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Abstract. We study the smoothness of the limit function for one dimensional unequally spaced
interpolating subdivision schemes. The new grid points introduced at every level can lie in
irregularly spaced locations between old, adjacent grid points and not only midway as is usually
the case. For the natural generalization of the four point scheme introduced by Dubuc and
Dyn, Levin, and Gregory, we show that, under some geometric restrictions, the limit function
is always C1; under slightly stronger restrictions we show that the limit function is almost C2,
the same regularity as in the regularly spaced case.

1. Introduction

Subdivision is a powerful mechanism for the construction of smooth curves and surfaces. The
main idea behind subdivision is to iterate upsampling and local averaging to build complex
geometrical shapes. Originally such schemes were studied in the context of corner cutting [13, 5]
as well as for building piecewise polynomial curves, e.g., the de Casteljau algorithm for Bernstein-
B�ezier curves [12] or algorithms for the iterative generation of splines [25, 1]. Later subdivision
was studied independently of spline functions [19, 17, 14, 2, 3, 4]. Around the same time it was
noted that subdivision �ts into the framework of wavelets and multiresolution analysis [27, 8].
Smoothness of spline functions follows from simple algebraic conditions on the polynomial

segments at the knots. However, when the limit function of a subdivision scheme is not a
spline, convergence and smoothness are usually harder to prove. Various approaches have been
explored to �nd the H�older exponent of the limit function [17, 19, 14, 28, 10, 11, 20, 18, 2, 31] or
to determine its Sobolev class [37, 21]. Note that these references are only some of the earliest
studies; both approaches have given rise to a much larger literature, outside the scope of this
paper. All these results are concerned with a regular (or sometimes called uniform) grid, i.e,
at each stage new grid points are introduced in the middle of two old grid points. The most
common tools used are the commutation formula (by which the order of the subdivision can be
reduced), the Fourier transform, and spectral analysis.
In the spline context, knot insertion algorithms early on allowed for splines with non-equally

spaced knots. This extra exibility is crucial in developing algorithms for computer aided geo-
metric design, see e.g. [22]. Later a global subdivision scheme for non-uniform splines was
introduced in [29]. Again smoothness results are relatively easy given that the analytic form of
the limit function is known.
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Only recently have people started working on subdivision for non-equally spaced knots. Here
we distinguish two settings. The semi-regular case, where the original samples are non-equally
spaced, but the subdivision scheme still introduces new grid points midway between old ones,
and the irregular case, were new grid points need not be in the middle between old ones even
ad in�nitum. For example, the family of Lagrange interpolating schemes [15] of which the four
point scheme is the cubic case, can easily be generalized to both the semi-regular case [40, 38]
and the irregular case [36]. When building splines the limit functions are piecewise polynomial,
and there is no need to distinguish between the semi-regular case and the irregular case: both
cases are commonly referred to as non-uniform.
Almost all work on smoothness for non-equally spaced grids concerns the semi-regular case; the

subdivision scheme becomes spatially variant, but it is still stationary using the same weights
across levels. Consequently the Fourier transform can no longer be used, but one can still
rely on spectral analysis. In [40] Warren shows how spectral analysis can be used to analyze
interpolating subdivision in the semi-regular case. He shows that the four point interpolating
scheme in the semi-regular case yields a C1 limit function. Several results have been obtained
in the higher dimensional semi-regular setting. The problem then again becomes harder as now
also the topology can be irregular. We refer to [30, 38, 41] for more details.
In the irregular case the subdivision scheme becomes both spatially variant and non-stationary.

Smoothness results are not straightforward; because the subdivision is spatially variant the
Fourier transform can no longer be used and because it is non-stationary even spectral analysis
cannot help. The aim of this paper is to study the regularity of limit functions of subdivision
in the irregular (ad in�nitum) one dimensional case. We show that the commutation formula
still holds in the irregular case and use it as the main tool in our analysis. For example, with
a very mild condition on the irregularity of the grid, the four point scheme converges to a C1

function in the irregular case; we also show how the irregularity of the grid a�ects the fractional
smoothness exponent. In fact, with a more restrictive condition on the irregular grid, the four
point scheme actually converges to a C2�� function, the same regularity as in the regular case.
Why should one even care about the irregular setting? Is not the semi-regular setting su�-

cient? There the user provides the coarse level grid points and after that the subdivision might
as well use the midpoints to synthesize the curve. In this setup, indeed, the semi-regular setting
is su�cient to generate smooth functions. However, to have more control over the geometric
shape of a curve a designer may want to insert new points at arbitrary locations independent
of the underlying parameterization. Keep in mind that the interpolating subdivision schemes
considered in this paper provide an editing mechanism quite di�erent from traditional spline
knot insertion. While knot insertion increases the number of knots in the coarsest grid, we
consider the addition of new points on �ner grids. Moreover, knot insertion initially does not
a�ect the shape of the limit function, while in our case the limit function does depend on the
location of the new points.
Another application that calls for the irregular setting is the need for wavelets and multires-

olution analysis for irregular samples. Here the user provides data, sampled on a closely spaced
but irregular grid, which we can think of as the �nest level grid. Resampling onto a regular grid
is typically costly and may generate unwanted artifacts. In [36] it is shown how to then build
a multiresolution analysis and an associated wavelet transform on the original grid. The main
idea is to downsample the original grid and introduce spatially variant �lter banks using the
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lifting scheme. Once the multiresolution is de�ned, wavelet based algorithms such as compres-
sion and denoising, familiar from the regular case, can be carried out in the same way in the
irregular setting. The wavelet basis functions from the coarsest level are now generated with a
subdivision scheme where the new points are no longer midpoints but are dictated by the �nest
level grid on which the data was sampled. They are no longer translates and dilates of one �xed
function, but form an instance of so-called \second generation wavelets" [35]. One could now
use the semi-regular setting to argue that using midpoints beyond the �nest level leads to a
smooth limit function. However, in a practical setting one often cannot a�ord or one does not
care to synthesize functions on levels �ner than the original �nest level. Instead all processing
is done on the original grid or the coarser grids. Given that the �nest and coarsest level can be
arbitrarily far apart, the irregular setting then becomes the correct model.
One may also wonder why it is necessary to spatially adapt the weights. Could not one, even

in the irregular setting, stick with the �xed weights of the regular subdivision? Indeed, the
irregular grid points can always be thought of as some remapping of the regular grid points. In
case this remapping is a smooth function, this is correct and one can stick with the �xed weights.
This corresponds to requiring that the �ner the level, the more regular the grid becomes. In
our setting, we shall not require this, and our constraint on the irregularity of the grids will not
depend on the level. We thus allow for non-smooth remapping functions, e.g, to accommodate
sudden changes in sampling density; sticking with �xed weights would then result in non-smooth
limit functions. An example of this is given in Figure 1. Other reasons why adapting the weights
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Figure 1. An example why remapping does not work. Left the limit function
with �xed weights, right the one with weights adjusted to the geometry. The same
irregular grid is used in both �gures. The corresponding remapping function is
shown in Figure 2.

is important in the semi-regular setting come from curve and surface generation; in [24] it is
shown that adaptive weights lead to curves with much less over- and undershoot, while [42]
shows that �xed weights lead to unwanted artifacts in surface generation.
Another way to motivate subdivision with varying weights comes from variational approaches,

as explored by Kobbelt [23] and Warren [39]. As pointed out above, one cares about more than
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simply H�older smoothness in applications; the missing ingredient is often referred to as \fairness"
in the graphics literature [32]. A smooth curve is also called fair in case it is visually pleasing
and has no unwanted undulations; fairness is thus a rather subjective notion. Typically curves
minimizing certain variational functionals are fair. In [23, 24, 39] it is shown how to �nd a
subdivision scheme whose limit function optimizes a certain given functional. For irregular
grids variational subdivision lead to spatially varying weights. While variation arguments for
building subdivision di�er from the polynomial interpolation we consider in this paper, the
tools we develop are useful to study the regularity of general subdivision schemes with varying
weights.
The rest of the paper is organized as follows. In Section 2 we introduce irregular multi-level

grids and de�ne quantities to measure the irregularity of the grid; we distinguish in particular
homogeneous and dyadically balanced multi-level grids. Section 3 de�nes subdivision and Sec-
tion 4 shows how to build derived subdivision schemes using the commutation formula. This
is worked out in detail for the case of cubic Lagrange subdivision in Section 5. Section 6 con-
tains the general results for homogeneous grids. Section 7 provides estimates on the growth of
higher-order di�erences for the cubic Lagrange subdivision, and Section 8 concludes the regular-
ity analysis of that scheme in the homogeneous case. In Section 9 we revisit the cubic Lagrange
case, but now without assuming homogeneity of the grid. Section 10 discusses higher order cases
while Section 11 concludes with some comments.

2. Multi-level grids

We start with a sequence of grids Xj on the real line, for j 2 N. Each grid Xj is a strictly
increasing sequence of points fxj;k 2 R j k 2 Zg. Moreover, these grids are consecutive binary
re�nements of the initial grid X0, i.e., Xj � Xj+1 and xj+1;2k = xj;k for all j and k. Thus
in every re�nement step we insert one odd point xj+1;2k+1 between each adjacent pair of even
points xj;k = xj+1;2k and xj;k+1 = xj+1;2k+2. We will refer to j as the level of the grid point
xj;k, where j = 0 is the initial, coarsest level. The length of the interval between xj;k and xj;k+1

is given by dj;k:

dj;k = xj;k+1 � xj;k:

We also introduce polynomial sequences de�ned by

�
[p]
j = fxpj;k j k 2 Zg:

We impose some restrictions on the irregularity of a multi-level grid by requiring that certain
characteristic numbers be bounded. The �rst characteristic number can be introduced for any
multi-level grid:

 = sup
j;k

max (dj;k+1; dj;k�1)

dj;k
;

this plainly captures ratios of neighboring intervals without paying any attention to the re�ne-
ment procedure. Note that one always has  > 1; equality ( = 1) corresponds to the equally
spaced case. If  < 1, then we shall say that the multi-level grid is homogeneous; in Appen-
dix A we show how this uniform bound, across scales, on the ratio between neighboring intervals
is reminiscent of the de�nition of spaces of homogeneous type.
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Another characteristic number is speci�c for a grid built by dyadic re�nement and concerns
the ratio between the lengths of any interval at level j and that of its two \children" at level
j + 1:

� = inf
j;k

min (dj+1;2k; dj+1;2k+1)

dj;k
: (1)

It thus provides a lower bound for the ratio of the smallest child versus the parent. Note that
0 6 � 6 1=2, with � = 1=2 in the equally spaced and semi-regular case. We say that the
multi-level grid is dyadically balanced if � > 0.
If a homogeneous multi-level grid is generated by a dyadic re�nement, then it is dyadically

balanced; since dj;k = dj+1;2k + dj+1;2k+1, it follows that � > 1=(1 + ). However, a dyadically
balanced grid is not necessarily homogeneous; an example is x0;l = l 2 Z; xj+1;2l+1 = xj;l+dj;l=3;
for which � = 1=3, but  =1 since dj;0 = (1=3)j and dj;�1 = (2=3)j.
We shall consider both the homogeneous case ( < 1) and the non-homogenous but dyadi-

cally balanced case ( =1; � > 0) below. Altogether the homogeneous case is much easier for
analysis; one reason is that close intervals have about the same length, so that we can de�ne
the \local scale" of the grid around any point xj;k .
We often assume that infk d0;k > 0 and supk d0;k <1. Under this condition the semi-regular

case is homogeneous. These are not severe restrictions. In a practical situation we start only
from compactly supported initial data, i.e., only a �nite number of non-zero function values.
If the original grid then does not have uniform bounds on the d0;k, we may, without loss of
generality, assume such bounds. Indeed, given that we consider only local subdivision, the limit
function at any given point depends only on a �nite set of initial data centered around that point.
Thus without uniform bounds we still have the same results on compact sets, with estimates
that hold uniformly on the compact set under consideration. The only di�erence is that some
of our constants will depend on the compact set.
Note that these uniform bounds imply that

dj;k 6 (1� �) dj�1;bk=2c 6 (1� �)j sup
k
d0;k (2)

and

dj;k > � dj�1;bk=2c > �j inf
k
d0;k; (3)

even if the grid is not homogenous.
In order to get an idea of how irregular these grids can be, let us consider the function �(x)

de�ned on the dyadics by �(k 2�j) = xj;k. The strictly increasing function � can be de�ned
elsewhere by continuity; it is easy to see that � is a bijection on R. This is precisely the
remapping function mentioned in the introduction. Note that (2) implies that � is H�older
continuous with exponent jlog2(1� �)j while (3) implies that ��1 is H�older continuous with

exponent jlog2 �j�1. We give some examples on [�1; 1] where x0;k = k. Figure 2 gives the
remapping in a homogeneous case for  = 5:6667; the grid in this example is generated by the
rules

xj+1;4k+1 = � xj;2k + (1� �) xj;2k+1 and xj+1;4k+3 = (1� �) xj;2k+1 + � xj;2k+2;
5
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Figure 2. The remapping function � in a homogeneous case for  = 5:6667.
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Figure 3. The remapping function � in a dyadically balanced but inhomoge-
neous case for � = 0:15. Note the abrupt change in sampling density around the
origin.

where � = 0:15. Figure 3 gives the remapping in a dyadically balanced but inhomogeneous
case with the same � (� = 0:15); in this case the grid is generated by xj+1;2k+1 = � xj;k + (1�
�) xj;k+1). In this case the sampling density changes abruptly around the origin.
Finally, the value of  and � depend on the entire mesh, while strictly speaking we only

need these bounds in the limit. Thus the results in this paper also hold if  is de�ned using
lim supj>0 supk and � using lim inf j>0 infk.

