?A7z��U W , thereby
establishing convergence of the normal multiresolution approximation.

Theorem 5.7. Let 1 be a weakly contractive, linear, bounded, local and interpolating, subdivision scheme with
bound Ù and of order �ã�I� . Suppose that ò|yv¢ þ �3½B� with óÏR�� , that 7f� is strictly increasing, and thatöb�37 � ����ÙAE(5.27)
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Put ¿���npÊ�×��%ó . �>*	�k� and pick � so that ÙÙD�� �T�}�L�=E(5.28)

If Ù « ��
 U ?A7��+U ÂW is sufficiently small *(5.29)

then 7�� is strictly increasing for all �_�D� , öb��7����N�TÙA* Ü��p�T�0*(5.30)

and U ?A7 � U W �D� � U ?A7 � U W�* Ü0�p�T�)E(5.31)

Proof. For simplicity of notation we set é5�ç��öb�37���� . We also let

E
and 2 be real numbers satisfying� Â �

E
��� and

Ù . �ÙT�� �H2 �T(>� . �>*(5.32)

and assume that Ù « ��
 U ?A7��+U ÂWF�º» , with » R�� to be determined in the proof. The proof works by induction. At
every induction step we shall prove that 7�� is strictly increasing,(5.33) é�� � Ù}*(5.34) U ?A7���U W � � � U ?A7���U W(5.35) é « ��
� U ?A7���U ÂW � » E � E(5.36)

For �}�/� , (5.33, 5.34, 5.35, 5.36) are all satisfied. We shall now prove that if (5.33, 5.34, 5.35, 5.36), are satisfied
for �A�/�0*�E	E�E<*+& . � , then they must hold also for �}�º& .

First of all, since 7 ' J 
 is strictly increasing, and é ' J 
£�[Ù , then 1f7 ' J 
 is strictly increasing as well andöb��1B7 ' J 
 �§�Té ' J 
 �DÙ . In order to invoke Lemma 5.3 to derive monotonicity for 7 ' , we first need an appropriate
bound on § ' J 
 , the § -sequence corresponding to 7 ' J 
 . To obtain this bound, we shall use Lemma 5.4. SetÕ �' J 
�� � � Õ � z Ð ©� , with the right hand side defined by (5.6). Since 1 is interpolating, ��?A7 ' J 
 � � �ê��?p1f7 ' J 
 � ��� ��?p1f7 ' J 
 � ���#��
 . Set, just for the next few lines,ð � ��npÊ�× : ?p1f7 ' J 
 � ��� *V��?p1f7 ' J 
 � ������
 B * í � ��n_o5q : ?p1f7 ' J 
 � ��� *V��?p1f7 ' J 
 � ���#��
 B EThen, Z�\0]� U Õ �' J 
�� � U��?A7 ' J 
 � � � Z�\0]� �( U���?p1f7 ' J 
 � ������
 . �@?p1f7 ' J 
 � ��� U��?p1f7 ' J 
 � ������
 ��@?p1f7 ' J 
 � ���� Z�\0]� �( í���'kðS� . �í � 'kð � /� � �( é ' J 
 . �é ' J 
 /� � �( Ù . �ÙT�� *
where we have used in the last step that �%; . ����'��3;A/�k� is increasing on ~t�=*�4�� . It then follows from Lemma 5.4
that U § ' J 
�U W¸� Ù . �ÙT�� �¢§
-é«' J 
 U ?A7 ' J 
�U Â WL*where the constant ¢V
 depends only on ò and 1 . Since, by the induction hypothesis (5.36), and the fact thatöb���§�§�L� for all sequences � ,é «' J 
 U ?A7 ' J 
>U Â W��Dé « ��
' J 
 U ?A7 ' J 
�U Â W���» E ' J 
 ��»�*(5.37)

we therefore have U § ' J 
�U W�� Ù . �ÙT�� &¢�
�»�E
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If »V�/¢ J 

 ÷¼2 . Ù . �ÙD/�2ø *(5.38)

which we shall assume henceforth, we have thus U § ' J 
�U W���2 ��� . Note, the right hand side of (5.38) is positive
by (5.32). By Lemma 5.3, we conclude that 7 ' is well-defined and strictly increasing, establishing (5.33) for�}�º& . We now proceed to prove (5.34). By (5.37),U ?}7 ' J 
 U Â W � »é «' J 
 �H»�E
If we name ¢§� the constant in Lemma 4.6 for í �b� and ^b�Dò , then, similarly,¢ � öb�@1f7 ' J 
 �,é «' J 
 U ?A7 ' J 
 U Â W��/¢ � é « ��
' J 
 U ?A7 ' J 
 U Â W[�T¢ � »

E
' J 
 �/¢ � »�s(5.39)

it follows that both (5.22) and (5.23) will be satisfied for 7Ã�L7 ' J 
 provided»V�TnpÊ�×;½ �²�¢ � *z(VU ò Ö U W ¾ �%¿5*,ò Ö �,¢ J Âw¿¾ *(5.40)

where ¢ w is the constant of Proposition 3.1. We shall assume that (5.40) is satisfied in the remainder of the proof.
We now apply Lemma 5.6 to 7 ' J 
 and concludeé ' �Ãöb��1f7 ' J 
 ��¬%�BI´=¢ � öb�@1f7 ' J 
 ��é«' J 
 U ?A7 ' J 
 U Â W ¯ �/é ' J 
 ¬Ô��5´�¢ � » E ' J 
 ¯ *(5.41)

where we have used the same arguments as in (5.39), including for the first time the effect of

E
�I� as well. For »

satisfying (5.38, 5.40) we can likewise concludeé����Dé�� J 
À¬%��I´=¢N��» E � J 
 ¯ * �}�L�0*�E	E�E<*+& . �=E
It follows thaté ' �Ték�Á' J 
�� µ � ¬%��I´=¢N�c» E � ¯ �Dék��' J 
�� µ �AÂ q�] Ú ´�¢N��»

E
� Û ��ék� Â q�] }~ ´�¢N��»!' J 
g� µ �

E
� �� �/ék��Ã ¤
Ä ¬�Å V Ç 
 J < È �DÙA*

provided »V� � . E
´�¢N� ��× Ùék� *(5.42)

as will be assumed henceforth. Again, note that » can be chosen greater than zero because of (5.27, 5.32). This
proves (5.34) for �A��& .

By Lemma 5.3, we also haveU ?}7 ' U Wm��Z�\0]� n_o5q<�,�@?}7 ' � ��� *N�@?A7 ' � ������
 �N�T� ' Z�\0]� �@?A7 ' J 
 � � *��/� ' U ?A7 ' J 
 U WL*
where � ' �j� . � . 2(V5� Ö¨ U ?A7 ' J 
 U Â W EBy using (5.35) we obtain� ' �I� . � . 2(VI� Ö¨ U ?A7��+U ÂW ��� . � . 2(�I� Ö¨ Ù J « J 
 » � ���2f5�	Ö¨ Ù J « J 
 »(VI� Ö¨ Ù J « J 
 » � ��I2(  �( � Ö¨ Ù J « J 
 »V�D�5*
provided »V� Ú � Ö¨ Û J 
 Ù « ��
 ~ (�� . � . 2��>*(5.43)

where the right hand side is positive by (5.32). Assuming (5.43) is satisfied, we have thusU ?A7 ' U W ����U ?A7 ' J 
 U W *
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which proves (5.35) for �}�º& . Finally, by also using (5.41, 5.36), we findéÆ« ��
' U ?A7 ' U Â W��I~¨�BI´=¢N��»�� « ��
 é « ��
' J 
 � Â U ?A7 ' J 
>U Â W¸�
E
é « ��
' J 
 U ?}7 ' J 
�U Â W[��» E ' *

provided »ç� �´=¢ � : Ú E � J Â Û ©Ç M © . � B s(5.44)

since

E
RL� Â by (5.32), we can pick »¶R�� . This completes the proof of (5.36), the last induction step, for ����& .

It thus suffices to choose »�R�� so that (5.38, 5.40, 5.42, 5.43, 5.44) are satisfied to derive all the results in the
theorem.

Theorem 5.7 relied strongly on óÍRI� , since this assumption is needed for Lemmas 5.4 and 5.6. For the special
case 1Í��1<� , we can prove similar results for all óÃRT� , without even imposing bounds on U ?A7N�+U W .

Theorem 5.8. Suppose 1��j1�� , ó&R�� and 7f� is strictly increasing. Then 7�� is strictly increasing for all �Å��� .
If ò|ya¢ þ ��½�� with �}�TóÃ��� , there is a ¢ such thatU ?}7 � U W � ¢��£� �© Ð � * Ü��p�D�0E(5.45)

If ò|ya¢ þ ��½�� with óÍ�I� or òaySÉ-Ê¨] 
 ��½�� , there is a �}�L� such thatU ?A7���U W �D� � U ?A7���U W�* Ü0�p�T�)E(5.46)

If òIyL¢ þ �3½f� with ó:RF� and öb��7f���_��4 the quantity öb�37���� remains bounded for all � and it satisfies the
estimate, öb��7 � �§�£öb��7 � � Â q�] ÷hÈ �=�@(V È ���¿ ø * È � � ¾ �%¿5*¡ò Ö �-U ?}7 � U Â W�* ¿��/npÊ�×��%ó . �>*	�k��E(5.47)

Proof. When 1T�ã1 � the help sequences ¥ � , ¥9¦ and § are trivially zero, so we can take 2¶�b� in Lemma 5.3. It
follows directly that 7 � is strictly increasing for all � since 7 � is strictly increasing. Furthermore, if óÃRI� ,� � �j� . �(V5� Ö¨ U ?A7���U ÂW �I�>* � Ö¨ � ¾ �%¿5*¡ò Ö ��* ¿��/npÊ�×��%ó . �>*	�k��*(5.48)

and U ?A7�����
>U W ��Z�\0]� n_o5q<�,�@?}7�����
	�,����*���?A7�����
��¡������
��§�TZ,\0]� ���=�@?A7����,��������U ?A7���U W * Ü��=E(5.49)

This shows that U ?A7���U W is decreasing, and, by (5.48), �	�Æ�ê�	� for all � . We can hence replace �#� by �	�v��� in
(5.49), which proves (5.46). Suppose now that �p��óÃ�I� , and introduce the function,� �%;"�N89��; i � . ���(VI� ¨ '5; 
 J þ � 
+V þ j *F� ¨ � ¾ �%óB*,ò<�#*
so that by Lemma 5.3 we haveZ�\0]� n_o5q<�,�@?}7 ����
 � ��� *���?A7 ����
 � ������
 �§� � ����?A7 � � � �!E(5.50)

If ò|yvÉ-Ê¨] 
 (and in particular if ò|yS¢ 
 ), (5.50) givesZ,\)]� npo�q!����?A7�����
��¡���+*���?A7�����
��¡������
��§���@?}7����,�p÷<� . ���(VI� ¨ �>ø *
with the same constant for all � , and we can take ����� . �k'0��(�J� ¨ � in (5.46). When ó�� � we can write� �%;!�z� �� �3; 
 J þ � where �� �3;"�§89��; ©© Ð � 6 � .�É �3;"� 
+V þ 8 * É �%;!�N8X� ;(5;p5� ¨ *
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and we claim that �� Ö �%;"���T�)* Ü";SRD�0E(5.51)

