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1. Introduction. The basic idea of wavelets and
multiresolution analysis is to use the dyadic translates
and dilates of one function as a basis of L2 [4, 5, 8].
Wavelets are often constructed with the use of the
Fourier transform. The reason is that translation and di-
lation on the frequency side become algebraic operations.
We call these wavelets algebraic wavelets . Examples of
compactly supported algebraic wavelets are Daubechies'
orthogonal wavelets and spline wavelets [3, 5]. Algebraic
wavelets are (bi)orthogonal with respect to the L2 in-
ner product. In this paper we show how to construct
wavelets adapted to a weighted inner product. We call
such wavelets weighted wavelets .

2. Weighted multiresolution analysis. Consi-
der a locally integrable and positive weightfunction w

and the weighted inner product

h f; g iw =

Z +1

�1

w(x) f(x) g(x)dx:

Such an inner product can e.g. result from the
parametrization of an inner product on a Lipschitz curve.

It is obvious that in the case of weighted wavelets,
the algebraic structure can no longer be used. We thus
adapt the de�nition of multiresolution analysis. Let us
�rst concentrate on which properties are fundamental for
the wavelets to be a powerful tool. Essentially they are
the following:

1. Explicit expression for their coordinate functionals
exist (through the dual wavelets).

2. They have compact support.
3. They have vanishing moments.
4. They are smooth.
5. Fast transforms are available.

Because of property (2) and (3), the wavelets are local-
ized in space and frequency. Consequently, the wavelet
coe�cients of a function decay rapidly where the func-
tion is smooth. By setting the small coe�cients to zero,
one can accurately represent a function with only a few
wavelet functions. This is the key to applications in data
compression and numerical analysis. Property (4) is of
importance to obtain convergence in a smoothness norm.
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We de�ne a multiresolution analysis as a sequence of
closed subspaces Vj � L2 so that
1. Vj � Vj+1,

2.
S+1

j=�1 Vj is dense in L2 and
T+1

j=�1 Vj = f0g,
3. Scaling functions 'j;k exist so that f'j;kgk is a Riesz

basis of Vj .
This implies that for every scaling function 'j;k, coe�-
cients fhj;k;lg exist, so that it satis�es a re�nement rela-
tion

'j;k =
X
l

hj;k;l 'j+1;2k+l:(1)

Each scaling function satis�es a di�erent re�nement rela-
tion. The dual multiresolution analysis consists of spaceseVj with bases generated by dual scaling functions e'j;k
that are biorthogonal with the scaling functions,

h'j;k; e'j;k0 i
w

= �k�k0:(2)

The dual scaling functions satisfy re�nement relations
with coe�cients fehj;k;lg. Note that the coe�cients of
the re�nement relation can be written as

hj;k;l = h'j;k; e'j+1;2k+l iw :
De�ne N � 1 to be the highest degree of polynomials
that can be represented as a linear combination of the
f'j;kgk, and similarly for eN .
We de�ne the space Wj to be a complement of Vj in

Vj+1, and assume f j;kgk is a Riesz basis for this space.
We have the re�nement relation

 j;k =
X
l

gj;k;l 'j+1;2k+l;(3)

and similarly for the dual wavelets. The dual waveletse j;k are biorthogonal to the wavelets, or

h j;k; e j0 ;k0 i
w

= �k�k0 �j�j0 :

The wavelets (resp. dual wavelets) have eN (resp.N) van-
ishing weighted moments.
We want to construct compactly supported basis func-

tions and dual functions, where somehow the index j

corresponds to scale and the index k to location. This
is true if a closed interval I � R exists such that
supp'j;k � 2�j (I + k), and similarly for the wavelets
and dual functions. This implies that the coe�cient se-
quences of the re�nement relations are �nite. A fast
wavelet transform, between the coe�cients �n;l of a func-
tion of Vn and its wavelet coe�cients j;l on the coarser
levels (j < n), recursively uses the relations



�j;k =
X
l

ehj;k;k�2l �j+1;l; j;k =
X
l

egj;k;k�2l �j+1;l;
and

�j+1;k =
X
l

hj;l;k�2l �j;l +
X
l

gj;l;k�2l j;l:

All �lter sequences are �nite. The only di�erence with
the algebraic fast wavelet transform is that the �lter co-
e�cients are di�erent for every coe�cient. Note that
with this setting, we can satisfy properties (1){(5) with-
out the use of the algebraic structure.