3. Subdivision

3.1. De�nition. Subdivision starts with a set of initial values f0 = ff0;kg which live on the
coarsest grid X0. Given that we mostly work with compactly supported f0 we may assume,
without loss of generality, that the sequence f0 is bounded.
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The subdivision scheme S is a sequence of linear operators Sj , j > 0, which iteratively
compute values fj = ffj;kg on the �ner grids:

fj+1 = Sj fj :

We assume that all Sj as well as all other operators we consider are bounded on `1, unless
explicitly stated. Subdivision gives us values de�ned on the grid points xj;k. However, the
ambition is to synthesize a continuous limit function '(x) de�ned for all x 2 R as

'(x) = lim
j!1

fj;kj(x);

where xj;kj(x) is the grid point on level j to the left of x, i.e., kj(x) = maxfl : xj;l 6 xg. This
paper is concerned with analyzing the existence and smoothness of '(x).
The subdivision operator Sj can be viewed as a matrix with the subdivision coe�cients Sj;l;k

as its entries; the coe�cients are de�ned by

fj+1;l =
X
k

Sj;l;k fj;k:

For practical reasons it is important that the above sum is �nite. We say that a subdivision
scheme is local in case, for some B 2 N,

Sj;l;k = 0 for jl� 2kj > B:

A new value at the point xj+1;l can then be found by the �nite sum

fj+1;l =

b l+B
2 cX

k=d l�B
2 e

Sj;l;k fj;k :

In this paper we consider only local subdivision schemes; these are automatically bounded in
`1 if supj;l;k jSj;l;kj <1.

3.2. Interpolating subdivision. We say that a subdivision scheme is interpolating if in each
subdivision step the values at the even grid points are kept, i.e.

fj+1;2k = fj;k for all j and k:

The limiting function thus interpolates the original data

'(x0;k) = f0;k:

As a particular case we consider Lagrange interpolating subdivision on irregular grids used in
[40, 36], which can be thought of as a generalization of the subdivision schemes in [17, 19, 14, 15].
To �nd the value fj+1;2k+1 at an odd grid point, this scheme uses P (x), the interpolating

polynomial of degree 2W � 1 determined by the values at 2W neighboring even grid points,

P (xj;k+u) = fj;k+u for �W + 1 6 u 6 W:

The new value fj+1;2k+1 is then simply the evaluation of P (x) at the odd grid point,

fj+1;2k+1 = P (xj+1;2k+1):

It is easy to verify that this scheme is local with B = 2W � 1. In case W = 1 it amounts to
linear interpolation: the limit function is simply a piecewise linear function interpolating the
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coarsest level values. In this paper we will focus on the cubic (W = 2) case, which is illustrated
in Figure 4.

xj;k+2xj;k�1 xj+1;2k+1

fj+1;2k+1

xj;k+1xj;k

Figure 4. Cubic interpolation: The value fj+1;2k+1 at the odd gridpoint
xj+1;2k+1 is obtained by evaluating a cubic polynomial P (x) interpolating values
at 4 neighboring even gridpoints xj+1;2k�2 = xj;k�1; : : : ; xj+1;2k+4 = xj;k+2.

The coe�cients of the subdivision scheme are given by Lagrange interpolation:

Sj;2k+1;k+u =
Y

�W<v �W
v 6=u

xj+1;2k+1 � xj;k+v
xj;k+u � xj;k+v

: (4)

Because this is an interpolating scheme, the even rows are given by

Sj;2k;k+u = �u:

By de�nition, the interpolating subdivision scheme exactly reproduces polynomials up to degree
2W � 1, X

k

Sj;l;k x
p
j;k = xpj+1;l for 0 6 p < 2W;

or, using the notation for polynomial sequences,

Sj �
[p]
j = �

[p]
j+1 for 0 6 p < 2W: (5)

4. Derived subdivision schemes

Because the Lagrange interpolating subdivision scheme preserves polynomials up to a certain
order, it has a lot of structure which we can exploit to prove convergence and regularity. This
is done through a commutation formula which relates subdivision and �nite di�erences. The
commutation formula for the regular setting is decribed in [26]; here we show how it works in
the irregular interpolating setting. This commutation formula will be the main ingredient for
our analysis; consequently our techniques can be applied to other subdivision schemes than the
cubic Lagrange interpolation that is our main example, as long as they satisfy the commutation
formula. We �rst introduce some notation.
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4.1. Finite di�erences. We �rst introduce the standard forward divided di�erences for values
fj;k de�ned on grid points xj;k for �xed j [34]. The zeroth order divided di�erence is simply the
function value:

[xj;k]f = fj;k :

The higher order divided di�erences are de�ned recursively:

[xj;k; : : : ; xj;k+p]f =
[xj;k+1; : : : ; xj;k+p]f � [xj;k; : : : ; xj;k+p�1]f

xj;k+p � xj;k
:

We let f
[p]
j be the set ff [p]j;k j k 2 Zg, where

f
[p]
j;k = [xj;k; : : : ; xj;k+p]f;

and introduce the shorthand

d
[p]
j;k = xj;k+p � xj;k;

so that

f
[p]
j;k =

f
[p�1]
j;k+1 � f

[p�1]
j;k

d
[p]
j;k

: (6)

The sequences f
[p]
j are related through the di�erence operator D

[p]
j :

f
[p]
j = D

[p]
j f

[p�1]
j :

We can think of D
[p]
j as an in�nite matrix with elements D

[p]
j;k;l,

f
[p]
j;k =

X
l

D
[p]
j;k;l f

[p�1]
j;l ;

where

D
[p]
j;k;l =

8>><
>>:

�1=d[p]j;k if l = k;

1=d
[p]
j;k if l = k + 1;

0 otherwise:

We de�ne the higher order di�erence operator �
[p]
j as

�
[p]
j = D

[p]
j D

[p�1]
j � � � D[1]

j ;

so that f
[p]
j = �

[p]
j f

[0]
j . Is it easy to verify that �

[p]
j applied to the polynomial sequence of degree

p gives a constant sequence. More precisely [34]

�
[p]
j �

[p]
j = �

[0]
j : (7)
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4.2. Commutation formula. Given a subdivision scheme for function values

f
[0]
j+1 = S

[0]
j f

[0]
j ;

we want to de�ne, if possible, a local subdivision scheme for the divided di�erences,

f
[1]
j+1 = S

[1]
j f

[1]
j :

We study the condition under which such a derived subdivision scheme exists. Start out with a
local subdivision scheme S[0] which preserves constants, i.e., for all j and lX

k

S
[0]
j;l;k = 1:

In the regular setting it is well known that preservation of constants is a necessary condition for
the subdivision scheme to converge. In the irregular setting this is no longer the case. However,
preservation of constants is still a very natural condition. It implies that the corresponding
curve subdivision scheme is coordinate independent. Without coordinate independence, curve
subdivision schemes are very awkward to deal with.

We can now compute the f
[1]
j via a local subdivision scheme:

f
[1]
j+1;l =

fj+1;l+1 � fj+1;l

dj+1;l

=
1

dj+1;l

b l+B+12 cX
k=d l�B

2 e
(Sj;l+1;k � Sj;l;k) fj;k

=
1

dj+1;l

b l+B+12 cX
k=d l�B

2 e+1

(Sj;l+1;k � Sj;l;k) (fj;k � fj;d l�B
2
e) (constant reproduction)

=
1

dj+1;l

b l+B+12 cX
k=d l�B

2 e+1

(Sj;l+1;k � Sj;l;k)
k�1X

m=d l�B
2 e

dj;m f
[1]
j;m

=

b l+B�1
2 cX

m=d l�B
2 e

S
[1]
j;l;m f

[1]
j;m;

where

S
[1]
j;l;m =

dj;m
dj+1;l

b l+B+12 cX
k=m+1

(Sj;l+1;k � Sj;l;k);

with the convention that
Pl2

l=l1
is zero if l2 < l1.
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Now we can repeat this process. If S[1] also reproduces constants we can use the same

construction to de�ne S[2] and so on. In general S
[p]
j is de�ned as

S
[p]
j;l;m =

d
[p]
j;m

d
[p]
j+1;l

X
k>m

(S
[p�1]
j;l+1;k � S

[p�1]
j;l;k ); (8)

as long as S[p�1] reproduces constants. Eventually for some q, S[q] will no longer reproduce
constants. We then say that the order of the subdivision scheme S[0] is q. The derived subdivision

schemes S[p], with 0 < p 6 q, are all local; observe from (8) that if S
[p�1]
j;l;k = 0 for j2l� kj > B

then the same is true for S
[p]
j;l;k. A more careful inspection shows that every application of

commutation (if possible) will reduce the column width W by one, so that B = d(W � 1)=2e is
reduced by one after every other application of commutation; see Section 5 for examples.

Subtracting equation (8) for S
[p]
j;l;m�1 and S

[p]
j;l;m also implies that

S
[p]
j;l;m�1

d
[p]
j;m�1

� S
[p]
j;l;m

d
[p]
j;m

=
S
[p�1]
j;l+1;m � S

[p�1]
j;l;m

d
[p]
j+1;l

; (9)

The derived subdivision schemes thus satisfy the commutation formula

S
[p]
j D

[p]
j = D

[p]
j+1 S

[p�1]
j for 0 < p 6 q. (10)

Combining these equations leads to

S
[p]
j �

[p]
j = �

[p]
j+1 S

[0]
j for 0 < p 6 q. (11)

Remark: Note that our de�nition of order does not imply that for 0 < p 6 q the order of S[p]

is q � p. This \unnatural" feature follows from the fact that our present de�nitions are geared
towards interpolating subdivision schemes. The derived schemes obtained from an interpolating
scheme are not themselves interpolating, and the simple de�nition of \order" given here does
not apply to them; this is also the reason why the di�erence operators D[p] for p > 1 di�er from
D[1]. For a general subdivision scheme, it turns out [9] that the de�nition of the appropriate
di�erence operator, leading to a satisfactory derived scheme, depends on the data sequences
that through subdivision lead to polynomial limit functions. With the more careful de�nition
of di�erence operators and order of a (not necessarily interpolating) subdivision scheme given
in [9], the q-th derived scheme of an initial (interpolating) scheme of order p turns out to be
indeed of order p� q.

4.3. Commutation in the other direction. It is also possible to use the commutation for-
mula in the other direction, i.e., to start with a local subdivision scheme S[p] and construct a
scheme S [p�1] for lower order di�erences. It is well known that for shift-invariant schemes this
can always be done; it simply involves an extra factor (1 + z)=2 in the symbol of the scheme
and S[p�1] thus always is local. In the irregular case the situation becomes more complex and a
condition on S[p] must be satis�ed to guarantee that S [p�1] is local.

This can be seen as follows. We start with a compactly supported sequence f
[p�1]
j and want

to compute f
[p�1]
j+1 and check that it too is compactly supported, as can easily be seen from (6).

