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ABSTRACT

In this paper we present the basic idea behind the lifting scheme, a new construction of biorthogonal wavelets

which does not use the Fourier transform. In contrast with earlier papers we introduce lifting purely from a

wavelet transform point of view and only consider the wavelet basis functions in a later stage. We show how

lifting leads to a faster, fully in-place implementation of the wavelet transform. Moreover, it can be used in

the construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one

function. A typical example of the latter are wavelets on the sphere.
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1 Introduction

At the present day it has become virtually impossible to give the de�nition of a \wavelet". The research �eld

is growing so fast and novel contributions are made at such a rate that even if one manages to give a de�nition

today, it might be obsolete tomorrow. One, very vague, way of thinking about wavelets could be:

"Wavelet are building blocks that can quickly decorrelate data."

This sentence at least incorporates three of the main features of wavelets. First of all, they are building blocks

for general data sets or functions. Mathematically we say that they form a basis or, more general a frame. This

means that each element of a general class can be written in a stable way as a linear combination of the wavelets.

If we denote the wavelets by  i and the coe�cients by 
i, we can write a general function f as

f =
X
i


i  i:

Secondly, wavelets have the power to decorrelate. This means that the representation of the data in terms of



the wavelet coe�cients 
i is somehow more \compact" then the original representation. In information-theoretic

jargon, we say that the entropy in the wavelet representation is smaller then in the original representation. In

approximation-theoretic jargon, we want to get an accurate approximation of f by only using a small fraction of

the wavelet coe�cients.

The way to get this decorrelation power is to construct wavelets which already in some way resemble the data

we want to represent. More speci�cally, we would like the wavelets to have the same correlation structure as the

data. For example, most signals we encounter in daily life have both correlation in space and frequency. Samples

which are spatically close are much more correlated then ones that are far apart, and frequencies often occur in

bands. To analyze and represent such signals we need wavelets that are local in space and frequency. Typically

this is achieved by building wavelets which have compact support (localization in space), which are smooth (decay

towards high frequencies), and which have vanishing moments (decay towards low frequencies).

Finally, we want to quickly �nd the wavelet representation of the data. More precisely, we want to switch

between the original representation of the data and its wavelet representation in a time proportional to the size

of the data. The fast decorrelation power of wavelets is the key to applications such as data compression, fast

data transmission, noise cancellation, signal recovering, and fast numerical algorithms.

The purpose of this paper is to introduce the lifting scheme, a new tool in the construction of biorthogonal

wavelets. The main di�erence with classic constructions such as1{3 is that it does not employ the Fourier transform.

Until recently, the Fourier transform has been instrumental in wavelet constructions. The underlying reason is

that wavelets are traditionally de�ned as translates and dilates of one function, and translation and dilation

become algebraic operations after Fourier transform. The wavelet construction then relies on certain polynomial

factorizations. We refer to wavelets which are translates and dilates of one function as �rst generation wavelets.

In the case of �rst generation wavelets, the lifting scheme will never come up with wavelets which somehow could

not be found by the techniques developed by Cohen, Daubechies, and Feauveau in.2 Nevertheless, using lifting

to (re)construct these wavelets has the following advantages:

1. It allows a faster implementation of the wavelet transform. Traditionally, the fast wavelet transform is

calculated with a two-band subband transform scheme. In each step the signal is split into a high pass and

low pass band and then subsampled. Recursion occurs on the low pass band. The lifting scheme makes

optimal use of similarities between the high and low pass �lters to speed up the calculation. In some cases

the number of operations can be reduced by a factor of two.

2. The lifting scheme allows a fully in-place calculation of the wavelet transform. In other words, no auxiliary

memory is needed and the original signal (image) can be replaced with its wavelet transform.

3. In the classical case, it is not immediately clear that the inverse wavelet transform actually is the inverse of

the forward transform. Only with the Fourier transform one can convince oneself of the perfect reconstruc-

tion property. With the lifting scheme, the inverse wavelet transform can immediately be found by undoing

the operations of the forward transform. In practise, this comes down to simply reversing the order of the

operations and changing each + into a � and vice versa.