Since �¡���;"� þ �����ó-; for �A��óÃ�I� we have�� Ö �3;"�î� ; �© Ð � ÷ � .�É �3;"� 
�V þ� . ó . ;ó É �%;!� © Ð �� É �3;"� Ö ø � ; �© Ð �� . ó }~ � .ËÊÌÉ �%;!� ÷ �� �¡� . ó���; É Ö��%;!�ó É �3;"� ø þ9Í 
�V þ ��
� ; �© Ð �� . ó 6 � . ~ É �3;"��L�¡� . ó��¡; É Ö �3;"��� 
�V þ 8 E

But É �%;"����,� . ó���; É Ö �%;!�z� ;(�;A5� ¨  �,� . ó���;$� ¨��(�;}5� ¨ � � � (�;;p5� ¨  ;$� ¨�@(5;AI� ¨ � � � �( i � . ÷ � ¨;p5� ¨ ø � j �I�>E
This shows (5.51); it immediately follows that likewise

� Ö��3;"�§�D� for all ;SRD� . Then, by (5.50),U ?A7�����
>U W �TZ�\0]� � �,��?A7��������B� � ÷ Z�\0]� ��?A7������ ø � �ÆÚ U ?A7���U W Û * Ü0�p�D�0E(5.52)

Proving (5.45) reduces thus to a simple statement about iterating a function from ½ � to itself: if we defineÎ � �êU ?A7 � U W * Î ' � � � Î ' J 
 ��*then (5.45) will follow from (5.52) if we can prove thatÎ ' �/¢p�¡��5&�� J þ V Ç 
 J þ È E(5.53)

We shall establish (5.53) by induction. Suppose (5.53) holds for &��Ï� . � . We then have, with the shorthandßÍ8X��ó�'��,� . ó�� , Î | � � � Î | J 
 �N� �ÆÚ ¢Ð� J à Û �D¢Ð� J à�½�� . 6 (VI� ¨ ¢ J Ç 
 J þ È � þ 8 J 
+V þ ¾ E(5.54)

To prove that this is bounded above by ¢p�¡��I�|� J à , it suffices to show that�,��5�|� à � J à ½�� . 6 (VI� ¨ ¢ J Ç 
 J þ È � þ 8 J 
+V þ ¾
is bounded above by 1. This is equivalent to� þ # ½ � . ÷<� . ���/�0ø à ¾ J þ . (�Ñ J 
 �/¢ 
 J þ � ¨ *(5.55)

provided the quantity between curly brackets is positive; the latter is the case if� R�� � �·Ò : � . �,� . ( J 
�V þ � 
+V à B J 
3Ó E
Since the left hand side of (5.55) is uniformly bounded for �Ru� � , the inequality (5.55) is clearly satisfied,
uniformly in � RH� � , for all ¢ exceeding some threshold value

"¢ . For &Í�H� � , we have
Î ' � Î � , henceÎ ' � Î ���¡��5&�� J à �,��5����� à E(5.56)

Set now ¢ �[n_o5q-~ Î � �,� º� � � à * "¢ � . Then
Î ' satisfies (5.53) for &:�Ô� � by (5.56), and for &:RÕ� � by our

induction argument, starting from the initial inequality
Î ' Á �/¢p�¡��I� � � J à . Since (5.53) thus holds for all & , we

have proved (5.45).
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For the statement about öb�37���� we observe that, by (5.10) in Lemma 5.3,öb��7�����
��B� Z�\0]�h © µ ��� 
h�¬ µÁÖ 
 �@?A7�����
	�,���#� h¡©�@?}7 ����
 � ���#� h © � h ¬ � Z,\0]�h µ J 
�� ��� 
 ���=��?A7����,��¡� . � � �	��?A7 � � �#� h � ���� . � � öb��7�����*(5.57)

where � � is given by (5.48). For simplicity, set È � �×�#Ö¨ U ?A7 � U Â W . Then, by the result (5.46) above, r È � w is an

exponentially decreasing sequence such that È �¶� È ��� � Â� . Moreover, induction on (5.57) givesöb�37 ' � � öb�37B���' J 
�� µ � ���� . � � �Ïöb��7f���' J 
�� µ � �,�� È ���N�Ãöb�37��k�' J 
�� µ � 6 �� È ��� � Â� 8
� öb�37 � � Â q+] }~Á' J 
g� µ � È � � � Â� �� �Íöb��7 � � Â q�] ÷ È �� . � Â� ø �Ãöb�37 � � Â q+] ÷ È ����(ç È ���¿ ø *

where the last step follows from �� . � Â� � �� . 6 � . 
���ÁØ Á 8 Â � (V È �¿ E
This proves (5.47).

Remark: Combining the two theorems with some results shown later on in the paper suggests the following
normal multiresolution procedure for all curves

�
, with òby�¢ þ , óêR�� . Let 1 � be the hybrid scheme 1 � �ú 1 � ��,� . ú �,1-� with �_� ú �j� . In Appendix B it is shown that this scheme is weakly contractive with boundÙ � y�~ ¡ D(\¢ (�*�4&� . Starting with an initial strictly increasing sequence 7�� for which both U ?A7f�+U W and öb��7����

may be large, we use 1-� until, for some ú yÍ���0*	�	� ,öb��7����N��Ù � and ÙÐ« ��
� U ?A7���U ÂW is sufficiently small for 1 � E
Since öb�37 � � remains bounded when 1 � is used, by (5.47), and ��Ê¨n � ��� Ù � ��4 , these conditions will be satisfied
after a finite number of refinement levels. By Theorem 5.7 one can then use 1 � and obtain convergence. Moreover,
by (6.23) in Theorem 6.3 the non-uniformity öb�37 � � will converge to one, since

"� R � for 1 � , as shown in
Section 7. Therefore, both öb�37 � � and U ?A7 � U W can be made as small as we like, and after yet another finite
number of steps, we can finish off the construction with a weakly contractive scheme of our choice.

6. REGULARITY, APPROXIMATION QUALITY AND STABILITY

In this section we will consider the regularity of the parameterization, the decay of wavelet coefficients, and the
stability of the scheme.

Normal multiresolution induces a parameterization of the curve
�

, as exemplified in Figure 4. Analytically, this
parameterization is described as follows: we define, at every level � , ý0�¶8)~ �0*��#�!Ù æ�½ to be the piecewise affine map
with breakpoints at the G���� ���j( J � H , HÎ�I�0*�E	E	E<*�( � , and for which ý��>�%G@��� �>�N��;0��� � , see Figure 5. If U ?A7���U W æ��
for �}æ�4 , then the ý�� converge uniformly to a function ý<�%G,� . The parameterization of the curve

�
induced by the

normal multiresolution then maps GCyL~ �0*	�	� to �%ý<�3G,��*¡òf�%ý<�3G,�,�,� ; we shall call this the normal parameterization of
the curve

�
, and denote it by

�
as well,

� �%G,� 8X���%ý<�%G,�#*¡òf�%ý<�%G,���,� . More generally, ý��p8-~ �)*�� . �#�AÙ æë½ if we start
with � points at level 0. The domain of ý+� will be denoted Ú .

As we discussed in Section 5.1, in general the curve
�

is broken up in several pieces, for some of which the; -coordinate is used as the “basic coordinate”, while others use the ñ -coordinate in this capacity (one then has to
make the obvious changes to define the parameterization

� �%G,� ). In this case, the parameterizations knit together
naturally—they describe the geometric construction of the normal multiresolution, independent of the break-ups
we use to prove our theorems. For simplicity, we shall always implicitly assume that we work within one of these
pieces; this situation is always attained locally after a finite number of refinement steps. Note that the normal
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Γ(1/2)

Γ(1/4)
Γ(3/4)
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Γ(3/8)

Γ(5/8)
Γ(7/8)

FIGURE 4. Example of how the normal multiresolution induces a parameterization, here with1Ï��1 � .
parameterization need not be smooth, even if

�
is. For instance, consider the normal multiresolution as applied to

the curve in Figure 6, which consists of a ��´>�Û circle arc and a straight, tangent line segment with length equal
to the diameter of the circle; for the prediction subdivision scheme we take 1[��1 � . At level zero, we have�%; �	� � *,ñ �	� � � �¸���0*	�k��� � �3�=� and �%; ��� 
 *�ñ �	� 
 �ç�¸�,�>*��=��� � �¡�k� . Because of the special construction of

�
, the first

inserted point �3;<
�� 
5*�ñ�
�� 
#� coincides with the origin, ���0*���� � � �,�k'>(>� . After that, the normal multiresolution will
induce a parameterization that corresponds to arc length for both the right and the left piece of the curve:� �3G,�z� # 
� � . Z�Ê¨×���(�G1Ü���*	��I_W��Z	�@(5G1Ü��,�#* �p��G�� 
� *��(5G . �>*��=��* 
� �TGN���=E
However, the two pieces have different lengths, so the parameterization must have a discontinuity in its gradient,
indeed ³³³³ ] � �%G,�]=G ³³³³ � # Üf* �A��GN� 
� *(�* 
� ��GN���>E
In this case the curve

�
is ¢ � J , yet its normal parameterization is only Lipschitz. This is because the regularity of

the parameterization turns out to be limited not only by the smoothness of the curve, but also by the smoothness
of the subdivision scheme, as shown by the following argument. Let

� �%G,� be the normal parameterization obtained
with the two-point scheme as predictor, of a very smooth curve

�
. We then have, by definition,6 � �3G- Î � . � �%G . Î � 8 k 6 � �%G- Î � . ( � �%G,�- � �3G . Î � 8 �/�0*

at odd dyadic points ( G�����(>HCL�k�,( J � , Î �j( J � ), where ’ k ’ stands for the ½ � inner product, ����*��+��kC���<Ö�*,�+Ö¨�§��!�"Ö���=�+Ö . Now if the parameterization were ¢ � � � , with Õ RI� , then we could Taylor expand
� �3GAµ Î � around G

and obtain ]]>G ³³³³ ] � �%G,�]=G ³³³³ �  Î ���( i ] w]>G w ³³³³ ] � �%G,�]>G ³³³³ � . ]]=G ³³³³ ] � � �%G,�]>G � ³³³³ � j �ÞÝA� Î � �#*
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Γ and Γ
3

x
3
(t)

x

t

FIGURE 5. The relationship between
� �%G,� , � � �3G,� and ý � �%G,� , exemplified for �}�(¡ .

�
is the same

curve as in Figure 4.
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FIGURE 6. Example of a curve with non smooth parameterization for the two-point scheme.
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at dyadic points; if
� �%G,��yv¢ � � � , then this equation extends to all G�* Î . By letting

Î æ�� we see that we must haveU � Ö�U0�7_W�=×)Z+` and U � Ö Ö�U0��_W�=×)ZC` for this to hold, i.e. the curve
�

must be either a straight line or a circle segment,
which is obviously not the case for general smooth curves

�
.