11



We �rst apply di�erencing to �nd f
[p]
j and then use S

[p]
j to �nd f

[p]
j+1. Given that S[p] is local,

f
[p]
j+1 is compactly supported; for f

[p�1]
j+1 to be compactly supported, we need thatX

l

d
[p]
j+1;l f

[p]
j+1;l = 0:

The left hand side is equal to (all summations �nite)

X
l

d
[p]
j+1;l

X
k

S
[p]
j;l;k f

[p]
j;k =

X
l

X
k

d
[p]
j+1;l S

[p]
j;l;k

f
[p�1]
j;k+1 � f

[p�1]
j;k

d
[p]
j;k

=
X
k

f
[p�1]
j;k+1 � f

[p�1]
j;k

d
[p]
j;k

X
l

d
[p]
j+1;l S

[p�1]
j;l;k :

This is zero if and only if X
l

d
[p]
j+1;l S

[p�1]
j;l;m = Cj d

[p]
j;m;

with Cj independent of m; this gives us a necessary and su�cient condition for S[p] to be the

derived subdivision of S[p�1]. Now it is also clear why there is no extra condition in the shift-
invariant case; because all columns of S [p] are shifted copies of each other the above condition is
automatically satis�ed. In Appendix B we show that the constant Cj is equal to one (provided
that the subdivision scheme preserves constants, which we shall always assume).
It now follows from (9) that

S
[p�1]
j;l;m =

2m+BX
n=l

 
S
[p]
j;n;m

d
[p]
j;m

� S
[p]
j;n;m�1

d
[p]
j;m�1

!
d
[p]
j+1;n; (12)

assuming that S
[p]
j;l;k = 0 for jl� 2kj > B.

Equations (8) and (12) show that for a homogeneous multi-level grid the S
[p]
j as operators on

`1 are bounded uniformly in j if and only if the S
[p�1]
j are. For a merely dyadically balanced

grid this is not clear a priori.
We denote by '[p](x) the limit function of a derived subdivision scheme S[p] (if this limit

exists):

'[p](x) = lim
j!1

f
[p]
j;kj(x)

: (13)

Later we will study how the '[p](x) for di�erent p are connected.

4.4. The order of polynomial interpolating subdivision. Let us now �nd the order of an
interpolating subdivision scheme S[0] which reproduces polynomials up to degree V :

S
[0]
j �

[p]
j = �

[p]
j+1 for 0 6 p < V :

Note that S[0] does not have to be the Lagrange interpolating scheme where V = 2W , it only
has to be interpolating and reproduce polynomial sequences.

12



We will reason by induction on p. Start out assuming that S[p�1] reproduces constants and
p < V . In the previous section we have shown that we can then de�ne a local scheme S[p] that
satis�es

S
[p]
j �

[p]
j = �

[p]
j+1 S

[0]
j :

Consequently

S
[p]
j �

[p]
j �

[p]
j = �

[p]
j+1 S

[0]
j �

[p]
j :

Using (7) the left hand side is equal to

S
[p]
j �

[p]
j �

[p]
j = S

[p]
j �

[0]
j :

Given that p < V , polynomial reproduction gives that the right hand side is equal to

�[p]
j+1 S

[0]
j �

[p]
j = �[p]

j+1 �
[p]
j+1 = �

[0]
j+1:

Combined this shows that S[p] reproduces constants:

S
[p]
j �

[0]
j = �

[0]
j+1:

We can now start the induction with p = 1 and let it run till p = V � 1. It then immediately
follows that the order of the interpolating subdivision S[0] is V .
The derived subdivision schemes are essential in determining the regularity of S[0]. The

schemes for the higher order di�erences become easier to analyze because they are \narrower",
and their decay or growth can be used to estimate the regularity of the limit function. (See the
example of cubic Lagrange interpolation below.)

5. Subdivision schemes derived from cubic Lagrange interpolating subdivision

Using Maple, an algebraic manipulation package, we computed the 4 derived subdivision
schemes starting from the cubic interpolating scheme (W = 2). We start with S[0] where each
even row is a Dirac sequence and each odd row has 4 non-zero entries. The matrix has the
following structure:

2k � 3

2k � 2

2k � 1

2k

2k + 1

2k + 2

2k + 3

2
6666666666664

� � � � 0 0 0

0 0 1 0 0 0 0

0 � � � � 0 0

0 0 0 1 0 0 0

0 0 � � � � 0

0 0 0 0 1 0 0

0 0 0 � � � �

3
7777777777775

k � 3 k � 2 k � 1 k k + 1 k + 2 k + 3
13



Here and below � stands for a non-zero entry, while the � stands for a non-zero entry given
explicitly in the text. The coe�cients on row 2k+ 1 follow immediately from (4)

S
[0]
j;2k+1;k�1 = � d

[1]
j+1;2k d

[1]
j+1;2k+1 d

[3]
j+1;2k+1

d
[2]
j+1;2k�2 d

[4]
j+1;2k�2 d

[6]
j+1;2k�2

S
[0]
j;2k+1;k =

d
[3]
j+1;2k�2 d

[1]
j+1;2k+1 d

[3]
j+1;2k+1

d
[2]
j+1;2k�2 d

[2]
j+1;2k d

[4]
j+1;2k

S
[0]
j;2k+1;k+1 =

d
[3]
j+1;2k�2 d

[1]
j+1;2k d

[3]
j+1;2k+1

d
[4]
j+1;2k�2 d

[2]
j+1;2k d

[2]
j+1;2k+2

S
[0]
j;2k+1;k+2 = �d

[3]
j+1;2k�2 d

[1]
j+1;2k d

[1]
j+1;2k+1

d
[6]
j+1;2k�2 d

[4]
j+1;2k d

[2]
j+1;2k+2

:

In the equally spaced case this becomes the well known four point scheme which uses the stencil
f�1=16; 9=16; 9=16;�1=16g [19, 15].
For S

[1]
j each row contains only three non-zero elements. The even row at 2k� 2 and the odd

row at 2k � 1 have only entries in the columns k � 2, k � 1, and k. The matrix thus has the
following structure:

2k � 3

2k � 2

2k � 1

2k

2k + 1

2k + 2

2
6666666664

� � � 0 0 0

0 � � � 0 0

0 � � � 0 0

0 0 � � � 0

0 0 � � � 0

0 0 0 � � �

3
7777777775

k � 3 k � 2 k � 1 k k + 1 k + 2

The k � 2 and k columns are easy and given by

S
[1]
j;2k�2;k�2 =

d
[1]
j+1;2k�1 d

[3]
j+1;2k�1

d
[4]
j+1;2k�4 d

[6]
j+1;2k�4

S
[1]
j;2k�2;k = �d

[1]
j+1;2k�1 d

[3]
j+1;2k�4

d
[4]
j+1;2k�2 d

[6]
j+1;2k�4

S
[1]
j;2k�1;k�2 = �

d
[1]
j+1;2k�2 d

[3]
j+1;2k�1

d
[4]
j+1;2k�4 d

[6]
j+1;2k�4

S
[1]
j;2k�1;k =

d
[1]
j+1;2k�2 d

[3]
j+1;2k�4

d
[4]
j+1;2k�2 d

[6]
j+1;2k�4

:

The k � 1 column entries follow from the fact that each row sums to one:

S
[1]
j;2k�2;k�1 = 1� S

[1]
j+1;2k�2;k�2 � S

[1]
j+1;2k�2;k

and

S
[1]
j;2k�1;k�1 = 1� S

[1]
j+1;2k�1;k�2 � S

[1]
j+1;2k�1;k :
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In the equally spaced case, this leads to the f1=8; 1;�1=8g and f�1=8; 1; 1=8g sequences from
[16, 6].

The matrix S
[2]
j has the following structure:

2k� 3

2k� 2

2k� 1

2k

2k+ 1

2
66666664

� � � 0 0

0 � � 0 0

0 � � � 0

0 0 � � 0

0 0 � � �

3
77777775

k � 3 k � 2 k � 1 k k + 1

The even row at 2k � 2 has 2 non-zero elements at columns k � 2 and k � 1:

S
[2]
j;2k�2;k�2 =

d
[3]
j+1;2k�1

d
[6]
j+1;2k�4

and S
[2]
j;2k�2;k�1 =

d
[3]
j+1;2k�4

d
[6]
j+1;2k�4

:

The odd row at 2k � 1 contains only 3 non-zero elements at columns k � 2, k � 1, and k. The
k � 2 and k column coe�cients are given by

S
[2]
j;2k�1;k�2 = �d

[3]
j+1;2k�1 d

[1]
j+1;2k�2

d
[2]
j+1;2k�1 d

[6]
j+1;2k�4

and S
[2]
j;2k�1;k = �d

[3]
j+1;2k�2 d

[1]
j+1;2k+1

d
[2]
j+1;2k�1 d

[6]
j+1;2k�2

;

while the k � 1 column coe�cients follow from the fact that each row sums to one:

S
[2]
j;2k�1;k�1 = 1� S

[2]
j;2k�1;k�2 � S

[2]
j;2k�1;k:

In the equally spaced case this leads to the sequences f1=2; 1=2g and f�1=4; 3=2;�1=4g from
[6].
The subdivision scheme S[3] for the third di�erence is very simple. Each row contains only

two non-zero elements. The even row at 2k � 2 and the odd row at 2k � 1 have entries only in
the columns k � 2 and k � 1:

2k � 3

2k � 2

2k � 1

2k

2
66664

� � 0 0

0 � � 0

0 � � 0

0 0 � �

3
77775

k � 3 k � 2 k � 1 k

The coe�cients are given by

S
[3]
j;2k�2;k�2 = d

[3]
j+1;2k�1=d

[2]
j+1;2k�1 and S

[3]
j;2k�2;k�1 = �d[1]j+1;2k+1=d

[2]
j+1;2k�1;

for the even row, and

S
[3]
j;2k�1;k�2 = �d[1]j+1;2k�2=d

[2]
j+1;2k�1 and S

[3]
j;2k�1;k�1 = d

[3]
j+1;2k�2=d

[2]
j+1;2k�1;
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for the odd row, which in the equally spaced case leads to the f3=2;�1=2g and f�1=2; 3=2g
sequences from [6].
The subdivision scheme S[4] is even more \narrow" than S[3], in the sense that one row out of

two now has just one non-zero element; the other rows still have two. The explicit expressions

for the S
[4]
j;l;k are more complicated however. Fortunately, it turns out that if we consider the

scheme for the di�erences (as opposed to divided di�erences) of third order divided di�erences,
the scheme is simple again. We thus de�ne the di�erences of divided di�erences as

g
[p]
j;k = f

[p�1]
j;k+1 � f

[p�1]
j;k = d

[p]
j;k f

[p]
j;k ;

and consider the scheme T [4] so that

g
[4]
j+1 = T

[4]
j g

[4]
j : (14)

The T
[4]
j matrix has the following structure:

2k � 3

2k � 2

2k � 1

2
64

� � 0

0 � 0

0 � �

3
75

k � 3 k � 2 k � 1

The even row has only one element

T
[4]
j;2k�2;k�2 =

d
[4]
j+1;2k�2

d
[2]
j+1;2k�1

; (15)

while the odd row has two elements

T
[4]
j;2k�1;k�2 = �d

[1]
j+1;2k�2

d
[2]
j+1;2k�1

and T
[4]
j;2k�1;k�1 = �d

[1]
j+1;2k+3

d
[2]
j+1;2k+1

: (16)

One disadvantage of the forward di�erence notation is that while all the entries of the above
matrices are situated near the point xj;k = xj+1;2k, their indices shift more and more to the
left for higher order schemes. In some of the later sections we therefore work with central

di�erences and we also introduce di�erent notation for the d
[p]
j;k. In the homogeneous case, one

can easily checks the matrix entries and conclude that the S[0], S[1], S[2], S[3], and T [4] are
bounded uniformly in j. For the inhomogeneous but dyadically balanced case, one has to look
a little closer, but one still has uniform bounds for the coe�cients in S[1], S[2], S[3], and T [4], as
shown below. The scheme S [0] in the inhomogeneous case requires even more attention, for its
coe�cients can become unbounded. We shall come back to this in Section 9.2.
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Now, consider the coe�cients of the scheme S[1]. Using symmetry it is su�cient to look at
two coe�cients:

S
[1]
j+1;2k�2;k�2 =

d
[1]
j+1;2k�1 d

[3]
j+1;2k�1

d
[4]
j+1;2k�4 d

[6]
j+1;2k�4

S
[1]
j+1;2k�2;k = �d

[1]
j+1;2k�1 d

[3]
j+1;2k�4

d
[4]
j+1;2k�2 d

[6]
j+1;2k�4

;

Considering the relative position of the ends of corresponding intervals it is easy to see that

d
[1]
j+1;2k�1 < d

[4]
j+1;2k�4, and d

[3]
j+1;2k�1 < d

[6]
j+1;2k�4. In the same way one has d

[1]
j+1;2k�1 < d

[4]
j+1;2k�2,

and d
[3]
j+1;2k�4 < d

[6]
j+1;2k�4. It follows that

���S[1]
j+1;2k�2;k�2

��� < 1, and
���S[1]

j+1;2k�2;k

��� < 1. Thus, S[1]

has uniformly bounded coe�cients.
The analogous consideration of the entries in S[2], S[3], and T [4] involves just one more trick.

