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Abstract

In this paper we present several techniques to

calculate the wavelet coe�cients of a function

from its samples. Interpolation, quadrature for-

mulae and �ltering methods are discussed and

compared.

1 Introduction

1.1 Multiresolution analysis

We will �rst briey review wavelets and mul-

tiresolution analysis. For more detailed treat-

ments, one can consult [9, 15, 24, 26, 28].

A multiresolution analysis of L2(IR) is de-

�ned as a set of closed subspaces Vj with j 2 ZZ

that exhibit the following properties:

1. Vj � Vj+1,

2. v(x) 2 Vj , v(2x) 2 Vj+1,

3. v(x) 2 V0 , v(x+ 1) 2 V0,

4.
+1[

j=�1

Vj is dense in L2(IR),

5.
+1\

j=�1

Vj = f0g,
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6. A scaling function '(x) 2 V0 exists such

that the set f'(x � l) j l 2 ZZg is a Riesz

basis of V0.

As a result a sequence fhkg, exists such that the
scaling function satis�es a re�nement equation

'(x) = 2
X
k

hk '(2x� k): (1)

The set of functions f'j;l(x) j l 2 ZZg with

'j;l(x) =
p
2j '(2jx� l);

is a Riesz basis of Vj . De�ne now Wj as a

complementary space of Vj in Vj+1, such that

Vj+1 = Vj �Wj , v(x) 2 Wj , v(2x) 2 Wj+1,

and v(x) 2W0 , v(x+1) 2W0 . Consequently

+1M
j=�1

Wj = L2(IR):

A function  (x) is a wavelet if the set of

functions f (x � l) j l 2 ZZg is a Riesz basis of

W0. Since the wavelet is also an element of V0,

a sequence fgkg exists such that

 (x) = 2
X
k

gk '(2x� k): (2)

The set of wavelet functions f j;l(x) j l; j 2 ZZg
is now a Riesz basis of L2(IR). The coe�cients

in the expansion of a function in the wavelet

basis are given by the inner product with dual

wavelets e j;l(x) = p
2j e (2jx� l) such that

f(x) =
X
j;l

h f; e j;l i j;l(x):
Likewise a projection on Vj is given by

Pjf(x) =
X
l

h f; e'j;l i'j;l(x)
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where e'j;l(x) =
p
2j e (2jx� l) are the dual scal-

ing functions. The dual functions have to satisfy

the biorthogonality conditions

h'j;l; ~'j;l0 i = �l�l0

and

h j;l; ~ j0;l0 i = �j�j0�l�l0:

They satisfy re�nement relations similar to (1)

and (2) involving sequences f~hkg and f~gkg. In

case the basis functions coincide with their du-

als, the basis is orthogonal.

1.2 Fourier analysis

Recall the following de�nitions. The Fourier

transform of a function f(x) is given by

f̂(!) =

Z
+1

�1

f(x) e�i!x dx:

The discrete Fourier transform (dft) of a se-

quence fskg is de�ned as

ŝ(!) =
X
l

sl e
�i!l:

In case a �nite number of coe�cients sk is non

zero, ŝ(!) is a trigonometric polynomial. Fi-

nally the Zak transform of a function is de�ned

as [23],

Zf(x; !) =
X
l

f(x+ l) e�i!l;

and the Poisson summation formula is given byX
l

f(x+ l) =
X
k

f̂(2�k) ei2�kx:

Taking the Fourier transform of equations

(1) and (2) now yields

'̂(!) = ĥ(!=2) '̂(!=2) (3)

and

 ̂(!) = ĝ(!=2)  ̂(!=2): (4)

Similar de�nitions and equations hold for the

dual functions. A necessary condition for

biorthogonality is then that 8! 2 IR,

ĥ(!) ~̂h(!) + ĝ(!) ~̂g(!) = 1

ĥ(!) ~̂h(! + �) + ĝ(!) ~̂g(! + �) = 0: (5)

A classical example of a scaling function is

the polynomial B-spline of order m, where

'̂(!) =

 
1� e�i!

i!