Examples. A simple example of wavelets that are or-
thogonal with respect to a weighted inner product ex-
ists; it is a variant of the Haar wavelets. Consider the
multiresolution analysis where Vj is the space of func-
tions that are piecewise constant on dyadic intervals of
length 2�j . Obviously, the set f'j;kgk with 'j;k = �I
and I = [k2�j ; (k + 1)2�j) forms an orthogonal basis of
Vj for any weight function. Let  j;k be a function that is
piecewise constant on the intervals [2�jk; 2�j�1(2k+1))
and [2�j�1(2k+1); 2�j(k+1)), zero elsewhere, and with
one vanishing weighted moment. It then follows immedi-
ately that the set f j;kg is orthogonal with respect to the
weighted inner product. Since the wavelet is not sym-
metric, we call it the unbalanced Haar wavelet . A clever
generalization of this idea to multiple dimensions was re-
cently found by Marius Mitrea [9]. The unbalanced Haar
wavelets and the Mitrea wavelets have as disadvantage
that they only have one vanishing moment and that they
are non-smooth.
Several other constructions of weighted wavelets al-

ready exist, see [1, 2, 8, 12]. However, they have the
disadvantage that the wavelets are not compactly sup-
ported.
In this paper we construct smooth, compactly sup-

ported, weighted wavelets with more vanishing moments.
First of all, we use a more restrictive condition on the
compact support than the one suggested above, in the
sense that supp'j;k = 2�j(supp'0;0 + k), and similarly
for the wavelets and dual functions. This implies that the
index range (over l) of the non-zero coe�cients in the re-
�nement relations (and thus the fast wavelet transform)
is independent of j and k.
Secondly, we �x the dual scaling functions and con-

struct scaling functions, wavelets and dual wavelets with
the desired properties. More precisely, we let the dual
scaling functions be the indicator functions on the dyadic
intervals, e'j;k = �I with I = [k2�j; (k+1)2�j). The re-
�nement relation for the dual scaling functions is

e'j;k = e'j+1;2k + e'j+1;2k+1:(4)

From the re�nement relations (1) and (4) and the
biorthogonality (2) it follows that

hj;k;2l + hj;k;2l+1 = �l:(5)

3. Construction. Since the algebraic structure is
gone, the Fourier transform cannot be used in the con-
struction. Our construction is a generalization of the
average-interpolation scheme of David Donoho [6]. This
is a subdivision scheme for the construction of biorthog-
onal algebraic wavelets without the use of the Fourier
transform.
From symmetry arguments one can understand that

N has to be odd. We let N = 2D + 1. Suppose one
wants to synthesize a function of Vi,

f =
X
k

�i;k 'i;k:(6)

The idea of a subdivision scheme is to write this func-
tion in the basis of a �ner scale space Vj with j > i, and
to let j tend to in�nity.
One step of the subdivision scheme consists of, given

the coe�cients �j;k on one level, calculating the coe�-
cients on the next �ner level �j+1;k. For each group of
N coe�cients f�j;k�D; : : : ; �j;k ; : : : ; �j;k+Dg, it involves
two steps:
1. Construct a polynomial P of degree N so that

hP; e'j;k+l iw = �j;k+l for �D 6 l 6 D:

2. Calculate two coe�cients on the next �ner level as
�j+1;m = hP; e'j+1;m i

w
, with m = 2k; 2k + 1.