For example, consider the coe�cient S
[3]
j;2k�2;k�1; we have

���S[3]
j;2k�2;k�1

��� = d
[1]
j+1;2k+1

d
[2]
j+1;2k�1

<
d
[1]
j+1;2k+1

d
[1]
j+1;2k

6
1� �

�
;

where we used the fact that our multi-level grid is dyadically balanced.

6. Regularity estimates in the homogeneous case

In the case of shift-invariant subdivision, the order of the scheme can be used to reduce the
complexity of the regularity analysis. For the equally spaced cubic interpolation of [17, 14, 19],
for instance, a combined spectral analysis of two 6�6 matrices can be reduced to the study of two
2�2 matrices; even though these reduced matrices no longer have uniformly bounded products,
the rate of growth of these products (as a function of the number of factors) can be used to
establish the rate of convergence of the original scheme, as well as the regularity of the limit
function [10, 28]. Our goal here is to do something similar in the irregularly spaced homogeneous
case: we translate bounds on the rate of growth for high-order divided di�erences into bounds on
lower-order divided di�erences. Coupled with an estimate on the high-order divided di�erences,
this leads to regularity estimates. Throughout this section we assume  < 1; we also assume
that the subdivision scheme under consideration is of su�ciently high order, so that all the
derived subdivision schemes are well-de�ned.
As pointed out earlier, the de�nition of derived subdivision schemes in this paper is partic-

ularly geared towards interpolating subdivision. However, our strategy will, mutatis mutandis,
also work for other subdivision schemes. Therefore we keep our analysis fairly general and ab-
stract until the end of this section, where we turn to the concrete example of cubic Lagrange
interpolation.
The strategy has two parts. On the one hand, we have to prove an estimate that controls the

growth through scale of the highest order divided di�erences that we consider. Typically, such
an estimate takes the form ���f [p]j;k

��� 6 C
�j

(dj;k)r
: (17)
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The presence of a factor of the form (dj;k)�r here expresses the dependence of the bound on
the spacings in the multi-level grid. The extra factor �j controls exponential decay (or growth)
independent of the grids. In the uniformly spaced case, dj;k = 2�j and both factors collapse into
one single exponential. The proof of (17) depends strongly on the scheme under consideration,
and therefore has to be constructed case-by-case. For instance, in the case of cubic Lagrange
interpolation, the starting estimate (17) takes the form���f [4]j;k

��� 6 C
(1� �)j

d3j;k
; (18)

with � as de�ned by (1) above; we shall come back below on the proof of (18); see Section 8.
In the special case of uniformly spaced cubic Lagrange interpolation, � = 1=2 and dj;k = 2�j ,
so that (18) reduces to ���f [4]j;k

��� 6 C 22j (19)

Note that we have some freedom in the choice of � and r. For instance, in the uniformly spaced
cubic Lagrange interpolation, the three choices (among many others) � = 1; r = 2; � = 2; r = 1;
� = 4; r = 0 all reduce to (19). We shall show in the next section how bounds of type (17) or
(18) can be obtained for the particular case of irregular cubic Lagrangian interpolation.
The second part of the strategy is a reduction procedure that takes bounds of the type (17) and

lifts them into bounds for the lower-order divided di�erences. Typically (17) will imply that the

f
[p]
j diverge exponentially in j, but the bound on their growth leads to a better bound on lower-

order divided di�erences; we repeat the reduction procedure until the f
[p]
j;kj(x)

become Cauchy

sequences in j. At that point, one can use the bounds to show convergence and regularity; see
below.
The reduction procedure itself consists of three stages, repeated cyclically as often as needed.

In the �rst stage bounds on f
[p]
j;k are translated into bounds on the di�erences f

[p�1]
j;k+s � f

[p�1]
j;k ; in

the second stage these intra-level bounds lead to inter-level bounds on f
[p�1]
j+1;2k+t � f

[p�1]
j;k ; in the

third stage these inter-level bounds are gathered across scale into a bound on the f
[p�1]
j;k : The

cycle can then start over again.
In summary, we start with a higher order scheme which diverges but which is simple enough

to get a bound on the rate of divergence and then use our reduction cycle to lower the order until
convergence. The three lemmas below correspond to the three stages in the reduction cycle. As
usual, C denotes a generic constant independent of both j and k.

Lemma 1. For � > 0, � > 0, and r 2 R the bound���f [p]j;k

��� 6 Cj�
�j

(dj;k)r

is equivalent to the bound ���g[p]j;k

��� 6 C0j�
�j

(dj;k)r�1
:

Proof. The result follows directly from the de�nitions and the assumption that  <1.
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The form of these bounds may look odd at �rst sight; the extra factor j� did not occur in (17)
or (18). However, factors of this type can arise naturally as we go through our three-step
cycle. For the cubic Lagrange interpolation case, for instance, we shall see below that after one
three-stage cycle (18) leads to ���f [3]j;k

��� 6 Cj
(1� �)j

d2j;k
:

In order to use Lemma 1 in the next cycle for this example, we therefore need to be able to
handle such extra factors j�.

Lemma 2. Suppose that, for some � > 0, � > 0, and r 2 R,���g[p+1]
j;k

��� 6 Cj�
�j

(dj;k)r
:

Also, let the coe�cients of the subdivision scheme S[p] be bounded uniformly in j; k; l. Then���f [p]j+1;2k+s � f
[p]
j;k

��� 6 C0j�
�j

(dj;k)r

for s 2 f0; 1g.
Proof.

���f [p]j+1;2k+s � f
[p]
j;k

��� =
�������
b s
2
+B

2
cX

t=d s
2
�B

2
e

S
[p]
j;2k+s;k+t(f

[p]
j;k+t � f

[p]
j;k)

������� 6 C0j�
�j

(dj;k)r
;

where we have used that

- the sum is �nite,
- the coe�cients of the subdivision matrix are uniformly bounded,

-
P

m S
[p]
j;l;m = 1,

- because of homogeneity the dj;k+t, are bounded below by Cdj;k, with C > 0.

Lemma 3. Suppose that, for some � > 0, � > 0, and r > 0,���f [p]j+1;2k+s � f
[p]
j;k

��� 6 Cj�
�j

(dj;k)r

for all s 2 f0; 1g. Then ���f [p]j;k

��� 6 C0

�
j�+!

�̂j

(dj;k)r
+ 1

�
; (20)

where �̂ = max f�; (1� �)rg and

! =

�
0 if � 6= (1� �)r;
1 if � = (1� �)r:
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Proof. Write k = 2jb0 + 2j�1b1 + : : :+ 2bj�1 + bj , where bn 2 f0; 1g for n > 1. Then

���f [p]j;2jb0+2j�1b1+:::+2bj�1+bj

��� 6 ���f [p]0;b0

��� + j�1X
q=0

���f [p]q+1;2q+1b0+:::+bq+1
� f

[p]
q;2qb0+:::+bq

��� 6
6 C +

j�1X
q=0

Cq�
�q

(dq;2qb0+:::+bq )
r

6 C + Cj�
1

(dj�1;dk=2e)r

j�1X
q=0

�q
�
dj�1;2j�1b0+:::+bj�1

dq;2qb0+:::+bq

�r

Now, dn+1;2n+1b0+:::+bn+1 6 (1 � �) dn;2nb0+:::+bn , and thus we have dj�1;2j�1b0+:::+bj�1 6 (1 �
�)j�1�qdq;2qb0+:::+bq . Also dj�1;dk=2e is commensurate with dj;k so that

���f [p]j;k

��� 6 C + Cj�
1

drj;k

j�1X
q=0

�q ((1� �)r)j�1�q

and the result then follows easily.

The cycle given by Lemmas 1-3 now provides the mechanism to translate the growth rate of

the f
[p]
j;k di�erences into a reduced growth rate for lower order divided di�erences f

[p�1]
j;k . Note

that the extra constant introduced by Lemma 3 can be ignored given that all bounds diverge.
Typically the exponent r gets reduced by one every time through the cycle. Note that there are
two ways in which a bound of the form �j d�rj;k can go to zero: if r > 0, and � < �r, or also if

r < 0, � < (1� �)r; this second case allows � > 1. We will keep going through this cycle till
we have reduced r enough so that we are one cycle short of convergence, i.e until we have either
r > 1, � < �r�1 or r < 1, � < (1� �)r�1. At that point we shall invoke Theorem 4 which will
handle the transition to convergence and compute the fractional regularity.
There is one more issue that we need to address before stating the convergence theorem and

it involves some �ne tuning of the parameters for Lemma 3. Consider the case where r > 0, and
� is small in the sense that � < (1� �)r. This small � will get wiped out by Lemma 3 as the
result will be of the form (1� �)jr=drj;k. Thus we have \wasted" a good, i.e., small �. However,
it would be nice if we could tune our parameters in the original bound by increasing � in the
numerator and balancing this o� by reducing r in the denominator, till the new � becomes equal
to the new (1� �)r. The result is then again of the form (1� �)jr=drj;k, but now with the new,
smaller r. Thus our good � did not get wasted, but contributed to reducing r further. This can
be done by �nding � > 0, so that � = �� (1� �)r�� . Then

�j

drj;k
=

��j(1� �)(r��)j

drj;k
6 C0 (1� �)(r��)j

dr��j;k

:

Thus � is exactly the amount by which r gets reduced. If � < (1� �)r such a � > 0 exists and
is given by

� =
log� � r log(1� �)

log � � log(1� �)
:
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Note that if the third stage results in a bound of the form (1��)jr=drj;k, then, in the next cycle,

the bound of the second stage will be of the form (1� �)jr=dr�1
j;k which means that in the next

application of Lemma 3, � is strictly less than (1� �)r�1 and we need �ne tuning again.
As mentioned earlier we can go through the cycle a number of times till r > 1 and � < �r�1

or r < 1 and � < (1� �)r�1. Then we can use the following theorem.

Theorem 4. Suppose that, for some P > 1, � > 0, r 2 R,���f [P ]
j;k

��� 6 Cj�
�j

(dj;k)r
; (21)

and that either r > 1, � < �r�1 or r < 1, � < (1� �)r�1. Then the limit functions '[p](y) as
de�ned by (13) are well-de�ned and continuous for all p = 0; : : : ; P � 1. Moreover, '[P�1] is
H�older-continuous with H�older exponent 1� r + log�= log � � �� > 0. The rate of convergence
is exponential: ���'[P�1](y)� f

[P�1]
j;kj(y)

��� 6 C0(��)j ;

where

� =

(
(1� �)1�r if r < 1;

�1�r if r > 1:

Finally, one has

'[p](y) =
1

p!

dp'[0](y)

dyp
for p = 0; : : : ; P � 1: (22)

Proof. Applying Lemmas 1-2 once more to (21) leads to���f [P�1]
j+1;kj+1(y)

� f
[P�1]
j;kj(y)

��� 6 Cj��jd1�r
j;kj(y)

; (23)

where we remember from Section 3 that kj(y) = maxfl : xj;l 6 xg. Since kj+1(y) is either 2kj(y)

or 2kj(y) + 1, we can write � dq;kq(z) 6 dq+1;kq+1(z) 6 (1� �) dq;kq(z). Therefore, d1�r
q+1;kq+1(z)

6

�d1�r
q;kq(z)

is always true, with � de�ned as above. Hence from (23) we have���f [P�1]
j+1;kj+1(y)

� f
[P�1]
j;kj(y)

��� 6 C0j� (��)j : (24)

Given that 0 < �� < 1, it follows that (f
[P�1]
j;kj(y)

)j2N is a Cauchy sequence, and the function

'[P�1](y) is well-de�ned.
Next we estimate

��'[P�1](y + t)� '[P�1](y)
�� for t satisfying jtj < mink d0;k. De�ne hj(y) =

min(dj;kj(y)�1; dj;kj(y); dj;kj(y)+1). The sequence hj(y) need not be monotone decreasing, but its
lim sup equals zero. We can therefore �nd j so that

hj(y) > jtj > hj+1(y):

It then follows that jkj(y + t)� kj(y)j 6 1, so that���f [P�1]
j;kj(y+t)

� f
[P�1]
j;kj(y)

��� 6 Cj��jd1�rj;kj(y)
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by Lemma 1. By homogeneity, we conclude that

C1 jtj 6 dj;kj(y)+s 6 C2 jtj for s 2 f�1; 0; 1g: (25)

Moreover, for any z,���'[P�1](z)� f
[P�1]
j;kj(z)

��� 6 1X
q=j

���f [P�1]
q+1;kq+1(z)

� f
[P�1]
q;kq(z)

��� 6 C

1X
q=j

q� �q (dq;kq(z))
1�r

6 C0 �j (dj;kj(z))
1�r: (26)

Consequently���'[P�1](y + t)� '[P�1](y)
��� 6 ���'[P�1](y + t)� f

[P�1]
j;kj(y+t)

��� + ���f [P�1]
j;kj(y+t)

� f
[P�1]
j;kj(y)

���+���f [P�1]
j;kj(y)

� '[P�1](y)
��� 6 C00j��j

�
d1�r
j;kj(y+t)

+ d1�r
j;kj(y)

�
6 C000j��j jtj1�r ;

by (25). On the other hand, hj+1(y) > C�j+1, hence jtj > C0�j , or �j 6 C jtjlog�= log�.
Altogether, this implies���'[P�1](y + t)� '[P�1](y)

��� 6 C000(1 + jlog jtjj)� jtj1�r+log�= log� :

Also, (26) implies an exponential rate of convergence of f
[P�1]
j;k to its limit function, namely���'[P�1](y)� f

[P�1]
j;kj(y)

��� 6 C0 �j (dj;kj(z))
1�r 6 C0(��)j :

Now we can show the convergence of f
[p]
j;k for p = 0; : : : ; P � 2. It follows from (24) that the

sequence f
[P�1]
j;k is uniformly bounded, i.e., f

[P�1]
j;k 6 C0. Here we can apply the �rst part of the

theorem again to show that f [P�2]
j;k converges to a continuous function. We can also repeat this

argument for all the lower p. Lemma 5 below provides the proof for (22).