!
m

:

1.3 Wavelets and polynomials

The moments of the scaling function and

wavelet are de�ned as (p 2 IN)

Mp =

Z
+1

�1

xp '(x)dx

and

Np =

Z
+1

�1

xp  (x)dx:

For the moments of the dual functions we use

the notations fMp and fNp. The scaling func-

tions cannot have a vanishing integral and are

normalized with M0 = fM0 = 1. The number

of vanishing dual wavelet moments is denoted

by N , and the number of vanishing wavelet mo-

ments by eN . These numbers are also equal to

the multiplicity of 0 as a root of respectively

~̂g(!) or ĝ(!) and, using (5), also to the mul-

tiplicity of � as a root of respectively ĥ(!) or

~̂h(!). It follows from (3) that '̂(!) and its �rst

N � 1 derivatives vanish at 2k�, k 6= 0, or

ip '̂(p)(2k�) =Mp �k for 0 6 p < N: (6)

Using the Poisson summation formula, this is

equivalent withX
l

(x� l)p'(x� l) =Mp for 0 6 p < N: (7)

This implies that any polynomial with degree

less than N can be written as a linear combi-

nation of the functions 'j;l(x) with l 2 ZZ. The

condition (6), known as the Strang-Fix condi-

tion, [21, 34, 35], implies that if f 2 CN then

(h = 2�n)

h f;  n;l i = O(hN+1=2)

and

kf(x)� Pnf(x)k = O(hN): (8)

These properties make wavelets suited for ap-

plications such as data compression.
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1.4 Fast wavelet transform

Given the coe�cients �j;l = h f; e'j;l i of a func-

tion in Vj , one can use the re�nement relations

to �nd its coe�cients in the bases of the spaces

Vj�1 and Wj�1,

�j�1;l =
p
2
X
k

~hk�2l �j;k;

and

�j�1;l = h f; e j�1;l i = p
2
X
k

~gk�2l �j;k:

The inverse step is given by,

�j;k =
p
2
X
l

hk�2l �j�1;l +
p
2
X
l

gk�2l �j�1;l:

When applied recursively, these formulae de-

�ne a transformation, the fast wavelet transform

[26, 27]. This transform can be seen as a �lter-

ing operation which involves the �lters ĥ, ~̂h, ĝ,

and ~̂g. The �rst two are low pass �lters, the

last two band pass �lters. In case the scaling

function and wavelet are compactly supported,

these �lters are �nite impulse response �lters

and a fast and accurate numerical implementa-

tion is possible.

1.5 Contents of the paper

The theory of multiresolution analysis tells us

that we can �nd the coe�cients of the expan-

sion of a function in the wavelet basis as inner

products with the dual wavelets. In practise one

will �rst calculate the projection Pn f(x) for a

�xed n, and then use the fast wavelet transform

to �nd the wavelet coe�cients on the coarser

levels, i.e. the �j;l with j < n.

In many applications we do not know f(x)

as a function of a continuous variable, but only a

sequence of data fdkg. We assume that the data

are uniform samples of the function f(x). In

this paper we study computational techniques

to �nd the coe�cients of an initial approxima-

tion in Vn from these data. Without loss of gen-

erality we consider the case where n = 0 is the

�nest level and assume that the sampling dis-

tance is 1. We write the initial approximation

in V0 as

v(x) =
X
l

�l '(x� l):

It is clear the the �l should be linear func-

tionals of the data fdkg, We consider several

approaches and discuss in which applications

they can be used. First we study interpola-

tion methods. In a second section we consider

schemes based on numerical integration. Fi-

nally we mention some methods used in signal

processing.

2 Interpolation

2.1 The general case

We associate the samples with the integer lo-

cations and look for the function v 2 V0 that

interpolates the data sequence, i.e. v(k) = dk.

We �rst consider the trivial case.

De�nition 1 A scaling function '(x) is inter-

polating if '(k) = �k.