4. The lifting scheme is a very natural way to introduce wavelets in a classroom. Indeed, since it does not

rely on the Fourier transform, the properties of the wavelets and the wavelet transform do not appear as



somehow \magical" to students who do not have a strong background in Fourier analysis.

Since lifting does not rely on the Fourier transform, it can be used to construction wavelets in settings where

translation and dilation, and thus the Fourier transform, cannot be used. We refer to such wavelet as second

generation wavelets. Typical examples are:

1. Wavelets on bounded domains: The construction of wavelets on domains in a Euclidean space is needed

in applications such as image segmentation and the numerical solution of partial di�erential equations. A

special case is the construction of wavelets on an interval, which is needed to transform �nite length signals

without introducing artifacts at the boundaries.

2. Wavelets on curves and surfaces: To analyze data that live on curves or surfaces or to solve equations on

curves or surfaces, one needs wavelets intrinsically de�ned on these manifolds, independent of parametriza-

tion.

3. Weighted wavelets: Diagonalization of di�erential operators and weighted approximation require a basis

adapted to weighted measures. Wavelets biorthogonal with respect to a weighted inner product are needed.

4. Wavelets and irregular sampling: Many real life problems require basis functions and transforms adapted

to irregularly sampled data.

It is obvious that wavelets adapted to these setting cannot be formed by translation and dilation. The Fourier

transform can thus no longer be used as a construction tool. The lifting scheme provides an alternative.

There are two ways to introduce lifting. The �rst one is concerned with the basis functions, i.e. the scaling

functions, dual scaling functions, wavelets, and dual wavelets, and how lifting a�ects them. This approach was

taken in the original papers.9,10 In this paper, however, we follow a di�erent approach, namely we �rst discuss

how lifting a�ects the wavelet transform. We have found this to be a much more natural way to introduce lifting.

In a later section, we will brie
y mention what happens to the basis functions. Of course, theoretically both

approaches are equivalent. In fact one can be seen as adjoint to the other.

2 The basic idea behind lifting

A canonical case of lifting consists of three stages, which we refer to as: split, predict, and update. We here

describe the basic idea behind each and later work out a concrete example. Assume we start with an abstract

data set, which we refer to as �0. We know this data set has some correlation structure and we would like to

exploit it to obtain a more compact representation.

In the �rst stage we split the data into two smaller subsets �
�1 and 
�1. (We use negative indices here because

the convention is that the smaller the data set, the smaller the index.) We refer to 

�1 as the wavelet subset. We

do not impose any no restriction on how the data should be split, nor on the relative size of each of the subsets.

The only thing we need is some procedure to join �
�1 and 
�1 back into the original data set �0. The easiest



possibility for the split is a simply brutal cut of the data set into two disjoint parts. This choice we refer to as

the Lazy wavelet. Think for example of cutting an image into two parts with a pair of scissors.

As we said before, we would like to get a more compact representation of �0. Consider the case were 

�1

does not contain any information (e.g. that part of the image is entirely black). Then we would immediately have

a more compact representation since we can simply replace �0 with the smaller set �
�1. Indeed the extra part

needed to reassemble �0 does not contain any information.

Obviously this situation hardly ever occurs in practise. Therefore, in a second stage, we try to use the �
�1

subset to predict the 

�1 subset based on the correlation present in the original data. If we can �nd a prediction

operator P , independent of the data, so that



�1 = P(�

�1);

then again we can replace the original data set with �
�1, since now we can predict the part missing to reassemble

�0. The construction of a prediction operator is typically based on some model of the data which re
ects its

correlation structure. Obviusly the prediction operator P cannot be dependent on the data, otherwise we would

hide information in P .

Again, in practise it might not be possibly to exactly predict 

�1 based on �

�1. However, P(�
�1) is likely

to be close to 

�1. Thus we might want to replace 
�1 with the di�erence between itself and its predicted value

P(�
�1). If the prediction is reasonable, this di�erence will contain much less information then the original 


�1

set. We denote this abstract di�erence operator with a � sign and thus get



�1 := 


�1 �P(�
�1):

The wavelet subset now encodes how much the data deviates from the model on which P was built.