Lemma 5. Suppose that the divided di�erences f
[p]
j;k converge uniformly to the continuous func-

tions '[p](y) for p = 0; : : : ; P � 1. Then

'[p](y) =
1

p!

dp'[0](y)

dyp

for p = 1; : : : ; P � 1.

This lemma concerns divided di�erences rather than subdivision. For completeness we give a
proof in Appendix C.

7. Estimates for higher-order differences in the

case of cubic Lagrange interpolation

The previous section introduced a general reduction procedure that takes a bound on the
growth of higher-order divided di�erences and transforms it into the regularity estimates for the
limit funtion of the subdivision. Here we shall prove several bounds on the growth of the fourth
divided di�erences in the case of the cubic Lagrange interpolation scheme of Section 5. Results
in this section (except where speci�ed otherwise) are generally true for any dyadically balanced
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multi-level grid. This manifests itself, for instance, in the presence of � and the absence of  in
the statements of Lemmas 6 and 7.

7.1. Notation. Whereas the forward divided di�erences were su�cient for the algebraic ma-
nipulations in the preceding sections, the more meticulous estimates necessary for the inhomo-
geneous case are more natural with a centered notation. We thus introduce

G
[p]
j;k � g

[p]
j;k�b p

2
c
;

F
[p]
j;k � f

[p]
j;k�b p

2
c
;

D
[p]
j;k � d

[p]
j;k�b p

2
c
:

Obviously, for p = 0 or 1 the notations coincide.

7.2. Bounds for g
[4]
j;k�2. It will be convenient, in the sequel, to have a shorthand notation for

distances at level j + 1 near point xj;k = xj+1;2k. We shall denote by [s; t] the distance

[s; t] = xj+1;2k+t � xj+1;2k+s = d
[t�s]
j+1;2k+s:

Let us illustrate this notation by rewriting the subdivision scheme T [4] for the di�erences of the
third divided di�erences for the cubic Lagrange interpolation as computed in Section 5:

G
[4]
j+1;2k =

[�2; 2]
[�1; 1] G

[4]
j;k; (27)

G
[4]
j+1;2k+1 = � [�2;�1]

[�1; 1] G
[4]
j;k �

[3; 4]

[1; 3]
G

[4]
j;k+1: (28)

This scheme can be represented by Figure 5. The following lemma gives a bound on the growth

-2 -1 0 1 2

-1

3 4
j+1

0 1 2
j

Figure 5. Subdivision scheme for G[4].

of
���G[4]

j;k

��� as j increases.
Lemma 6. Suppose that � > 0. Then���G[4]

j;k

��� 6 C
(1� �)j

dj;k�1dj;k
; (29)

where C is a constant independent of j and k.
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Proof. First of all, since the initial data are �nitely supported, the estimate trivially holds on
the level j = 0 with some constant C > 0.
Suppose that on the j-th level the estimate holds for all k, i.e.:���G[4]

j;k

��� 6 C
(1� �)j

[�2; 0] [0; 2] and
���G[4]

j;k+1

��� 6 C
(1� �)j

[0; 2] [2; 4]
:

First, consider the odd point: from (28) it follows that���G[4]
j+1;2k+1

��� 6 � [�2;�1]
[�1; 1]

1

[�2; 0] +
[3; 4]

[1; 3]

1

[2; 4]

�
C (1� �)j

[0; 2]

=

�
[1; 2]

[�2;�1]
[�2; 0]

[0; 1]

[�1; 1] + [0; 1]
[3; 4]

[2; 4]

[1; 2]

[1; 3]

�
1

[0; 2]

C (1� �)j

[0; 1][1; 2]
: (30)

The de�nition of � implies that

[�2;�1]
[�2; 0] 6 1� �;

[0; 1]

[�1; 1] 6 1;
[3; 4]

[2; 4]
6 1� �;

[1; 2]

[1; 3]
6 1: (31)

Substituting (31) into (30) yields���G[4]
j+1;2k+1

��� 6 (1� �) ([1; 2] + [0; 1])
1

[0; 2]

C (1� �)j

[0; 1][1; 2]
= (1� �)

C (1� �)j

[0; 1][1; 2]
=

C (1� �)j+1

dj+1;2k dj+1;2k+1
:

Consider the even point now: from (27) it follows that���G[4]
j+1;2k

��� 6 [�2; 2]
[�1; 1]

C (1� �)j

[�2; 0][0; 2] =
[�2; 2]
[�1; 1]

[�1; 0]
[�2; 0]

[0; 1]

[0; 2]

C(1� �)j

[�1; 0][0; 1]:

Now either
[�1; 0]
[�2; 0] 6

[�1; 1]
[�2; 2] ; or

[0; 1]

[0; 2]
6

[�1; 1]
[�2; 2];

and therefore, ���G[4]
j+1;2k

��� 6 (1� �)
C (1� �)j

[�1; 0][0; 1] =
C (1� �)j+1

dj+1;2k�1 dj+1;2k
:

The lemma follows by induction.

This lemma gives the starting estimate needed for the reduction process and the regularity
estimates of the previous section. Note that the proof did not use homogeneity at all. Lemma 6
holds even if  =1, as long as � > 0. We shall also use the following estimate which is stronger
than Lemma 6, and which is necessary for the analysis of the inhomogeneous case.

Lemma 7. Suppose that � > 0. Then���G[4]
j;k

��� 6 C
(1� �)j�
D

[2]
j;k

�2 ;
where C is a constant independent of j and k.
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Proof. First of all, the lemma trivially holds on the level j = 0. Next, consider the case when
j > 0 and k is odd. From the previous lemma we have���G[4]

j;k

��� 6 C
(1� �)j

dj;k�1 dj;k
:

Since k is odd, we know that the intervals (xj;k�1; xj;k) and (xj;k; xj;k+1) are the two \children"
of the same interval from the previous level, hence dj;k�1 > �dj�1;bk=2c and dj;k > �dj�1;bk=2c.

But dj�1;bk=2c � D
[2]
j;k, therefore���G[4]

j;k

��� 6 C0 (1� �)j�
D

[2]
j;k

�2 ; where C0 = C=�2.

Now, consider the case j > 0 and k is even. Suppose that on the level j the result holds.
Consider an even point on the (j + 1)-th level. From (27) we have

���G[4]
j+1;2k

��� = D
[2]
j;k

D
[2]
j+1;2k

���G[4]
j;k

��� 6 D
[2]
j;k

D
[2]
j+1;2k

C
(1� �)j�
D

[2]
j;k

�2 = C
D

[2]
j+1;2k

D
[2]
j;k

(1� �)j�
D

[2]
j+1;2k

�2 :
Also, D

[2]
j+1;2k = dj+1;2k�1 + dj+1;2k 6 (1� �)dj;k�1 + (1� �)dj;k = (1� �)D

[2]
j;k.

Therefore, the estimate is established on the (j+1)-th level at all the even points. The result
follows by induction.

Under extra restrictions on  or �, these bounds can be improved further.

Lemma 8. Suppose that � > 1=3 (non homogeneous but dyadically balanced case) or that  6 0
(homogeneous case), where 0 � 2:4992 is the root of (1=4+ (

p
 + 1)�2)� 1. Then���G[4]

j;k

��� 6 C

D
[2]
j;k

;

where C is a constant independent of j and k.

Proof. We work again by induction on j. Suppose that on the j-th level the estimate holds for
all k, i.e. ���G[4]

j;k

��� 6 C

[�2; 2] and
���G[4]

j;k+1

��� 6 C

[0; 4]
:

Let us �rst check the even points at level j + 1:���G[4]
j+1;2k

��� = [�2; 2]
[�1; 1]

���G[4]
j;k

��� 6 C

[�1; 1] =
C

D
[2]
j+1;2k

:

Now for the odd point:���G[4]
j+1;2k+1

��� =
����� [�2;�1]

[�1; 1] G
[4]
j;k �

[3; 4]

[1; 3]
G

[4]
j;k+1

���� 6 C

[0; 2]

�
[�2;�1]
[�1; 1]

[0; 2]

[�2; 2] +
[3; 4]

[1; 3]

[0; 2]

[0; 4]

�
: (32)

25



This is less than C=[0; 2] = C=D
[2]
j+1;2k+1, proving the induction step, if the expression between

curly brackets is bounded by 1. Let us check this remaining factor. We �rst concentrate on the
case � > 1=3. Because, for a; b > 0, ab 6 (a+ b)2=4, we have

[3; 4][0; 2]

[1; 3][0; 4]
6

1

4

[3; 4][0; 4]

[2; 4][1; 3]
:

Since [xj+1;2k+3; xj+1;2k+4] is a child interval of [xj+1;2k+2; xj+1;2k+4] = [xj;k+1; xj;k+2], we have
[3; 4] 6 (1� �) [2; 4].
Similarly [1; 2] > � [0; 2], [2; 3] > � [2; 4]. Consequently [1; 3] = [1; 2] + [2; 3] > � [0; 4], and we

have

[3; 4][0; 4]

[2; 4][1; 3]
6

1� �

�
:

Similar bounds hold for the other term in the curly brackets in (32), so that�
[�2;�1]
[�1; 1]

[0; 2]

[�2; 2] +
[3; 4]

[1; 3]

[0; 2]

[0; 4]

�
6

1� �

2�
:

This does not exceed 1 if � > 1=3, which proves the induction step in this case.
Since � > (1 + )�1, the previous argument already proves the lemma for  6 2 in the

homogeneous case as well. In Appendix D we show that in the homogeneous case one can
extend the range for  slightly, to  6 0 � 2:4992.

8. Regularity of the cubic Lagrange subdivision in the homogeneous case

In this section, we apply the machinery of Section 6 to the cubic Lagrange interpolation
subdivision scheme. This is a scheme of order 4, and we have a simple matrix structure for S[4],
in which each column has three elements. The expression for these elements is even simpler if,
at the last stage, we consider simply di�erences and not divided di�erences, corresponding to
(14), with the operator T [4] as de�ned by (15) and (16). In Section 7, it was proved that (see

Lemma 6; beware of the change in notation: g
[4]
j;k = G

[4]
j;k+2)���g[4]j;k

��� 6 C
(1� �)j

dj;k+1dj;k+2
:

Because of homogeneity, this can be rewritten as���g[4]j;k

��� 6 C0 (1� �)j

(dj;k)2
;

or, by Lemma 1, ���f [4]j;k

��� 6 C0 (1� �)j

(dj;k)3
:

We can now apply the machinery proved earlier. In this example the initial bound for Lemma 1
has p = 4; r = 3; � = 1� �; � = 0; after two reduction cycles we arrive at P = p = 2; r = 1; � =
1� �; � = 1 for use in Theorem 4, i.e., we have the estimate���f [2]j;k

��� 6 Cj
(1� �)j

dj;k
:
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From the theorem we conclude that the subdivision scheme S[0] converges to a C1 limit function
' = '[0], and that '0 is H�older continuous with H�older exponent log(1� �)= log �� �, for � > 0.
In fact, we even have ��'0(x+ t)� '0(x)

�� 6 C (1 + jlog jtjj) jtjlog(1��)= log� : (33)

In the equally spaced case and in the semi-regular case we have � = 1=2, and we recover the
optimal estimate from [17].
If  6 0 � 2:4492, then we can do better by using Lemma 8 in Section 7. In this case, we

have the stronger estimate ���g[4]j;k

��� 6 C

d
[2]
j;k+1

;

which can again, because of homogeneity and Lemma 1, be rewritten as���f [4]j;k

��� 6 C0

(dj;k)2
:

We can then apply our cycle twice and conclude���f [2]j;k

��� 6 Cj; (34)

corresponding to P = 2, r = 0, � = 1, � = 1 in Theorem 4. Hence, we �nd that the f
[1]
j;k converge

to a continuous function '[1] = '0 with H�older exponent 1� �, with � arbitrarily small; in fact
j'0(x+ t)� '0(x)j 6 C (1 + jlog jtjj) jtj.
So for  6 0, cubic Lagrange interpolation leads to a limit function ' that is C2��, which

is the same regularity as in the regularly spaced case. For  > 0, our methods prove the
weaker regularity result (33), but we conjecture that this estimate is not sharp. Note that
although we used homogeneity repeatedly in the proofs of the lemmas and the theorem, the
�nal H�older exponent depends on � only, not on . Figure 6 summarizes the bounds proved in
this paper on the H�older regularity of the limit function as a function of �. Even though there
is no mathematical evidence we think that it is rather unlikely for the H�older exponent to be
discontinuous; for � < 1=3, we thus do not believe this result to be optimal. We conjecture that
' remains C2�� for all � > 0.