The example in Figure 6 also illustrates an interesting point concerning the link between the decay of the wavelet
coefficients and the regularity of the normal parameterization. Although the normal parameterization of the curve
in Figure 6 is only Lipschitz where the circle and line segment meet, an application of Theorem 6.3 below shows
that the wavelet coefficients ú ��� � decay uniformly as ( J Ç � Ð È � ; this shows that one cannot hope to derive the wavelet
coefficient decay simply from applying Taylor expansion arguments to the normal parameterization.

6.1. General Assumptions. We are going to assume that there is a set of strictly increasing sequences rk7 � w
generated by the normal scheme described above, such that 7 ����
 �a� � 7 � . We let 1 denote the interpolating
predictor operator used in the scheme. As in Section 4.1 we assume it is a linear, stationary, local and bounded
subdivision operator. Also, 1 is characterized by its order � , its smoothness � and the integer Qa�TQ �
�W� . We will
strengthen our assumptions in this section and assume that"� �I�>E(6.1)

(Note that this implies that � is Q �
�W� -suitable if � ��� .) As usual, we assume that the curve òf�%;!� has a certain
Hölder smoothness, given by the parameter ó , ò|yS¢ þ ��½��#E
Also, let Úàß�½ be a bounded interval of the form ~ �)*�� . �	� with �ªRI� an integer; Ú is the domain of ý!�3G,� .
6.2. Preliminary Lemmas. We start out with some technical lemmas, which will allow us to improve upon theU ?}7���U W �á�#� � estimate by “bootstrapping.” The basic idea is the following: by Lemma 5.5 we can use the
smoothness of ò to bound the difference between 7 ����
 and the “predicted” 1f7 � by the difference between 1�òf�37 � �
and ò��@1f7 � � ; next we can use our commutation estimates from Section 4.4: Theorem 4.7 uses the smoothness
of ò again to transform exponential decay of U ?A7 � U W into exponential decay of U 1�ò���7 � � . ò��@1f7 � �	U W , hence ofU 7 ����
 . 1f7 � U W , showing that the 7 � are “almost” generated by the subdivision 1 , in the sense of Section 4; finally,
Theorem 4.2 converts this into a new estimate on U ?A7 � U W . The miracle is that in going through these steps, the
decay rate of U ?A7 � U W improves.

Lemma 6.1. Let rk7���w , 1 , � , Q , � , ò and ó be given as in Section 6.1. Suppose the first differences of 7z� converge
exponentially to zero, U ?A7 � U W �T¢¶� � * �A�D���I�>*(6.2)

and óÏR��>E
Then ³³³ 7 M 
 P� ³³³ W ��_��>×)Z+` # �>* � �j�=*ÆQSR��>*�>* otherwise E(6.3)

Proof. When �Î�ã�k'>( the result is trivial. Consider therefore �k'>(Æ���Æ�ê� and set ¿��jnpÊ¨×��3ó . �>*���� R�� . Let��� �(� and â)� �:��I�[�\� � �V&� where �Æ�T� is chosen such that �p�/â2�C�I� and �,��&¿5� ' ���[�\� � �V&�+�¶u� . � for
all & . Then ³³³ 7NM 
 P� ³³³ W �H����( ��å Á E(6.4)

Furthermore, we define the strictly decreasing sequence rkâ ' w by â ' �Þ� . �¡�VT¿�� ' �¡� . â � � . We claim that ifâ ' R . � �� , there is a constant � ' for which³³³ 7 M 
 P� ³³³ W �H� ' ( ��å z * Ü��=E(6.5)
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By (6.1) and (6.4) this holds for &Í�b� . Assume that (6.5) is true for &Í��· . Since óTRb� we can use Lemma 5.5
and subsequently Theorem 4.7 with í �b� , Ì£�L� and i �Lâ h to getU 7�����
 . 1f7���U W �jU 1�ò���7���� . òf��1f7�����U W �H� Öh ( J � Ç 
,� Â È Ç 
 J å ® È �º� Öh ( J � Ç 
 J å ® M © È E
This holds for ���Í��� . Set � Ö Öh �(� Öh  n_o5q� ² � ² � Á ( � Ç 
 J å ® M © È U 7 ����
 . 1f7 � U W E
Then U 7 ����
 . 1f7 � U W ��� Ö Öh ( J � Ç 
 J å ® M © È * Ü0�p�T�)E
If â h ��
�R . � �� we can pick a Q -suitable ß so that Q . �¡� . â h ��
	� RLß . Theorem 4.2 with év��� . â h ��
 andÌ£�L� then applies, yielding³³³ 7NM 
 P� ³³³ W ��� 6 ³³³ 7NM 
 P� ³³³ W I� Ö Öh 8 ( � M â�ã�ä Ç O J!è � à È ��
 J O�P �(� h ��
#( ��å ® M © *
where we note that

³³³ 7NM 
 P� ³³³ W �mU ?}7 � U W �L¢ by (6.2). The claim follows by induction. Now let &ÏR/� be the first

index such that â ' � . � /���D� . (The case â ' � . � �� is excluded by the choice of � above.) We still haveU 7�����
 . 1B7-��U W ��� Ö Ö' J 
 ( J � Ç 
 J å z È * Ü������)E
Pick a Q -suitable ß so that â ' �Tß_�� . Q . We can again apply Theorem 4.2 and obtain³³³ 7NM 
 P� ³³³ W �H� 6 ³³³ 7�M 
 P� ³³³ W 5� Ö Ö' J 
 8P: ��|� < © ( � Ç 
 J O � à È B ��� Ö : ��|� < © ( � Ç 
 J O � à È B E
If � Rb� , then we can choose a Q -suitable ß so that � . QA&ß£�ã� . �  Õ ��� , and we obtain

³³³ 7 M 
 P� ³³³ W ��_W�=×)ZC` .
If � �j� , then (6.1) allows us to pick ßa�ÏQ . � . Since â ' �T� we have é_�:� . â ' RI� implying ßÍRÍQ . é . By
Theorem 4.2 we then have

E

��:� if QSRL� and

E

V��� if QÆ�:� . This proves (6.3).

Remarks:

1. The result of Lemma 6.1 is quite remarkable: even though we started from (6.2) with no other restriction on� other than �a��� , the simple restriction (6.1) allows us to “transform” this possibly quite low decay rate
into U ?A7���U W �D¢�( J � (with an extra factor polynomial in � if QSRI� and � �b� ).

2. If � �b� a similar argument proves that the decay U ?A7f��U W �L¢¶� � , with ( J å ���p�b� , implies the stronger
decay U ?A7���U W �/¢�( J � Ç å�J � È for all Õ RT� .

The next lemma shows that a similar bootstrapping works for higher order divided differences. If ª equals either
a real number ¿ or a “generalized number” ¿ J , we shall use the convention that ª J �j¿ J . The notation ¿ J used
here was defined in Section 3.1.

Lemma 6.2. Let r�7 � w , 1 , � , Q , � ,
"� , ò and ó be given as in Section 6.1. Suppose we have the following bounds

on the first � divided differences of 7 � ,³³³ 7�M ï�P� ³³³ W �H_W�=×)Z+` # �>* ���Tð����+*� Ë *�ðF�º�+* ��RT�)E(6.6)

If (A�|QS����* ���H����nAÊ¨×�� "� *,ó����}8=�p*(6.7)

then we get bounds of the first �V/� divided differences of 7 � ,³³³ 7�M ï�P� ³³³ W ��_��>×)Z+` # �=* �¶��ð��H��/�=*� < ( � Ç 
 J å È *�ðÞ���V��>*(6.8)

where â and

E
are given by âÎ�DnpÊ¨×��¡�=*fó . �+* "� . ���z�DnpÊ¨×��¡�=*�� . ���#*(6.9)
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� # �)* âÎ� � J . �+*E

Ö@* otherwise *(6.10)

with
E
Ö � # �=* � ��npÊ�×��%óB*
������#*�)* otherwise *  # �=*ªâÎ�b�=*)QSR�����>*�)* otherwise E(6.11)

Proof. Since óÃRI� , by (6.7), we can apply Lemma 5.5, which givesU 7�����
 . 1f7���U W �H�BU 1�ò���7-��� . òf��1f7�����U W E
(Strictly speaking Lemma 5.5 gives U 7f����
 . 1f7���U W �bU 1�ò���7���� . òf��1B7-����U W for � exceeding some ��� ; by adjust-
ing the constant we obtain the inequality for all � .) By Theorem 4.7 (with í �(� , ¿C��nAÊ¨×��3ó . �+*����§RD� , i ��� ,
and the same Ì ),

U 1�òf�37 � � . ò��@1f7 � �	U W ���,� Ë Ò ( J � Ç ´ � Â È * Ì Ö �Q,./ .0 ÌN���V�¿5�#*·���b�=*�)* �p��� . ¿A��� . �>*Ì�* ¿C�j�=*��}R��=E(6.12)

Pick ß to be Q -suitable, ßa�ÃQ . �  Õ with Õ RD� ; if Q . � is Q -suitable we can pick Õ �/� . Theorem 4.2 can now
be applied to the sequences 7�� with é_�(�§�¿ , Ì£�LÌ�Ö and��Dn_o5q-�9Q . � . ¿�*�ß��B�ÏQ . ��Ïn_o5q-� . ¿5*�� . �  Õ �B��Q . � . npÊ�×��¡�>*�ó . �+* � . � .|Õ �B�}8#Q . � . ª�E
We get ³³³ 7 M ï�P� ³³³ W � ¢76 ³³³ 7 M ï�P� ³³³ W 5��8æ6=��£�=< { ( � Ç ï J ´ J�ç È 8|�D¢ Ö 6 ³³³ 7 M 
 P� ³³³ W ��c8R6=��|�=< { ( � Ç ï J ´ J ç È 8� ¢ Ö Ö 6 ��£� < { ( � Ç ï J ´ J ç È 8 *(6.13)

for �A�Tð��£Q . By (6.7), we can choose Õ so that ªvRD� . For ����ðª��� , it follows that the second term in (6.13)

decays to zero as �Îæ 4 , so that
³³³ 7NM ïzP� ³³³ W �(_W�=×)Z+` for �}�Lð �J� . This means we get (6.6) with Ì&�I� and we

can bootstrap the arguments used so far to obtain ÌBÖ"�L� in (6.12). We have �z&�¶�£Q because of (6.7) and � �ÍQ ;
(6.8, 6.10) follows from (6.13) and (4.8) with ðÞ���V�� .
Remark: Lemma 6.1 showed that we could bound

³³³ 7 M 
 P� ³³³ W polynomially in � ; Lemma 6.2 can then be used to

prove by induction that for all ð �InpÊ¨×�� � *�ó�� , we have
³³³ 7NM ï�P� ³³³ W �7_W�>×2ZC` ; moreover, for ð�� �ÔnpÊ¨×�� � *,ó���� , we

obtain
³³³ 7NM ï�P� ³³³ W ���,� < ( � Ç 
 J å È , with

E
and â given in (6.9, 6.10). In particular, we have bootstrapped a polynomial

bound for
³³³ 7 M 
 P� ³³³ W into a constant bound, since under our assumptions, npÊ¨×�� � *�ó���R�� .

