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Abstract. In this paper we present an overview of wavelet based multiresolution analyses.

First, we briey discuss the continuous wavelet transform in its simplest form. Then, we give the

de�nition of a multiresolution analysis and show how wavelets �t into it. We take a closer look at

orthogonal, biorthogonal and semiorthogonal wavelets. The fast wavelet transform, wavelets on an

interval, multidimensional wavelets and wavelet packets are discussed. Several examples of wavelet

families are introduced and compared. Finally, the essentials of two major applications are outlined:

data compression and compression of linear operators.
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1. Introduction. Wavelets have generated a tremendous interest in both the-
oretical and applied areas, especially over the past few years. The number of re-
searchers, already large, continues to grow, so progress is being made at a rapid pace.
In fact, advancements in the area are occurring at such a rate that the very meaning
of \wavelet analysis" keeps changing to incorporate new ideas.

In a rapidly developing �eld, overview papers are particularly useful, and several
good ones concerning wavelets are already available, such as [60, 83, 115, 122, 123,
125]. Of these, [122] contains a brief introduction to multiresolution analysis, [60]
describes wavelets from an approximation theory point of view, [83] discusses contin-
uous and discrete wavelets, [125] focuses on the construction of wavelets, [115] looks
at wavelets from a signal processing point of view and [123] compares wavelets with
Fourier techniques.
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Our paper di�ers from these in that it contains some more recent developments
and that it focuses on the \multiresolution analysis" aspect of wavelets. The emphasis
on multiresolution analysis allows us to look at a number of di�erent constructions
of wavelets such as orthogonal, semiorthogonal, and biorthogonal wavelets. By ex-
amining these constructions in a uni�ed setting, we are ideally positioned to make
comparisons between them. The recent developments contain wavelets on an interval,
multidimensional wavelets, and wavelet packets.

We have selected an expository style and a level of rigor that we hope will present
the ideas without obscuring them in too much detail. Instead of giving exact, detailed
statements in a \theorem-structured" way, we have opted for a more informal style.
References are given throughout, pointing to more details when needed.

For example, this paper occasionally contains statements of the form \A is (es-
sentially) equivalent with B". The interpretation that we have in mind is that, for
\all practical purposes", A is equivalent to B. Strictly speaking, the equivalence may
only hold under some extra technical conditions. Good examples are when a formula
is guaranteed to be true only \almost everywhere" or in a \weak sense".

The style we have chosen is motivated by the intended audience: people with
a more theoretical interest as well as those working in various applied areas. For a
reader in the �rst category this paper might provide some of the theory, and point to
some of the right references for further study. A reader in the second category could
use the paper to make comparisons, and �nd connections to related material.

The paper is organized as follows. After a brief sketch of the history of wavelets
we introduce the \continuous wavelet transform." The discussion of the continuous
wavelet transform is mainly included for historical purposes and for comparison with
the multiresolution analysis wavelets. Next, we give the de�nitions of \multiresolu-
tion analysis" and \scaling function" (Section 5), derive some basic properties and
illustrate these with some examples. In this section we also give the basic de�nition
of \wavelet." Wavelets are then studied in more detail in the next sections. Section 6
discusses orthogonal wavelets, while Section 7 treats biorthogonal wavelets, a gener-
alization of the orthogonal ones, and semiorthogonal wavelets, a compromise between
the previous two. In the following section we study the connection between wavelets
and polynomials, and show how this relates to the approximation properties of wave-
let expansions. In Section 9 we show how a \fast wavelet transform" can be derived
from the multiresolution analysis properties. In the appendix, the reader can �nd a
pseudocode implementation of this algorithm. At this point, i.e. after the study of the
basic properties of multiresolution analysis, we are ready to single out some desirable
properties of wavelets. This is done in Section 10. We also give several examples of
wavelet families, such as Daubechies' and spline wavelets, and compare their prop-
erties. The next three sections focus on more recent developments such as wavelets
on an interval, wavelet packets and multidimensional wavelets. These sections can
be read independently. Finally, in the last section (Section 14) we consider the basic
ideas associated with two important applications: data compression and analysis of
linear operators.

It goes without saying (almost) that this short overview is still highly incomplete.
It is unfortunate that we were unable to cover many other important and interesting
developments in the area, some of which are more signi�cant than the ones we have
included. For example, we hardly mention the signi�cant volume of work done in the
direction of approximation theory, and the e�orts in the �eld of fractal functions and
the more applied areas are left out almost entirely. We apologize to the people whose



AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES 3

results we were unable to discuss due to the constraints imposed by the overview
format.

Finally, let us point out that, although wavelets are a relatively recent phe-
nomenon, there are a number of useful sources of information about them. First
of all, there are three new journals with an emphasis on wavelets: Applied Compu-
tational Harmonic Analysis, Journal of Fourier Analysis, and Advances in Compu-
tational Mathematics. Secondly, several journals have had special issues on wave-
lets, such as Constructive Approximation, IEEE Transactions on Signal Process-
ing, IEEE Transactions on Information Theory, International Journal of Optical
Computing, Journal of Mathematical Imaging and Vision, and Optical Engineer-
ing. Also, an electronic information service exists on the Internet, the Wavelet
Digest, with the address wavelet@math.scarolina.edu. Last but not least, several
books on the subject exist, monographs as well as edited volumes. The list includes
[13, 20, 21, 43, 49, 74, 92, 96, 106, 108, 116, 119].

2. Notation. Most of the notation will be presented as we go along. The space
of square integrable functions, L2(R), is de�ned as the space of Lebesgue measurable
functions for which

kfk2 =
Z +1

�1

jf(x)j2 dx <1:

The inner product of two functions f; g 2 L2(R) is given by

h f; g i =
Z +1

�1

f(x) g(x)dx;

and the Fourier transform of a function f 2 L2(R) is de�ned as

bf(!) = Z +1

�1

f(x) e�i!x dx:

The Poisson summation formula is used in the following two forms,X
l

f(x� l) =
X
k

bf(2k�) ei2k�x;
and X

l

h f; g(� � l) i e�i!l =
X
k

bf(! + k2�)bg(! + k2�):

If no bounds are indicated under a summation sign, 2 Z is understood.
A countable set ffng of a Hilbert space is a Riesz basis if every element f of the

space can be written uniquely as f =
P

n cn fn, and positive constants A and B exist
such that

A kfk2 6
X
n

jcnj2 6 B kfk2:

3. A short history of wavelets. The history of wavelets could be the topic of
a separate paper. Let us give a short, subjective account.

Wavelet theory involves representing general functions in terms of simpler, �xed
building blocks at di�erent scales and positions. This has been found to be a useful
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approach in several di�erent areas. For example, we have subband �ltering techniques,
quadrature mirror �lters, pyramid schemes, etc., in signal and image processing, while
in mathematical physics similar ideas are studied as part of the theory of Coherent
States. Wavelet theory represents a useful synthesis of these di�erent approaches.

In abstract mathematics, it has been known for quite some time that techniques
based on Fourier series and Fourier transforms are not quite adequate for many prob-
lems and so-called Littlewood-Paley techniques often are e�ective substitutes. These
techniques were initially developed in the 30's to understand, among other things,
summability properties of Fourier series and boundary behavior of analytic functions.
In the 50's and 60's, these developed into powerful tools for studying other things,
such as solutions of partial di�erential equations and integral equations. It was real-
ized that they �t into Calder�on{Zygmund theory , an area of harmonic analysis that
is still very heavily researched.

One of the standard approaches, not only in Calder�on-Zygmund theory, but in
analysis in general, is to break up a complicated phenomenon into many simple pieces
and study each of the pieces separately. In the 70's, sums of simple functions, called
atomic decompositions [35], were widely used, especially in Hardy space theory. One
method used to establish that a general function f has such a decomposition, is to
start with the \Calder�on formula": for a function f , one has that

f(x) =

Z +1

0

Z +1

�1

( t � f)(y) e t(x� y) dy dt
t
:

The � denotes convolution. Here  t(x) = t�1 (x=t), and e t(x) is de�ned similarly,

for appropriate �xed functions  and e . As we shall see below, this representa-
tion is an example of a continuous wavelet transform. In mathematical physics the
Aslaksen-Klauder construction of the (ax+ b)-coherent states can be seen as another
independent derivation of the Calder�on formula [7, 91].

In the early 80's, Str�omberg discovered the �rst orthogonal wavelets [126]. This
was done in the context of trying to further understand Hardy spaces, as well as other
spaces used to measure the size and smoothness of functions. A discrete version of
the Calder�on formula had also been used for similar purposes in [86] and long before
this there were results by Haar [81], Franklin [70], Ciesielski [26], Peetre [112], and
others.

Independent from these developments in harmonic analysis, Alex Grossmann,
Jean Morlet, and their coworkers studied the wavelet transform in its continuous
form [78, 79, 80]. The theory of \frames" [51] provided a suitable general framework
for these investigations.

In the early to mid 80's, several groups, perhaps most notably the one associated
with Yves Meyer and his collaborators, independently realized, with some excitement,
that tools from Calder�on-Zygmund theory, in particular the Littlewood-Paley repre-
sentations, had discrete analogs and could give a uni�ed view of many of the results
in harmonic analysis. Also, one started to understand that these techniques could
be e�ective substitutes for Fourier series in numerical applications. (The �rst named
author of this paper came to this understanding through the joint work with Mike
Frazier [71, 72, 73].) As the emphasis shifted more towards the representations them-
selves, and the building blocks involved, the name of the theory also shifted. Alex
Grossmann and Jean Morlet suggested the word \wavelet" for the building blocks,
and what earlier had been referred to as Littlewood-Paley theory, now started to be
called wavelet theory.
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Pierre-Gilles Lemari�e and Yves Meyer [97], independent of Str�omberg, constructed
new orthogonal wavelet expansions. With the notion of multiresolution analysis, in-
troduced by St�ephane Mallat and Yves Meyer, a systematic framework for under-
standing these orthogonal expansions was developed [103, 104, 105]. It also provided
the connection with quadrature mirror �ltering. Soon, Ingrid Daubechies [47] gave a
construction of wavelets, non-zero only on a �nite interval and with arbitrarily high,
but �xed, regularity. This takes us up to a fairly recent time in the history of wavelet
theory. Several people have made substantial contributions to the �eld over the past
few years. Some of their work and the appropriate references will be discussed in the
body of the paper.