9. Regularity of the cubic Lagrange subdivision without homogeneity

In this section we shall re-examine the very speci�c case of cubic Lagrange interpolation
without assuming homogeneity. It will turn out that we can derive the same conclusion as
before, with the same H�older exponent, even if the grid is only dyadically balanced and not
homogeneous. We follow the same game plan as before, except that we have to be much more
careful: the absence of homogeneity requires a detailed and careful analysis at each of the
reduction steps.

9.1. Reduction procedure. Without homogeneity the reduction procedure becomes much
more delicate. We can no longer use a general set of lemmas, but instead have to consider every
single step in the reduction cycle for the particular case of cubic Lagrange subdivision. We start
by noting that a constant CS , which only depends on �, exists so that the coe�cients of the
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Figure 6. H�older regularity of the limit function as a function of �.

derived subdivision schemes S
[p]
j for p = 1; 2; 3 are uniformly bounded by CS . To get to our �nal

estimate on F [1] we will need 8 steps.

Step 1: Starting point

Earlier we showed the following estimate for G[4].���G[4]
j;k

��� 6 C
(1� �)j�
D

[2]
j;k

�2

Step 2: From
���G[4]

j;k

��� to ���F [3]
j+1;2k+t � F

[3]
j;k

���
Because S[3] is bounded uniformly in j, and conserves constants, one can show for all j and k:

���F [3]
j+1;2k+t � F

[3]
j;k+s

��� 6 CS

���G[4]
j;k

��� 6 CSC
(1� �)j

(D
[2]
j;k)

2
for s = �1; 0 and t = �1; 0 : (35)

We have to restrict the possible values of s and t because we are not assuming homogeneity.

Considering a wider range of s and t would bring other D
[2]
j;l ; l 6= k into play, which could not be

related to D
[2]
j;k in a way independent of j and k.

Step 3: Summing backward for F [3]

In the proof of Lemma 3, we used an estimate of type (35) to derive a bound on F
[3]
j;k by summing

\backward", that is, over q, with 0 6 q 6 j. When the mesh was homogeneous, and we could let
the indices s and t in (35) range over a larger set, this was easy. Now that we no longer assume
homogeneity, we have to make sure that (35) for s; t 2 f�1; 0g is su�cient to allow us to carry
out the backward summation, ranging all the way to the coarsest level, starting from arbitrary
k. We describe below how to choose a \path", from level j + 1 backward to level 0, that allows
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backward summation. The main idea is to use the freedom of choosing s in (35) to ensure that

D
[2]
j�1;d(k+s)=2e=D

[2]
j;k is bounded by 1� �.

Let us start with arbitrary j; k. Then k = kj+1 = 2lj + sj , where lj = dkj+1=2e, sj 2 f0;�1g.
It then follows that

���F [3]
j+1;kj+1

� F
[3]
j;lj+tj

��� 6 C(1� �)j�
D

[2]
j;lj

�2 ; (36)

where we can still choose tj 2 f�1; 0g freely. Whatever choice we make, we will have kj =
lj + tj = 2lj�1 + sj�1, with lj�1 = d(lj + tj)=2e, sj�1 2 f�1; 0g, and therefore

���F [3]
j;lj+tj

� F
[3]
j�1;lj�1+tj�1

��� 6 C(1� �)j�1�
D

[2]
j�1;lj�1

�2 ; (37)

where again tj�1 can be chosen freely in f�1; 0g. In order to make the argument in Lemma 3

work, we will need to bound D
[2]
j;lj

by (1 � �)D
[2]
j�1;lj�1

, which is only possible if there is some

hierarchical nesting. This will �x the choice for tj . In particular, if lj is even, lj = 2mj , then

D
[2]
j;lj
6 (1� �)D

[2]
j�1;mj

, so we want lj�1 = mj = lj=2. This corresponds to the choice tj = 0. If

lj = 2mj+1 is odd, then D
[2]
j;lj

= d
[1]
j�1;mj

6 (1��)d[1]j�2;bmj=2c
= (1��)D[2]

j�1;2bmj=2c+1: In this case

we therefore want lj�1 = 2bmj=2c+1. This implies that lj+tj = 2lj�1+sj�1 = 4bmj=2c+2+sj�1

has to be equal to 1 or 2 (mod 4). This can always be achieved by an appropriate choice of t1:
if lj = 1 (mod 4), we choose tj = 0, if lj = 3 (mod 4), we choose tj = �1.
We can summarize the procedure as follows:

kj =

�
kj+1

2

�
+ tj ;

tj =

8><
>:
0 if dkj+1=2e is even;
0 if dkj+1=2e = 1 (mod 4),

�1 if dkj+1=2e = 3 (mod 4).

In all cases we have achieved our goal of writing (36) and (37) with appropriate choices such

that D
[2]
j;lj
6 (1� �)D

[2]
j�1;lj�1

. At this stage, tj�1 is still free, but it will likewise be �xed by the

next stage, where we will want a similar inequality again, now involving a D
[2]
j�2;lj�2

that should

be at least as large as (1� �)�1D
[2]
j�1;lj�1

. We continue in this vein until we reach the coarsest

level. This de�nes an unambiguous procedure to �nd an appropriate backward path. Figure 7
illustrates the �rst three steps of these backward paths.
Along this backward path, we have, at every step,

D
[2]
q;lq
6 (1� �)D

[2]
q�1;lq�1

for q = 1; : : : ; j:
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j+1

j
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5

8k+

4k+

j-1

0

0 1 22k+

Figure 7. The paths followed for the choices of kq in the backward summation

in Step 3. If pair (j0 � 1; k0) plays a role in the subdivision that computes F
[3]
j0;l0

at the next level, then this is indicated by a line (dashed or full) connecting
(j0 � 1; k0) and (j0; l0). The backward summation has to follow these lines, but
some of the lines are \illegal"; these are dashed. By following the full lines, we
guarantee that all the ratios that show up can be controlled.

This rate of decrease of \estimating" interval lengths along our path is exactly what we need
for the argument in Lemma 3. As a result we obtain���F [3]

j;k

��� 6 C
(1� �)j�1�
D

[2]

j�1;d k
2
e

�2 :

Step 4:
���F [3]

j;k

��� to ���G[3]
j;k

���
By de�nition we have:

G
[3]
j;k = F

[3]
j;kD

[3]
j;k:

Moreover, considering the relative positions of the intervals, one can show that

D
[3]
j;k 6 D

[2]

j�1;d k
2
e
:

Hence, we get ���G[3]
j;k

��� 6 C
(1� �)j�1

D
[2]

j�1;d k
2
e

:

Step 5:
���G[3]

j;k

��� to ���F [2]
j+1;2k+t � F

[2]
j;k

���
Now we have to clarify which intervals enter the estimates for F

[2]
j+1;l � F

[2]
j;l0 . Of course, it will

depend on l. First consider \odd" l. Then l = 2u+1 and from the explicit expression for S
[2]
j;2k;l
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j
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1

4k+

Figure 8. The paths followed for the choices of kq in the backward summation
in Step 6.

in Section 5 one sees that F
[2]
j+1;2u+1 is a linear combination of the F

[2]
j;u+t; t = 0; 1. It follows that

���F [2]
j+1;2u+1 � F

[2]
j;u+t

��� 6 CS

���G[3]
j;u

��� 6 C
(1� �)j�1

D
[2]
j�1;du=2e

for t = 0; 1: (38)

For even l we have l = 2u and F
[2]
j+1;2u is a linear combination of the F

[2]
j;u+t; t = �1; 0; 1. We can

subtract any of these, and estimate the di�erence, but now two adjacent G
[3]
j;l come into play:

���F [2]
j+1;2u � F

[2]
j;u+t

��� 6 CS(
���G[3]

j;u�1

���+ ���G[3]
j;u

���) for t = �1; 0; 1:

It is not immediately clear how to derive a bound of type (38) from this. We have to recognize

two cases, depending on whether the bounds on
���G[3]

j;u�1

��� and ���G[3]
j;u

��� contain the same interval

or not. The former case is easier and happens whenever G
[3]
j;u�1 and G

[3]
j;u have two common

\parents", while the latter one requires a little bit more care and happens when G
[3]
j;u�1 and

G
[3]
j;u share only one common \parent". To be more speci�c, we shall consider l = 8k + s where

s = 2; 4; 6; 8. Now, for s = 4 we have u = 4k + 2, and du=2e = d(u� 1)=2e = 2k + 1, so that

���F [2]
j+1;8k+4 � F

[2]
j;4k+2

��� 6 C
(1� �)j�1

D
[2]
j�1;2k+1

:

In the same way, for s = 8

���F [2]
j+1;8k+8 � F

[2]
j;4k+4

��� 6 C
(1� �)j�1

D
[2]
j�1;2k+2

:
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Two di�cult points are s = 2 and s = 6. Consider s = 6 with s = 2 following by analogy. We
have ���F [2]

j+1;8k+6 � F
[2]
j;4k+2

��� 6 C(1� �)j�1

0
@ 1

D
[2]
j�1;2k+1

+
1

D
[2]
j�1;2k+2

1
A :

The following inequalities allows us to handle this case as well: we have

1

D
[2]
j�1;2k+2

6
1

D
[1]
j�1;2k+1

but also

D
[1]
j�1;2k+1 > �D

[2]
j�1;2k+1;

so that ���F [2]
j+1;8k+6 � F

[2]
j;4k+2

��� 6 C(1 +
1

�
)
(1� �)j�1

D
[2]
j�1;2k+1

:

The case s = 2 is similar. Taking into account (38) as well, it follows that for s = 2; 3; : : : ; 6 we
can write ���F [2]

j+1;8k+s � F
[2]
j;4k+2

��� 6 C0 (1� �)j�1

D
[2]
j�1;2k+1

;

whereas for s = 7; 8; 9 we have���F [2]
j+1;8k+s � F

[2]
j;4k+4

��� 6 C0 (1� �)j�1

D
[2]
j�1;2k+2

:

Step 6: Summing backward for F [2]

Again we want to bound
���F [2]

j+1;8k+s

��� where s = 2; : : : ; 9. Just as we did for F [3] we shall obtain

this bound by summing the di�erences
���F [2]

q+1;8l+s � F
[2]
q;4l+t

��� \backward", along an appropriate

path. Start again with j; k arbitrary. Then kj+1 = 8lj + sj , with sj 2 f2; 3; : : : ; 9g, and
lj = b(kj+1 � 2)=8c. De�ne

t(s) =

(
2 if s = 2; : : : ; 6

4 if s = 7; : : : ; 9;

and set kj = 4lj + t(sj); then the result of Step 5 implies���F [2]
j+1;kj+1

� F
[2]
j;kj

��� 6 C
(1� �)j�1

D
[2]
j�1;kj=2

:

Now kj can written as kj = 8lj�1+ sj�1, with sj�1 2 f2; 4; 6; 8g (odd sj�1 are not possible since
t(sj) is even). De�ne now kj�1 = 4lj�1 + t(sj�1), so that���F [2]

j;kj
� F

[2]
j�1;kj�1

��� 6 C
(1� �)j�2

D
[2]
j�2;kj�1=2

:
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If t(sj) = 2, then kj is either 8lj�1 + 2 or 8lj�1 + 6, so that kj�1 = 4lj�1 + 2. In the �rst case

D
[2]
j�1;kj=2

= D
[2]
j�1;4lj�1+1 = dj�2;2lj�1 6 (1� �)dj�3;lj�1

= (1� �)D
[2]
j�2;2lj�1+1 = (1� �)D

[2]
j�2;kj�1=2

:

