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Abstract

In this paper we discuss smooth local trigonometric bases. We present two generalizations of the

orthogonal basis of Malvar and Coifman-Meyer: biorthogonal and equal parity bases. These allow

natural representations of constant and, sometimes, linear components. We study and compare their

approximation properties and applicability in data compression. This is illustrated with numerical

examples.
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1 Introduction

Many applications in signal and image processing call for the use of basis functions that are local in time
(or space) and frequency. The reason is that most signals have both temporal and spectral correlation and

the use of basis functions that are local in time and frequency results in good approximation properties.
Roughly speaking this means that we can obtain an approximation with a small error using only a few
basis functions. This is the key to applications such as data compression.

One method to construct such a basis is to use wavelets, which are translates and dilates of one

particular function, the \mother wavelet". Another, rather trivial, method to construct an orthogonal
basis with time-frequency localization, is to divide the real axis up into disjoint intervals and use Fourier

series on each interval. We refer to such a basis as a local trigonometric basis. This basis, however, has
several disadvantages:

1. Fourier series converge rapidly when the function is smooth and periodic. Evidently the restriction
of a smooth function to an interval is in general not smooth and periodic. The convergence will

thus be slow and the approximation properties poor.

2. Since each interval is handled separately, the approximations are, in general, discontinuous.

3. It is not immediately clear how to best divide the real axis into intervals.

An improvement was proposed by R. Coifman and Y. Meyer [7], and by H. Malvar [12, 13]. The idea
is to use smooth cuto� functions to split the function and to \fold" overlapping parts in a clever way back

into the intervals so that the orthogonality is preserved. Moreover, by choosing the right trigonometric
basis, rapid convergence in the case of smooth functions is ensured. We refer to such a basis as a smooth

local trigonometric basis. This approach essentially solves the �rst two disadvantages described above.
An expository paper can be found in [4]. In [3], a connection between this basis and the Wilson basis of

[9] was pointed out. Smooth local trigonometric bases were used successfully for image compression in
[1, 2, 11].
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The third disadvantage can be resolved by using an adaptive algorithm where the splitting locations
are allowed to depend on the function. An algorithm was presented by R. Coifman and V. Wickerhauser

in [8, 20]. An improvement was proposed in [10].

The basis of Coifman and Meyer has the disadvantage that the resolution of the constant is lost, i.e.

on each interval the constant function is not a basis function. In this paper we present two generaliza-
tions that preserve the resolution of the constant. The �rst one is based on a construction of so-called

biorthogonal folding operators, while the second employs equal parity folding (EPF). We also show how
to adapt the construction for bounded domains.

The paper is organized as follows. In the �rst section we discuss trigonometric bases and their
properties. Next (Section 4) we consider the basis of Coifman and Meyer. We present their construction

from a di�erent angle than in the original paper. This will facilitate the presentation of the biorthogonal
construction in Section 6. We study the connection between smooth local trigonometric bases and wavelets

in Section 5. In Section 7, we address the construction on an interval. Section 8 contains a discussion
of equal parity folding. Finally, in Sections 9 and 10, we consider some implementation issues and give

numerical results.

2 Notation and terminology

Much of the notation will be presented as we go along. The space of square integrable functions, L2(R)

or L2 for short, is de�ned as the space of Lebesgue measurable functions for which

kfk2 =

Z +1

�1

jf(x)j2 dx < 1:

The inner product of two functions f; g 2 L2 is given by

h f; g i =

Z +1

�1

f(x) g(x)dx:

An operator is a linear map from L2 to itself. The norm of an operator T is de�ned as

kTk = sup
kfk=1

kT fk:

The adjoint T � of an operator T satis�es

hT f; g i = h f; T � g i ;

for all f and g in L2. The kernel of an operator is given by

ker T = fx 2 L2 j T x = 0g;

and its range by

range T = fTx j x 2 L2g:
An operator is invertible if its kernel is equal to f0g and if a bounded operator G exists so that GF =

FG = 1. The condition number of an operator is de�ned as � = kTk � kT�1k. An operator is selfadjoint
in case T � = T and unitary in case T�1 = T �.
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A countable subset ffng of L2 is a Riesz basis if every element f 2 L2 can be written uniquely as
f =

P
n cn fn, and if there are positive constants A and B such that

A kfk2 6
X
n

jcnj2 6 B kfk2:

A Riesz basis is an orthogonal basis in case the fn are mutually orthogonal. In this case A = B = 1.

A bounded function f satis�es a Lipschitz condition of order � (0 < � 6 1) on a set S if

jf(x)� f(y)j = O(jx� yj)�) for x; y 2 S:

We then say it belongs to the space Lip�(S). Higher order Lipschitz regularity (� > 1) can be de�ned in
a straightforward way by using higher order di�erences of f .