In this case the solution is immediately given by

�l = dl. The following lemma then follows from

the re�nement relation:

Lemma 2 If '(x) is interpolating, then h2k =

'(k)=2 = �k=2.

In general the problem can be written as

dk =
X
l

�l '(k� l); (9)

or

fdkg = f�kg � f'(k)g;
where � stands for convolution. This shows that
the solution can be found be inverting an in�nite

Toeplitz matrix which is banded in case the scal-

ing function is compactly supported. Let d̂(!),

�̂(!) and p̂(!) be the dft's of the sequences fdkg,
f�kg and f'(k)g. The relationship (9) can then

be written as

d̂(!) = �̂(!) p̂(!):

This leads to the following result:
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Lemma 3 The interpolation problem (9) has a

unique solution if p̂(!) does not vanish.

This technique was studied in [1, 3, 37]. A prob-

lem here is that 1=p̂(!) is not a trigonometric

polynomial and that thus each coe�cient �l de-

pends on all the data samples dk. This is evi-

dently not very useful computation wise. It is

however possible to show that the coe�cients of

1=p̂(!) decrease exponentially. Consequently, if

one sets forth a certain numerical accuracy, the

in�nite convolution can be broken o�.

We can use this result to construct an in-

terpolating scaling function which generates V0
as

'̂interpol(!) =
'̂(!)

p̂(!)
:

Again, even if ' is compactly supported, the in-

terpolation function generally is not but instead

it is exponentially decreasing. A typical exam-

ple are the cardinal spline interpolants of even

order [31]. One exception is second order where

the B-spline itself (the so called hat function) is

interpolating.

2.2 Shifted interpolation

In case p̂(!) vanishes an interpolating function

does not exist. We can then add some exibility

to the interpolation problem by not necessarily

associating the data with the integer locations

but allowing a shift � 2 (0; 1) and formulate the

problem as

dk =
X
l

�l '(k� l + �):

We would have an extremely nice situation

if shifting the scaling function would yield an in-

terpolating function. The following lemma then

tells us what the shift then should be.

Lemma 4 If '(� + k) = �k and N > 1, then

� =M1.

Proof. Follows immediately from the fact

that X
l

(x� l)'(x� l) =M1:
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Figure 1: Daubechies' orthogonal scaling func-

tion with N = 2.

Unfortunately this property is hardly ever satis-

�ed. It was remarked by Mary Ellen Bock that

in case of the orthogonal Daubechies' scaling

functions constructed in [14], it is almost satis-

�ed. For the scaling function withN = 2, which

has support [0; 3], one can check that M1 =

(1 +
p
3)=4 � 0:683, '(M1) � 1:00020859077,

'(M1 + 1) � �4:17181539384E � 04, and

'(M1 + 2) � 2:08590769692E � 04. This func-

tion is shown in �gure 1. In this case one can

construct a very elegant geometric interpreta-

tion of the fast wavelet transform [6].

In the general case the solution to the

shifted interpolating problem is given by [22]

�̂(!) =
d̂(!)

Z'(�; !) ;

provided that the denominator does not vanish.

It is almost always possible to �nd a � such that

Z'(�; !) does not vanish. Note that Z'(�; !)
is a 2� periodic function in !.

The shifted interpolation is particularly use-

ful when the scaling function is symmetric

around a non integer. A typical example are

the B-splines of odd order, which are symmet-

ric around an integer + 1=2, such that one can

take � = 1=2. In [22] more general criteria for

the choice of � are studied.
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2.3 Compactly supported interpolat-

ing scaling functions

An interpolation scaling function can also be

constructed from a pair of biorthogonal scaling

functions as

�(x) =

Z
+1

�1

'(y+ x) e'(y)dy:
The interpolation property immediately follows

from the biorthogonality condition. If the scal-

ing function and its dual are compactly sup-

ported, so is the interpolation function. In the

case of an orthogonal scaling function the in-

terpolating function is just its autocorrelation

function. The interpolating function and its

translates do not generate the same space as

' and its translates.