4. The continuous wavelet transform. Since we are going to be brief, let
us start by pointing out that more detailed treatments of the continuous wavelet
transform can be found in [20, 77, 78, 83]. As mentioned above, a wavelet expansion
uses translations and dilations of one �xed function, the wavelet  2 L2(R). In the
case of the continuous wavelet transform, the translation and dilation parameters vary
continuously. In other words, the transform makes use of the functions

 a;b(x) =
1p
jaj

 

�
x� b
a

�
with a; b 2 R; a 6= 0:

These functions are scaled so that their L2(R) norms are independent of a. The
continuous wavelet transform of a function f 2 L2(R) is now de�ned by

W(a; b) = h f;  a;b i :(1)

Using Parseval's identity, we can also write this as

2�W(a; b) = h bf; b a;b i ;(2)

where

b a;b(!) = ap
jaj

e�i!b b (a!):
We assume now that the wavelet  and its Fourier transform b are functions with

�nite centers �x and �! and �nite radii �x and �!. These quantities are de�ned by

�x =
1

k k2

Z +1

�1

x j (x)j2 dx;

�2
x =

1

k k2

Z +1

�1

(x� �x)2 j (x)j2 dx;

and similarly for �! and �!. The variable x usually represents either time or space;
we shall settle for the �rst and refer to x as time. From (1) and (2), we see that
the continuous wavelet transform at (a; b) picks up information about f , mostly from
the time interval [b+ a�x� a�x; b+ a�x+ a�x] and from the frequency interval [(�! �
�!)=a; (�! + �!)=a]. These two intervals determine a time-frequency window . Its
width, height and position are governed by a and b. Its area is constant and given by
4�x�!. The Heisenberg uncertainty principle says that this area has to be greater
than 2. These time-frequency windows are also called Heisenberg boxes .
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Suppose that the wavelet  satis�es the admissibility condition

C =

Z +1

�1

j b (!)j2
!

d! <1:

Then, the continuous wavelet transform W(a; b) is invertible on its range, and an
inverse transform is given by the relation

f(x) =
1

C 

Z +1

�1

Z +1

�1

W(a; b) a;b(x)
da db

a2
:(3)

From the admissibility condition, we see that b (0) has to be 0, and, in particular,  
has to oscillate. This, together with the decay property, has given  the name wavelet
or \small wave" (French: ondelette). This shows that the frequency localization of
the wavelets is much better than pointed out above. In most cases �! is zero and the
frequency localization is really in a band [�!2=a;�!1=a][ [!1=a; !2=a], because b (0)
vanishes. This can help to understand why a reconstruction formula of type (3) is
possible.

The transform is often represented graphically and plotted as two two-dimensional
images with color or grey-scale value corresponding to the modulus and phase of
W(a; b). This representation has been used extensively in areas such as geophysics.

In applications, it is of interest to �nd inverse transforms that do not make use
of W over the whole range of a and b. Transforms exist that only use positive values
of a or even only discrete values for a. Furthermore, using the theory of frames it is
possible to study the case where only discrete values for a and b are used, see [83]
for an excellent overview. The most common choice is to use a dyadic grid, i.e. to
let a = 2�j and b=a = l with j; l 2 Z [48, 73]. In general, the fewer values of a and
b one wants to use, the more restrictive the condition on the wavelet becomes. The
continuous wavelet transform allows us to use a very general wavelet. At the other
extreme, we shall see that much more restrictive conditions hold for a wavelet used in
multiresolution analysis. This allows us, on the other hand, to prove powerful results
such as the construction of orthogonal bases.

The transform that only uses the dyadic values of a and b was originally called
the discrete wavelet transform. At this moment, however, this term is ambiguous,
since it is also used to denote the transform from the sequence of scaling function
coe�cients of a function to its wavelet coe�cients (see Section 9).

The case when a, and b belong to more irregular sets have also been covered.
Such irregular sampling results can be found in [14, 39, 68, 67].

The continuous wavelet transform is also used in singularity detection and char-
acterization [71, 100]. A typical result in this direction is that if a function f is H�older
(Lipschitz) continuous of order 0 < � < 1, so that jf(x + h) � f(x)j = O(h�), then
the continuous wavelet transform has an asymptotic behavior like

W(a; b) = O(a�+1=2) for a! 0:

The converse is true as well. The advantage of this characterization compared to the
Fourier transform is that it does not only provide information about the kind of sin-
gularity, but also about its location in time. There is a corresponding characterization
of H�older (Lipschitz) continuous functions of higher order � > 1; the wavelet must
then have a number of vanishing moments greater than �, i.e.Z +1

�1

 (x)xp dx = 0 for 0 6 p 6 � and p 2 Z:



AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES 7

We note that the number of vanishing wavelet moments limits the order of smoothness
that can be characterized.

Example. A classical example of a wavelet is the Mexican hat function,

 (x) = (1� 2x2)e�x
2

:

Being the second derivative of a Gaussian, it has two vanishing moments.

5. Multiresolution analysis.

5.1. The scaling function and the subspaces Vj . There are at least two
ways to introduce wavelets: one is through the continuous wavelet transform as in
the previous section, and another is through multiresolution analysis. Here we start
by de�ning multiresolution analysis, and then point out some of the connections with
the continuous wavelet transform.

A multiresolution analysis of L2(R) is de�ned as a sequence of closed subspaces
Vj of L

2(R), j 2 Z, with the following properties [47, 103]:
1. Vj � Vj+1,
2. v(x) 2 Vj , v(2x) 2 Vj+1,
3. v(x) 2 V0 , v(x+ 1) 2 V0,

4.

+1[
j=�1

Vj is dense in L2(R) and

+1\
j=�1

Vj = f0g,

5. A scaling function ' 2 V0, with a non-vanishing integral, exists such that
the collection f'(x� l) j l 2 Zg is a Riesz basis of V0.
The references [122, 123] contain an introduction to the concept of multiresolution
analysis.

Let us make a couple of simple observations concerning this de�nition. Since
' 2 V0 � V1, a sequence (hk) 2 `2(Z) exists such that the scaling function satis�es

'(x) = 2
X
k

hk '(2x� k):(4)

This functional equation goes by several di�erent names: the re�nement equation,
the dilation equation or the two-scale di�erence equation. We shall use the �rst.

It is immediate that the collection of functions f'j;l j l 2 Zg, with 'j;l(x) =p
2j '(2jx� l); is a Riesz basis of Vj .
By integrating both sides of (4), and dividing by the (non-vanishing) integral of

', we see that X
k

hk = 1:(5)

If the scaling function belongs to L1, it is, under very general conditions, uniquely
de�ned by its re�nement equation and the normalization [52],Z +1

�1

'(x) dx = 1:

In many cases, no explicit expression for ' is available. However, there are fast
algorithms that use the re�nement equation to evaluate the scaling function ' at
dyadic points (x = 2�jk, j; k 2 Z) [15, 18, 47, 52, 53, 122]. In many applications, we
never need the scaling function itself; instead we may often work directly with the hk.
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The spaces Vj will be used to approximate general functions. This will be done
by de�ning appropriate projections onto these spaces. Since the union of all the Vj
is dense in L2(R), we are guaranteed that any given function can be approximated
arbitrarily close by such projections.

To be able to use the collection f'(x�l) j l 2 Zg to approximate even the simplest
functions (such as constants), it is natural to assume that the scaling function and its
integer translates form a partition of unity , or, in other words,

8x 2 R :
X
k

'(x� k) = 1:(6)

Note that by Poisson's summation formula, the partition of unity is (essentially)
equivalent with

b'(2�k) = �k for k 2 Z:(7)

By (4), the Fourier transform of the scaling function must satisfy

b'(!) = H(!=2) b'(!=2);(8)

where H is a 2�-periodic function de�ned by

H(!) =
X
k

hk e
�ik!:(9)

Since b'(0) = 1, we can apply (8) recursively. This yields, at least formally, the product
formula

b'(!) = 1Y
j=1

H(2�j!):

The convergence of this product is examined in [27, 47]. The representation of b' is
nice to have in many situations. For example, it can be used to construct '(x) from
the hk. Using (7) and (8), we see that we obtain a partition of unity if

H(�) = 0 or
X
k

(�1)k hk = 0:

Also note that (5) can be written as

H(0) = 1:

Examples of scaling functions.

(i) A well-known family of scaling functions is the set of cardinal B{splines.
The cardinal B{spline of order 1 is the box function N1(x) = �[0;1](x). For m > 1 the
cardinal B{spline Nm is de�ned recursively as a convolution:

Nm = Nm�1 �N1:

These functions satisfy

Nm(x) = 2m�1
mX
k=0

�
m

k

�
Nm(2x� k);

and

bNm(!) =
�
1� e�i!

i!