The Fourier transform of a function f 2 L2 is de�ned as

bf(!) =

Z +1

�1

f(x) e�i!x dx:

3 Trigonometric bases

Consider the interval I = [0; 1] for simplicity. The basis functions of a Fourier series are given by

ek(x) = exp(i2�kx);

and we know that the set fekg is an orthonormal basis for L2([0; 1]). The Fourier series of a function is

given by

f =
X
k

ck ek; with ck =

Z 1

0

f(x) ek(x)dx:

The decay of the coe�cients, and thus the convergence rate, depends on the smoothness of f when I
is identi�ed with the torus � (i.e. the smoothness of the periodic extension of f). More precisely, if

f 2 Lip�(�), then
ck = O(jkj��); (1)

see [21]. This property is fundamental. It tells us that if the function is smooth, the convergence will be
rapid. By truncating the series we thus obtain accurate approximations.

However, as we already hinted to in the introduction, the restriction to an interval of a smooth function

de�ned on the real line is not necessarily a smooth function when extended periodically. Obviously, the
behavior of a function on the left end of the interval does not necessarily match the behavior on the right
end. The convergence can thus be slow and the approximation properties poor.

Other orthonormal bases that only have sines or cosines as basis functions exist. One of them is the

sine IV basis where

sk(x) = sin
2k + 1

2
�x;

and the set f
p
2 sk j k 2 Ng is an orthonormal basis for L2([0; 1]). It is called the sine IV basis because it

uses basis functions that have quarter wavelengths as compared to the Fourier series. The functions sk
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all are odd and smooth around the left endpoint and even and smooth around the right endpoint. Other
basis functions and their parity are: sine II (odd and odd),

Sk(x) = sin k�x;

cosine II (even and even),
Ck(x) = cosk�x;

and cosine IV (even and odd),

ck(x) = cos
2k + 1

2
�x:

For each basis a discrete transform and a fast (linear) algorithm, inspired by the Fast Fourier Transform
(FFT), exist, see [16, 18, 20]. Whenever the data shows some special behavior such as periodicity or

parity around an endpoint, it is important to pick the basis that re
ects this property in order to obtain
the rapid decay of the coe�cients (cf. (1)).

4 Local trigonometric bases of Coifman and Meyer

4.1 The folding operator

The mirror operator M� around a point � is de�ned as

M� f(x) = f(2�� x):

It essentially 
ips the function around �. Note that it is self-adjoint and unitary. Consider an interval of
length 2�� around �, and a continuous left cuto� function l so that

l�(x) =

(
1 if x < � � ��

0 if x > � + ��;

and let the right cuto� function be r� =M� l�. Also let �
l
� = �(�1;�] and �

r
� = �[�;1). The following

preposition lists some of the commutation properties of the mirror operator and cuto� functions.

Preposition 1 The mirror operator and cuto� functions satisfy:

M� l� = r�M�

M� r� = l�M�

M� �
l
� = �r�M�

M� �
r
� = �l�M�:

Note that we use the same symbol for a function and for the operator de�ned as multiplication with that
function. We now de�ne the folding operator.

De�nition 2 The folding operator around a point � is de�ned as

F� = �l� (1 +M�) l� + �r� (1�M�) r�:
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Using simple algebraic manipulations and Preposition 1, it is easily checked that the adjoint of the folding
operator is given by,

F�� = l� (1 +M�)�
l
� + r� (1�M�)�

r
�

= �l� (1�M�) l� + �r� (1 +M�) r�:

Lemma 3 The folding operator is unitary if and only if l2� + r2� = 1.

Proof : This follows from the fact that

F��F� = l� (1 +M�)�
l
� (1 +M�) l� + r� (1�M�)�

r
� (1�M�) r�

= l2� �
l
� + l2� �

r
� + l� �

r
� r�M� + l� �

l
� r�M�

+ r2� �
r
� + r2� �

l
� � l� �

r
� r�M� � l� �

l
� r�M�

= l2� + r2� = F�F��:

2

For the remainder of Section 4 we assume that this condition is satis�ed.

Let us try to understand how the folding operator behaves. Multiplication with l� lets a function die
o� smoothly to the left of �+ ��. The operator 1 +M� then adds this function to its mirrored version.
This results in a function even around �. This function is now cut o� by �l�. The right part is similar

and creates an odd function. Consequently, if f is smooth, then �l�F� f is a function that is smooth
when extended \even" to the right and �r�F� f is a function that is smooth when extended \odd" to the

left. By extending as an even (resp. odd) function we mean applying the operator 1+M (resp. 1�M).

Note that even when f is smooth, F� f , in general, is discontinuous at �. The adjoint operator (which
is also the inverse) does exactly the same but switches even and odd. Figure 1 shows the folding of a
function around � = 0.