In the second case

D
[2]
j�1;kj=2

= D
[2]
j�1;4lj�1+3 = dj�2;2lj�1+1 6 (1� �)dj�3;lj�1 = (1� �)D

[2]
j�2;kj�1=2

:

If t(sj) = 4, then either kj = 8lj�1 + 4; kj�1 = 4lj�1 + 2 or kj = 8lj�1 + 8; kj�1 = 4lj�1 + 4. In
both cases kj = 2kj�1, and kj�1 is even, so that

D
[2]
j�1;kj=2

= D
[2]
j�1;kj�1

6 (1� �)D
[2]
j�2;kj�1=2

:

So in all cases (D
[2]
j�2;kj�1=2

)�1 6 (1� �)(D
[2]
j�1;kj=2

)�1, so that

���F [2]
j;kj

� F
[2]
j�1;kj�1

��� 6 C
(1� �)j�1

D
[2]
j�1;kj=2

:

We continue building the backward path in this way; since at every stage we have

D
[2]
q;kq+1=2

6 (1� �)D
[2]
q�1;kq=2

;

we obtain ���F [2]
q+1;kq+1

� F
[2]
q;kq

��� 6 C
(1� �)j�1

D
[2]
j�1;kj=2

;

hence ���F [2]
j+1;kj+1

��� = ���F [2]
j+1;8lj+sj

��� 6 C
j (1� �)j�1

D
[2]
j�1;kj=2

:

Step 7:
���F [2]

j;k

��� to ���G[2]
j;k

���
Now we can easily obtain ���G[2]

j;k

��� 6 C j (1� �)j :

Step 8:
���G[2]

j;k

��� to ���F [1]
j;k

���
Again, using boundedness of the coe�cients of the subdivision scheme S

[1]
j one easily obtains���F [1]

j;2k+s � F
[1]
j;k+t

��� 6 CS C j (1� �)j for s = 0; 1 and t = �1; 0; 1:

It follows that F
[1]
j;kj

constitutes a Cauchy sequence, assuming that kj = bkj+1=2c. By the

same argument as in the proof of Lemma 4, there exists a continuous function '[1] which is
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the limit of the subdivision scheme S
[1]
j . As we prove below (see Theorem 9), the bound (9.1)

implies that this limit function has H�older exponent log(1� �)= log � � �, or more precisely,���'[1](x+ t)� '[1](x)
��� 6 C (1 + jlog jtjj) jtjlog(1��)= log� :

Also, the F [1]
j;k � f

[1]
j;k are uniformly bounded.

9.2. Convergence and regularity of the original subdivision scheme. Now, we turn our

attention to the convergence of S
[0]
j . The problem here is that the coe�cients of this subdivision

scheme may become unbounded as the level j goes to in�nity, and we cannot apply Lemma 2
directly. It turns out though that we can rearrange the formulas in such a way that all the
coe�cients stay bounded. We also use this to prove the convergence to a continuous function.
Speci�cally, we build a piecewise-linear spline Lj(x) for the values fj;k on every level j, that

is, we de�ne

Lj(x)j[xj;k;xj;k+1] = fj;k + f
[1]
j;k(x� xj;k):

Now we shall prove the uniform convergence of the sequence Lj(x) in C(K), for any compact
K � R. For this, we only need to consider the di�erences between the levels at \new" odd
points, for all the values at even points do not change from one level to the next one. Namely,

kLj+1 � Ljk1 = sup
k
jLj+1(xj+1;2k+1)� Lj(xj+1;2k+1)j :

Let us now consider this in detail in order to obtain the needed estimate.
Without loss of generality consider the scheme at the new point xj+1;3. To shorten our

notation we again use [s; t] = xj+1;t � xj+1;s consistent with earlier usage, with k = 0 now. We
have

fj+1;3 = a0fj;0 + a1fj;1 + a2fj;2 + a3fj;3;

where

a0 = � [2; 3][3; 4][3; 6]

[0; 2][0; 4][0; 6]
; a1 =

[0; 3][3; 4][3; 6]

[0; 2][2; 4][2; 6]
;

a2 =
[0; 3][2; 3][3; 6]

[4; 6][2; 4][0; 4]
; a3 = � [2; 3][3; 4][0; 3]

[4; 6][2; 6][0; 6]
:

It can be easily seen that terms like [2; 3]=[0; 2] can become unbounded if  ! 1. We are
interested in getting an estimate in the following form

Lj+1(xj+1;3)� Lj(xj+1;3) = b0(fj;1 � fj;0) + b1(fj;2 � fj;1) + b2(fj;3 � fj;2):

Obviously, Lj(xj+1;3) = fj;1[3; 4]=[2; 4]+ fj;2[2; 3]=[2; 4]: After some algebraic manipulations one
gets the following form of the coe�cients bi, i = 0; 1; 2

b0 = �a0 = 1

[0; 2]

�
[3; 4]

[0; 4]

[3; 6]

[0; 6]
[2; 3]

�
;

b2 = a3 = � 1

[4; 6]

�
[2; 3]

[2; 6]

[0; 3]

[0; 6]
[3; 4]

�
;

b1 = �(a0 + a1)
[3; 4]

[2; 4]
+ (a0 + a1)

[3; 4]

[2; 4]
=

1

[2; 4]

�
� [3; 6]

[0; 6]

[3; 4]

[0; 4]
[2; 3] +

[0; 3]

[0; 6]

[2; 3]

[2; 6]
[3; 4]

�
:
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Hence,

jb0j 6 1

[0; 2]
[2; 3]; jb1j 6 1; jb2j 6 1

[4; 6]
[3; 4]:

From the uniform boundedness of the �rst divided di�erences it follows that

jfj;1 � fj;0j 6 C1[0; 2]; jfj;2 � fj;1j 6 C1[2; 4]; jfj;3 � fj;2j 6 C1[4; 6]:

Hence,

jLj+1(xj+1;3)� Lj(xj+1;3)j 6 3C1[2; 4]:

Since [2; 4] is a step of the mesh on the level j we can write

kLj+1 � LjkC 6 3C1(1� �)j ;

which means that fLjg is a Cauchy sequence in C(K). Its limit is the limit function ' � '[0]

of the cubic subdivision scheme. One again has, as in Lemma 5, that (')0 = '[1]. We therefore
obtain the same regularity result as in the homogeneous case, namely, that ' is C1 and that��'0(x+ t)� '0(x)

�� 6 C (1 + jlog jtjj) jtjlog(1��)= log� :
The following theorem combines in one statement all the results of Section 9:

Theorem 9. The cubic Lagrange interpolation subdivision scheme on the dyadically-balanced
mesh converges to a continuously di�erentiable function '(y). Moreover, '0(y) is H�older con-
tinuous with exponent log(1� �)= log � � � (� > 0 arbitrarily small); more precisely��'0(x+ t)� '0(x)

�� 6 C jtjlog(1��)= log(�) (1 + jlog jtjj):
If � > 1=3, then '0 is H�older continuous with exponent 1� �. More precisely, one has��'0(x+ t)� '0(x)

�� 6 C jtj (1 + jlog jtjj): (39)

Proof. Applying the results from the preceding sections one can show that f
[1]
j;kj(y)

constitute a

Cauchy sequence with a limit '0(y) which satis�es���'0(y)� f
[1]
j;kj(y)

��� 6 Cj(1� �)j :

Moreover, the following is true: ���f [1]j;l+s � f
[1]
j;l

��� 6 sC0j(1� �)j :

Fix some t 2 R, such that jtj < mink d0;k. There exists some level j so that

jkj(y + t)� kj(y)j 6 1 and jkj+1(y + t)� kj+1(y)j > 1:

Note that jkj+1(y + t)� kj+1(y)j 6 3. Then��'0(y + t)� '0(y)
�� 6 ���'0(y + t)� f

[1]
j;kj(y+t)

��� +���f [1]j;kj(y+t)
� f

[1]
j;kj(y)

���+ ���'0(y)� f
[1]
j;kj(y)

��� 6 C00j(1� �)j :
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Without loss of generality suppose that t > 0. Then, necessarily, kj+1(y+ t) > kj(y)+2, so that
xj+1;kj(y) 6 x < xj+1;kj(y)+1 < xj+1;kj(y)+2 6 x + t. It follows that jtj > dj+1;kj(y)+1 > C�j+1.
Finally, ��'0(y + t)� '0(y)

�� 6 C000 jtjlog(1��)= log� (1 + jlog jtjj);
which concludes the proof of the general case.
If � > 1=3, then we can again sharpen this result (similar to  > 0 in the homogeneous case).

We then have ���G[4]
j;k

��� 6 C

D
[2]
j;k

:

The detailed arguments presented earlier can be repeated with slight modi�cations leading to���F [3]
j;k

��� 6 C

D
[2]
j;k

;
���G[3]

j;k

��� 6 C;
���F [2]

j;k

��� 6 Cj;
���G[2]

j;k

��� 6 CjD
[2]
j;k:

Arguments similar to those above then show that the limit function satis�es��'0(x+ t)� '0(x)
�� 6 C jtj (1 + jlog jtjj):

Note that for the semi-regular case (� = 1=2) (39) is known to be optimal [15].

10. Higher order schemes

So far we have focused only on the cubic case. The next higher order case involves three even
neighbors on each side of a new odd point and achieves quintic order. Like in Section 5 we can
use the commutation formula to �nd the derived schemes. After six applications we end up with

the subdivision scheme T [6] for the g[6]. The matrix T
[6]
j has the following structure:

2k� 5

2k� 4

2k� 3

2k� 2

2k� 1

2
66666664

� � � 0 0

0 � � 0 0

0 � � � 0

0 0 � � 0

0 0 � � �

3
77777775

k � 5 k � 4 k � 3 k � 2 k � 1

The coe�cients on row 2k � 4 are given by

T
[6]
j;2k�4;k�4 = �

d
[6]
j+1;k�4d

[3]
j+1;k�6

d
[2]
j+1;k�3d

[4]
j+1;k�3

and T
[6]
j;2k�4;k�3 = �

d
[6]
j+1;k�4d

[3]
j+1;k+1

d
[2]
j+1;k�1d

[4]
j+1;k�3

;
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while the ones on row 2k � 3 are given by

T
[6]
j;2k�3;k�4 =

d
[1]
j+1;k�4d

[3]
j+1;k�6

d
[2]
j+1;k�3d

[4]
j+1;k�3

T
[6]
j;2k�3;k�3 = �d

[3]
j+1;k�4d

[1]
j+1;k+3

d
[4]
j+1;k�1d

[2]
j+1;k�1

� d
[8]
j+1;k�4

d
[2]
j+1;k�1

� d
[3]
j+1;k+1d

[1]
j+1;k�4

d
[4]
j+1;k�3d

[2]
j+1;k�1

T
[6]
j;2k�3;k�2 =

d
[1]
j+1;k+3d

[3]
j+1;k+3

d
[2]
j+1;k+1d

[4]
j+1;k�1

:

Even without going to a detailed analysis like in the cubic case we can draw some conclusions.
In the regular setting the norm of this matrix can be bounded by 11=2. From this we can
conclude that the limit function will be at least C2:54. (A more careful analysis for the regular
case, using Fourier techniques, shows that the limit function is C2:83.) In the homogeneous case
one can �nd a bound for the elements of T [6] which is continuous in  and coincides with the
actual value of the element in case  = 1. To do so we need to bound expressions of the type

d
[A]
j;a=d

[B]
j;b . If a+A = b+1 then the intervals [xj;a; xj;a+A] in the numerator and [xj;b; xj;b+B] in the

denominator overlap in [xj;a+A�1; xj;aA] = [xj;b; xj;b+B]. Thus d
[A]
j;a 6 (1++2+ � � �+A�1) d

[1]
j;b

while d
[B]
j;b > (1 + 1= + 1=2 + � � �+ 1=B�1) d

[1]
j;b. If a + A 6= b+ 1 we use that d

[A]
j;a 6 l d

[A]
j;a+l

to derive that

d
[A]
j;a

d
[B]
j;b

6  j(a+A)�(b+1)j 1 +  + 2 + � � �+ A�1

1 + 1= + 1=2+ � � �+ 1=B�1
:

In case  = 1, the bound is equal to the actual value A=B. Using continuity we can see that a
region for  > 1 exists for which the irregular quintic scheme is at least C2.
A similar reasoning holds for all the higher order cases. If we can use the simple estimate

above to deduce in the regular case that the limit function is Cn+� with 0 < � < 1, then there
exists a region for  where the irregular scheme is at least Cn. The regions for  may be quite
small, but almost surely this can be improved considerably by detailed analysis.

11. Comments

1. A natural question is whether our approach can be generalized to schemes not derived from
interpolating subdivision, e.g., variational schemes. As pointed out before, the di�erence
operators then need to be adapted to the order of the scheme under consideration [9].