6.3. Main Result. Before stating the main result we introduce the “wavelet” coefficients of the normal mesh. At
level � , the sequence ù�� is defined byú ��� � � ÷ : �37 ����
 . 7  ����
 � � �� ô ����
 . ô  ����
 � � B 
�V�� ø ������
 E(6.14)

Note that the even-indexed elements of ��7�����
 . 7B ����
 � � �� ô ����
 . ô  ����
 � � are zero. The sequence ùÎ� measures
the quality of the normal multiresolution approximation, in the sense that it compares the “true” curve

�
with the

auxiliary curve
�  � that would be constructed using only the sequence �37 � *,ò���7 � �,� followed by subdivision using1 . Good decay for ù � thus means that the normal multiresolution produces high quality approximation. From

another point of view, ù � , combined with a sequence of sign bits, contains the information necessary to obtain7 ����
 from 7 � . If we wish to compress the total information contained in 7 � © , or equivalently in the sequences7 � Á , ù � Á , ù � Á ��
 , E�E	E , ù � © J 
 , (where � � �&� 
 ), then we can try to do this by setting small ú ��� � to zero. (In order
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to justify this, we also have to discuss the stability of such a procedure—see below.) If the U ùS��U W decay rapidly
for smooth curves, then we expect that for piecewise smooth curves, the ú ��� � pertaining to smooth pieces will be
very small for large � , holding promise for effective compression in these regions. All this motivates the following
theorem, which estimates the decay of ù�� in terms of the smoothness ó of the curve as well as the smoothness �
of the subdivision scheme. It also shows the existence of the limiting parameterization and its Hölder regularity.

Theorem 6.3. Let rk7 � w , 1 , � , Q , � , ò , ó and Ú be given as in Section 6.1. Furthermore, let ý � �3G,� be a piecewise
linear function interpolating the points r�; ��� � w at GB��H0( J � yPÚ . Set�ã8X��npÊ�×�� "� *�ó���* �b�}8>�D�â�* �ãyÅÄN* �p�TâS���=*(6.15)

If the first differences of 7�� converge exponentially to zero,U ?A7���U W �T¢¶� � * �A�D���I�>*(6.16)

and óÃR��=*(6.17)

then the parameterization ý+�=�3G,� converges uniformly exponentially to ý!�3G,�_y�¢�ÿ Ð �CÚ�� , and ý Ç�ä È �3G,� satisfies the
Hölder estimate ³³³ ý Ç�ä È �3G<�?}G,� . ý Ç�ä È �%G,� ³³³ ���>U ?}G#�¡���U å UC�[�\� U ?}G	U¨U �+<�* Ü"G�*�G<�?}G�y;Ú+*(6.18)

where
E
� # �)* �b� � JN*E

 �* otherwise *(6.19)

with
E
 � # �>* � ��nAÊ¨×��%��*,ó�� and �ê�I�>*�0* otherwise *  # �>* �ãy£r=�=*	E	E�E<*3Q . ��w�*0QS�D(0*�0* otherwise E(6.20)

When �j��� , the related wavelet coefficients in (6.14) satisfyU ù � U W ���,� < â�è é Ç þ � � È ( J � â�è é Ç þ � � È *(6.21)

and for �ã�L� U ùp��U W ���,� < Ò ( J � â�è é Ç ÿ ��
�� þ � ê È * E
Ö � # �0* npÊ�×��Ô��*�ó��N�D�/��>*E

*�npÊ�×��Ô��*�ó��N�D�/��>E(6.22)

If �ãR�� , then for sufficiently large � ,öb�37 � �N�I��I�	( J �
ë * ì��/npÊ¨×���� J . �>*�����E(6.23)

If �ãR�� or 1Í��1<� , then for sufficiently large � ,Z,\0]� ³³³³ ;�����
�� ������
 . ;0��� �; ��� ����
 . ; ��� � . �( ³³³³ ����( J �
ë * ìC� # npÊ¨×���� J . �=*	���#*ª�ãRL�>*npÊ¨×��%ó . �>*����#* 1Ï��1<�=E(6.24)

Remarks:

1. This is the same regularity that we get for the limit function of the predictor subdivision scheme when we use
the same method of proof. If we take the very special case ò��3;"�z�:� for all ; , then the normal multiresolution
scheme gives 7 ����
 ��1f7 � . In this case ù � �m� , and we no longer have a curve approximation problem.
However, we can define ý � �3G,� as before, and the convergence of ý � �3G,� and its derivatives still holds, as a
special case of this theorem. Theorem 6.3 can thus be viewed as an extension, without loss in the strength of
the estimates, of standard convergence results for linear subdivision such as Theorem 3.2, see e.g. [1, 3].
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2. In some cases, we obtain ý<�%G,�çy£É-Ê¨] ÿ , which is slightly stronger than stated in the theorem. This happens,
e.g. if either

"� � � or ó/� � , so that ���:nAÊ¨×�� � *,ó�� , and if in addition �ªuyv) , �[�ã� and �õR � u�:ó ;
under these conditions

E
as defined by (6.19, 6.20), equals zero. We leave the details of the other cases whereý!�3G,�§yvÉ-Ê¨] ÿ to the reader.

3. The statement of Theorem 6.3 may seem overly complicated because of all the different cases, depending
on the relative values of

"� , ó and � . By looking at a few extreme cases, we can get some insight in what is
happening. Suppose the curve

�
is very smooth (i.e. ó large), whereas 1 is a reasonable but not very fancy

subdivision scheme, so that
"� �ãQ �
�W� ��� �[ó , implying � � "� . We then obtain ý�yj¢ å Ð , i.e. the

smoothness of the normal parameterization is that of the subdivision scheme. If �¸� "� /� , then the decay
of the wavelet coefficients is given by U ù���U W �L¢�� < ( J � Ç+íå ��
 È , i.e. we have a “gain of 1” in this decay rate,
when compared to the smoothness of 1 (but we do not get the full decay rate � if �$R "� |� , unlike standard
linear wavelet transforms). If we look at the other extreme case, where � and � are strictly larger than ó , i.e.
the subdivision scheme is “smoother” than

�
, then �m�bó , ý|yÏ¢ þ Ð and U ùp��U W �b¢�( J � þ : the decay rate

of U ù � U W and the smoothness of ý<�%G,� match and are completely set by the smoothness ó of
�

.

Proof of Theorem 6.3. We divide this proof into three parts. In the first part of the proof we show the regularity
of ý<�%G,� and (6.18, 6.19, 6.20). In the second part we show the decay estimates for the wavelet coefficients, (6.21,
6.22) and in the last part, we show the remaining statements (6.23, 6.24).

Before starting, we establish the simple inequalities�ã�D�ê�D�D����£Qv����* �¶�/�:�TóB*(6.25)

which follow directly from the definition of these quantities in (6.15) and from (6.1, 6.17). These inequalities will
be used extensively below.

Part 1: Regularity of ý<�%G,� . The strategy for this part is to show that the sequences 7z� are approximately generated
by the predictor subdivision scheme 1 itself, hence that an estimate of the type (4.1) holds for large enough é .
Theorem 4.4 can then be applied to prove convergence and regularity of the limiting function ý<�3G,� .

Now, by (6.16, 6.17) we get from Lemma 5.5 thatU 7 ����
 . 1f7 � U W �bU 1�ò���7 � � . òf��1f7 � ��U W *(6.26)

for sufficiently large � . We thus only need to bound U 1�òf�37 � � . òf��1f7 � ��U W to obtain the (4.1) estimate. Such
bounds are given by Theorem 4.7, provided we can control the divided differences of 7 � . We therefore start by
showing that ³³³ 7�M ï�P� ³³³ W ��_��>×)Z+` # �=* ����ð��T�§*� Ë Ò Ò ( � Ç 
 J å È *�ðÞ�L�//�=*(6.27)

for some integer Ì�Ö Ö���� and â as in (6.15).
The assumptions (6.16, 6.17) are stronger than those of Lemma 6.1, which gives³³³ 7�M 
 P� ³³³ W �H��� Ë Ò * Ì Ö � # �>* � �j�=*2QvRI�>*�0* otherwise E(6.28)

This shows (6.27) when �¸�$� . If �F�m� , then we shall prove (6.27) by induction and (6.28) will be our initial
step. For our induction step we suppose we have, for some � with �¶�H���/� . � , that, for some

�Ì ,³³³ 7NM ï�P� ³³³ W �H_W�=×)Z+` # �>* � �Tð����+*� NË * ð[�º�+E(6.29)

The inequality (6.28) shows that this holds for ���b� . We then want to derive that the same is true when we replace� by � �� . By Lemma 6.2, this is true for �v�b� . ���:� . � , since for these � we have npÊ¨×��¡�=*�� . ��� ��� .
The induction process thus proves (6.29) for �C��� . We can now apply Lemma 6.2 one more time, since �$��� ,
which establishes (6.27).
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We now proceed to apply Theorem 4.7 to the bound (6.27) and then use Theorem 4.4 to show (6.18, 6.19, 6.20).
We divide the arguments into two cases: one where we can use í �m��j� in Theorem 4.7 and one where we
have to make do with í ��� :

Case 1: �j�L� or npÊ�×��Ô��*�ó��NRT�/�� .
This case is chosen such that Theorem 4.7 can be used with í �/��&� . The other parameters in Theorem 4.7 are¿C�DnpÊ�×��%ó . íI*	�k�B�DnpÊ�×��%ó . � . �>*�����RD� , Ì£�LÌ�ÖXÖ and i �b� . â , as given in (6.27). We get

U òf��1B7 � � . 1�òf�37 � ��U W �H�,� Ë Ò Ò Ò ( J � Ç�ä ��
,� â�è é Ç å>� Â È%È * Ì Ö ÖXÖ �F,./ .0 Ì�ÖXÖ��,��Ï¿��#* �j���)*�)* �êRT�)*,¿��/â�*Ì�ÖXÖ3* �êRT�)*,¿��/â�*(6.30)

where we used the fact that âÎ��� . �I�:� for �b��� by (6.25). Finally, we combine (6.26) and (6.30) and apply
Theorem 4.4 with é��/�TT�f£npÊ¨×��@â-*�¿5� and Ì£�LÌ�ÖXÖ Ö . We note that in this case óÃRT���� so by (6.25) we haveóIRã� and consequently, �[� "� . Since é&Rê�jj�Å�ã�Ij� , we thus have é�R � . Therefore � , � and â in
(4.15) coincide with (6.15). Let r �7���w be the (finite) subsequences of r�7���w containing only elements

�;)��� � for whichH0(�J � yÞÚ . Clearly U �7���U W is bounded. Corollary 4.5 applied to r �7���w then shows that ý�yD¢ íå Ð �+Ú��C�¸¢ ÿ Ð �+Ú5� .
Moreover, (6.18) is given by (4.12) with â as in (6.15) and

E
as in (4.13), i.e.E

� # �=* �ãy£r=�>*�E	E�E"*�Q . ��w=*)QS�D(0*�)* otherwise E(6.31)

What is more, when �ê�I� , npÊ¨×��%��*,ó��NRD�D����T�b� "� *
so, if �I� � , the first term in (6.20) is zero, and (6.31) agrees with (6.19, 6.20).