We now have some more insight in how to split the original data set. Indeed, in order to get the maximal data

reduction from prediction, we need the subsets �
�1 and 
�1 to be maximally correlated. Cutting an image into

a left and right part might not be the best idea since pixels on the far left and the far right are hardly correlated.

Predicting the right half of the image based on the left is thus a though job. A better idea is to interlace the two

sets. We will come back to this later.

At this moment we can replace the original data with the smaller set �
�1 and the wavelet set 


�1. With a

good prediction, the two subsets f�
�1; 
�1g yield a more compact representation then the orginal set �0. We can

now iterate this scheme. We split �
�1 into two subsets �

�2 and 

�2 and then replace 


�2 with the di�erence

between 

�2 and P(�

�2). After n steps we have replaced the original data with the wavelet representation

f�
�n; 
�n; � � � ; 
�1g. Given that the wavelet sets encode the di�erence with some predicted value based on a

correlation model, this is likely to give a more compact representation.

This scheme sounds promising, but in some cases we are not completely satis�ed. The reason is that we often

want some global properties of the original data set to be maintained in the smaller versions �
�j . For example,

in the case of an image, we would like the smaller images �
�j to have the same overall brightness, i.e. the same
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Figure 1: The lifting scheme: split, predict, and update.

average pixel value. If the splitting stage is simply subsampling and we iterate the scheme till �
�n is only 1

pixel, that pixel will be an arbitrary pixel from the original image. We would rather have the last value to be

the average of all the pixel values in the original image. In fact, we are facing a worst case example of a problem

known as aliasing.

We can solve part of this problem by introducing a third stage. The idea is to �nd a better �
�1 so that a

certain scalar quantity Q(), like e.g. the mean, is preserved, or

Q(�
�1) = Q(�0):

We could do so by �nding a new operator to extract �
�1 directly from �0, but we decide not to for two reasons.

First, this would create a scheme which is very hard to invert. Secondly, we would like to reuse the work already

done maximally. Therefore we propose to use the already computed wavelet set 

�1 to update ��1 so that the

latter preserves Q(). In other words, we construct an operator U and update �
�1 as

�
�1 := �

�1 + U(

�1):

The three stages of lifting are depicted in a block diagram in Figure 1. Again we can now iterate the scheme.

This leads to the following wavelet transform algorithm (with a C-like syntax):

For j = -1 downto -n:

8>><
>>:

f�j ; 
jg := Split(�j+1)


j �= P(�j)

�j += U(
j) :

We can now illustrate one of the nice properties of lifting: once we have the forward transform, we can immediately

derive the inverse. The only thing to do is to reverse the operations and toggle + and�. This leads to the following

algorithm for the inverse wavelet transform:

For j = -n to -1:

8>><
>>:

�j �= U(
j)


j += P(�j)

�j+1 := Join(�j ; 
j) :



3 A simple example

In this section we consider a simple example to illustrate the ideas of the previous section. Suppose we sample

a signal f(t) with sampling distance �t = 1. We denote the original samples by �0 = f�0;k = f(k) j k 2 Zg.

We �rst need to de�ne the split stage. As mentioned in the previous section this implies splitting the data into

two parts which are maximally correlated. As the correlation in most signals is local, i.e. neighboring samples

are much more correlated then ones that are far apart, we simply subsample the data into even and odd indexed

samples. This is an example of a Lazy wavelet transform. We obtain two sequences �
�1 and 
�1 with coe�cients

�
�1;k := �0;2k and 


�1;k := �0;2k+1 for k 2 Z : (1)

Next we need to �nd a operator to predict 

�1 based on �

�1. Again assuming maximal correlation amongst

neighboring samples, we simply suggest to predict an odd sample �0;2k+1 as the average of its two (even) neighbors:

�
�1;k and �

�1;k+1. The di�erence with this prediction then becomes



�1;k ; := 


�1;k � 1=2 (�
�1;k + �

�1;k+1) : (2)

The model used to build P is a function piecewise linear over intervals of length 2. If the original signal complies

with the model, all wavelet coe�cients in 

�1 are zero. In other words, the wavelet coe�cients measure to which

extend the original signal fails to be linear. Their expected value is small. In terms of frequency content, the

wavelet coe�cients capture high frequencies present in the original signal.