�m
:



AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES 9

(ii) Another classical example is the Shannon sampling function,

'(x) =
sin(�x)

�x
with b'(!) = �[��;�](!):

We may take

H(!) = �[��=2;�=2](!) for ! 2 [��; �];

and, consequently,

h2k = 1=2 �k and h2k+1 =
(�1)k

(2k + 1)�
for k 2 Z:

Now, for later reference, let us introduce the following 2�-periodic function:

F (!) =
X
k

jb'(! + k2�)j2:

The fact that ' and its translates form a Riesz basis, corresponds to the fact that
there are positive constants A and B such that

0 < A 6 F (!) 6 B <1:

Using (8) and rearranging the even and odd terms, we have

F (2!) =
X
k

jb'(2! + k2�)j2

=
X
k

jH(! + k�)j2 jb'(! + k�)j2

=
X
k

jH(! + k2�)j2 jb'(! + k2�)j2 + jH(! + � + k2�)j2 jb'(! + � + k2�)j2

= jH(!)j2 F (!) + jH(! + �)j2 F (! + �):(10)

This shows that F is actually �-periodic.

5.2. The wavelet function and the detail spaces Wj . We will use Wj to
denote a space complementing Vj in Vj+1, i.e. a space that satis�es

Vj+1 = Vj �Wj ;

where the symbol � stands for direct sum. In other words, each element of Vj+1 can
be written, in a unique way, as the sum of an element ofWj and an element of Vj . We
note that the spaces Wj themselves are not necessarily unique; there may be several
ways to complement Vj in Vj+1.

The space Wj contains the \detail" information needed to go from an approxi-
mation at resolution j to an approximation at resolution j + 1. Consequently,M

j

Wj = L2(R):

A function  is a wavelet if the collection of functions f (x� l) j l 2 Zg is a Riesz
basis of W0. The collection of wavelet functions f j;l j l; j 2 Zg is then a Riesz basis
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of L2(R). The de�nition of  j;l is similar to the one of 'j;l in the previous section.
Note that a union of Riesz bases does not necessarily give a Riesz basis for the total
span. Even though we did not impose any orthogonality, spaces Wj and Wj0 are
\almost" diagonal for jj � j0j large, and this allows the collection of all  j;l to form a
Riesz basis for L2. Since the wavelet  is an element of V1, a sequence (gk) 2 `2(Z)
exists such that

 (x) = 2
X
k

gk '(2x� k):(11)

The Fourier transform of the wavelet is given by

b (!) = G(!=2) b (!=2);(12)

where G is a 2�-periodic function given by

G(!) =
X
k

gk e
�ik!:(13)

Each space Vj andWj has a complement in L2(R) denoted by V cj andW c
j , respectively.

We have:

V cj =

1M
i=j

Wi and W c
j =

M
i6=j

Wi:

We de�ne Pj as the projection operator onto Vj and parallel to V cj , and Qj as the
projection operator onto Wj and parallel to W c

j . A function f can now be written as

f(x) =
X
j

Qjf(x) =
X
j;l

j;l  j;l(x):

Recalling the discussion in Section 4, we see that this last equation is in fact an inverse
\discrete" wavelet transform. At this moment the exact conditions on the wavelet are
still unclear. They will made more precise in the next sections. There it will also
become clear how to �nd the coe�cients j;l. We �rst turn to the case where the  j;l
form an orthonormal basis for L2(R).

6. Orthogonal wavelets. The class of orthogonal wavelets is particularly inter-
esting. We start by introducing the concept of an orthogonal multiresolution analysis .
This is a multiresolution analysis where the wavelet spaces Wj are de�ned as the or-
thogonal complement of Vj in Vj+1. Consequently, the spaces Wj with j 2 Z are all
mutually orthogonal, the projections Pj and Qj are orthogonal, and the expansion

f(x) =
X
j

Qjf(x)

is an orthogonal expansion. A su�cient condition for a multiresolution analysis to be
orthogonal is

W0 ? V0;

or

h ;'(� � l) i = 0 l 2 Z;
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since the other conditions simply follow from scaling. Using Poisson's summation
formula, we see that this condition is (essentially) equivalent to

8! 2 R :
X
k

b (! + k2�) b'(! + k2�) = 0:(14)

An orthogonal scaling function is a function ' such that the set f'(x� l) j l 2 Zg
is an orthonormal basis, or

h';'(� � l) i = �l l 2 Z:(15)

With such a ', the collection of functions f'(x� l) j l 2 Zg is an orthonormal basis of
V0 and the collection of functions f'j;l j l 2 Zg is an orthonormal basis of Vj . Using
Poisson's formula, (15) is (essentially) equivalent to

8! 2 R :
X
k

jb'(! + k2�)j2 = F (!) = 1:(16)

From (10) we now see that,

8! 2 R : jH(!)j2 + jH(! + �)j2 = 1;(17)

or X
k

hk hk�2l = �l=2 for l 2 Z:

The last two equations are equivalent, but they only provide a necessary condition
for the orthogonality of the scaling function and its translates. This relationship is
investigated in detail in [28, 94].

Now, an orthogonal wavelet is a function  such that the collection of functions
f (x� l) j l 2 Zg is an orthonormal basis of W0. This is the case if

h ; (� � l) i = �l:

Again these conditions are (essentially) equivalent to

8! 2 R :
X
k

j b (! + k2�)j2 = 1;

and, using a similar argument as above, a necessary condition is given by

8! 2 R : jG(!)j2 + jG(! + �)j2 = 1:

Since the spaces Wj are mutually orthogonal, the collection of functions f j;l j j; l 2
Zg is an orthonormal basis of L2(R).

The projection operators Pj and Qj can now be written as

Pjf(x) =
X
l

h f; 'j;l i'j;l(x) and Qjf(x) =
X
l

h f;  j;l i j;l(x):

They yield the best L2 approximations of the function f in Vj and Wj , respectively.
For a function f 2 L2(R) we have the orthogonal expansion

f(x) =
X
j;l

j;l  j;l(x) with j;l = h f;  j;l i :
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Again, this can be viewed as a discrete version of the continuous wavelet transform.
Examples of orthogonal wavelets will be given in Section 10.

Using (16) we can write the condition (14) as

8! 2 R : G(!)H(!) +G(! + �)H(! + �) = 0:(18)

From this last equation it follows that the function G(!) needs to be of the form

G(!) = A(!)H(! + �);

where A is a 2�-periodic function such that

A(! + �) = �A(!):

The orthogonality of the wavelet immediately follows from the orthogonality of the
scaling function if

jA(!)j = 1:

As we will see later on, it is important for the scaling function and wavelet to
have compact support. The compact support of the wavelet and scaling function is
equivalent with the fact that H and G are trigonometric polynomials (i.e. the sums
in (9) and (13) are �nite). In the above case, we see that if the scaling function is
compactly supported, so is the wavelet, provided thatA is a trigonometric polynomial.
The only trigonometric polynomials that satisfy the conditions for A are monomials
of the form,

C e�(2k+1)! with jCj = 1 and k 2 Z:

Up to the constant C and an integer translation, the di�erent A all give rise to the
same wavelet. Any other choice for A will lead to a wavelet without compact support.
If the coe�cients hk are real, so are the gk if C = �1. The standard choice is
A(!) = �e�i!. This means that we derive an orthogonal wavelet from an orthogonal
scaling function by choosing

gk = (�1)k h1�k:(19)

This still leaves us with the problem of constructing a compactly supported scaling
function. We will comment on this in Section 8.

In [95] an orthogonalization procedure to �nd orthonormal wavelets is proposed.
It states that if a function ' and its integer translates form a Riesz basis of V0, then
an orthonormal basis of V0 is given by 'orth and its integer translates with

b'orth(!) = b'(!)p
F (!)

:(20)

The fact that we started from a Riesz basis guarantees that F (!) is strictly positive.
We see that ' indeed satis�es the orthogonality condition (16). Note that if ' is
compactly supported, 'orth will, in general, not be compactly supported.
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7. Biorthogonal wavelets. The orthogonality property puts a strong limita-
tion on the construction of wavelets. For example, it is known that the Haar wavelet is
the only real-valued wavelet that is compactly supported, symmetric and orthogonal
[47]. The generalization to biorthogonal wavelets has been considered to gain more

exibility. Here, a dual scaling function e' and a dual wavelet e exist that generate a
dual multiresolution analysis with subspaces eVj and fWj , such that

eVj ?Wj and Vj ? fWj ;(21)

and, consequently,

fWj ?Wj0 for j 6= j0:

The dual multiresolution analysis is not necessarily the same as the one generated by
the original basis functions. An equivalent condition to (21) is

h e'; (� � l) i = h e ;'(� � l) i = 0:

Moreover, the dual functions also have to satisfy

h e';'(� � l) i = �l and h e ; (� � l) i = �l:

By using a scaling argument, we have the seemingly more general properties that

h e'j;l; 'j;l0 i = �l�l0 l; l0; j 2 Z(22)

and

h e j;l;  j0 ;l0 i = �j�j0�l�l0 l; l0; j; j0 2 Z:(23)

Here the de�nitions of e'j;l and e j;l are similar to the ones for 'j;l and  j;l. Note that
the role of the basis (i.e. the ' and  ) and the dual basis can be interchanged. Using
the same Fourier techniques as in the previous section, the biorthogonality conditions
are (essentially) equivalent with

8! 2 R :

8>>>>>>>>>><
>>>>>>>>>>:

X
k

be'(! + k2�) b'(! + k2�) = 1

X
k

be (! + k2�) b (! + k2�) = 1

X
k

be (! + k2�) b'(! + k2�) = 0

X
k

be'(! + k2�) b (! + k2�) = 0:

(24)

Since they de�ne a multiresolution analysis, the dual functions must satisfy

e'(x) = 2
X
k

ehk e'(2x� k) and e (x) = 2
X
k

egk e'(2x� k):(25)

If we de�ne the functions eH and eG in the same fashion as we did for H and G, then
necessary conditions are again given by

8! 2 R :

8>>><
>>>:

eH(!)H(!) + eH(! + �)H(! + �) = 1eG(!)G(!) + eG(! + �)G(! + �) = 1eG(!)H(!) + eG(! + �)H(! + �) = 0eH(!)G(!) + eH(! + �)G(! + �) = 0;

(26)
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or

8! 2 R :

" eH(!) eH(! + �)eG(!) eG(! + �)

# �
H(!) G(!)

H(! + �) G(! + �)

�
=

�
1 0
0 1

�
:

Hence, if we let

M(!) =

�
H(!) H(! + �)
G(!) G(! + �)

�
;

and similarly for fM , then

fM(!)M t(!) = 1:

By interchanging the matrices on the left-hand side, we get

8! 2 R :

(
H(!) eH(!) + G(!) eG(!) = 1

H(!) eH(! + �) + G(!) eG(! + �) = 0:
(27)

Note that the orthogonal case corresponds to M being a unitary matrix. Cramer's
rule now states that

eH(!) =
G(! + �)

�(!)
(28)

and

eG(!) = �H(! + �)

�(!)
;(29)

where

�(!) = detM(!):

The fact that the wavelets form a basis for the complementary spaces ensures that �
does not vanish.