Case 2: �ê�I� and npÊ�×��Ô��*,ó��N�T�//� .
In this case we will apply Theorem 4.7 with í �:� . This is allowed since, by (6.25) we have í�ê�Þ�:���npÊ�×��Ô��*,ó�� . We use only the first � bounds in (6.27), i.e.,³³³ 7NM ï�P� ³³³ W ��_��>×)Z+`�* �¶��ðª���§E
Theorem 4.7, with ¿C��nAÊ¨×��3ó . íI*����B�DnpÊ¨×��3ó . �§*���� and Ì£�Li �/� then givesU ò��@1f7 � � . 1�ò���7 � �	U W �H�	( J � Ç�ä � Â È ���	( J � â�è é Ç þ � ä ��
 È E(6.32)

We can now apply Corollary 4.5 with ÌÃ�/� and ép��npÊ�×��%óB*��/���� . We have by (6.25)npÊ¨×�� "� *�é0�z��npÊ�×�� "� *,óz*��//�k�B�/npÊ¨×����p*��D����B���p*
so (4.15) agrees with (6.15). Therefore we obtain again, as in the first case, ý�ya¢Aÿ Ð �+Ú�� . Finally, (4.16) givesE

� # �>* � �DnpÊ�×��%óB*��D����#*�0* � u�DnpÊ�×��%óB*��D����#*  # �>* �:yÍr=�=*	E�E	E!*3Q . ��w�*)QS�/(�*�0* otherwise *(6.33)

and (6.19, 6.20) follows from the restrictions on � , � and ó for this case and (6.25), sincenpÊ¨×��%óz*���/�k�B�/npÊ¨×��%óz*���/�=*¡�}�f��nAÊ¨×��3óB*¡�}�#E(6.34)

This completes the first part of the theorem.
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Part 2: Decay of the wavelet coefficients. In this second part of the theorem we estimate the wavelet coefficientsùp� and show (6.21, 6.22). Again, it is the difference U 1�òf�37f��� . ò��@1f7����	U W that plays the most important role.
Indeed, by using Lemma 5.5 we getU ù_����
>U W � U 1f7�� . 7�����
=U W �U 1�ò���7���� . òf�37�����
���U W� U 1f7�� . 7�����
=U W �U 1�ò���7���� . òf��1B7-����U W �U òf��1B7���� . òf�37�����
��	U W� U 1f7 � . 7 ����
 U W �U 1�ò���7 � � . òf��1B7 � ��U W �U ò Ö U WbU 1f7 � . 7 ����
 U W� �BU 1�òf�37 � � . ò��@1f7 � �	U W E(6.35)

As in the first part we divide the proof into (the same) two cases, and use the estimates (6.30, 6.32), which were
already derived in that part, to bound U 1�òf�37 � � . ò��@1f7 � �	U W and hence U ù ����
 U W .

Case 1: �j�L� or npÊ�×��Ô��*�ó��NRT�/�� .
In this case we start from the estimate (6.30), and note that by (4.17) we can in fact take Ì�Ö Öz�

E
in (6.27), and

consequently also in (6.30). Suppose first that � �ª� . Then, as noted in part one of the proof, � �ªâL��� .
Therefore, still with ¿¶��npÊ�×��%ó . � . �>*���� ,��/���npÊ�×��@â-*�¿��z�b���npÊ�×��¡�>*�¿��z�b���¿¶�:���nAÊ¨×��3ó . �=*	���B�/npÊ�×��%óB*�(>��*
and (6.21) follows from (6.30, 6.35). Assume now instead that �$�L� . Then, by the second restriction in this case
(on � , ó and � ) and (6.25), we must have�ê�D�D����&npÊ¨×��Ô��*�ó��N��� î �D��¶�T�/�(A����E
Hence,npÊ�×����pp�>*�óB*¡�}�B��npÊ�×����pp�>*�ó��z�/nAÊ¨×����A_���â-*�óB*��pC(=�B���pp�>¶npÊ¨×���â�*,ó . � . �=*	���f�L�A_���npÊ�×��@â-*�¿���E
Furthermore, ¿C�DnpÊ¨×��%ó . � . �=*	���f��npÊ�×��3ó . � . �>*�� . â"���â-E
Recalling that �p�Tâv�I� , this implies that ¿}�/â if and only if óÍ�/��D� . But, since ��/� ��� , in fact ¿A�/â if
and only if npÊ¨×��%óz*¡�}�N�/�D�� . Therefore, (6.22) follows from (6.30, 6.35).

Case 2: �ê�I� and npÊ�×��Ô��*,ó��N�T�//� .
By (6.34, 6.25), npÊ�×����/��>*,óz*¡�}�f�/npÊ¨×�������>*��D��>*�ó��B�DnpÊ¨×����D��>*�ó���*
in this case. Also, by the restrictions on � , � and ó in this case, npÊ�×��Ô��*,ó��N�T���� �/�//� . Therefore,

E
Ö2�L�

in (6.22), so that (6.22) follows from (6.32, 6.35).

Part 3: Limiting uniformity. For the remaining statements, suppose first that �$Rb� . Set ?}G��I( J � and Gz�jH0?}G .
Then, ³³³³ �@?A7 � � ���?A7������ J 
 . � ³³³³ � ³³³³ ý!�3G<�?}G,� . ý!�3G,�ý!�3G,� . ý!�3G . ?}G,� . � ³³³³ � ³³³³ ����?}G,� 
,�Áë?}G�ý Ö �3G,� . � Ö �@?}G,� 
,�Áë ³³³³ �����@?�G,� ë
if ?}G is sufficiently small, or, equivalently of � is sufficiently large. It follows that the quantities � ��� � defined by�>��� �}89�Dn_o5q ÷ �@?A7����,���?A7 � � ����
 * ��?A7���������
�@?A7 � � �êø
satisfy the inequality U � ��� � . �+U���n_o5qv÷Æ���@?�G,� ë * ����?}G,� ë *� . �>��?}G,� ë ø ��� Ö �@?�G,� ë s
now (6.23) follows since öb��7����z�/Z�\0] � �>��� � . The same argument proves (6.24) for this case, since³³³³ ; ����
�� ������
 . ; ��� �;���� ����
 . ;0��� � . �( ³³³³ � �( ³³³³ � ��� � . ��>��� ��L� ³³³³ � ����?}G,� ë *� . ���@?}G,� ë ��� Ö ��?}G,� ë E
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Suppose finally that 1Ï�L1�� . For this case �b� � �b� and Q �
�W� �b� (see below). The first part of the theorem then
shows that ý!�3G,�NyÅÉ�Ê�] 
 . Moreover, we can take 2§��� in Lemma 5.3 and with ��Ö¨ � ¾ �3ó . �=*¡ò<Ö�� ,³³³³ ;�����
�� ���#��
 . ;���� �;���� �#��
 . ;���� � . �( ³³³³ � n_o5q<�,�@?A7�����
��¡���+*��@?}7�����
	�,������
	���?A7������ . �( �T� � . �( � �	Ö¨ U ?A7 � U ëW()��(VI� Ö¨ U ?A7���U ëW � �H� Ö¨ U ?A7 � U ëW E
We get (6.24) for this case by noting that U ?A7f��U W �H_W�>×2ZC`z( J � since ý<�%G,� is Lipschitz.

Remark: We can weaken the assumptions on the predictor subdivision scheme further. It is enough that we
use a, possibly nonlinear, interpolating scheme

�1 such that there exist a linear subdivision scheme 1 with the
characteristics stated in the theorem, for which³³³ 1f7�� . �1�7�� ³³³ W ���	( J � ç *
with ª large enough ( ªÏRj�L��§�npÊ¨×��@â-*�¿5� in case 1 and ªÃRInAÊ¨×��3óB*��Lj��� in case 2). Then, (4.1) will still
hold for all the cases we care about ( éÎ�Hª2� , since³³³ 7�����
 . �1�7�� ³³³ W �bU 7�����
 . 1f7���U W 5�	( J � ç ��� Ö ( J � è *
and similarly with Lemma 5.5 and (6.35).

6.4. Stability. In the preceding subsection we established, under certain conditions, a rate of decay for the wavelet
coefficients, in the expectation that fast decay will be associated with significant compression without great loss of
accuracy. In standard (linear) wavelet decompositions, compression can be achieved by thresholding, which simply
discards coefficients along those basis directions that give only small contributions. In the case of (inherently
nonlinear) normal multiresolution approximation, it is much less clear a priori that the effect of thresholding
(or any other approximation) of the wavelet coefficients can be kept under control. This motivates the stability
analysis below, where we investigate the effects of inaccuracies in the initial, coarse scale data and/or the wavelet
coefficients on the reconstruction of the curve.

In order to analyze the stability of the normal scheme we set ï � �:�37��>* ô � �§yÅ6 � . For an element G �ê�37§* ô �Ny6 � we define U G U �ç�Sð 7 �  ô � yÅ6|E
Then, � ����
�� ���#��
V�ê��1ñï � �,���#��
zL��ò5�	ùp��ó����,�+* � ����
�� ���C� � ��� ��*
where óN�¶yÅ6 � , ò5��yÆ6&�¡r . �=*	��w5� are the sequences of normal vectors respectively signs defined byóN� � ?ôïñõ�U ?ôï � U � 8X� Ú . ? ô � *z?}7�� ÛU ?�ï � U � * ö@��� ����Z�Ê[�=× ¬ � � ����
�� ������
 . ��1Oï � �¡������
���k Ú . ? ô � *z?A7�� Û ¯
Introduce the perturbed sequences

�ù � and
�ï � �:� �7 � * �ô � � constructed from

�ï � by the rule�� ����
�� ���#��
V�ê��1 �ï � �,���#��
zL��ò5� �ùp� �ó����,�+* �� ����
�� ���C� �� ��� ��*
and similarly, �ó��ç� ? �ï õ�U ? �ï � U � 89� Ú . ? �ô � *z? �7�� ÛU ? �ï � U � E
We want to show that if

�ï � is close to ï � and if U ù � . �ù � U W is small, then the resulting sequence
�ï � remains

close to ï � for all � .
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Theorem 6.4. Let r�7���w , 1 , � , Q , � , ò and ó be given as in Section 6.1. Suppose³³³ ï � . �ï � ³³³ �	� W � ��� * U ùp� . �ù_��U W � ��� ( J �
	 * i��T�0E
If the first differences of 7�� converge exponentially to zero,U ?A7���U W �T¢¶� � * �A�D���I�>*
and óÍRI�>* Z,\)]� öb�37����§�/4/* # "� R��>*¸QSR��>*"� �b�>*¸QÆ�b�>*(6.36)

then there is a constant ¢ independent of � , �Ð� and
���

such that for ��RT� ,³³³ ï � . �ï � ³³³ �#� W �D¢p� � �  � � ���=<+* E
� # �0* i¶RD�0*�>* iç�L�0E(6.37)

Proof. We fix the indices �>*�H and use the shorthand notation ? � ����?ôï � � � , &&�S& ��� � , ú � ú ��� � , öp�Ïö ��� � and

similarly with a tilde added for the perturbed sequences. Also set ÷2�ç�Jï � . �ï � . For odd points we getÃ ����
�� ���#��
 �ê��1�÷ � � ���#��
 5ö ú ��& . �&��-5ö=� ú . �ú � �&fE(6.38)