4.2 The total folding operator

Consider a partition of the real line R into disjoint set of intervals I = (�; �], so that

R =
[
I

I;

and

� � � > �� + �� :

The operators F� and F� commute because F� � 1 on R n (� � ��; � + ��). This allows us to give the

following de�nition.

De�nition 4 The total folding operator is de�ned as

T =
Y
�

F�;

where the ordering in the product is arbitrary.
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Figure 1: The folding of a function where � = 0 and �� = 0:5.

Being a product of unitary operators, T too is unitary.

Next we rewrite the total folding operator as a sum of operators GI , each valid on the interval I,

T =
X
I

�I GI :

One can understand that GI is given by

GI = (1�M� +M�) bI ;

where bI is the bell function associated with the interval I,

bI = r� l�:

This follows from the fact that in both representations of T we have

T =

8>><
>>:

1 on (�+ ��; � � ��)

(1�M�) r� on (�;� + ��]

(1 +M�) l� on [� � �� ; �]:

Note that
G�I = bI (1�M� +M�)

and X
I

b2I = 1:

We next study the properties of GI .
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De�nition 5 A function f is locally even (resp. odd) around a point � if f(x) = M�f(x) (resp.
�M�f(x)) for x 2 [� � ��; � + ��].

Lemma 6 The function GI f is locally odd around � and locally even around �.

Proof : On the interval [� � ��; � + ��], GI f = (1 �M�) r� f , so that M� GI f = �GI f . On the
interval [� � �� ; � + �� ], GI f = (1 +M�) l� f , so that M� GI f = GI f . 2

Lemma 7 If a function s is locally odd around � and locally even around �, then

�I GI bI s = �I s and G�I �I s = bI s:

Proof : We prove the �rst equation. On the interval (�+ ��; � � ��), the left and right-hand sides are

equal to s. On the interval (�;�+ ��], the left-hand side is equal to (1�M�) r
2
� s, which is equal

to s because s is locally odd and r2�+ l
2
� = 1. The interval [�� �� ; �] and the second equation may

be handled similarly. 2

4.3 Splitting into subspaces

Our basic goal is to split L2 into subspaces so that each subspace contains functions localized around one
of the intervals I. Moreover, we want a basis that is suited for representation of smooth functions on

that interval. The easiest would be to let

L2(R) =
M
I

L2(I):

This obviously is an orthogonal decomposition and multiplication with �I is the orthogonal projection

associated with it. Unfortunately, the trigonometric basis on each interval has, in general, poor approx-
imation properties, cf. the discussion in Section 3. The total folding operator, however, transforms a

smooth function into a function with speci�c parity properties at the endpoints of each interval. If we
then use a trigonometric basis which re
ects these parities, we again get good approximation properties.
The orthogonality is preserved because the total folding operator is unitary. The orthogonal projection

operator associated with an interval is given by

PI = T � �I T :

We decompose L2(R) into orthogonal subspaces as

L2(R) =
M
I

VI with VI = PI L
2(R):

It is immediately clear that

T VI = L2(I) and T � L2(I) = VI :

Using folding operators associated with an interval, we can write the projection operator also as

PI = G�I �I GI :
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Lemma 8 Each element of VI is of the form bI s, where s is locally odd around � and locally even around
�, and every function of this form belongs to VI.

Proof : The �rst part follows from Lemma 6 and the fact that

PI = bI GI ;
which, in turn, is a consequence of Lemma 6 and the second part of Lemma 7.

The second part follows from the fact that if s is locally odd around � and locally even around �,

then
PI bI s = G�I �I GI bI s = bI s;

which is a consequence of Lemma 7 (�rst and second part). 2

The fact that the projection operators are orthogonal can also be understood as follows. Let I and
J be two intervals. In case they are not neighbors, the supports of PIf and PJg do not intersect. In the
case that I and J meet at a point �, PIf PJ g is only supported on [� � ��; � + ��], where it is equal to

bI s bJ t = l� r� s t. Here s is locally odd and t is locally even around �. Since l� r� is locally even, the
integral vanishes.

The previous lemma tells us which trigonometric basis is the right to use. The orthonormal basis for

L2(I) that matches the parity is given by
�I sI;k;

where

sI;k =

s
2

jIj sin
2k + 1

2

�

jIj (x� �):

This immediately corresponds to an orthogonal basis for VI given by

T � �I sI;k = G�I �I sI;k = bI sI;k; with k 2N:

Consequently,

f =
X
I

PIf =
X
I;k

cI;k bI sI;k;

where the coe�cients are given by

cI;k = h f; bI sI;k i = h T f; �I sI;k i : (2)

If we look at the operators from a practical point of view, we see that F� (and thus T ), �I and their
adjoints are easy to discretize and implement. This means we always use the second expression of (2)

for the coe�cients of a function. In addition, the machinery for local trigonometric bases on an interval
then becomes readily available.