The projection operators take the form

Pjf(x) =
X
l

h f; e'j;l i'j;l(x) and Qjf(x) =
X
l

h f; e j;l i j;l(x);
and

f =
X
j;l

h f; e j;l i j;l:
Note that this can be viewed as a \discrete" wavelet transform and that the conditions
on  are less restrictive than in the orthogonal case. From the equations (22), (23),
and (25) we see that

ehk�2l = h e'(x� l); '(2x� k) i and egk�2l = h e (x� l); '(2x� k) i :
In particular, by writing '(2x� k) 2 V1 in the bases of V0 and W0, we obtain that

'(2x� k) =
X
l

ehk�2l '(x� l) +X
l

egk�2l  (x� l):(30)
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Even if the scaling function and the wavelet are not orthogonal, the multiresolu-
tion analysis may still be orthogonal. Let us study this in a little more detail

A biorthogonal scaling function and wavelet are semiorthogonal if they generate
an orthogonal multiresolution analysis [1, 2, 20]. The name pre-wavelet is also used
for such a wavelet. Since the Wj subspaces are mutually orthogonal we have that

Wj ?fWj0 and Wj ?Wj0 for j 6= j0:

Consequently, Wj = fWj , which implies that Vj = eVj . Thus, the primary and dual
functions generate the same (orthogonal) multiresolution analysis. A dual scaling
function can now be found by letting

be'(!) = b'(!)
F (!)

:

We see that the �rst equation of (24) is satis�ed, and, since F is a bounded, 2�-
periodic function that does not vanish, the translates of ' and e' generate the same
space. This corresponds to:

eH(!) =
H(!)F (!)

F (2!)
:

In order to have an orthogonal multiresolution analysis, (18) must also be satis�ed.
As before, this means that we need to pick G so that

G(!) = A(!)H(! + �);

where A is a 2�-periodic function with

A(! + �) = �A(!):

If A is a trigonometric polynomial, then the scaling function is compactly supported.
By looking at the last equation of (26) it is clear that a simple choice is

A(!) = �e�i! F (! + �);

so that

�(!) = e�i! F (2!);

and, consequently,

eG(!) = �e�i! H(! + �)

F (2!)
:

If ' is a compactly supported function, this construction guarantees that  is com-
pactly supported too, sinceH and F , and hence alsoG, are trigonometric polynomials.
However, the dual functions are, in general, not compactly supported.

8. Wavelets and polynomials. The moments of the scaling function and wave-
let are de�ned by:

Mp =

Z +1

�1

xp '(x)dx and Np =
Z +1

�1

xp  (x)dx with p 2 N;
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and similarly for the dual functions. The scaling functions are normalized withM0 =fM0 = 1.
Recall that we want the scaling function to satisfy a \partition of unity" property

and, furthermore, that this corresponds to H(�) = 0. From (29) we see that this

implies that eG(0) = 0 and, hence, that eN0 = 0. So the dual wavelet needs to have a
vanishing integral. This is reminiscent of the case of the continuous wavelet transform
where we needed the wavelet to have a vanishing integral.

As we pointed out before, the fact that the wavelet has a vanishing integral allows
us to give a precise characterization of the functions with a certain smoothness (when
the order of smoothness � is less than 1), in terms of the decay of the continuous
wavelet transform. The analogous fact is true here: the wavelet coe�cients are given
by inner products with the dual wavelets and the fact that these have a vanishing inte-
gral allows us to characterize exactly which functions will be of a certain smoothness
by looking at the decay of the coe�cients.

As in the case of the continuous wavelet transform, to obtain similar character-
izations of classes of functions of smoothness � > 1, the dual wavelet needs to have
more vanishing moments. This is in fact closely related to the property that the scal-
ing function and its translates can be used to represent polynomials. We make this
statement more precise.

Let N denote the number of vanishing moments of the dual wavelet,

eNp = 0 for 0 6 p < N and eNN 6= 0:

This is the same as saying that
be (!) has a root of multiplicity N at ! = 0. Sincebe'(0) 6= 0, it is also equivalent to the fact that eG(!) has a root of multiplicity N at

! = 0. Thus, the sequence fegkg also has N vanishing discrete moments,X
k

egk kp = 0; for 0 6 p < N:

From (29), we see that this is equivalent to H(!) having a root of multiplicity N at
! = �, which, by using (8), implies that

ip b'(p)(2k�) = �kMp for 0 6 p < N:(31)

By Poisson's summation formula, it follows thatX
l

(x� l)p '(x� l) =Mp for 0 6 p < N:(32)

By rearranging the last expression, we see that any polynomial with degree smaller
than N can be written as a linear combination of the functions '(x� l) with l 2 Z.

At this point we digress a little and make two small remarks.
1. The fact that H(!) has a root of multiplicity N at ! = � means that we can

factor H(!) as

H(!) =

�
1 + e�i!

2

�N
K(!);

with K(0) = 1 and K(�) 6= 0. This factorization together with the (bi)orthogonality
conditions and the fact that K is a trigonometric polynomial is used as a starting
point for the construction of compactly supported wavelets [31, 47].
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Fig. 1. The subband �ltering scheme.

2. When writing a polynomial as a linear combination of the '(x � l), the
coe�cients in the linear combination themselves are polynomials of the same degree
in l. More precisely, if A is a polynomial of degree p 6 N � 1, then a polynomial B,
of the same degree, exists such that

A(x) =
X
l

B(l)'(x� l):(33)

The fact that B is indeed a polynomial can easily be seen from

B(l) =

Z
A(x) e'(x� l) dx = Z A(x+ l) e'(x) dx:

Furthermore,

A(x) =
X
l

B(x� l)'(l);

since the polynomials on the left and right-hand sides match at each integer.

With the extra vanishing moment conditions on the dual wavelet, we can charac-
terize smoothness up to order � < N . Another consequence is that the convergence
rate of the wavelet approximation for smooth functions now immediately follows: if
f 2 CN , then

kPjf(x)� f(x)k = O(hN) with h = 2�j:(34)

The conditions (31) are referred to as the Strang{Fix conditions, and these were
established long before the development of wavelet theory [69, 122, 124].

An asymptotic error expansion in powers of h, which can be used in numeri-
cal extrapolation, is derived in [127, 128]. For results on the pointwise convergence
properties of wavelet series, see [90].

The exponent N in the factorization of H also plays a role in the regularity of
'. The H�older regularity is N � 1 at most, but in many cases it is lower due to the
inuence of K. The regularity of solutions of re�nement equations is studied in detail
in [42, 41, 52, 53, 66, 114, 135, 136].

Note that we never required the dual scaling function to satisfy a partition of
unity property, nor the wavelet to have a vanishing moment. In fact, it is possible to
have a wavelet with a non-vanishing integral. In that case the regularity of the dual
functions is very low. It may even be that they are distributions instead of functions,
but this is not necessarily a problem in applications.
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9. The fast wavelet transform. Since Vj is equal to Vj�1 �Wj�1, a function
vj 2 Vj can be written uniquely as the sum of a function vj�1 2 Vj�1 and a function
wj�1 2Wj�1:

vj(x) =
X
k

�j;k 'j;k(x) = vj�1(x) +wj�1(x)

=
X
l

�j�1;l 'j�1;l(x) +
X
l

j�1;l  j�1;l(x):

In other words, we have two representations of the function vj , one as an element in
Vj and associated with the sequence f�j;kg, and another as a sum of elements in Vj�1
and Wj�1 and associated with the sequences f�j�1;kg and fj�1;kg. The following
relations show how to pass between these representations. By (25),

�j�1;l = h vj ; e'j�1;l i = p2 h vj ;X
k

ehk�2l e'j;k i
=
p
2
X
k

ehk�2l �j;k;(35)

and, similarly,

j�1;l =
p
2
X
k

egk�2l �j;k:(36)

The opposite direction, from the �j�1;l and the j�1;l to the �j;k, is equally easy.
Using (30) we have

�j;k =
p
2
X
l

hk�2l �j�1;l +
p
2
X
l

gk�2l j�1;l:(37)
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When applied recursively, these formulae de�ne the fast wavelet transform; the re-
lations (35) and (36) de�ne the forward transform, while (37) de�nes the inverse
transform.

Now, from the fact thatH(0) = G(�) = 1 andG(0) = H(�) = 0, we see thatH(!)
acts like a low pass �lter for the interval [0; �=2] andG(!) similarly behaves like a band
pass �lter for the interval [�=2; �]. Equation (8) (respectively (12)) then implies that
the major part of the energy of the functions in V0 (respectively W0) is concentrated
in the intervals [0; �] (respectively [�; 2�]). The basic behavior of the dual functions
is the same. In an approximate sense, this means that the wavelet expansion splits
the frequency space into dyadic blocks [2j�; 2j+1�] with j 2 Z [103, 104].