2. Although we did not emphasize this, the subdivision schemes considered in this paper
and the associated derived schemes are coupled with a family of dual schemes whose limit
functions are non uniform B-splines. We thus implicitly de�ned an irregularly spaced
multiresolution analysis (MRA) and a biorthogonal dual spline MRA. The commutation
formula can be used to �nd the corresponding compactly supported primal and dual wavelet
bases. We shall address this in a separate paper.

3. So far we only considered cases were new points are added simultaneously between every
pair of adjacent old points. One can also insert new points sequentially, i.e., one at a time.
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Then there is a single new point in every round while any other point is old and can be
used in the subdivision.

4. The holy grail in this line of work is a deeper understanding of the irregular subdivision in
higher dimensions. The two dimensional setting already is much harder because irregular
spacing of the points now can be combined with irregular topology of the grid. Several
powerful results have been obtained for smooth semi-regular schemes with irregular coarsest
level topology [38, 30, 41]. For fully irregular 2D subdivision the �eld is wide open.
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Appendix A. The homogeneity condition and spaces of homogeneous type.

A metric space (E; d) equipped with a measure �, is said to be of homogeneous type if there
exists C > 0 so that, for all x 2 E and all R > 0,

�(B(x; 2R)) 6 C�(B(x;R)); (40)

where B(x;R) is the ball with radius R around x. Spaces of homogeneous type were introduced
by Coifman and Weiss [7] as a generalization of Euclidean spaces. For many harmonic analysis
estimates, (40) is the key ingredient.
A homogeneous multi-level mesh e�ectively de�nes a di�erent metric distance d on R by

d(y; z) = lim
j!1

2�j#fk : y 6 xj;k 6 zg
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if y 6 z, and d(y; z) = d(z; y) if y > z. In terms of the function � introduced in Section 2, for
which �(k 2�j) = xj;k, d can also be written as

d(y; z) =
����1(y)� ��1(z)

�� :
We want to show that (40) holds true for this metric distance, and for Lebesgue measure.
The following lemma will prove useful:

Lemma 10. De�ne t1(y; R); t2(y; R), and s1(y; R); s2(y; R) by

tj(y; R) = �(y + jR)� �(y); sj(y; R) = �(y)� �(y � jR):

Then there exists a constant C, independent of y or R, so that

t2(y; R) 6 Ct1(y; R); s2(y; R) 6 Cs1(y; R):

Proof. For R < 4, �nd j > 0, so that 2�j+1 6 R < 2�j+2. Find l so that (l� 1)2�j 6 y 6 l2�j .
Since (l + 1)2�j � y 6 2�j+1 6 R, both l2�j and (l + 1)2�j 2 [y; y + R]. On the other hand,
(l+ 8)2�j � y > 2�j+3 > 2R, so that (l + 8)2�j 62 [y; y+ 2R]. It follows that

t2(y; R) = �(y + 2R)� �(y) < xj;l+8 � xj;l�1 =
l+7X

k=l�1

dj;k;

whereas t1(y; R) = �(y + R) � �(y) > xj;l+1 � xj;l = dj;l: By homogeneity, t2(y; R)=t1(y; R) 6

 +
P7

k=0 
k.

For R > 4, �nd n; l so that l� 1 6 y 6 l, n� 1 6 R < n. Then

t2(y; R) < x0;l+2n � x0;l�1 6 (2n+ 1)max
l

d0;l;

t1(y; R) > x0;l+n�2 � x0;l > (n � 2)min
l
d0;l;

so that

t2(y; R)=t1(y; R) 6
2n+ 1

n� 2

maxl d0;l
minl d0;l

6
11

3

maxl d0;l
minl d0;l

;

since n > 5.
It now su�ces to take

C = max

(
 +

7X
k=0

k;
11

3

maxl d0;l
minl d0;l

)

to prove our claim for t1; t2. The proof for s1; s2 is analogous.

Let us now look at �(B(x; jR)). We have

B(x; jR) =
�
x�(jR); x+(jR)

�
;

where x�(jR) = �(��1(x) + �jR), for � = + or �. So
�(B(x; jR)) = x+(jR)� x�(jR) = �(��1(x) + jR)� �(��1(x)� jR) =

tj(�
�1(x); R) + sj(�

�1(x); R):

The estimate (40) now immediately follows from Lemma 10.
If the multi-level mesh is merely dyadically balanced but not homogeneous, then we can

still de�ne the metric distance d, but (R; d) need not be of homogeneous type. Let us, for
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instance, revisit the example x0;l = l 2 Z; xj+1;2l+1 = xj;l + dj;l=3; where � = 1=3. Then
�(2�j) = (1=3)j; �(�2�j) = (2=3)j, so that �(B(3�j ; 2�j)) = �(2�j+1) � �(0) = 3�j+1, but
�(B(3�j ; 2�j+1)) = �(32�j) � �(�2j) > (2=3)j. Thus �(B(3�j ; 2�j+1))=�(B(3�j ; 2�j)) > 2j=3,
and no uniform bound of type (40) exists.

Appendix B. Proof that Cj = 1

It follows from (9) that

S
[p�1]
j;l;m =

l�1X
n=�1

d
[p]
j+1;n

 
S
[p]
j;n;m�1

d
[p]
j;m�1

� S
[p]
j;n;m

d
[p]
j;m

!
=

1

d
[p]
j;m�1

l�1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m�1 �

1

d
[p]
j;m

l�1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m:

Note that both sums are �nite, as all other sums in this appendix. Now

l�1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m�1 +

+1X
n=l

d
[p]
j+1;nS

[p]
j;n;m�1 = Cjd

[p]
j;m�1:

Hence, we have

l�1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m�1 = Cjd

[p]
j;m�1 �

+1X
n=l

d
[p]
j+1;nS

[p]
j;n;m�1:

Then

S
[p�1]
j;l;m = Cj � 1

d
[p]
j;m�1

+1X
n=l

d
[p]
j+1;nS

[p]
j;n;m�1 �

1

d
[p]
j;m

l�1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m:

Now, we want the scheme S
[p�1]
j to preserve constants, therefore

m2(l)X
m=m1(l)

S
[p�1]
j;l;m = 1:

On the other hand

m2(l)X
m=m1(l)

S
[p�1]
j;l;m =

m2(l)X
m=m1(l)

 
Cj � 1

d
[p]
j;m�1

+1X
n=l

d
[p]
j+1;nS

[p]
j;n;m�1 �

1

d
[p]
j;m

l�1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m

!
=

[m2(l)�m1(l) + 1]Cj � 1

d
[p]
j;m1(l)�1

1X
n=l

d
[p]
j+1;nS

[p]
j;n;m1(l)�1 �

1

d
[p]
j;m2(l)

l�1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m2(l)

�

m2(l)�1X
m=m1(l)

1

d
[p]
j;m

+1X
n=�1

d
[p]
j+1;nS

[p]
j;n;m = [m2(l)�m1(l) + 1]Cj � 0� 0�

m2(l)�1X
m=m1(l)

Cj = Cj :

Hence, Cj = 1.
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Appendix C. Proof of Lemma 5.

Proof. The sequences ff [p]
j;kj(y)

g converge uniformly to uniformly continuous functions '[p](y) for

p = 1; : : : ; P � 1. Consequently, these sequences are uniformly bounded.
The only thing we need to prove is that, for p = 1; : : : ; P � 1, we have

p '[p](y) =
d'[p�1](y)

dy
:

We will prove that

lim
t!0

'[p�1](y + t)� '[p�1](y)

t
= p '[p](y):

Fix arbitrarily small � > 0. There exist � > 0 so that���'[p](x)� '[p](y)
��� < �=p for all x 2 (y � �; y + �):

Now �x arbitrary jtj < �. There exist j = j(t) so that all of the following is true for any
x 2 (y � �; y + �): ���'[p](y)� f

[p]
j;kj(x)

��� < �=p; (41)���'[p�1](x)� f
[p�1]
j;kj(x)

��� < � jtj ; (42)����y � xj;kj(y) + : : :+ xj;kj(y)+p�1

p

���� < min f � t2

M[p�1]
;
jtj
4
g; (43)

����y + t� xj;kj(y+t) + : : :+ xj;kj(y+t)+p�1

p

���� < min f � t2

M[p�1]
;
jtj
4
g; (44)

where M[p�1] = supj;k

���f [p�1]
j;k

��� <1.

Introduce the following notation:

�t'
[p�1] = '[p�1](y + t) � '[p�1](y)

�tf
[p�1] = f

[p�1]
j;k1

� f
[p�1]
j;k0

; where k0 = kj(y) and k1 = kj(y + t)

�tx =
xj;k1 + : : :+ xj;k1+p�1

p
� xj;k0 + : : :+ xj;k0+p�1

p
:

Then from (42)-(44)������t'
[p�1]

t
� p'[p](y)

����� 6
������t'

[p�1]

t
� �tf

[p�1]

t

����� +
������tf

[p�1]

t
� �tf

[p�1]

�tx

����� +
������tf

[p�1]

�tx
� p'[p](y)

�����
6 2� + 4�+

������tf
[p�1]

�tx
� '[p](y)

p

����� :
From the de�nition of divided di�erences we have

�tf
[p�1] = f

[p�1]
j;k1

� f
[p�1]
j;k0

=

k1�1X
k=k0

(f
[p�1]
j;k+1 � f

[p�1]
j;k ) =

k1�1X
k=k0

f
[p]
j;k (xj;k+p � xj;k):
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Using
Pk1�1

k=k0
(xj;k+p � xj;k) = p�tx, together with (41), we obtain������tf

[p�1]

�tx
� p'[p](y)

����� 6 �:

It follows that for any � > 0 there exists � > 0 so that for all t 2 (��; �); t 6= 0 we have�����'
[p�1](y + t) � '[p�1](y)

t
� p'[p](y)

����� < 7�:

Hence

p '[p](y) = lim
t!0

'[p�1](y + t)� '[p�1](y)

t
=

d'[p�1](y)

dy
;

which concludes the proof.

Appendix D.

In Section 7.2, we claim that for  not exceeding some 0, we have G
[4]
j;k 6 C=D

[2]
j;k for cubic

Lagrange interpolation. In order to prove this, it is su�cient to show that (with the notations
introduced at the start of Section 7)

[�2;�1][0; 2]
[�1; 1][�2; 2] +

[0; 2][3; 4]

[1; 3][0; 4]
6 1 (45)

if  6 0.
Let us estimate the left hand side of (45). Writing dr; r = 1; : : : ; 6, for [�2 + r � 1;�2 + r],

we need to estimate

d1(d3 + d4)

(d2 + d3)(d1 + d2 + d3 + d4)
+

d6(d3 + d4)

(d4 + d5)(d3 + d4 + d5 + d6)
(46)

under the constraints that �1dr 6 dr+1 6 dr, for r = 1; : : : ; 5. Using d1 6 d2, d6 6 d5, and
the monotonicity of d=(A+ d), we obtain

(46) 6 

�
d2(d3 + d4)

(d2 + d3)((1+ )d2+ d3 + d4)
+

d5(d3 + d4)

(d4 + d5)(d3 + d4 + (1 + )d5)

�
: (47)

Next, we use that d[(A + d)(B + d)]�1 achieves its maximum (
p
A +

p
B)�2 at d =

p
AB, so

that

(47) 6


1 + 

0
B@ d3 + d4�p

d3 +
q

d3+d4
1+

�2 + d3 + d4�p
d4 +

q
d3+d4
1+

�2
1
CA

6 

0
B@ 1�q

d3
d3+d4

(1 + ) + 1
�2 + 1�q

d4
d3+d4

(1 + ) + 1
�2
1
CA : (48)

Introducing a =
p
1 + , cos2 � = d3=(d3 + d4), the right hand side of (48) can be rewritten as



(1 + a cos �)2
+



(1 + a sin �)2
:
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As a function of �, this function has a unique minimum on [0; �=2] at � = �=4; it achieves its
maximum at the edges � = 0 or �=2. In our case cos2 � is constrained to lie between 1=(1 + )
and =(1 + ), and the maximum is then attained at these points. So we obtain

(48) 6 

�
1

(
p
 + 1)2

+
1

4

�
: (49)

The right hand side of (49) is monotone increasing in ; it is equal to 1 for  = 0 � 2:4992.
It follows that (45) will hold for  6 0. We also tried to add the constraints coming from
homogeneity on the coarser level, �1(dr + dr+1) 6 (dr+2 + dr+3) 6 (dr + dr+1) for r = 1; 3,
and used AMPL, a non-linear optimization package, to �nd the maximum. However, adding
these constraints does not lead to a larger 0.
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