We can summarize the results from this section in the following theorem.

Theorem 9 Using the notation of this section, and assuming that l2� + r2� = 1, the functions fbI sI;kg
form an orthogonal basis for L2. Moreover, if f and the cuto� functions belong to Lip�[� � ��; � + �� ]

with I = (�; �], the coe�cients of f decay as

cI;k = O(k��):

Note that the decay of the coe�cients associated with the interval I, only depends on the smoothness of
f in the neighborhood of I.
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5 Connection with wavelets

There is a close connection between local trigonometric bases and wavelets. To understand this, we take

a look at the following example. Consider the multiresolution analysis formed by the Shannon wavelet.
Let

 (x) =
sin(2�x)� sin(�x)

�x
;

and
 j;l(x) = 2j=2  (2jx� l):

De�ne
Wj = clos span f j;l j l 2 Zg:

Then M
j

Wj = L2(R);

and the f j;lg form an orthogonal basis for L2.

Since b (!) = �I(!) with I = [�2�; �] [ [�; 2�];

we see that

Wj = ff 2 L2 j supp bf � 2j Ig:
The splitting of L2 into the wavelet spaces thus corresponds on to splitting the frequency axis into

logarithmic intervals and letting

L2 =
M

L2(2j I):

If we look at the Fourier transform of the wavelets,

b j;l =
p
2�je�i!l2�j

�2j I ;

we see that they form a (non smooth) local trigonometric basis. These wavelets are not very useful
in practice since they have slow decay. Remember that decay in the spatial domain corresponds to

smoothness in the frequency domain. As we see, their Fourier transform has discontinuities.

It immediately follows that using the smooth local trigonometric basis on these intervals in the fre-
quency domain leads to wavelets with rapid decay in the spatial domain. In case the cuto� functions

belong to C1, the wavelets have faster than polynomial decay. The Meyer wavelet [15] was constructed
in this way, and its generalization was one of the motivations for the work of Coifman and Meyer. These
wavelets have an in�nite number of vanishing moments since their Fourier transform vanishes in a neigh-

borhood of the origin. Note that a splitting into intervals of equal size corresponds to a certain set of
wavelet packets [10].

6 Biorthogonal local trigonometric bases

An important property of a basis concerns how constant functions are represented. We say that a basis

has a resolution of the constant if, on a �nite domain, the constant is represented with a �nite number
of basis functions. Since a smooth function locally resembles a constant, it is important to represent

9



a constant on each interval with as few coe�cients as possible, in order to get good approximation
properties. For example, suppose we have an of an image with a constant background. Surely, we do not

want to spend many coe�cients in the representation of the background.

We adapt the construction so that the constant is one of the basis functions. From the previous

section we see that

�I GI 1 =

8>><
>>:

r� � l� on (�;� + ��]

1 on (�+ ��; � � ��)

r� + l� on [� � �� ; �]:

We want cuto� functions so that this function coincides with the �rst basis function sI;0. This is clearly

only possible if �+ �� = �� �� . From now on, we therefore only work with intervals of equal size and let
� = jIj=2. In order to achieve a resolution of the constant and still have an orthogonal basis, the cuto�

function needs to be chosen as l� = l((x� �)=�), where

l(x) =

8>>><
>>>:

1 for x < �1
cos(�x=4)� sin(�x=4)p

2
for x 2 [�1; 1]

0 for 1 < x:

This cuto� function is continuous but not di�erentiable. Consequently, the folding operator introduces
discontinuities in derivatives that ruin the approximation properties (i.e. ruin the decay given in (1)).

What we need is a resolution of the constant with smoother cuto� functions.

In order to solve this problem, we add some 
exibility to the construction, by abandoning the or-
thogonality requirement. In the remainder of this paper we let l� and r� = M�l� be continuous cuto�

functions that do not necessarily satisfy l2� + r2� = 1.

Lemma 10 In case l2�+ r
2
� is bounded from below and above, the folding operator is bounded and invert-

ible. More precisely,

A kfk 6 kF�fk 6 B kfk;
where

A = min
x

p
l2� + r2� and B = max

x

p
l2� + r2�;

and these constants are sharp.

Proof : This follows from the fact thatZ +1

�1

jF�f j2 dx =

Z +1

�1

(l2� + r2�) jf j2 dx;

which is the result from simple algebraic manipulations similar to the ones in the previous section.

2

Lemma 11 The inverse of an invertible folding operator F� is again a folding operator.

Proof : The equation g = F�f can be written in matrix form as

�l�

�
g

M� g

�
=

�
l� r�

�r� l�

�
�l�

�
f

M� f

�
:
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From this we see immediately that the inverse of F� is given by fF�

�

, where

fF� = �l� (1 +M�) ~l� + �r� (1�M�) ~r�;

~l� =
l�

l2� + r2�
; and ~r� =

r�

l2� + r2�
:

2

Note that
l� ~l� + r� ~r� = 1:

We call F� and fF� biorthogonal folding operators and refer to fF� more speci�cally as the dual folding
operator.