It is easy to see that the interpolating func-

tion satis�es a re�nement relation with coe�-

cients Hk = �(k=2)=2 and where

Ĥ(!) = ĥ(!) ~̂h(!):

The interpolating scaling function has several

nice properties. It is smoother then ' and e',
it is symmetric and it can reproduce the poly-

nomials with degree less than N + eN . One can

build a multiresolution analysis where the dual

of the interpolating scaling function is formally

the Dirac function such that ~̂H(!) = 1. It is

possible to show that a wavelet function which

generates complementary spacesWj can be cho-

sen as

	(x) = �(2x� 1):

The dual wavelet is then a linear combination

of Dirac impulses and has N + eN vanishing mo-

ments or, more precisely,

~̂	(!) = �e�i!H(! + �):

Evidently this yields only a multiresolution

analysis for function spaces where pointwise

evaluation is a bounded operator. This means

we need to impose some smoothness on the

functions.

A fast wavelet transform with �nite impulse

response �lters follows immediately from this
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Figure 2: Interpolation scaling function

construction. A disadvantage is that these �l-

ters introduce considerable aliasing in the fast

wavelet transform.

Recently Lemari�e [25], Shensa [33], and

Beylkin and Saito [30] noted that this construc-

tion, started from the Daubechies orthogonal

wavelets, yields a family of interpolating func-

tions which were originally studied by Deslau-

riers and Dubuc in [17, 18]. They were used

for the characterization of function spaces in

[20] and in signal processing applications in

[30]. The interpolating scaling function con-

structed as the autocorrelation function of the

Daubechies' orthogonal scaling function with

N = 2 is shown in �gure 2. In fact one get ex-

actly the same function starting from any pair of

compactly supported biorthogonal scaling func-

tions from [11] with N + eN = 4.

These interpolation schemes are also closely

related to stationary subdivision see e.g. [7].

3 Quadrature formulae

3.1 General idea

In this section we study schemes to �nd the �l
by numerically approximating the inner prod-

ucts h f; e'0;l i using a quadrature formula. A

quadrature formula is determined by its weights

wk and abscissae xk such thatZ
+1

�1

f(x) e'(x)dx � Q[f(x)] =
rX

k=0

wk f(xk):

(10)
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In order to let f(xk) correspond to the data, the

abscissae xk have to be chosen as k + � . The

coe�cients are then given by

�l =
rX

k=0

wk�l dk:

The unknowns are now the shift � and the

weights wk.

A popular technique to solve problems in

numerical analysis is to design an approximate

solution scheme which is exact for polynomi-

als. This method then usually yields acceptable

results for smooth functions since they locally

resemble polynomials. When numerically ap-

proximating integrals, this leads to the following

de�nition.

De�nition 5 The degree of accuracy of a

quadrature formula is q if it yields the exact re-

sult for every polynomial of degree less than or

equal to q.

The degree of accuracy determines the

asymptotic convergence order as follows: if f(x)

belongs to Cq+1, then (h = 2�n)

�n;l � 2�n=2Q[f(2�n(x+ l))]

�n;l
= O(hq+1):

(11)

This can easily be seen using the Taylor expan-

sion.

The number of abscissae r determines the

e�ciency of a quadrature formula since the

number of function evaluations and algebraic

operations is proportional to r. The quadra-

ture formula is usually constructed by demand-

ing that

Q[xi] = fMi for 0 6 i 6 q;

which leads to an algebraic system.

Comparing equations (8) and (11), we see

that the degree of accuracy should be at least

equal to N � 1, otherwise the quadrature for-

mula will ruin the asymptotic convergence order

of the wavelet approximation. Quadrature for-

mula for use in connection with multiresolution

analysis were studied in [5, 36].

3.2 Trapezoidal rule

A simple quadrature formula is the trapezoidal

rule, where

Q[f(x)] =
X
k

e'(k) f(k): (12)

In general the application of this rule is limited

because it only has a degree of accuracy equal

to one but here the following lemma holds:

Lemma 6 If the scaling function satis�es the

Strang-Fix condition (6), the degree of accuracy

of the trapezoidal rule (12) is equal to eN � 1.