However, the frequency localization of the signals �
�1 and 
�1 is far from ideal. It would be nice if the �

�1

signal somehow captures the low frequencies, and the 

�1 the high frequencies. Right now the �

�1 signal is simply

subsampled and its frequency content thus stretches out over the whole band of the original signal. Again, we

have the worst case example of aliasing. In the update stage, we can reduce the amount of aliasing by at least

assuring that the DC component ends up entirely in the �
�1 part. In other words, we would like the average of

the signal to be maintained in �
�1, or X

k

�
�1;k = 1=2

X
k

�0;k:

This is precisely the scalar quantity Q() of the previous section which we would like to preserve. We therefore

update the �
�1;k with the help of the wavelet coe�cients 
�1;k. Again we use the neighboring wavelet coe�cients

and thus propose an update U of the form:

�
�1;k := �

�1;k +A (

�1;k�1 + 


�1;k) :

To �nd A we calculate the average:

X
k

�
�1;k =

X
k

�0;2k + 2A
X
k



�1;k = (1� 2A)

X
�0;2k + 2A

X
�0;2k+1:

From this we see that the correct choice to maintain the average is A = 1=4. One step in the wavelet transform

is shown in the scheme in Figure 2. By iterating this scheme we get a complete wavelet transform. The inverse

transform can be derived immediately as shown in the previous section. Note that at no point we used the Fourier

transform.
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Figure 2: The lifting scheme: Split, calculate the wavelet coe�cients 
j�1;m as the failure to be linear, and use

them to update the �j�1;k.

The wavelet transform presented here in fact is the (N = 2; eN = 2) biorthogonal wavelet transform of

Cohen-Daubechies-Feauveau.2 This simple example already shows how the lifting scheme can speed up the

implementation of the wavelet transform. Classicly the f�
�1;kg coe�cients are found as the convolution of the

f�0;kg coe�cients with the �lter eh = f�1=8; 1=4; 3=4; 1=4;�1=8g. This step would take 6 operations per coe�cient

while lifting only needs 3.

This is only one simple instance of lifting. A whole family of biorthogonal wavelets can be constructed by

varying the three stages of lifting:

1. Split: Other choices but the Lazy wavelet are possible as an initial split. A typical alternative is the Haar

wavelet transform.

2. Predict: In wavelet terminology the prediction step establishes the number of vanishing moments (N) of

the dual wavelet. In other words, if the original signal is a polynomial of degree less than N , all wavelet

coe�cients will be zero. In our example N = 2, but higher order schemes are easily obtained by involving

more neighbors.

3. Update: Again in wavelet terminology, the update step establishes the number of vanishing moments ( eN)

of the primal wavelet. In other words the transform preserves the �rst eN moments of the �j sequences. The

example above had eN = 2 (one extra because of symmetry). Again higher order ones can be constructed

by involving more neighbors. In some cases, namely when the split stage already creates a wavelet with a

vanishing moment (such as the Haar) the update stage can be omitted.
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Figure 3: Mallat (above) and Lifting (below) organization of wavelet coe�cients for n = 3.

4 In-place calculation

In this section we introduce another feature of lifting: in-place calculation. This means we can replace the

original data set with its wavelet transform without having to allocate extra memory. As is well known, the FFT

has a similar feature provided one starts with bit-reversing the original samples. The basic idea behind in-place

calculation of the wavelet transform using lifting is quite similar.

Assume the original signal has length 2n and the original samples are stored in a vector so that sample �0;k

sits in memory location k (0 � k < 2n). In the traditional organization of the wavelet coe�cients, as proposed

by Mallat in,6,5 a wavelet coe�cient 
j;k is stored in location 2n+j + k, see Figure 3 for an example with n = 3.