This does not solve the problem completely. Indeed, if the cuto� functions belong to C1, the folded
constant has derivative zero at � + � and thus never coincides with the �rst basis function sI;0. We
therefore generalize the construction further by allowing di�erent parities. We want to have a folding
operator that takes a smooth function into a function that is either odd at the left and right endpoint of

an interval or even at both endpoints. One way to do so would be to use folding operators with the same
parity left and right of the folding point. Unfortunately, we show in the next lemma that these operators

are not invertible.

Lemma 12 A folding operator with the same parity left and right of the folding point is not invertible.

Proof : Consider the even-even case and let

F� = �l� (1 +M�) l� + �r� (1 +M�) r�:

The matrix representation leads to a matrix with determinant l2��r2�, which vanishes at the folding
point. 2

This basically tells us that the only way to get the same parity at both endpoints of an interval is to

alternate the parity of folding operators. In other words, we need to change the parity from : : : (odd
even) (odd even) (odd even) : : : to : : : (even even) (odd odd) (even even) (odd odd) : : :. This implies

de�ning the total folding operator by alternating F� and F��. In the intervals with (even even) parity we
use the cosine II basis and in the intervals with (odd odd) parity the sine II basis. To write this down in
more detail we let

�l = l jIj;
and, in order to simplify notation, we replace every subscript �l, or I, by the integer subscript l. The
total folding operator is now given by

T =
Y
l

F2l F�2l+1;

where the factors commute. Again this operator is invertible, and since the individual folding operators

do not interact spatially, it also satis�es

A kfk 6 kT fk 6 B kfk;
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with the same constants as above. The dual total folding operator is de�ned similarly (just add the

tildes) and again T �1 = eT �. The condition number of the total folding operator is B=A.

Following a reasoning similar to the orthogonal case, we see that the total folding operator can also
be written as a sum of folding operators associated with an interval,

T =
X
l

�l Gl;

where
G2l = (1�M� �M�) b2l;

and

G2l+1 = (1 +M� +M�) b2l+1:

The projection operator associated with an interval is given by

Pl = eT � �l T :
We decompose L2(R) into subspaces,

L2(R) =
M
l

Vl with Vl = Pl L
2(R);

where
T Vl = L2(I) and eT � L2(I) = Vl:

Again the projection operator can also be written as

Pl = eG�l �l Gl = ~bl Gl:

If l is odd (resp. even), an element of Vl can be written as ~bl times a function that is locally even (resp.
odd) around � and �.

We use the basis functions with the right parity on each interval:

t2l;k =

s
2

jIj sin(k + 1)
�

jIj (x� 2l); k > 0;

t2l+1;k =

s
2

jIj cosk
�

jIj (x� 2l � 1); k > 1;

and

t2l+1;0 =
1p
jIj
:

Obviously, the tl;k with l 2 Z and k 2 N form an orthonormal basis for L2. This implies that the basis

formed by the eT � �l tl;k is a Riesz basis for L2. These functions are given by

eT � �l tl;k = eG�l �l tl;k = ~bl tl;k:

Consequently,

f =
X
l

Plf =
X
l;k

cl;k ~bl tl;k;
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where the coe�cients are given by

cl;k = h T f; �l tl;k i = h f;T � �l tl;k i = h f; bl tl;k i ; (3)

and

A kfk 6
sX

l;k

c2l;k 6 B kfk;

with the same constants as above. We say that fbl tl;kg is the dual basis corresponding to the basis

f~bl tl;kg. The �rst expression of (3) for the coe�cients is the easiest to implement. We summarize the
results in a theorem.

Theorem 13 With the notation of this section, the sets of functions fbl tl;kg and f~bl tl;kg are dual Riesz

bases of L2. More precisely, they are biorthogonal in the sense that

h bl tl;k;~bl0 tl0;k0 i = �l�l0 �k�k0:

If f and the cuto� functions belong to Lip�[� � ��; � + �� ] with I = (�; �], the coe�cients of f decay as

cI;k = O(k��):

Note that these bases still have some orthogonality. More precisely, two basis functions associated with

di�erent intervals are still orthogonal. This can be understood using a reasoning similar to the one
following Lemma 8. The splitting of L2 into subspaces thus still is an orthogonal splitting.