In signal processing this idea is known as subband �ltering, or, more speci�cally,
as quadrature mirror �ltering. Quadrature mirror �lters were studied before wavelet
theory. The decomposition step consists of applying a low-pass ( eH) and a band-

pass ( eG) �lter followed by downsampling (# 2) (i.e. retaining only the even index
samples), see Figure 1. The reconstruction consists of upsampling (" 2) (i.e. putting
a zero between every two samples) followed by �ltering and addition. One can show
that the conditions (27) correspond to the exact reconstruction of a subband �ltering
scheme. More details about this can be found in [115, 132, 133, 134].

An interesting problem now is: given a function f , determine, with a certain
accuracy and in a computationally favorable way, the coe�cients �n;l of a function in
the space Vn, which are needed to start the fast wavelet transform. A trivial solution
could be

�n;l = f(l=2n):

Other sampling procedures, such as (quasi-)interpolation and quadrature formulae
were proposed in [1, 2, 85, 120, 128, 138].

An implementation of a fast wavelet transform in pseudo code is given in the
appendix.

10. Examples of wavelets. Now that we have discussed the essentials of wave-
let multiresolution analysis, we take a look at some important properties of wavelets.

Orthogonality. Orthogonality is convenient to have in many situations, e.g. it
directly links the L2 norm of a function to the norm of its wavelet coe�cients by

kfk =
sX

j;l

2j;l:

In the biorthogonal case these two quantities are only equivalent. Another advantage
of orthogonal wavelets is that the fast wavelet transform is a unitary transformation
(i.e. its adjoint is its inverse). Consequently, its condition number is equal to 1, which
is the optimal case. (Recall that the condition number of a linear transformation A
is de�ned as kAk:kA�1k). This is of importance in numerical calculations. It means
that an error present in the initial data will not grow under the transformation, and
that stable numerical computations are possible.

If the multiresolution analysis is orthogonal (remember that this includes semior-
thogonal wavelets), the projection operators onto the di�erent subspaces yield optimal
approximations in the L2 sense.
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Compact support. If the scaling function and wavelet are compactly supported,
the �lters H and G are �nite impulse response �lters, so that the summations in
the fast wavelet transform are �nite. This obviously is of use in implementations. If
they are not compactly supported, a fast decay is desirable so that the �lters can be
approximated reasonably by �nite impulse response �lters.

Rational coe�cients. For computer implementations it is of use if the �lter co-
e�cients hk and gk are rationals or, even better, dyadic rationals. Multiplication
by a power of two on a computer corresponds to shifting bits, which is a very fast
operation.

Symmetry. If the scaling function and wavelet are symmetric, then the �lters have
generalized linear phase. The absence of this property can lead to phase distortion.
This is important in signal processing applications.

Smoothness. The smoothness of wavelets plays an important role in compression
applications. Compression is usually achieved by setting small coe�cients j;l to
zero, and thus leaving out a component j;l  j;l(x) from the original function. If
the original function represents an image and the wavelet is not smooth, the error
can easily be detected visually. Note that the smoothness of the primary functions
is more important to this aspect than that of the dual. Also, a higher degree of
smoothness corresponds to better frequency localization of the �lters. Finally, smooth
basis functions are desired in numerical analysis applications where derivatives are
involved.

Number of vanishing moments of the dual wavelet. We saw earlier that this is
important in singularity detection and characterization of smoothness spaces. Also,
it determines the convergence rate of wavelet approximations of smooth functions.
Finally, the number of vanishing moments of the dual wavelet is connected to the
smoothness of the wavelet (and vice versa).

Analytic expressions. As previously noted, an analytic expression for a scaling
function or wavelet does not always exists but in some cases it is available and nice
to have. In harmonic analysis, analytic expressions of the Fourier transform are
particularly useful.

Interpolation. If the scaling function satis�es

'(k) = �k for k 2 Z;

then it is trivial to �nd the function of Vj that interpolates data sampled on a grid
with spacing 2�j , since the coe�cients are equal to the samples.

As could be expected, it is not possible to construct wavelets that have all these
properties and there is a trade-o� between them. We now take a look at several
compromises.

Examples of orthogonal wavelets.

(i) Two simple examples of orthogonal scaling functions are the box function
�[0;1](x) and the Shannon sampling function sinc(�x). The orthogonality conditions
are easy to verify, either in the time or frequency space. The corresponding wavelet
for the box function is the Haar wavelet

 Haar(x) = �[0;1=2](x)� �[1=2;1](x);
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and the Shannon wavelet is

 Shannon(x) =
sin(2�x)� sin(�x)

�x
:

These two, however, are not very useful in practice, since the �rst has very low
regularity and the second has very slow decay.

(ii) A more interesting example is theMeyer wavelet and scaling function [106].
These functions belong to C1 and have faster than polynomial decay. Their Fourier
transform is compactly supported. The scaling function and wavelet are symmetric
around 0 and 1=2, respectively, and the wavelet has an in�nite number of vanishing
moments.

(iii) The Battle-Lemari�e wavelets are constructed by orthogonalizing B{spline
functions using (20) and have exponential decay [12, 95]. The wavelet with N van-
ishing moments is a piecewise polynomial of degree N � 1 that belongs to CN�2.

(iv) Probably the most frequently used orthogonal wavelets are the original Dau-
bechies wavelets [47, 49]. They are a family of orthogonal wavelets indexed by N 2N,
where N is the number of vanishing wavelet moments. They are supported on an in-
terval of length 2N � 1. A disadvantage is that, except for the Haar wavelet (which
has N = 1), they cannot be symmetric or antisymmetric. Their regularity increases
linearly with N and is approximately equal to 0:2075N for large N . In [137] a dif-
ferent family with regularity asymptotically equal to 0:3N was presented. In [50]
three variations of the original family, all with orthogonal and compactly supported
functions, are constructed:

1. The previous construction does not lead to a unique solution if N and the
support length are �xed. One family is constructed by choosing, for each N , the
solution with closest to linear phase (or closest to symmetry). In fact, the original
family corresponds to choosing the extremal phase.

2. Another family has more regularity, at the price of a slightly larger support
length (2N + 1).

3. In a third family, the scaling function also has vanishing moments (Mp = 0
for 0 < p < N). This is of use in numerical analysis applications where inner products
of arbitrary functions with scaling functions have to be calculated very fast [17]. Their
construction was asked by Ronald Coifman and Ingrid Daubechies therefore named
them coiets . They are supported on an interval with length 3N � 1.

Examples of biorthogonal wavelets.

(i) Biorthogonal wavelets were constructed by Albert Cohen, Ingrid Daubechies
and Jean-Christophe Feauveau in [31]. Here �(!) is chosen equal to e�i!, and thus

G(!) = �e�i! eH(! + �) and eG(!) = �e�i!H(! + �):

In one of the families constructed in [31], the scaling functions are the cardinal B-
splines and the wavelets too are spline functions. All functions including the dual
ones have compact support and linear phase. Moreover, all �lter coe�cients are
dyadic rationals. A disadvantage is that for small �lter lengths, the dual functions
have very low regularity.

(ii) Semiorthogonal spline wavelets were constructed by Charles Chui and Jian-
zhong Wang in [23, 24, 25]. The scaling functions are cardinal B{splines of order
m and the wavelet functions are splines with support [0; 2m � 1]. All primary and
dual functions still have generalized linear phase and all coe�cients used in the fast
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Table 1

A quick comparison of wavelet families.

wavelet compact support analytic expression symmetry orthogonality compact

family primary dual primary dual semi full support b 
a x x o o o x x o

b x x x o x o o o

c x o x x x x o o

d o o o o x x x x

e o o x x x x x o

a: Daubechies' orthogonal wavelets

b: biorthogonal spline wavelets

c: semiorthogonal spline wavelets

d: Meyer wavelet

e: orthogonal spline wavelets

wavelet transform are rationals. A powerful feature here is that analytic expressions
for the wavelet, scaling function, and dual functions are available. A disadvantage
is that the dual functions do not have compact support, but have exponential decay
instead. The same wavelets, but in a di�erent setting, were also derived by Akram
Aldroubi, Murray Eden and Michael Unser in [129, 131]. They also showed that for
N going to in�nity, the spline wavelets converge to Gabor functions [130].

(iii) Other semiorthogonal wavelets can be found in [89, 109, 110, 113]. A char-
acterization of all semiorthogonal wavelets is given in [1, 2].

The properties of some of the orthogonal, biorthogonal and semiorthogonal wave-
let families are summarized in Table 1.

Examples of interpolating scaling functions.

(i) The Shannon sampling function

'Shannon =
sin(�x)

�x
;

is an interpolating scaling function. It is band limited, but it has very slow decay.
(ii) An interpolating scaling function, whose translates also generate V0, can be

found by letting

b'interpol(!) = b'(!)X
l

'(l)e�i!l
;

provided that the denominator does not vanish [1, 2, 129, 138]. Even if ' is compactly
supported, 'interpol is in general not compactly supported. The cardinal spline inter-
polants of even order are constructed this way [118].

(iii) An interpolating scaling function can also be constructed from a pair of
biorthogonal scaling functions as

'interpol(x) =

Z +1

�1

'(y + x) e'(y) dy:
The interpolation property immediately follows from the biorthogonality condition.
In the case of an orthogonal scaling function this is just its autocorrelation func-
tion. The interpolating function and its translates do not generate the same space
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as ' and its translates. This construction, starting from the Daubechies orthogonal
or biorthogonal wavelets, yields a family of interpolating functions which had been
studied earlier by Gilles Deslauriers and Serge Dubuc in [56, 57]. These functions are
smooth and compactly supported. More information can also be found in [61, 117]. A
natural choice for the wavelet here is  (x) = '(2x�1) and this is a typical example of
a wavelet with a non-vanishing integral. The dual scaling function is a Dirac impulse
and the dual wavelet is a linear combination of Dirac impulses (and has several van-
ishing moments). We still have a fast wavelet transform with �nite impulse response
�lters.