To obtain in-place calculation with lifting, we propose a di�erent ordering of the wavelet coe�cients. The idea

is to store the coe�cient 
j;k in location 2�j�1 + 2�j k, see Figure 3. Essentially all the coe�cients depicted in

one column of Figure 2 are stored in the same location. The Lazy wavelet transform is then immediate. Since all

other operations can be done with += or �= operations, we have a fully in-place calculation. Figure 4 shows

the in-place organization of the wavelet coe�cients of the classic Lena image.

It is also possible to �rst rearrange the original samples to end up with the Mallat organization of the

coe�cients after an in-place calculation. The sample �0;k then has to be stored in location m(k) which can be

found as follows. Consider the n-bit binary representation of k: k0k1k2 � � � kn. Next isolate the trailing zeros (if

any) as k0k1k2 � � � kj100 : : : 0. Now the binary expansion of m(k) is 00 � � � 01k0k1k2 � � � kj . In other words, it can

be seen a partial bit reversal.

5 The basis functions

So far, we only explained how lifting a�ects the wavelet transform. In this section we brie
y describe what

happens to the basis functions. The basic idea to �nd a basis function given the transform is very simple. If you

want to construct the basis function associated with a coe�cient �j;k of 
j;k, simply put that coe�cient to one,

all other coe�cients to zero, and perform an inverse wavelet transform starting from level j. This is known as the

cascade algorithm.4 We refer to the basis functions associated with the �j;k (respectively 
j;k) as scaling functions

(respectively wavelets) and denote them with 'j;k (respectively  j;k). If you are interested in the discrete basis,

do an inverse transform till level 0, while if you are interested in the continuous basis, do an inverse transform

add in�nitum.



Figure 4: In-place organization of Lena wavelet coe�cients.

This way it is easy to see that the Lazy wavelet simple corresponds to a Dirac sequence or a Dirac function.

In case of the simple example mentioned earlier, the scaling functions are given by

'j;k(x) = �(2jx� k);

where � is the classical \Hat" function: �(x) = maxf0; 1�jxjg. Essentially all scaling functions are translates and

dilates of one particular function. The same is true for the wavelet. By doing one step of the inverse transform

we see that

 j;k(x) =  (2jx� k) ;

where  (x) is given by

 (x) = �(2x� 1)� 1=4�(x)� 1=4�(x+ 1) : (3)

In case we would not have an update stage, the wavelet would simply be  (x) = �(2x� 1).

This gives us another insight into how lifting constructs wavelets. A new wavelet  (x) is found as an old

wavelet �(2x � 1) (the one without updating) combined with scaling functions on the same level, �(x) and

�(x+1). This opposed to the classical case were a wavelet is constructed as a linear combination of Hat functions

on the next �ner level, namely �(2x�k) with k 2 Z. The coe�cients in (3) are chosen so that the wavelet has two

vanishing moments. This is another way to get to the 1=4 coe�cients encountered earlier. The prediction stage

actually corresponds to a similar operation on the dual wavelet, which is sometimes referred to as dual lifting.

We thus start from an almost trivial case, the Lazy wavelet, and gradually build a new wavelet with improved

properties, by adding in new basis functions. This is the inspiration behind the name \lifting scheme."



Let us now write the original signal as

f(x) =
X
k

�0;k '0;k :

After wavelet transform, the same signal can be written as

f(x) =
X
k

�
�n;k '�n;k +

�1X
j=�n

X
k


j;k  j;k:

This is precisely a representation with \building blocks that decorrelate" which we were after in the introduction.

Because of the correlation structure, many of the wavelet coe�cients will be small. We can thus obtain an

accurate approximation with only a small number of coe�cients by simply omitting the wavelet coe�cients below

a certain threshold.

6 Second generation wavelets

The original motivation for the lifting was to construct wavelets in settings were no Fourier transform is

available. The theory of lifting for second generation wavelets is given in.10 Here we just introduce the basic idea.