The only thing left is to �nd cuto� functions so that �l T 1 coincides (up to a constant factor) with

�l tl;0. This can be done by letting l� = l((x� �)=��) where

l(x) =
1� sin(�x=2)

2
for x 2 [�1; 1]:

This cuto� function belongs to C1. It is easy to check that on I,

G2l 1 = sin

�
x� 2l

jIj

�
and G2l+1 1 = 1:

In this case the constants A and B, used in the comparison of norms, are 1=
p
2, and 1 respectively. The

condition number of the folding operator is thus
p
2. We have chosen this normalization because it is

natural for the cuto� functions to have the value 1=2 at �. This means that the even side of the folded
function coincides with the original function at the folding point. The cuto� functions are shown in
Figure 2 and the biorthogonal total folding of an exponential function is shown in Figure 3. The folded

function on each interval closely resembles the �rst basis function. Figure 4 shows two basis functions,eb2 t2;4 and eb5 t5;9 where jIj = 1. The shape of the bell functions is drawn dotted. Note the parity of the

basis functions at the endpoints.

7 Folding operators on an interval

So far we have only discussed functions de�ned on the real line. In this section, we focus on folding
operators on an interval. Since we can treat each boundary point independently, we consider the case
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Figure 2: The biorthogonal cuto� functions.

of the interval I = [�;1). We introduce an extension operator S that takes a function from L2(I),

to a function of L2(R), and a restriction operator R = �I that does the opposite. We want them to
satisfy RS = 1 on L2(I). Also, in case f is smooth, we want Sf to have some smoothness too. For

notational simplicity, we omit the subscript � and introduce a superscript b for cuto� functions and
operators associated with the boundary of the interval. We de�ne the folding operator at the boundary

as
Fb = RF S:

Let lb = R l (similarly for r), and let Mb be the operator that maps a function of L2(I) to a its mirror
in L2(R n I). Now,

Fb f = R [�l (1 +M) l + �r (1�M) r]S
= R (1�M) r S
= rb f � lbRMS f:

The second term has a plus sign in the case of F�b = RF� S (i.e. the even case).

Assuming that f is continuous, we choose the extension operator in the odd case as

S f = 2f(�)�Mb f on R n I:

This guarantees that if f 2 C1, so is S f . The folding operator is then given by

Fb f = (lb + rb) f � 2f(�) lb:

We can thus retrieve f from Fb f by

f =
Fb f + 2f(�) lb

lb + rb
:

14
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Figure 4: Biorthogonal basis functions.
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This shows that we need Fb f and the value f(�) to �nd f again.. This is no surprise because the folding
operator can never \grasp" the value of f at � since Fbf(�) = 0 in case f is continuous. We thus need

to separately \store" the value f(�). The reconstruction step is stable since the denominator does not
vanish.

If we use the same extension operator in the even case, the reconstruction becomes unstable since it
has lb� rb in the denominator. We therefore introduce the following extension operator in the even case,

S f = Mb f + 2f 0(�) (x� �) on R n I;

where we assume that f 2 C1. Then Sf 2 C1 as well. The folding operator is given by

F�b = (lb + rb) f + 2f 0(�) (x� �) lb;

from which we see that the inverse operator again is stable. Here we need to \store" the value f 0(�)
separately.

The construction on the right boundary of an interval is analogous. Also, it is possible to construct

extension operators that preserve more smoothness at a cost of having to store more information sepa-
rately.

8 Equal parity folding

In this section we take a closer look at the folding operator that takes a smooth function into a function
with the same parity left and right of the folding point. We call such a folding operator an equal parity

folding (EPF) operator. In Section 6 we proved that they are not invertible in L2, see Lemma 12.
Nevertheless, they have been used successfully for image compression, see [1]. In this section, we study
their behavior more carefully and try to understand why they sometimes are useful.

We start by introducing two new operators E and D by,

E = 1 +M and D = 1�M;

which map any function into an even (resp. odd) function and satisfy

E + D
2

= 1:

Note that they are both self-adjoint and provide an orthogonal splitting of L2 into E L2�DL2. We again

take � = 0 and omit the subscript �. We assume the cuto� functions to be continuous and satisfy

lim
x!�1

l(x) = 1; lim
x!+1

l(x) = 0; (4)

and r =M l. The EPF operator with (even { even) parity can now be written as

F = �l E l + �r E r: (5)

We immediately see that the EPF operator is self-adjoint. Also, it commutes with M and maps even

(resp. odd) functions into even (resp. odd) functions. Next we study how the EPF operator behaves on
the subspaces of even or odd functions.
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Lemma 14 On E L2, F coincides with l + r. On D L2, F coincides with (�l � �r) (l� r).

Proof : If f 2 E L2, we see that

F f = �l E l f + �r E rM f = �l E l f + �r E M l f = E l f:

If f 2 DL2, we have

F f = �l E l f � �r E rM f = �l E l f � �r E l f = (�l � �r) (l� r) f:

2

We introduce two new functions e and d by

e = E l and d = D l:

The lemma implies that we can write F as

F = e E + d (�l � �r)D: (6)

This helps us to formulate the following lemmas.