(iv) Also wavelets can be interpolating. In [2] wavelets that are both symmetrical
and interpolating were constructed.

11. Wavelets on an interval. So far we have been discussing wavelet theory
on the real line (and its higher dimensional analogs). For many applications, the
functions involved are only de�ned on a compact set, such as an interval or a square,
and to apply wavelets then requires some modi�cations.

11.1. Simple solutions. To be speci�c, let us discuss the case of the unit inter-
val [0; 1]. Given a function f on [0; 1], the most obvious approach is to set f(x) = 0
outside [0; 1], and then use wavelet theory on the line. However, for a general func-
tion f this \padding with 0s" introduces discontinuities at the endpoints 0 and 1;
consider for example the simple function f(x) = 1, x 2 [0; 1]. Now, as we have said
earlier, wavelets are e�ective for detecting singularities, so arti�cial ones are likely to
introduce signi�cant errors.

Another approach, which is often better, is to consider the function to be periodic
with period 1, f(x + 1) = f(x). Expressed in another way, we assume that the
function is de�ned on the torus and identify the torus with [0; 1]. Wavelet theory
on the torus parallels that on the line. In fact, note that if f has period 1, then
the wavelet coe�cients on a given scale satisfy h f;  j;k i = h f;  j;k+2j i , k 2 Z,
j � 0. This simple observation readily allows us to rewrite wavelet expansions on
the line as analogous ones on the torus, with wavelets de�ned on [0; 1]. A periodic
multiresolution analysis on the interval [0; 1] can be constructed by periodizing the
basis functions as follows,

'�j;l(x) = �[0;1](x)
X
m

'j;l(x+m) for 0 6 l < 2j and j > 0:(38)

If the support of 'j;l(x), is a subset of [0; 1], then '�j;l(x) = 'j;l(x). Otherwise
'j;l(x) is chopped into pieces of length 1, which are shifted onto [0; 1] and added

up, yielding '�j;l(x). Similar de�nitions hold for  �j;l, e'�j;l and e �j;l. The algorithm
in the appendix describes the periodic fast wavelet transform. This \wrap around"
procedure is satisfactory in many situations (and certainly takes care of functions like
f(x) = 1, x 2 [0; 1]). However, unless the behavior of the function f at 0 matches
that at 1, the periodic version of f has singularities there. A simple function like
f(x) = x, x 2 [0; 1], gives a good illustration of this.

A third method, which works if the basis functions are symmetric, is to use
reection across the edges. This preserves continuity, but introduces discontinuities
in the �rst derivative. This solution is sometimes satisfactory in image processing
applications.

11.2. Meyer's boundary wavelets. What really is needed, are wavelets in-
trinsically de�ned on [0; 1]. We sketch a construction of orthogonal wavelets on [0; 1],
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recently presented by Yves Meyer [107]. We start from an orthogonal Daubechies
scaling function with 2N non-zero coe�cients:

'(x) = 2

2N�1X
k=0

hk '(2x� k):(39)

It is easy to see that closfx : '(x) 6= 0g = [0; 2N � 1], and, as a consequence,

Bj;k = closfx : 'j;k(x) 6= 0g = [2�jk; 2�j(k + 2N � 1)]:(40)

This implies that for su�ciently small scales 2�j, j � j0, a function 'j;k can only
intersect at most one of the endpoints 0 or 1. Let us restate this in a di�erent way.
De�ne the set of indices

Sj = fk : Bj;k \ (0; 1) 6= ;g:

We de�ne three subsets of this set containing the indices of the basis functions at the
left boundary, in the interior, and at the right boundary:

S
(1)

j = fk : 0 2 B�j;kg

S
(2)

j = fk : B�j;k � (0; 1)g

S
(3)

j = fk : 1 2 B�j;kg:

Here E� denotes the interior of the set E. For su�ciently large j the sets S
(1)

j and

S
(3)

j are disjoint and

Sj = S
(1)

j [ S
(2)

j [ S
(3)

j :

It is easy to write down what these sets are more explicitly:

S
(1)

j = fk : �2N + 2 6 k 6 �1g

S
(2)

j = fk : 0 6 k 6 2j � 2N + 1g

S
(3)

j = fk : 2j � 2N + 2 6 k 6 2j � 1g:

Note, in particular, that the sets S
(1)

j and S
(3)

j contain the indices of 2N�2 functions,
independently of j. We now let V

[0;1]
j denote the restriction of functions in Vj :

V
[0;1]
j = ff : f(x) = g(x); x 2 [0; 1]; for some function g 2 Vjg:

Clearly, since the Vj form an increasing sequence of spaces,

V
[0;1]
j � V

[0;1]
j+1 ;

and V
[0;1]
j , j � j0, form a multiresolution analysis of L2([0; 1]). It is also obvious

that the functions in f'(x � l)j[0;1] : l 2 Sjg span V
[0;1]
j . Here g(x) j[0;1] denotes

the restriction of g(x) to [0; 1]. Not quite as obvious is the fact that the functions in

this collection are linearly independent, and hence form a basis for V
[0;1]
j . In order
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to obtain an orthonormal basis, we may argue as follows. As long as the function
'j;k lives entirely inside [0; 1], restricting it to [0; 1] has no e�ect. In particular, the

functions 'j;k, k 2 S(2)j are still pairwise orthogonal. A key observation now is that

for k 2 S(1)j , l 2 S(2)j [ S
(3)

j ,

h'j;k; 'j;l i [0;1] =
Z 1

0

'j;k(x)'j;l(x) dx =

Z +1

�1

'j;k(x)'j;l(x) dx = 0;(41)

and similarly when k 2 S
(3)

j , l 2 S
(2)

j [ S(1)j . We see that the three collections

f'(x� l)j[0;1] : l 2 S
(1)

j g, f'(x� l)j[0;1] : l 2 S
(2)

j g, and f'(x � l)j[0;1] : l 2 S
(3)

j g are
mutually orthogonal. So, since the functions in f'(x� l)j[0;1] : l 2 S

(2)

j g already form
an orthonormal set, there only remains to separately orthogonalize the functions in

f'(x� l)j[0;1] : l 2 S(1)j g and in f'(x� l)j[0;1] : l 2 S(3)j g. This is easily accomplished
with a Gram-Schmidt procedure.

Now, if we let W
[0;1]
j denote the restriction of functions in Wj to [0; 1], then we

have that

V
[0;1]
j+1 = V

[0;1]
j +W

[0;1]
j :(42)

So, the basis elements in V
[0;1]
j together with the restriction of the wavelets  j;k to

[0; 1] span V
[0;1]
j+1 . However, there are 2

j + 2N � 2 wavelets that intersect [0; 1], and,

since dimV
[0;1]
j+1 � dimV

[0;1]
j = 2j we have too many functions. The restrictions of

the wavelets in Wj that live entirely inside [0; 1] are still mutually orthogonal and, by

an observation similar to (41), they are also orthogonal to V
[0;1]
j . There are 2N � 2

wavelets whose support intersects an endpoint. However, we only need N � 1 basis
functions at each endpoint. One can now use (30) to write out the dependencies,
and construct N � 1 basis functions at each endpoint. After that we just apply a

Gram-Schmidt procedure again, and we have an orthonormal basis for W
[0;1]
j .

This elegant construction of Yves Meyer has a couple of disadvantages. Among
the functions 'j;k that intersect [0; 1] there are some that are almost zero there. Hence,
the set f'j;kgk2Sj is almost linearly dependent, and, as a consequence, the condition
number of the matrix, corresponding to the change of basis from f'j;kgk2Sj to the

orthonormal one, becomes quite large. Furthermore, we have dimV
[0;1]
j 6= dimW

[0;1]
j ,

which means that there is an inherent imbalance between the spaces V
[0;1]

j andW
[0;1]

j ,
which is not present in the case of the whole real line.

11.3. Dyadic boundary wavelets. As we noted earlier (33) all polynomials of
degree 6 N � 1 can be written as linear combinations of the 'j;l for l 2 Z. Hence,

the restriction of such polynomials to [0; 1] are in V
[0;1]
j . Since this fact is directly

linked to many of the approximation properties of wavelets, any construction of a
multiresolution analysis on [0; 1] should preserve this. The construction in [5, 32, 33]
uses this as a starting point and is slightly di�erent from the one by Yves Meyer.
Let us briey describe this construction as well. Again we start with an orthogonal
Daubechies scaling function ' with 2N non-zero coe�cients, and assume that we have
picked the scale �ne enough so that the endpoints are independent as before. By (33)
and, since the f'j;kg is an orthonormal basis for Vj , each monomial x�, � 6 N � 1,
has the representation x� =

P
k hx�; 'j;k i'j;k(x). The restriction to [0; 1] can then
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be written

x�j[0;1] =

0
@ 0X
k=�2N+2

+

2j�2NX
k=1

+

2j�1X
k=2j�2N+1

1
A hx�; 'j;k i'j;k(x)j[0;1]:

If we let

x�j;L = 2j(�+1=2)
0X

k=�2N+2

hx�; 'j;k i'j;k(x)j[0;1]

and, similarly,

x�j;R = 2j(�+1=2)
2j�1X

k=2j�2N+1

hx�; 'j;k i'j;k(x)j[0;1];

then

2j=2(2jx)�j[0;1] = x�j;L + 2j(�+1=2)
2j�2NX
k=1

hx�; 'j;k i'j;k(x)j[0;1] + x�j;R:

We let the spaces �Vj , j � j0, that form a multiresolution analysis of L2([0; 1]), be the

linear span of the functions fx�j;Lg�6N�1, fx�j;Rg�6N�1, and f'j;kj[0;1]g
2j�2N
k=1 :

�Vj = fx�j;Lg�6N�1 [ f'j;kg
2j�2N
k=1 [ fx�j;Rg�6N�1

Finding an orthonormal basis for �Vj is easy; in fact, the collections fx�j;Lg�6N�1,
f'j;kg2

j�2N
k=1 , and fx�j;Rg�6N�1 are mutually orthogonal, and all of the functions in

these are linearly independent. We thus only have to orthogonalize the functions x�j;L
and x�j;R to get our orthonormal basis. Note that, by construction, dim �Vj = 2j and

all polynomials of degree � N � 1 are in �Vj . It is also easy to see that

�Vj � �Vj+1:

To get to the corresponding wavelets we let �Wj be the orthogonal complement of
�Vj in �Vj+1. The wavelets  j;k with 1 6 k 6 2j � 2N are all in �Vj+1 and live entirely
inside [0; 1]. The remaining 2N functions required for an orthonormal basis of �Wj ,
can be found, for example by using (30) again.