This de�nes a subdivision operator Uj with

f�j+1;kgk = Uj f�j;kgk:

One now �nds the coe�cients hj;k;l, which are needed
in the fast wavelet transform, by letting one of the �j;k
be equal to one and all others equal to zero, or, more
precisely

fhj;k;lgl = Uj f�k�lgl:

For each j and k, there are 2N non-zero coe�cients hj;k;l,
namely the ones with l = �N + 1; : : : ; N . The only in-
formation needed from the weightfunction to implement
this construction on a computer are the local moments,

M
p
j;k = hxp; e'j;k iw :

To synthesize f , de�ne the following series of functions
(j > i),

f (j) =
X
k

�j;k e'j;k=M0
j;k:

If limj!1 f (j) converges uniformly, we de�ne f to be
the limit function. This way we give meaning to the
formal expression (6). In order to construct the scal-
ing function 'i;k, we start from the Kronecker sequence
f�i;lgl = f�k�lgl.
In the unweighted case, this scheme converges to an

algebraic biorthogonal scaling function [6].



The idea to prove the convergence in the weighted case
is to examine the behavior of the di�erence with the
unweighted case. For a detailed treatment, we refer to
[11]. We �rst show that the coe�cients hj;k;l converge
to the coe�cients hl from the unweighted case if j tends
to in�nity. This way we know that on a su�ciently �ne
level the polynomial P in the construction always exists.
With a mild condition on the weight function, along the
lines of a bounded oscillation condition, one can show
that the convergence of the subdivision is uniform and
the scaling functions are smooth. We show that even
if the weight has large jump discontinuities, the scaling
functions are still smooth.

4. Properties.The properties of the weighted
scaling functions are summarized in the following the-
orem.
Theorem 4.1. The weighted scaling functions satisfy

1. supp'j;k = 2�j[�N + 1 + k;N + k],

2.
R +1
�1

w(x)'j;k(x) dx = 1,
3. h'j;k; e'j;k0 i

w
= �k�k0,

4.
P

kM
p
j;k 'j;k = xp for 0 6 p < N .

The following theorem shows how to �nd the wavelets
and summarizes their properties.
Theorem 4.2. Assume that the scaling functions and

the dual scaling functions are given as above. Choose the

wavelet and dual wavelet as  j;k = 'j+1;2k � 'j+1;2k+1,

and

e j;k =X
l

gj;k;l e'j+1;2k+l;

with gj;k;l = (�1)l hj;k+bl=2c;1�l. Then

1. h e'j;k;  j;k0 iw = 0 and h'j;k; e j;k0 iw = 0,

2. h j;k; e j0 ;k0 i
w
= �j�j0 �k�k0;

3.
R +1
�1

w(x) j;k(x) dx = 0;

4.
R +1
�1

w(x)xp e j;k(x) dx = 0; for 0 6 p < N ,

5. supp j;k = supp e j;k = 2�j [�D + k;D + 1 + k].
The vanishing moment property implies that if a func-

tion f belongs to CN , then the weighted wavelet coe�-
cients decay as h f; e j;k iw = O(2�j(N+1)).

5. Applications. The weighted functions can be
used for the rapid numerical solution of ordinary di�er-
ential equations with boundary conditions. We consider
the operator L = �DpD, where p is bounded away from
zero. The construction is based on the observation that

hL f; g i = h pD f; pD g iw ;

where the weight is taken to be w = 1=p. Now consider
biorthogonal, compactly supported, weighted wavelets
 j;k and e j;k. De�ne operator wavelets as

	j;k = D�1  j;k=p;

and similarly for the dual wavelets. It then follows that

hL	j;k;	
�
j0 ;k0 i = �j�j0 ;k�k0:

The operator wavelets diagonalize the operator. A simi-
lar observation was made independently in [2]. The op-
erator wavelets here are compactly supported, since the
weighted wavelets have at least one vanishing weighted
moment. The fast wavelet transform associated with the
operator wavelets is easy to implement, because of their
compact support. This results in a linear, non-iterative
algorithm for the numerical solution of ODEs [7]. It out-
performs �nite element and �nite di�erence methods.
A similar idea is possible for constant coe�cient oper-

ators such as the Helmholtz operator in one dimension.
For these operator the wavelet method outperforms spec-
tral methods.
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