This easily seen from equation (7) for x = 0.

The trapezoidal rule can thus be used in a mul-

tiresolution analysis without ruining the asymp-

totical convergence order if eN > N . How-

ever in general it is not very e�cient. In case

'(x) is not compactly supported, the sum in

(12) has to be broken of which usually leads

to a large number of abscissae. But also when

'(x) is compactly supported, its e�ciency is

low: the Daubechies' orthogonal scaling func-

tions have a support length of 2N�1, such that

r = 2N�2 = 2q while even with a �xed value of

� one can achieve r = q+1. Only in the case of

cardinal B-splines, the trapezoidal rule is useful

because here r = N � 1 = q.

3.3 One point formula

Since the integral of the scaling function is 1,

we can write a one point formula (r = 1) as

Q[f(x)] = f(�). Evidently, if � = M1, the

degree of accuracy is equal to 1. In the case of

orthogonal wavelets, the following lemma holds

[36]:

Lemma 7 If '(x) is an orthogonal scaling

function with N > 1, then the one point quadra-

ture formula has a degree of accuracy equal to

2.

Consequently it can be used in case N 6 3 with-

out ruining the convergence rate.

In [15, 16] Ingrid Daubechies constructed

orthogonal scaling functions with compact sup-

port that have N � 1 vanishing moments,

Mp = 0 for 1 6 p < N; (13)
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where again N is the number of vanishing

wavelet moments. These wavelets were called

coiets after Ronald Coifman who asked for

their construction. We see from (7) that they

also satisfyX
k

kp'(k) = �p for 0 6 p < N: (14)

In this case the one point quadrature formula

with � = 0 immediately has a degree of accuracy

of N � 1. This formula was used in numerical

analysis applications in [5].

In the case of a multiple point formula, a

general numerical scheme to �nd the shift and

weights is described in [36].

3.4 Remarks

When using a quadrature formula we get the

exact projection P0f(x) in case f is a poly-

nomial of degree less than or equal to the de-

gree of accuracy. Moreover in case its degree

is less than N we will recover the function ex-

actly since P0f(x) = f(x). This means we

can reconstruct a polynomial from its samples.

Such a method is usually referred to a as quasi-

interpolating scheme [9]. In case the scaling

function is compactly supported this property

holds also locally.

Evidently the asymptotic error estimates

are only useful whenever one has the opportu-

nity of increasing the sampling rate and when

the underlying function is smooth. This is often

the case in numerical analysis problems such as

the solution of di�erential equations. In appli-

cations such as signal processing the sampling

rate is usually �xed and the asymptotical esti-

mates are not useful.

4 Signal processing approach

From equation (6) one can understand that the

functions of V0 have most of their energy in the

frequency band [��; �]. In fact in case the scal-

ing function is taken to be the Shannon sam-

pling function,

'(x) =
sin(�x)

�x
;

then this is exactly the case. Note that this

function is an orthogonal and interpolating scal-

ing function, but that it dies o� very slow.

The two techniques we studied so far can

be treated in a uni�ed manner. We know that

the coe�cients �l are linear functionals of the

data dk and that this relationship is invariant

to integer translates. This implies that every

solution can be written as a convolution [33].

In both cases we allowed the samples to cor-

respond with function values on a shifted grid,

dk = f(� + k). The general form of the solution

involves then a sequence fakg such that

�l =
X
k

al�k f(k+ �):

Because of the shift invariance we can concen-

trate on the case l = 0 where

�0 =
1

2�
h f̂ ; A i ;

and A(!) is a 2�-periodic function,

A(!) = â(!) e�i!� :

As we know from the Parseval identity, the ex-

act value of �0 is given by

�0 =
1

2�
h f̂ ; ê' i :

We can now formulate the problem as follows:

�nd the unknowns � and ak such that A(!) in

some sense is a good approximation for ê'(!) in
the neighborhood of the interval [��; �].