This last construction carries over to more general situations. For example, we can
also use biorthogonal wavelets and much more general closed sets than [0; 1] [5, 33, 87].

There are also other constructions of wavelets on [0; 1]. In fact, for historical
perspective it is interesting to notice that Franklin's original construction [70] was
given for [0; 1]. Another interesting one, in the case of semiorthogonal spline wavelets,
has been given by Charles Chui and Ewald Quak [19]; we refer to the original paper
for details.

12. Wavelet packets. A simple, but most powerful extension of wavelets and
multiresolution analysis are wavelet packets [37, 38]. In this section it will be useful
to switch to the following notation:

me(!) = He(!)G1�e(!) for e = 0; 1:
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V0 W0

V1 W1

V2 W2

V3

��	@@R

��	@@R ��	@@R

��	 @@R ��	@@R ��	@@R ��	@@R

Fig. 4. Wavelet packets scheme.

The fundamental observation is the following fact, called the splitting trick [22, 30,
106]:
Suppose that the set of functions ff(x � k) j k 2 Zg is a Riesz basis for its closed

linear span S. Then the functions

f0k =
1p
2
f0(x=2� k) and f1k =

1p
2
f1(x=2� k) for k 2 Z;

also constitute a Riesz basis for S, where

bfe(!) = me(!=2) bf(!=2):
We see that the classical multiresolution analysis is obtained by splitting Vj with

this trick into Vj�1 and Wj�1 and then doing the same for Vj�1 recursively. The
wavelet packets are the basis functions that we obtain if we also use the splitting trick
on theWj spaces. So starting from a space Vj , we obtain, after applying the splitting
trick L times, the basis functions

 Le1;:::;eL;j;k(x) = 2(j�L)=2 Le1;:::;eL(2
j�Lx� k);

with

b Le1;:::;eL(!) =
LY
i=1

mei(2
�i !) b'(2�L!):

So, after L splittings, we have 2L basis functions and their translates over integer
multiples of 2L�j as a basis of Vj . The connection between the wavelet packets and
the wavelet and scaling functions is

' =  L0;:::;0 and  =  L1;0;:::;0:

However, we do not necessarily have to split each subspace at every stage. In
Figure 4 we give a schematical representation of a space and its subspaces after using
the splitting on 3 levels. The top rectangle represents the space V3 and each other
rectangle corresponds to a certain subspace of V3 generated by wavelet packets. The
slanted lines between the rectangles indicate the splitting, the left referring to the
�lter m0 and the right to m1. The dashed rectangles then correspond to the wavelet
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multiresolution analysis V3 = V0�W0�W1�W2. The bold rectangles correspond to
a possible wavelet packet splitting and a basis with functions�

 10(4x� k);  21;1(2x� k);  30;0;1(x� k);  31;0;1(x� k) j k 2 Z
	
:

For the dual functions, a similar procedure has to be followed.

In the Fourier domain, the splitting trick corresponds to dividing the frequency
interval essentially represented by the original space into two parts. So the wavelet
packets allow more exibility in adapting the basis to the frequency contents of a
signal.

It is easy to develop a fast wavelet packet transform. It just involves applying
the same low and band pass �lters also to the coe�cient of functions of Wj again
in an iterative manner. This means that, starting from M samples, we construct a
full binary tree with (M log2M) entries. The power of this construction lies in the
fact that we have much more freedom in deciding which basis functions we will use
to represent the given function. We can choose to use the set of M coe�cients of the
tree to represent the function that is optimal with respect to a certain criterion. This
procedure is called best basis selection, and one can design fast algorithms that make
use of the tree structure. The particular criterion is determined by the application,
and which basis functions that will end up in the basis depends on the data.

For applications in image processing, entropy-based criteria were proposed in
[40]. The best basis selection in that case has a numerical complexity of O(M).
Applications in signal processing can be found in [36, 139].

This wavelet packets construction can also be combined with wavelets on an
interval and wavelets in higher dimensions [55].

13. Multidimensional wavelets. Up till now we have focused on functions of
one variable and the one-dimensional situation. However, there are also wavelets in
higher dimensions. A simple way to obtain these is to use tensor products. To �x
ideas, let us consider the case of the plane. Let

�(x; y) = '(x)'(y) = ' 
 '(x; y);

and de�ne

V0 = ff : f(x; y) =
X
k1;k2

�k1;k2 �(x� k1; y � k2); � 2 l2(Z2)g:

Of course, if f'(x� l) j l 2 Zg is an orthonormal set, then f�(x� k1; y � k2)g form
an orthonormal basis for V0. By dyadic scaling we obtain a multiresolution analysis
of L2(R2). The complement W0 of V0 in V1 is similarly generated by the translates
of the three functions

	(1) = '
  ; 	(2) =  
 '; and 	(3) =  
  :(43)

There is another, perhaps even more straightforward, wavelet decomposition in
higher dimensions. By carrying out a one-dimensional wavelet decomposition for each
variable separately, we obtain

f(x; y) =
X
i;l

X
j;k

h f;  i;l 
  j;k i  i;l 
  j;k(x; y):(44)
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Note that the functions  i;l 
  j;k involve two scales, 2�i and 2�j , and each of
these functions are (essentially) supported on a rectangle. The decomposition (44) is
therefore called the rectangular wavelet decomposition of f while the functions in (43)
are the basis functions of the square wavelet decomposition. For both decompositions,
the corresponding fast wavelet transform consists of applying the one-dimensional fast
wavelet transform to the rows and columns of a matrix.

These simple constructions are insu�cient in many cases. What we need some-
times are wavelets intrinsically constructed for higher dimensions. One of the inter-
esting problems here is how to split a space into complementary subspaces. In the
univariate case we split into two spaces, each with essentially the same \size." If we
use the square tensor product basis in d dimensions, we split into 2d subspaces, 2d�1
of which are spanned by wavelets. There are several constructions of nonseparable
wavelets that use this kind of splitting. One of the problems here is, given the scal-
ing function, is there an easy way, cf. (19), to �nd the wavelets? This was studied
in [54, 113, 121]. Another idea is to still try to split into just two subspaces. This
involves the use of di�erent lattices [99]. In the bivariate case, Ingrid Daubechies
and Albert Cohen constructed smooth, compactly supported, biorthogonal wavelets,
using ideas from the univariate construction [29].

By now, there is a lot of material about multivariate wavelets. However, we shall
leave this topic for now and just mention some other possibilities such as hexagonal
lattices, and Cli�ord valued wavelets [6, 9, 34].

14. Applications.

14.1. Data compression. One of the most common applications of wavelet
theory is data compression. There are two basic kinds of compression schemes: lossless
and lossy. In the case of lossless compression one is interested in reconstructing the
data exactly, without any loss of information. We consider here lossy compression.
This means we are ready to accept an error, as long as the quality after compression is
acceptable. With lossy compression schemes we potentially can achieve much higher
compression ratios than with lossless compression.

To be speci�c, let us assume that we are given a digitized image. The compression
ratio is de�ned as the number of bits the initial image takes to store on the computer
divided by the number of bits required to store the compressed image. The interest
in compression in general has grown as the amount of information we pass around
has increased. This is easy to understand when we consider the fact that to store a
moderately large image, say a 512� 512 pixels, 24 bit color image, takes about 0.75
MBytes. This is only for still images; in the case of video, the situation becomes even
worse. Then, we need this kind of storage for each frame, and we have something
like 30 frames per second. There are several reasons other than just the storage
requirement for the interest in compression techniques. However, instead of going
into this, let us now look at the connection with wavelet theory.

First, let us de�ne, somewhat mathematically, what we mean by an image. Let
us for simplicity discuss an L�L grayscale image with 256 grayscales (i.e. 8 bit). This
can be considered to be a piecewise constant function f de�ned on a square

f(x; y) = pij 2N; for i 6 x < i+ 1 and j 6 y < j + 1 and 0 6 i; j < L;

where 0 6 pij 6 255. Now, one of the standard procedures for lossy compression is
through transform coding, see Figure 5. The most common transform used in this
context is the \Discrete Cosine Transform", which uses a Fourier transform of the
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original
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forward

transform
coding M
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inverse

transform
reconstructed

image
- - - -

Fig. 5. Image transform coding.

image f . However, we are more interested in the case when the transform is the fast
wavelet transform.