We can estimateU & . �&zU � � ³³³³³ ? �U ? � U � . ? ��U ? �� U � ³³³³³ � � ³³³³³ ? � U ? �� U � . ? �� U ? �� U ��&? �� U ? �� U � . ? �� U ? � U �U ? �� U �}U ? � U � ³³³³³ �� U ? � . ? �� U �  ³³³ U ? �� U � . U ? � U � ³³³U ? � U � � (2U ? � . ? �� U �U ? � U � � ² U ÷ � U �	� WU���?A7 � � � U E(6.39)

Before continuing, we derive a basic estimate for U ÷ ����
 . 1�÷ � U W . Set ¿C�DnpÊ¨×��%ó . �>*���� . Like in (6.35),U ú U0���=Ut�@1�ò���7 � � . òf��1B7 � ��� ������
 Ut*
and clearly U �&zU � �j� . Together with (6.36, 6.38, 6.39) and Lemma 4.6 we then getU Ã#����
�� ������
 . �@1�÷����¡������
=U � � �>U���1�ò���7-��� . òf��1f7������¡������
�U U ÷���U �#� WU���?A7 � � � U �U �ú . ú U� �ÍU ÷ � U �	� W n_o5qh�¤>¥ ¬ ¦ M © Ut�@?}7 � � h U 
,� ÂUt�@?A7����,�0U LU �ú . ú U W� ��U ÷���U �	� W öb�37����+«|U ?A7���U ÂW  ��� ( J �
	� ��( J � Â ³³³ 7 M 
 P� ³³³ Â W U ÷ � U �	� W  � � ( J �
	 E
Since

� ����
�� ��� � � ��� � and
�� ����
�� ��� � �� ��� � , we furthermore have Ã ����
�� ��� �ºÃ ��� � . From Lemma 6.1 and (6.36) it then

follows that U ÷ ����
 . 1�÷ � U �#� W �H� 
 ( J � Â U ÷ � U �	� W  � � ( J �
	 * Ü��p�D�0E(6.40)

The proof will now continue through three steps. In the first step we show that the error ÷ � can grow at most
exponentially with � . In the second step we prove that this in fact implies that ÷ � grows at most polynomially, and
finally, in the last step, we show that the polynomial growth actually implies (6.37).
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Step 1: Exponential growth of U ÷���U �	� W . From (6.40) we haveU ÷ ����
 U �#� W �jU 1�÷ � U �	� W 5� 
 ( J � Â U ÷ � U �#� W  � � ( J �
	 �j��U 1VU WjI� 
 �-U ÷ � U �	� W  � � �}8^] U ÷ � U �#� W  � � *
and we assume without loss of generality that ]_�/( . By induction, for all � ,

U ÷ ����
 U �	� W �H] ����
 � �  � � �g� µ � ] � ��] ����
 � �  � � % �Ì])*�� ��>*��=�N��� � ] ����
 � � �  � � ��E(6.41)

This shows that ÷�� cannot grow faster than exponentially. It is not a sharp estimate, and we will use it only as a
stepping stone to show the more precise estimate (6.37).

Step 2: Polynomial growth of U ÷0��U �	� W . We now proceed to show that the error can in fact only grow polynomially
with � . As an intermediate result, we will show that ÷0� is approximately produced by 1 from ÷2� : the sequences ÷+�
satisfy an estimate of the type (4.1), at least for �a�ùø with ø finite. We can then apply Theorem 4.2 and bound
the growth of the sequences ÷+� for �_�ºø .

Let é_�/npÊ¨×��%¿5*�ik��'�(A�I� . By (6.40) we get for �p�Ã�_�Jø ,U ÷�����
 . 1�÷+��U �	� W � ( J<è � : ��
�( J � Ç Â J!è È U ÷)�0U �#� Wb ��� ( J � Ç 	 J!è ÈeB� ( J<è � n_o5q� ² � ² ú : ��
§( J � Ç Â J!è È U ÷)�0U �#� Wj ��� ( J � Ç 	 J!è È B �}8=� ú ( J!è � E(6.42)

Consider now another family of sequences,
�÷ ú� , such that

�÷ ú� �p÷�� for �S���£�pø , and
�÷ ú� �m1 �÷ ú� J 
 for �|R¿ø .

Then, by construction, ³³ �÷ ú ��
����
�. 1 �÷ ú ��
� ³³ �	� W �D� ú ( J<è � * Ü��p�T�0*
and we can apply Theorem 4.2 to both elements of

�÷ ú ��
� yS6 � with �_�L� ú , ���L� and é as above. Since we can
choose a Q -suitable ß for which ßÏ�£Q . �C�ÍQ . é , we have ��&Q . év�£Q . Moreover, é��L� only when i¶��� .
There is hence a constant �	�¶�I� , independent of

�û�
and � ú , such that³³ �÷ ú ��
� ³³ �#� W ���	� Ú ³³ �÷ ú ��
� ³³ W �� ú Û �\<}�H�#�B� �À� &� ú ���=<�* Ü0�=*Wø|RD�0*(6.43)

with

E
given as in (6.37). Taking �}�7ø_�� in (6.43) yieldsU ÷���U �#� W � ³³³ �÷ �� ³³³ �#� W ���#�B� ��� &��� J 
	�>� < * Ü0�p���)E(6.44)

Let f and f£Ö be two positive integers such that ����f���fÃÖ and��
W�#��( J b Ç Â J<è È �L�>* H<�( J Ç � J b È Ç Â J!è È ���>* HÎ��f Ö E(6.45)

Then, for ����f£Ö , using (6.41, 6.45),� � � n_o5qv÷ npo�q� ² � ² b Ò J 
 � 
 ( J � Ç Â J!è È U ÷ � U �	� W  � � ( J � Ç 	 J<è È *�� � n_o5qb Ò ² � ² � ��
?�#��( J b Ç Â J<è È ( J Ç � J b È Ç Â J!è È U ÷)��U �#� Wj ��� ( J � Ç 	 J!è È ø� n_o5q ÷ npo�q� ² � ² b Ò J 
 � � � 
 6 ( J Ç Â J<è È ] 8 � � � �  � � ��* ��	� npo�qb Ò ² � ² � ( J Ç � J b È Ç Â J!è È U ÷ � U �#� W ø  � � E
But, since � � ��� and ]_�/( ,n_o5q� ² � ² b Ò J 
 �#�c��
 6 ( J Ç Â J!è È ] 8 � ��������
 6 ( J Ç Â J<è È ] 8 b Ò J 
 �H���c��
?�#� 6 ( J Ç Â J!è È ] 8 b Ò ����
W�#�V( J b Ç Â J!è È ���³] b Ò *
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and by (6.45), �>�«� n_o5qv÷Æ����] b Ò � ���  ��� �#* ��#� n_o5qb Ò ² � ² � ( J Ç � J b È Ç Â J<è È U ÷)�)U �	� W ø  ��� *(6.46)

� n_o5q ÷ � � ] b Ò � � �  � � �#*�npo�qb Ò ² � ² � U ÷ � U �#� W�#��H < ø  � � *(6.47)

for ����f Ö . We claim that (6.41, 6.44, 6.47) yields the polynomial bound on the growth of ÷ � given byU ÷���U �#� W ���#�>� ���  ��� �3� < : � . f Ö 5�#�c] b Ò B *(6.48)

for �&�Ëf|Ö . This is clearly true for ���×fÃÖ by (6.41) and � � �õ� , f£Ö �õ� . Suppose (6.48) holds for � withf|Ö-�Í�_��& . We then have, from (6.44, 6.47, 6.48) and (6.45),U ÷ ' ��
 U �	� W � � � � � � �� ' �<��&����� < ��� � � � �  � � �<��&_���� <Ïn_o�q ÷ � � � � ] b Ò � � �  � � �#*Ln_o5qb Ò ² � ² ' U ÷)��U �	� WH < ø ��&�/�k� <� � � � � �  � � �<��&_����+<5�	�>� �À�  ��� �#��&Î���� < n_o�qv÷Æ�#�c] b Ò *�n_o5qb Ò ² � ² ' : H . f Ö 5�#�c] b Ò B ø� � � � � �  � � �	��&Î���� < : &Î�� . f Ö 5� � ] b Ò B E
This shows (6.48) for all ����fÃÖ .
Step 3: Conclusion. It is now rather easy to see that (6.48) implies (6.37). We note first that there is a constant � w
such that ( J Ç � J b È Ç Â J<è È H < �@H . f Ö �N�H� w * Ü<HÎ�Hf Ö E
It then follows from (6.45, 6.46, 6.48) that for �_�Hf Ö�>�«� n_o�q ÷ ����] b Ò � ���  ��� �#*�n_o5qb Ò ² � ² � ( J Ç � J b È Ç Â J!è È � ���  �À� ��H<h:ÔH . f Ö I���c] b Ò B ø  ���

� � � �  � � �+n_o5q 6 � � ] b Ò *h� w 5� � ] b Ò 8  � � �D¢p� � �  � � ��E
On the other hand, for �p�Í�_�HfÍÖ , we get from (6.42) and (6.41),�>� � n_o5q� ² � ² b Ò :ü���c��
§( J � Ç Â J<è È ] � � �À�  ��� �� ��� ( J � Ç 	 J!è ÈeB� ������
§( J b Ò Ç Â J!è È ] b Ò � ���  ��� �- ��� �T¢p� �À�  ��� ��E
The stability (6.37) then follows from (6.44).

Remarks:

1. The result in Theorem 6.4 shows that setting wavelet coefficients ú ��� � to zero beyond a certain level, leads
to a stable compression scheme. For example, suppose that the wavelet coefficients decay asU ù_��U W �H��( J � ç * ªSRD�0*(6.49)

and that we set �ù_�ç� # ùp�>* �p�Í�_�Jø0*�)* �_RJø0E
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as well as
�ï � �ùï � . This corresponds to doing the reconstruction of the curve exactly in the first ø levels,

and to use only the pure subdivision scheme for further refinement of the curve. Theorem 6.4 can then be
applied at level ø with

�À� �/� , ��� �(��( J ú ç and i �(ª , so that³³³ ï � . �ï � ³³³ �#� W �/¢�( J ú ç * Ü��p�D�0E(6.50)

If we are in the setting described in Theorems 5.7 and 5.8 we know from (5.30) that the non-uniformity is
controlled at level ø , hence öb��7 ú �N�TÙ where Ù is the bound for the weakly contractive scheme 1 . ( ÙI�I4
for 1L�$1 � ). When we proceed beyond ø using only 1 for refinement,

�7 � remains strictly increasing andöb� �7 � �v�FÙ trivially, since 1 is weakly contractive. In particular, we can define the perturbed function�ò ú� �3;"� as the piecewise linear interpolant of
�ï � � � �7��>* �ô � � for all � and denote by

�ò ú �3;"� the limiting
function obtained when �}æ�4 . It then follows from (6.50) that³³ ò . �ò ú ³³ W �H��( J ú ç E

2. One can also consider a thresholding scheme. Let us again assume (6.49) and set�ú ��� ��� # ú ��� � * U ú ��� � U+� Õ *�0* U ú ��� � U+� Õ E
We then have U ú ��� � . �ú ��� �0U"� Õ for all �=*�H , as well as U ú ��� � . �ú ��� �0U"�ãU ú ��� �2U"�(�	( J � ç . It follows that, for�p�Dâv��� , U ú ��� � . �ú ��� � U+� Õ 
 J å � å ( J � ç å E
If ï � � �ï � and âvR�� , then we obtain from Theorem 6.4 that³³³ ï � . �ï � ³³³ �#� W �T¢ Ö � å » 
 J å * âSRT�)*(6.51)

where ¢¶Ö depends on the product ª"â .
In this setting we cannot be sure that

�7�� remains strictly increasing for all � , and we cannot define the
functions

�ò=�=�3;"� as above. The normal parameterization of the perturbed curve remains well-defined however,
and we let

�ý��=�%G,� and
�ý �=�%G,� be the piecewise linear interpolants of �@( J � `f* �7���� and ��( J � `B* �ô � � respectively.