Lemma 15 The EPF operator is bounded.

Proof : This follows immediately from the representation (6), the fact that the cuto� functions are
continuous, and from their limit conditions (4). 2

Lemma 16 ker f = f0g.

Proof : From (5) we see that F f = 0 implies that both lf and rf are odd. Consequently, ef and d f
are odd. The former implies that f is odd, the latter that f is even. Thus f = 0. 2

We know that the kernel and the closure of the range of a self-adjoint operator form an orthogonal
splitting of L2. The former two lemmas thus imply that the range of F is dense in L2. We show later
that the range of F is actually a true subset of L2.

Lemma 17 The EPF operator is not invertible on its range.

Proof : Remember that an operator is invertible when its inverse exists and when the inverse is bounded.
We prove that F is not invertible by constructing an odd function w with norm 1 so that F w can

have arbitrarily small norm. Let

w =
1

2
p
�

�
�[��;0] � �[0;�]

�
:

Then
kF wk = kdwk 6 max

x2[��;�]
d:

Since the cuto� functions are continuous this can be made arbitrarily small. 2
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It is easy to see what the inverse operator, at least formally, looks like. It again is an EPF operator
with the parity (even { even). We denote it by eF where

eF = ~e E + ~d (�l � �r)D;

with

~e = 1=e and ~d = 1=d:

It immediately follows that formally eF F = 1. The inverse operator can also be written in a form similar

to (5), where eF = �l E ~l + �r E ~r;
with

~l =
l

l2 � r2
and ~r =

r

r2 � l2
:

The fact that F is not invertible shows up here in the fact that ~d has a singularity at x = 0. This also

tells us that eF can take a function out of L2, since this singularity is not necessarily square integrable.

We observe that F is bounded and invertible on the subspace of even functions in case e is bounded
away from 0 and 1. For the odd functions we cannot make a similar statement as d always vanishes in
the origin.

We can characterize the range of F by

range F = ff 2 L2 j f=d 2 L2g:

If we also assume that the cuto� functions belong to C1, we see that ~d = O(1=x). This means that a
function belongs to the range of F in case it behaves like O(x1=2��) in a neighborhood of the origin. A
typical function that does not belong to the range of F is a function with a discontinuity at the folding

point. Similarly we can describe the range of eF by

range eF = ff 2 L2 j d f 2 L2g;

and we note that L2 � range eF . Again, a function that eF typically takes out of L2 is a function with

a discontinuity across the folding point. Under the assumption that the cuto� functions belong to C1, a
function of the range of eF behaves like O(x�3=2��) in a neighborhood of the origin.

We also note that F has some smoothing properties, i.e. it maps a function with a discontinuity at
the origin into a continuous function since

F �l = l:

However, it does not smooth out discontinuities in the derivative because

F x�l = jxj l:

Let us discuss how these operators can be used for function approximation. The idea is to construct

a total folding operator and then use a trigonometric basis with the right parity on each interval. In
this case the right basis is the cosine II basis. We can �nd a nonlinear approximation by setting a �xed

number of small coe�cients to zero and applying the inverse total folding operator. If we think of F
as a kind of smoothing operator and of eF as an operator that can blow up discontinuous functions, it
makes sense to use eF to construct the total folding operator and F for its inverse. This has the following

advantages.
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� Since F is bounded, the error introduced by the approximation in the trigonometric basis cannot
get magni�ed.

� Discontinuities across the folding points get smoothed by F . In other words, the approximation

has some smoothness.

We note that the idea to switch the two operators around was �rst suggested in [1].

This approach works well as long since the function is smooth at the folding point. This can be

understood as follows. If a function is smooth, we can write a local �rst order approximation as

f(x) � f(0) + f 0(0)x+O(x2):

The �rst term is even and thus does not pose a problem as the folding operators are bounded and

invertible on the space of even functions. The second term is odd, but (locally) belongs to the range of
F , and thus does not cause any trouble. Problems, however, occur when the function is discontinuous at
a folding point. We illustrate this with an example in the next section.

The construction of the total folding operators is analogous to the biorthogonal case and we adopt

the same notation (i.e. the integer subscripts). Evidently, there is no need to alternate the parities. On
each interval we use the cosine II basis or the functions �lCl;k where

Cl;k =

s
2

jIj cos k
�

jIj (x� 2l� 1):

It should be clear from the discussion above that the F �lCl;k cannot generate a basis for L
2, but merely

form a set whose linear span is dense. We remark that we still have

F �lCk;l = blCk;l;

where bl is the usual bell function. So formally we can use this transform, but there is no guarantee that

the coe�cients will be bounded.