The key point in each setting is to de�ne the initial split operation. The easiest choice again is the Lazy

wavelet transform. The prediction and updating stage are then quite similar to the ones described above. The

main di�erence lies in the fact that the �lter coe�cients used in the prediction and update operator might vary

depending on location. Indeed, if one wants to account for local irregularities, one cannot use the same �lters

everywhere. This is precisely why the Fourier transform can no longer be used. As a result the wavelets are not

translates and dilates of one function. However, they still enjoy all the nice properties of �rst generation wavelets,

such as fast transform and decorrelation power. They still are compactly supported, smooth, and have vanishing

moments.

Let us �rst consider the case of wavelets on an interval. We essentially want to transform a signal of arbitrary

�nite length without the use of ad hoc solutions such as zero padding, periodization, or re
ection around the

edges. The Lazy wavelet transform can still be subsampling even and odd samples. In our simple example on

the real line, the predicted value for an odd sample was based on its neighboring even samples left and right. In

case of a �nite length signal, the same idea can be used as long as the sample is su�ciently far away from the

boundary. At the left boundary, if not enough even samples on the left are available to predict an odd sample,

one simply replaces the missing samples on the left by extra samples on the right. In other words, we look for

more correlated data where it is available. For example, suppose we use cubic interpolation to predict an odd

sample based upon 4 neighboring even samples. Away from the boundary we use 2 samples on the left and 2

on the right. Close to the left boundary we might have to use 1 on the left and 3 on the right, or even none on

the left and 4 on the right. This automatically leads to �lters adapted for boundary constructions. It assures

that all wavelets, including the ones at the boundary have the same number of vanishing moments. The wavelet

coe�cients for the Lena image in Figure 4 were calculated this way. Examples of boundary wavelets can be found

in.11



In the case of irregular samples the same philosophy can be used. The fact that the sample locations are not on

a regular grid poses no problems for the local polynomial prediction or update. The �lters now change everywhere

to account for the di�erent locations of the samples. Here one has several choices for the Lazy wavelet. One

idea is to still use even and odd subsampling. This way the imbalances in the sampling distances are maintained

throughout the hierarchy. The alternative is to subsample in such a manner that the ratio of the largest versus

smallest sampling distance approaches one. Which one is better depends on the situation at hand. For practical

examples we again refer to.11

Another typical example of second generation wavelets are wavelets de�ned on curves, surfaces, or general

manifolds. More particularly, the lifting scheme was used to construct wavelets on a sphere in.7 These spher-

ical wavelets are used for the e�cient representation of data that naturally lives on a sphere. Examples are

topographic data (earth elevation), bidirectional re
ection functions, astrophysical data, and environment maps.

These wavelets were used for spherical image processing in.8

7 Future developments

In this paper we gave a short introduction to lifting, a new method to construct wavelets. For more details

and applications we need to refer to the original papers. Here we just would like to mention a few developments

which are currently under investigation.

� Wavelets on general surfaces: The construction of the spherical wavelets does not fundamentally rely on the

special properties of the sphere. It only uses the fact that one can recursively cut the sphere into spherical

triangles. Therefore the construction can be generalized to more general surfaces or manifolds.

� Wavelet packets: The lifting scheme can also be used in the construction of wavelet packets. It is not hard

to come up with a Lazy wavelet packet, i.e. a transform which also recursively splits the 

�j sets. On these

splittings again the prediction and update operators can be used.

� M-band wavelets: Again it is not very di�cult to invent a Lazy M-band wavelet. Now we need to �nd

several prediction and update operators.

� Wavelet frames: The lifting scheme can be used to construct overcomplete representations or frames. The

key again lies in the correct de�nition of the Lazy wavelet. The two sets 

�1 and ��1 coming from the split

can have some amount of overlapping information or redundancy. Prediction and updating then would lead

to wavelet frames.
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Notes:

The lifting scheme has connections with many other developments. Space does not allow us to mention them here. They

are all pointed out in the original papers, which leads to a bibliography of over a 100 items!

The technical reports from South Carolina are available as Postscript �les through anonymous ftp to ftp.math.sc.edu,

in the directories /pub/imi 94 and /pub/imi 95.