We denote the limits as �}æ�4 by
�ý!�%G,� and

�ý �3G,� , and also set
�� �3G,�N8X�ê� �ý<�3G,��* �ý �%G,��� . Then (6.51) shows that,Z�\0]À U � �3G,� . �� �%G,��U � ��Z,\)]À ³³ U ý<�%G,� . �ý!�3G,�	U � �U ý �%G,� . �ý �%G,��U � ³³ 
�V�� �T¢ Ö � å » 
 J å E

7. EXAMPLES

We conclude this paper with several examples. We first look at the class of Lagrangian interpolating subdivision
predictors 1-��� . The predictor 1-��� uses order (�x . � Lagrange interpolation. The simplest case, x��ê� , corresponds
to the midpoint rule; for x-��( one obtains the well-known 4-point scheme; we also consider x<�(¡ and x-�º² here.
The width of the scheme increases with x ( lê�H²�x . ( ), as well as the regularity of the limit function. This therefore
provides a nice test family to check the dependence on � of the decay of the normal wavelet coefficients or the
smoothness of the parameterization. We also consider on hybrid case from [7]. Finally we study an example to
test some of the restrictions imposed in the theorems. In particular, we often require that the function ò be ¢ þ withóÃR�� . We introduce a curve in Section 7.2 that is merely Lipschitz ( ó£�j� ), for which many of the conclusions of
our theorems do not hold, showing that óÃRI� is necessary.

7.1. The Lagrange interpolation prediction schemes 1 � h .
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7.1.1. Two point scheme. In the linear case we simply have³³³ 1NM 
 P� 7�M 
 P� ³³³ W � ³³³ 7�M 
 P� ³³³ W E
Hence ß/�m� is Q -suitable for Q&�Þ� , so

"� �¸� . If ò/yD¢ � we have ���¸� in Theorem 6.3. The worst case is�ã��� , for which �$�b� , âv��� and

E
�b� . Then ý<�3G,�çyÍÉ-Ê¨] 
 , which is optimal. Theorem 6.3 also predicts that

the wavelet coefficients decay as ÝA��( J ��� � .
7.1.2. Four point scheme. For the cubic case we start from the estimate³³³ 1NM w P� 7NM w P� ³³³ W �D( ³³³ 7NM w P� ³³³ W E
Hence ßa�j� is Q -suitable for QÆ��¡ , so

"� �D( . If ò|yv¢ � , Theorem 6.3 gives �b�L( and ý!�3G,�Nya¢ � Ð , which again
is optimal. If ò|yS¢ w � � we get �ã�T( and Theorem 6.3 predicts that the wavelet coefficients decay as ÝA���+( J w � � .
7.1.3. The 2-4 hybrid scheme. Let 1 � �:�,� . ú �,1 �  ú 1��=* �A� ú ���>E
This convex combination of 1�� and 1 � is of order two and

³³³ 1NM � P� ³³³ W �b( , hence
"� ��( . ����� � (p�$� , which is not

sufficient to prove that ý!�3G,�Nyv¢ 
 . However, we can also use the fact that³³³³ 6 1 M � P� 8 � ³³³³ W �º² . ú E
This means that

"� �/( . 
� ����� � ��² . ú �§R�� for ú RT� , so ý<�%G,�NyS¢ 
 by Theorem 6.3 when ò£yv¢ � .
7.1.4. Six point scheme. For the six point scheme we start from the estimate³³³ 1§M þ,P£ 7NM þ,P� ³³³ W �I²2E®ÿ�� ³³³ 7NM þ¡P� ³³³ W E
Hence ßê�u����� � ²2E®ÿ�� is Q -suitable for Q���� , so

"� ��� . �[�\� � ²)E�ÿ���� (�E�ÿ�� . If òêy:¢ w , Theorem 6.3 gives� ��� . ����� � ²)E�ÿ����Þ(�E�ÿ�� and ý<�%G,��y/¢ �
	 � þ , which is not optimal. If ò�yL¢ � , Theorem 6.3 predicts that the
wavelet coefficients decay as ÝA��( J w 	 � þ � � .

One can show that the six point scheme actually has a limit function with regularity (�E ´�¡ . (This value is
obtained by � 
 -estimates of the decay of the Fourier transform of the limit function. Because the mask of the
subdivision scheme defines a nonnegative trigonometric polynomial for Lagrange interpolating subdivision, the
Fourier transform of the limit function is positive as well, so that this � 
 -estimate can be shown to be optimal.)

7.1.5. Eight point scheme. For the eight point scheme we start from the estimate³³³ 1NM � P¤ 7NM � P� ³³³ W ���c¡ ³³³ 7NM � P� ³³³ W E
Hence ß[� �[�\� � �c¡ is Q -suitable for Q�� ÿ , so

"� � ÿ . �[�\� � �c¡� ¡)E ¡=� . If òÞy�¢ � , Theorem 6.3 gives����ÿ . �[�\� � ��¡���¡)E ¡=� and ý<�%G,�çyÍ¢ w 	 w � , which again is not optimal. If òÏyÍ¢ þ , Theorem 6.3 predicts that the
wavelet coefficients decay as ÝA��( J � 	 w �¡� � . Using Fourier methods one can show that the optimal regularity of the
limit function is ¡0E���� .

Numerical examples for 1 � till 1 ¤ are given in Figure 7. It shows that the observed behavior is very close to the
precise theoretical prediction.
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FIGURE 7. Numerical study of the first Lagrange interpolation subdivision schemes, 1f� to 1 ¤ .
Left column shows the normal multiresolution approximation at levels �v�Ï¡)*+² . Right column
shows the decay of wavelet coefficients as a function of level � (solid, bold) compared with the
function ( J � Ç ÿ ��
 È with �����=*�(�*�(�E ´�¡)*�¡0E���� (dashed, bold) together with the non-uniformity
measure öb��7���� as a function of � (solid) compared with the function ( J � â�è é Ç ÿ J 
�� 
 È (dashed).
In these figures it is important to compare the slopes of the solid and dashed lines.
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FIGURE 8. The curve in Section 7.2 for ¿¶�:�k'>( .
7.2. A counterexample if ób�F� . We will here show an example of a Lipschitz curve for which results in the
earlier sections break down. This indicates that the requirement in the theorems that ò�yÍ¢ þ with óTR:� is close
to optimal.

Take ¿ such that �A��¿A� 
� w and set ÌÍ� ���¿ �()�¡� . ¿ � � E
It is easy to see that Ì is an increasing function of ¿ and that �Î�D¿_�b�k'¢ ¡ implies �k'>(p�/ÌT�I� . The curve we
consider is inspired by the graph of an increasingly oscillating function, such asá§�3;"�z��¿k;�_W��Z���Üû�����z;!'A�����zÌ��(7.1)

for �Í�ê;L��� and constant for other ; . For simplicity we consider a piecewise linear approximation of á , for
which one gets simple formulae for all the quantities in which we are interested. More precisely, for �v��;Ï�ê� ,
let ò��3;"� be the piecewise linear interpolant of the points �3G h *�� h � given byG h �LÌ h * � h �D¿kG h _W�=Z���ÜÐ�����BG h 'A�[�\�zÌ��z�D¿kG h � . ��� h * · �D�0E
For ;S�T� , set òf�%;!���/� and ò��3;"����¿ for ;SRI� . The curve is illustrated in Figure 8 for ¿C�:�k'�( .

We note that ò is a continuous bounded curve, well defined when ¿ is in the stated interval. Moreover, recalling
that Ì��L� , we see that ò is both Lipschitz continuous,¾ �,�>*¡ò-�B�LZ,\0]� � � Ò ³³³³ ò��3;"� . òf�%;2ÖÔ�; . ; Ö ³³³³ �/Z�\0]h ³³³³ � h ��
 . � hG h ��
 . G h ³³³³ ��Z�\0]h ¿ ³³³³ G h ��
B�G hG h ��
 . G h ³³³³ ��¿ �N�Ì� . Ì *
and of bounded variation,

��� �Ôò-�B� Wg h µ � U � h ��
 . � h U>�/¿ Wg h µ � U G h ��
 �G h U=�D¿��¡�N&Ì�� Wg h µ � Ì h ��¿ ���Ì� . Ì E
It is clearly not ¢ 
 , though. (Neither is á .)
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We apply the normal scheme to the curve, with 7z���b` and the two point subdivision scheme 1�� as predictor.
To go from level � to level � /� we need to solve the equation in (5.1),÷0;�����
�� ������
 . ; ��� � �; ��� �#��
( ø �3;���� ����
 . ;���� ��� ÷ ñk����
�� ������
 . ñk��� ��Ïñk��� ����
( ø �%ñk��� ����
 . ñk��� ���B���)E(7.2)

There are in general many solutions to this equation for which ?A7B����
ÅRm� and we are free to set a rule telling
which one to pick. In particular we can take the solution that is furthest away from the predicted point. In that case
we will have ;)��� � �L� and ;���� 
V�DG@� for all � . This follows by induction after inserting these expressions into (7.2)
with H_�L� , ÷ G ����
 . G@�(çø G �  6 � ����
 . �0�( 8 � � � ÷ Ì . �(!ø Ì ���  ÷ . Ì . �(!ø ¿ � Ì �¡�� Ì �¡� ÷ Ì��,� . ¿ � � . �( �¡���¿ � � ø ���)E
Since ò is linear between the interpolation points �3G h � it also follows by induction that the � -th level normal
multiresolution approximation ò+�=�3G,� is exact for G}�ã� and G}�êG�� . This means that the wavelet coefficients are
zero for Hau�L� . For Hp��� ,�%G@����
5*��0����
�� . �( �%G@�>*��0���z��Ì � ÷)Ì . �( *�¿�� . ��� ����
 ÷0Ìv �(-øVø � Ì � ¿� . ¿ � Ú ¿5*§� . �k� ����
 Û E(7.3)

Hence, U ù � U W �êU ú ��� � U>� ¿ ¢ ���¿ �� . ¿ � Ì � *
and since we can pick Ì as close to one as we like, we can indeed construct Lipschitz continuous (and BV) curves
where the normal scheme has arbitrarily slow exponential convergence. Similar estimates would hold if we choseò to be the graph of á defined by (7.1).