It is easy to see that we get a resolution of the constant in case e = 1. But, unlike in the biorthogonal
case, one degree of freedom is left after �xing the resolution of the constant, namely the choice of d. We

can use this to also obtain a resolution of the linear, i.e. a representation of each linear function by two
basis functions on an interval. To do so we need to choose d so that

d(� x) =
x

1� 2=� cos(�x=2)
for x 2 [�1; 1];

and, consequently,
l = (1 + d)=2 and r = (1� d)=2:

The function d is smooth and satis�es the right boundary conditions. Then, with � = 1,

~F x = ~e E x+ ~d (�l � �r)D x
= ~dx = 1� 2=� cos(�x=2):

Figure 5 shows the l, r, and d functions in this case. Figure 6 shows the equal parity folding of the

function x with folding points 0 and 1 and � = 0:5. We see that on the interval [0,1] it coincides with a
function of the form A+B cos(�x) (dashed).
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Figure 5: Equal parity folding functions: l (full), r (dashed), d (dotted).

9 Implementation and results

So far the discussion only concerned functions of a continuous variable. In applications the construction
needs to be discretized. A function f is then given as a sequence ffng where the \samples" fn can be

seen as pointwise evaluations on a regular grid in case f is continuous, or as average values of f in a
neighborhood of the grid point if not. For each local trigonometric basis, a discrete implementation of the

transform is available, which is based on the FFT. The implementation of the FFT is most straightforward
in case the number of samples is a power of two.

We �rst need to decide whether we want to use a staggered or non-staggered discretization. In a non-
staggered discretization, the boundaries of the interval coincide with a grid point, while in a staggered

discretization the boundaries of the interval fall between grid points.

In the orthogonal construction both discretizations are possible. The fact that a folded function is
discontinuous at the folding point does not pose a problem in the non-staggered discretization. At the

folding point we only need the value of the \even" part as we know that the \odd" part vanishes. In
the biorthogonal case both options can still be used. In this case the non-staggered has the disadvantage
that the \even-even" intervals contain two more samples than the \odd-odd" intervals. This makes

implementation harder.

In the EPF case one has to use the staggered implementation since some of the cuto� functions have
a singularity at the folding point. This makes it possible to implement operators that in the L2 sense

are unbounded or not invertible. The fact that the range of F is dense in L2 ensures that these discrete
operators are invertible. However, this unavoidably results in ill-conditioned discrete operators. The

smaller the grid size, the worse the condition will be.

We next include some numerical examples. Each time we take a function, calculate its transform

coe�cients, set a certain percentage of the coe�cients to zero (the smallest ones), and obtain an approx-
imation by calculating the inverse transform. The errors are measured with the `2 norm. We always use
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the staggered discretization.

The �rst example involves a function that has discontinuities at the folding points. We work on the

interval [0; 1] where we assume that the functions are extended periodically to the real line. Consider the
function

f = 2 � �[1=4;3=4) � 1;

which generates a square wave. We take 1=4 and 3=4 as folding points, each with � = 1=4. We use the
staggered discretization with grid size h = 1=100. After the appropriate local trigonometric transform on

each interval, we retain the largest 15% of the coe�cients and set the others to zero. We then perform the
inverse trigonometric transform and unfolding. Figures 7 and 8 show the folding of f in the biorthogonal

and EPF case and these functions after setting the coe�cients to zero (dashed). Figures 9 and 10 then
show the unfolding of these functions versus the original function (dashed). As we predicted, the EPF
performs poorly in this case.

In a second example we consider a smooth function,

f(x) = e�(4x�2)4 ;

and use the same folding points. Figure 11 gives the norm of the di�erence between the the original
function and the approximation as a function of the percentage of the coe�cients that were retained. As
we expected, the EPF behaves better here. If the percentage of coe�cients kept is less than 15, its error

is about 10 times smaller than in the biorthogonal case.

10 Image compression

One of the major applications of smooth local trigonometric bases is image compression. The idea of
a transform coding scheme is to take the transform of the image, set the small coe�cients to zero, and
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quantize and encode the other ones. The transform has to be chosen such that it re
ects the correlation
present in the image. Since images have both spatial and spectral correlation, the basis functions need to

be local in space and frequency. A standard still image compression algorithm is JPEG [19]. The image
here is divided into blocks of eight by eight pixels, after which the discrete cosine transform is used on
each block. It thus uses a (non smooth) local trigonometric basis. One of its disadvantages is that at

high compression ratios, the compressed image reveals the splitting location: the so-called blocking e�ect.
This is caused by the fact that the approximations are discontinuous. In [1, 2] smooth local trigonometric

bases are used for image compression and it is shown that they outperform JPEG. In [11], a comparison
between the biorthogonal and the EPF case is made. The conclusion is that for a �xed compression ratio,
EPF has a better SNR, but the biorthogonal basis gives better visual image quality.
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Figure 7: Biorthogonal folding of the block and approximation (dashed).
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