There are in fact several ways to use the wavelet transform for compression pur-
poses [101, 102]. One way is to consider compression to be an approximation problem
[58, 59]. More speci�cally, let us �x an orthogonal wavelet  . Given an integerM > 1,
we try to �nd the \best" approximation of f by using a representation

fM (x) =
X
kl

bjk  jk(x) with M non-zero coe�cients bjk:(45)

The basic reason why this potentially might be useful is that each wavelet picks up
information about the image f essentially at a given location and at a given scale.
Where the image has more interesting features, we can spend more coe�cients, and
where the image is nice and smooth we can use fewer and still get good quality of
approximation. In other words, the wavelet transform allows us to focus on the most
relevant parts of f . Now, to give this mathematical meaning we need to agree on an
error measure. Ideally, for image compression we should use a norm that corresponds
as closely as possible to the human eye [58]. However, let us make it simple and
discuss the case of L2.

So we are interested in �nding an optimal approximation minimizing the error
kf � fMkL2 . Because of the orthogonality of the wavelets this equals0

@X
jk

j h f;  jk i � bjkj2
1
A

1=2

:(46)

A moment's thought, reveals that the best way to pick M non-zero coe�cients bjk,
making the error as small as possible, is by simply picking the M coe�cients with
largest absolute value, and setting bj;k = h f;  jk i for these numbers. This then
yields the optimal approximation foptM .

Another fundamental question is which images can be approximated well by using
the procedure just sketched. Let us take this to mean that the error satis�es

kf � foptM kL2 = O(M
��);(47)

for some � > 0. The larger �, the faster the error decays asM increases and the fewer
coe�cients are generally needed to obtain an approximation within a given error. The
exponent � can be found easily, in fact it can be shown that

0
@X
M�1

(M�kf � foptM kL2)
p 1

M

1
A

1=p

� (
X
jk

j h f;  jk i jp)1=p(48)

with 1=p = 1=2 + �. The maximal � for which (47) is valid can be estimated by
�nding the smallest p for which the right-hand side of (48) is �nite. The expression
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on the right is one of many equivalent norms on the Besov space _B2�;p
p (Besov spaces

are smoothness spaces generalizing the Lipschitz continuous functions). The � in
the left-hand side of (48) is actually not exactly the same as in (47). However, for
practical purposes, the di�erence is of no consequence.

14.2. Operator analysis. As mentioned earlier, interest in wavelets histori-
cally grew from the fact that they are e�ective tools for studying problems in partial
di�erential equations and operator theory. More speci�cally, they are useful for un-
derstanding properties of so-called Calder�on-Zygmund operators .

Let us �rst make a general observation about the representation of a linear oper-
ator T and wavelets. Suppose that f has the representation

f(x) =
X
jk

h f;  jk i jk(x):

Then,

Tf(x) =
X
jk

h f;  jk iT jk(x);

and, using the wavelet representation of the function T jk(x), this equals

X
jk

h f;  jk i
X
il

hT jk;  il i il(x) =
X
il

0
@X

jk

hT jk;  il i h f;  jk i

1
A il(x):

In other words, the action of the operator T on the function f is directly trans-
lated into the action of the in�nite matrix AT = f hT jk;  il i gil;jk on the sequence
f h f;  jk i gjk. This representation of T as the matrix AT is often referred to as the
\standard representation" of T [17]. There is also a \nonstandard representation".
For virtually all linear operators there is a function (or, more generally, a distribution)
K such that

Tf(x) =

Z
K(x; y)f(y) dy:

The nonstandard representation of T is now simply the (two-dimensional) wavelet

coe�cients of the kernel K, using the square decomposition f hK;	(j)

k1;k2
i g (again,

we have more than one wavelet function in two dimensions), while the standard rep-
resentation corresponds to the rectangular decomposition.

Let us then briey discuss the connection with Calder�on-Zygmund operators.
Consider a typical example. Let H be the Hilbert transform,

Hf(x) =
1

�

Z 1

�1

f(s)

x� s ds:

The basic idea now is that the wavelets  jk are approximate eigenfunctions for this,
as well as for many other related (Calder�on-Zygmund) operators. We note that if
 jk were exact eigenfunctions, then we would have H jk(x) = �jk jk(x), for some
number �jk and the standard representation would be a diagonal \matrix":

AH = f hH il;  jk i g = f�il h il;  jk i g = f�il �il;jkg:
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This is unfortunately not the case. However, it turns out that AT is in fact an almost
diagonal operator, in the appropriate, technical sense, with the o� diagonal elements
quickly becoming small. To get some idea why this is the case, note that for large jxj,
we have, at least heuristically,

H jk(x) �
1

�x

Z
 jk(y) dy:

A priori, the decay of the right-hand side would thus be O(1=x), which of course is
far from the rapid decay of a wavelet  jk (remember that some wavelets are even zero
outside a �nite set). Recall, however, that  jk has at least one vanishing moment so
the decay is in fact much faster than justO(1=x), and the shape of H jk(x) resembles
that of  jk(x). By expanding the kernel as a Taylor series,

1

x� s
=

1

x

�
1 +

s

x
+
s2

x2
� � �
�
;

we see that the more vanishing moments  has, the faster the decay of H j;k.
So, for a large class of operators, the matrix representation, either the standard

or the nonstandard, has a rather precise structure with many small elements. In this
representation, we then expect to be able to compress the operator by simply omitting
small elements. In fact, note that this is essentially the same situation, as in the case
of image compression, the \image" now being the kernel K(x; y). Hence, if we could
do basic operations, such as inversion and multiplication, with compressed matrices,
rather than with the discretized versions of T , then we may signi�cantly speed up
the numerical treatment. This program of using the wavelet representations for the
e�cient numerical treatment of operators was initiated in [17]. We also refer to [4, 3]
for related material and many more details.

In a di�erent direction, because of the close similarities between the scaling func-
tion and �nite elements, it seems natural to try wavelets where traditionally �nite
element methods are used, e.g. for solving boundary value problems [84]. There are
interesting results showing that this might be fruitful; for example, it has been shown
[17, 46, 111, 140] that for many problems the condition number of the N �N sti�ness
matrix remains bounded as the dimension N goes to in�nity. This is in contrast with
the situation for regular �nite elements where the condition number in general tends
to in�nity.

One of the �rst problems we have to address when discussing boundary problems
on domains, is how to take care of the boundary values and the fact that the problem
is de�ned on a �nite set rather than on the entire Euclidean plane. This is similar to
the problem we discussed with wavelets on an interval, and, indeed, the techniques
discussed there can be often used to handle these two problems [5, 8].

Wavelets have also been used in the solution of evolution equations [11, 76, 93, 98].
A typical test problem here is Burgers' equation:

@u

@t
+ u

@u

@x
= �

@2u

@x2
:

The time discretization is obtained here using standard schemes such as Crank-
Nicholson or Adams-Moulton. Wavelets are used in the space discretization. Adap-
tivity can be used both in time and space [11].

One of the nice features of wavelets and �nite elements is that they allow us
to treat a large class of operators or partial di�erential equations in a uni�ed way,
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allowing for example general PDE solvers to be designed. In speci�c instances, though,
it is possible to �nd particular wavelets, adapted to the operator or problem at hand
[10, 44, 45, 88]. In [16], Gregory Beylkin develops fast wavelet-based algorithms for
the solution of di�erential equations.

Note: Applications in statistics such as the smoothing of data were investigated by
David Donoho and Iain Johnstone in [62, 63, 64, 65].
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Appendix: The periodic fast wavelet transform algorithm. We will give
here a pseudo code implementation of the periodic fast wavelet transform. We assume
that len hp coe�cients hk are non-zero, starting with the one with index k = min hp.
Similar assumptions hold for the gk, ~hk, and ~gk with lengths len gp, len hd and len gd,
and starting indices min gp, min hd and min gd respectively. These coe�cients are
stored in 4 vectors such that

hp[k] = ahk+min hp; gp[k] = a gk+min gp;

hd[k] = b ~hk+min hd; and gd[k] = b ~gk+min gd;
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where a b = 2. We start with 2n coe�cients �n;l of a function of Vn and can thus
apply n steps of the algorithm. These coe�cients are initially stored in a vector v.
The computed wavelet coe�cients are stored in a vector w such that

w =
�
�0;0 0;0 1;0 1;1 2;0 : : : 2;3 : : : n�1;0 : : : n�1;2n�1�1

�
:

The algorithms are written in such a way to reduce operations in the inner loops.
They are however not highly optimized not to a�ect readability too much. The index
notation a (b) c stands for a, a + b, : : : , c and the operator oor(a) rounds a to the
nearest integer towards minus in�nity.

for j  n � 1 (�1) 0

w[0 (1) 2j+1 � 1] 0

for l 0 (1) 2j � 1

i (2 � l +min hd) mod 2j+1

for k  0 (1) len hd

w[l]  w[l] + hd[k] � v[i]

i  (i+ 1)mod 2j+1

end for

i (2 � l +min gd) mod 2j+1

ls l + 2j

for k  0 (1) len gd

w[ls]  w[ls] + gd[k] � v[i]

i  (i+ 1)mod 2j+1

end for

end for

v  w[0 (1) 2j � 1]
end for
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for j  1 (1) n

v[0 (1) 2j � 1] 0

for k  0 (1) 2j � 1

i (oor((k�min hp)=2))mod 2j�1

lb (k �min hp) mod 2

for l lb (2) len hp

v[k]  v[k] + hp[l] �w[i]

i  (i� 1) mod 2j�1

end for

i (oor((k�min gp)=2))mod 2j�1

lb (k �min gp) mod 2

for l lb (2) len gp

v[k]  v[k] + gp[l] �w[i + 2j+1]

i  (i� 1) mod 2j�1

end for

end for

w[0 (1) 2j � 1] = v

end for