One can consider several solutions

1. The simplest solution just lets â(!) = 1

which corresponds to �l = al. This means

that A(0) = ê'(0). To let the phase corre-

spond at ! = 0, one need to chose � = fM1.

This corresponds to the one point quadra-

ture formula.

2. The construction of a general quadrature

formula lets the derivatives of A(!) andê'(!) at ! = 0 coincide up to the order

equal to the degree of accuracy.
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3. One can let A coincide with the 2� peri-

odization of ê',
A(!) =

X
k

ê'(! + k2�):

Using the Poisson summation formula we

see that

A(!) =
X
l

ê'(l) e�i!l:
This thus corresponds to the use of the

trapezoidal rule as a quadrature formula.

4. One can let A(!) coincide with ê'(!) on the
interval [��; �]. This will lead to the exact

result in case the function f is band limited.

A sampling theorem similar to the classi-

cal Shannon sampling theorem can then be

proven [2]. Note that A(!) is not a trigono-

metric polynomial such that the scheme

will be non local. The decay of the coe�-

cients depends on the smoothness of A(!)

as a 2� periodic function. The decay is here

a little better than in the classical Shannon

case because ê'(!) has a root of multiplicityeN at � and ��.
5. Remember the interpolation solution cor-

responds to choosing

A(!) = 1=p̂(!):

It is interesting to remark that in the

orhtogonal case this is almost exactly the

inverse of the solution given by the trape-

zoidal rule.

6. Evidently many other criteria and corre-

sponding solutions can be suggested. One

possibility would be to �x the degree of the

trigonometric polynomial A(!) and then

look for the minimax approximation ofê'(!) in the interval [��; �].

5 Wavelets on an interval

So far our discussion only involved the case

of the real line which is invariant for integer

shifts. Recently several constructions of wavelet

on an interval became available [4, 8, 12, 13, 29].

These constructions all have in common that

the functions that are supported, in some sense,

away from the endpoints correspond to the ones

from the real line, while new basis functions

are constructed near the boundary. One of the

problems is that the shift invariance is lost at

the boundary. Therefore it is not immediately

clear how the coe�cients should correspond to

the data. Fourier techniques cannot be used any

more.

In [13] a so called preconditioning step is

introduced. This is inspired by the fact that

the coe�cients of a polynomial in the V0 space

are not a polynomial sequence any more. The

preconditioning step involves applying a linear

transform to the data samples near the bound-

ary such that in case of a polynomial data se-

quence one gets the coe�cients of a polyno-

mial in the V0 space. This assures that smooth

sequences will have small wavelet coe�cients

which is one of the basic reasons why wavelets

are suited for data compression.

In [4] so called recursive wavelets are intro-

duced. We explain the idea �rst on the real

line. The V0 space is here de�ned as the space

of the functions that are piecewise constant on

the intervals [k; k+1). Each data sequence then

corresponds to a function in V0 by letting

v(x) =
X
k

dk�[0;1)(x� k);

where � is the indicator function. The V0
space is thus generated by "block" functions

'0;l which are orthogonal. For j < 0 we de�ne

the basis functions for Vj and Wj recursively

through the relations

'j;k =
X
k

hm�2k 'j+1;m;

and

 
j

j;k
=
X
k

gm�2k 'j+1;m;

and similarly for the dual basis functions. This

assures that the wavelet coe�cients can be cal-

culated with the fast wavelet transform. Note

that the wavelets here are not any longer the di-

lates and translates of one particular function.
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When applying the above construction for

wavelets on a closed interval we obtain recur-

sive wavelets for the interval. This construction

has the advantage that sampling and precondi-

tioning on the �nest level become trivial.

Note that the recursive wavelets can also be

used in case the dk are not the samples of the

function f but rather the inner products of f

with the block function �[k;k+1). How one can

construct a multiresolution analysis from these

coe�cients is also discussed in [19].
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