This curve also provides a counter example to a few other results in the earlier sections of this paper. We note
that

��?A7����,���F,./ .0 (�J � * HÆ�D� or HÆ�T( � *G � * H_�L�0*( J � �%G � J � J 
 . G � J � ��* ( � �DHÆ�/( �¨��
 *��p���B�Ï�=* �F,./ .0 (�J � * HÆ�D� or HÆ�T( � *Ì � * H_�L�0*Ì � 
 J Ë��� Ë � M © * ( � �DHÆ�T( ����
 *��p���z�Ï�=*
(7.4)

and since ÌÏ�I�k'�( , Ì � � . Ì( � Ì �¨��
 �LÌ � ÷ �Ì . � ø ��(>Ì�� J � �TÌ � �T( J � *
so U ?A7���U W �ê��?A7����¡� ��Ì � * ³³³ 7NM 
 P� ³³³ W �:��(�Ì�� � E
By taking Ì�R��5'�( , this shows that Lemma 6.1 does not hold when ò is just Lipschitz.

Furthermore, just like for the wavelet coefficients �@1�ò���7 � � . ò��@1f7 � �,� � �/� for Hau�:� . Suppose we letÌÍ��( J 
+V�� ' * &Íyæ) � *
so that G �( ��( Ð � Ð ¬ z¬ z �LÌ ���-� ' �/G ����� ' E
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Then ��1�òf�37 � � . ò��@1f7 � �,� 
 � òf�%G � �( . ò ÷ G �( ø � ò��3G � �( . ò}�3G ����� ' �B��¿�� . �k� � ÷ G �( . G ����� ' � . ��� � ' ø �/�)E
Therefore, U 1�òf�37 � � . ò��@1f7 � �	U W ���0* Ü��pRT�0E
But, by (7.3) U 7�����
 . 1B7���U W ��Ì � ¿ �� . ¿ � RT�)* Ü��_RT�)*
so U 7�����
 . 1B7���U W R[U 1�ò���7-��� . òf��1f7�����U W for all � , eventhough U ?A7���U W æ � . Hence, Lemma 5.5 is not true
when ò is Lipschitz.

Finally, the last statement of Theorem 5.8 breaks down for Lipschitz curves. By (7.4)öb��7����N� ��?A7�������@?A7 � � J 
 �b��(>Ì�� � *
which blows up if we pick Ì�RL�5'�( .

8. OPEN QUESTIONS

The work in this paper was motivated by the application on normal meshes in surface representation and com-
pression. In [13] it was noted numerically that normal meshes are stable, yield smooth parameterization, and allow
for superior compression. In this paper these observations where proven theoretically for curves. More work needs
to be done for the case of surfaces. For fairly smooth surfaces, ¢ 
 and beyond, we expect many of the results of
this paper to carry through. However, the more interesting question is are how normal meshes work for less smooth
spaces, particularly spaces that are used to model natural images such as l�� , and the Besov space l 

�� 
 .

So far normal meshes have only involved interpolating subdivision schemes. It is well known that both in the
curve and surface case, non-interpolating or approximating, subdivision schemes not only yield smoother functions
for a fixed support, but also result in fewer oscillations or more “fair” limit functions. Therefore non-interpolating
schemes are preferred in practice. Interesting open problem are the construction of normal multiresolution for
non-interpolating subdivision and the use of the approximating subdivision machinery in this paper to study its
properties.

After finishing this paper we learned of the work of Maarten Jansen et al. [12]. They use normal meshes to
approximate piecewise continuous height fields and observe that normal meshes have the capability to adaptively
approximate the jump in a way similar to wedgelets and curvelets. They conjecture that for the class of so-called
“Horizon images” normal meshes converge as � J 
 instead of the regular wavelet rate of � J ��	 þ . They show that
for piecewise continuous functions, the average � � decay is even � J 
�	 �
£ again compared to � J ��	 þ for regular
wavelets. This shows that to study normal multiresolution, the class of piecewise continuous functions may be
more appropriate than the larger Lipschitz class we considered.
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APPENDIX A. PROOF OF PROPOSITION 4.1

For �ÎR�� , we have% �3�"*�&f*�Ì��& Ë � ' �º' J 
g� µ � ÷ H&�ø Ë � � J ' ��' J 
g� µ � ÷ & . H& ø Ë � J � �H' J 
g� µ � � J � � Wg� µ � � J � � �� . � E
For �A�j� , % ���"*+&f*�Ì��& Ë ��
 � �& ' J 
g� µ � ÷ H& ø Ë � �& ' J 
g� µ � � �j�=E
And for ���I� , % �3�"*+&f*�Ì���� ÷ Z�\0]� �2� H Ë � ��V�� ø ' J 
g� µ � � �WV�� � Z�\0] �!�2� H Ë � �WV��� . ¢ � �/¢p�3�"*�Ì���E
The fact that

%
is increasing is obvious from its definition. If �Å�(2 there is an � such that when HvR�� we haveH Ë © J Ë ¬ �3�0'^2#� � �L� and consequently% ���2*�&f*�Ìf
#�z�º' J 
g� µ � H Ë © J Ë ¬ 6 � 2 8 � H Ë ¬ 2 � � % �425*+&f*�Ì��k�+n_o5q� ² | H Ë © J Ë ¬ 6 � 2 8 �

which shows (4.5). For the last inequality, we have' ¬ J 
g� µ ' © H Ë � � ��& Ë 
 � ' © ��,��v&�
	� Ë � ' © ' ¬ J ' © J 
g� µ 
 ÷ H�5&�
��v& 
)ø Ë � � ��& Ë 
 � ' © �(0�,��v&�
	� Ë � ' © % �3�"*+&-� . &�
k*�Ì��#*
showing (4.6).

APPENDIX B. WEAK CONTRACTIVITY OF 1 �
It is clear that 1-� is weakly contractive with bound ÙÝ�Ý4 . In this appendix we show that any convex

combination of 1 � and 1 � is also weakly contractive with a bound in the range ÙêyÃ~ ¡ç�( ¢ (+*�4&� . This result, as
well as an outline of the proof, was communicated to us by Ruud van Damme [19].

Proposition B.1. The subdivision scheme1 � �:�,� . ú �,1<�§ ú 1 � * �A� ú ���>*
is weakly contractive with bound ÙI� ²ú ÷ �� " � . ú (�ø . �>E(B.1)

Proof. As in Section 5 let 7 denote the initial level and
�7 the level after one refinement, so that

�7F� 1 � 7 .
Moreover, let ép�&öb�37B� . Finally, we set� h 8X� ú ´ �,�@?}7�� h ��
 . �@?A7B� h J 
��!E
We then need to show that if éÆ�TÙ , then

�7 is strictly increasing andnpo�q ÷ ��? �7z����@? �7z�,����
 * �@? �7B������
��? �7B�,�êø �Dé0* Ü<H<E(B.2)

To show that
�7 is strictly increasing, we start by estimating � h in terms of �@?A7z� h ,U � h Uª� ��?A7B� h ú ´ ³³³³ ��?A7B� h J 
�@?}7B� h . ��?A7B� h ��
�@?A7B� h ³³³³ �j��?A7B� h ú ´ ÷ é . �é ø� ��?A7B� h ú ´ �@é . �k�#�@éC/�k� ���éC�����é ���@?A7B� h é . �é¶�� ��ÙT���� �Ù ú ´ E
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The last step follows since �3;A/�k� � '5; is increasing on ~��>*�4&� . We note moreover that

��ÙT���� � � �c�ú � ÷<�� " � . ú (�ø � � �c�ú � ÷2( . ú ( �( " � . ú (Vø � ´ú ÙA*(B.3)

so U � h U+�j��?A7B� h é . �éC/� E(B.4)

Now, let ·ç�¸��H)'�(5� . We have from (B.4)

(0�@? �7B���«� �@1 M 
 P� ?A7B�,���b�@?}7�� h  ú ´ # �@?}7B� h J 
 . �@?A7z� h ��
k* Hp�L(k·�*. �@?}7f� h J 
 ��@?A7B� h ��
 * Hp�L(k·z/�=*� �@?}7B� h . U � h U+�I�@?A7B� h ÷ � . é . �éC��0ø � ()��?A7B� héC�� RD�0E
This shows that

�7 is strictly increasing.
Suppose now that Hp�L(k· . Then, again by (B.4),

n_o�qÅ÷ ��? �7z�¡� h�@? �7B� � h ��
 * ��? �7B�¡� h ��
�@? �7B� � h ø � npo�q i ��1 M 
 P� ?A7B�,� h�@1 M 
 P� ?A7B� � h ��
 * ��1 M 
 P� ?}7B�,� h ��
�@1 M 
 P� ?A7B� � h j� npo�q ÷ �@?A7z� h . � h�@?A7z� h �� h * �@?}7�� h �� h�@?}7�� h . � h ø� ��?A7B� h �U � h U��?A7B� h . U � h U � �� è5J 
è ��
� . è5J 
è ��
 �Lé�*
proving (B.2) for H even. Suppose next that H_�L(5·B�� . Then

n_o5q ÷ ��? �7B� � h ��
��? �7B�,� h �-� * ��? �7B� � h �����? �7B�¡� h ��
+ø � n_o�qRi �@1 M 
 P� ?A7B� � h ��
�@1NM 
 P� ?A7B�¡� h �-� * ��1 M 
 P� ?A7B� � h �-���1NM 
 P� ?A7B�,� h ��
 j� n_o�q ÷ ��?A7z� h Ï� h�@?}7�� h ��
 . � h ��
 * ��?A7B� h ��
 . � h ��
��?A7B� h �� h ø E
Moreover,é+� h &� h ��
 � ú ´ � . é<�@?}7B� h J 
 �é<��?A7B� h ��
 . ��?A7B� h ��@?A7B� h �-� �� ú ´ � . é � ��?A7z� h �é<�@?}7�� h ��
 . �@?A7z� h L��?A7z� h ��
 '�é0�B� . ú ´ ÷ é� �éfø ��é-��?A7B� h . ��?A7B� h ��
 ��*
and� h �é+� h ��
 � ú ´ � . �@?A7B� h J 
BL��?A7B� h ��
 . é<�@?}7B� h �é<��?A7z� h �-���� ú ´ � . �@?A7B� h '�é���@?A7B� h ��
 . é<��?A7B� h &é � ��?A7z� h ��
	�B� ú ´ ÷2éC �é�ø �@é<��?A7z� h ��
 . �@?A7B� h �#E
Since ;A/�5'k; is increasing on ~��>*�4�� , we get from (B.3),ú ´ ÷ éC �é ø � ú ´ ÷ ÙD �Ù ø �L�=*
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and thereforen_o5q ÷ ��? �7z�,� h ��
��? �7z� � h �-� * �@? �7B�¡� h �-��@? �7B� � h ��
�ø � n_o5q ÷ � h �é+� h ��
BL��?A7B� h . é+� h ��
�@?}7B� h ��
 . � h ��
 * . ��é+� h �� h ��
	�-L��?A7z� h ��
f�é+� h�@?}7B� h �� h ø� n_o5q ÷ é<�@?A7B� h ��
 . é+� h ��
�@?A7B� h ��
 . � h ��
 * é<�@?}7�� h �é+� h�@?A7B� h �� h ø ��é�E
This shows (B.2) for H odd and thereby the whole proposition.
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